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As indicated by the distance effect and the spatial–numerical association of response codes (SNARC)
effect, natural numbers are mentally represented on a number line. Purportedly, this number line
underlies children’s number sense, which supports the acquisition of more advanced mathematical
competencies. In 3 studies with a total of 429 fifth and sixth graders, the authors compared the influences
of each child’s distance effect, SNARC effect, conceptual knowledge about decimal fractions, and
numerical intelligence on mathematical school achievement. Additionally, they tested using decimal
fractions whether number line estimation competence mediates the influence of the internal number line.
In all, the results, found with path models, revealed that domain-specific conceptual knowledge,
numerical intelligence, and number line estimation each were good predictors of achievement, while
distance and SNARC effects were virtually unrelated to all other variables. Individual differences in the
use of the internal number line, as assessed by these 2 effects, seem to be of little importance when it
comes to the acquisition of the content of 5th- and 6th-grade mathematics lessons. The results instead
highlight the importance of conceptual understanding and estimation competence.
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Mathematical competence comprises a wide variety of different
cognitive skills and processes. Some elementary mathematical
skills such as the discrimination of numerosity or arithmetic com-
putations with small sets of objects are already observed in infants
(Starkey & Cooper, 1980; Wynn, 1992), which has been inter-
preted as evidence that the human brain is endowed with an innate
number sense (Dehaene, 1997). In this context, number sense
refers to the fundamental “ability to mentally represent and ma-
nipulate numerosities on a mental ‘number line’” (Dehaene, 2001,
p. 17). Numbers are regarded to be represented in an analogical
format on this mental number line, allowing for an automatic and
efficient processing of numerical quantities (cf. Newcombe, 2002).

These mechanisms underlie mathematical intuitions that help “to
quickly decide that 9 is larger than 5, that 3 falls in the middle of
2 and 4, or that 12 � 15 cannot equal 96, without much introspec-
tion as to how we perform these feats” (Dehaene, 2001, p. 16).

Thus, the mental number line can be regarded as a domain-
specific foundation upon which the acquisition of more advanced
mathematical concepts and procedures can be built. Case and
Okamoto (1996) took this argument even further by stating that the
mental number line “forms a sort of lens through which children
view the world” and that it “constitutes a tool that [children] use to
create new knowledge” (p. 8). However, empirical evidence of a
link between the mental number line and higher order mathemat-
ical competence is sparse and inconclusive. With respect to the
normal range of mathematical performance, virtually nothing is
known about the relevance of the mental number line for the
acquisition of more advanced mathematical concepts. In fact,
educational research has primarily focused on the role of
domain-specific conceptual knowledge and intelligence in the
prediction of mathematical achievement in school. How the
fundamental ability to represent and manipulate numerical in-
formation on the mental number line is related to mathematical
knowledge and intelligence, and whether this basic capacity can
explain individual differences in mathematical competences
beyond these two well-established variables has not yet been
investigated. This is the aim of the present study. In the fol-
lowing three sections, a brief outline about mental number line,
conceptual knowledge, and intelligence as well as their relation
to scholastic achievement is presented.
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The Mental Number Line

The term mental number line, or internal number line, refers to
a language-independent analogical representation of numerical
magnitude on which small numbers are represented on the left and
large numbers are represented on the right (Dehaene, 1997). There
are several lines of empirical evidence supporting the idea of an
analog and one-dimensional representation of numbers (for re-
views, cf. Dehaene, 1997; Hubbard, Piazza, Pinel, & Dehaene,
2005; Nieder, 2005). Probably the two most studied performance
patterns in numerical cognition that can be accounted for by the
assumption of a mental number line are the distance effect and the
spatial–numerical association of response codes (SNARC) effect.

The distance effect, originally described by Moyer and Landauer
(1967), is usually investigated by means of a simple number
comparison task. Participants are asked to decide by pressing a
button which of two visually presented Arabic numbers is larger
(the left or the right). The speed of the response depends on the
numerical distance between the numbers: Participants responded
more quickly for number pairs with a large numerical distance
(e.g., 2-9) compared with number pairs with a small numerical
distance (e.g., 4-5). This finding conforms to the concept of the
mental number line if it is assumed that the activation of one
number spreads out to adjacent numerosities, therefore making
discrimination more difficult for number pairs with a small than
with a large distance (cf. Nieder, 2005). Subsequent research
extended the number-comparison paradigm to two-digit stimuli
revealing a logarithmic relation between the numerical distance
and reaction time (Dehaene, Dupoux, & Mehler, 1990).

The SNARC effect represents another behavioral indicator of a
mental number line. It was first reported by Dehaene et al. (1990),
who instructed participants to judge by pressing a right or left
button whether a visually presented two-digit number had a larger
or smaller value than a reference number. They found that partic-
ipants who pressed the left button for small numbers and the right
button for large numbers displayed faster responses than those
with the opposite magnitude-button mapping. In a subsequent
study, Dehaene, Bossini, and Giraux (1993) asked participants to
indicate by pressing right or left buttons whether one-digit num-
bers were odd or even. This so-called parity judgment task, too,
elicited the SNARC effect: Participants again responded to smaller
values faster with their left hand and to bigger values faster with
their right hand. This association between numerical magnitude
and space is independent of the notation (e.g., can be found for
Arabic symbols as well as written words), the response type (e.g.,
button press vs. eye saccades), and handedness (cf. Hubbard et al.,
2005).

Even though it is plausible to assume that the strength of both
effects can serve as a marker for a person’s reliance on the mental
number line, individual differences in the distance effect and
SNARC effect have largely remained unstudied. The few available
findings, however, suggest that the strength of these effects is
negatively associated with mathematical competence. For exam-
ple, Dehaene et al. (1993) as well as Fischer and Rottmann (2005)
observed weaker SNARC effects in students of mathematics, phys-
ics, or engineering (i.e., students being more proficient in mathe-
matics) compared with literature and psychology students. In ad-
dition, conforming developmental trends have been reported for
the distance effect. The size of the distance effect was repeatedly

found to decrease with age (Holloway & Ansari, 2008; Sekuler &
Mierkiewicz, 1977).

If the mental number line influences children’s general math
achievement, an important question to examine is what processes
mediate this influence. Such mediating variables could be used to
foster children’s math learning. One variable could be children’s
competence in using external knowledge representations, for ex-
ample, diagrams. The internal number line is a mental knowledge
representation, while external knowledge representations are part
of the outside world (e.g., printed on paper). However, like the
internal number line, many external diagrams represent magni-
tudes in analogical form, for example, as position on an axis, as
length of a bar, or as area of a pie chart (Zhang, 1996). The closest
similarity exists between the internal number line and the external
number line, since both are not only analogous but also one-
dimensional and usually represent magnitudes in ascending order
from left to right (Fias & Fischer, 2005).

Gattis (2001, 2002; Gattis & Holyoak, 1996) has characterized
the process of diagram interpretation as structure mapping between
an external and an internal knowledge representation in the sense
of Gentner’s (1983) structure mapping theory of analogy. Gentner
suggested that the cognitive process underlying people’s drawing
of an analogy (e.g., between the solar system and an atom) consists
mainly in the systematic mapping of conceptual relations in one
domain (e.g., the planets revolve around the sun) onto relations in
the other domain (e.g., the electrons revolve around the nucleus).
Gattis pointed out that the process of interpreting diagrams is
similar to this in that one has to map a system of visuospatial
relations in the external diagram (e.g., the slope of a line graph)
onto their mentally represented conceptual meanings (e.g., the rate
of change of a variable).

Structural similarity is a precondition for analogical structure
mapping (Gentner & Toupin, 1986). Therefore, the use of the
external number line may be easier for children who tend to
represent numbers on the structurally similar mental number line
than for children who tend to represent numbers verbally or as
digits. This effect could transfer to more complex diagrams, such
as coordinate systems, especially since the two axes of coordinate
systems basically are number lines.

The competent use of diagrams helps to efficiently communi-
cate information (Larkin & Simon, 1987), solve complex problems
(Novick, 2001), draw logical inferences (Stenning & Lemmon,
1999), and transfer knowledge between problems (Stern, Aprea, &
Ebner, 2003). Thus, it is an important part of pupils’ mathematics
and sciences competence (Hardy, Schneider, Jonen, Stern, &
Möller, 2005; National Council of Teachers of Mathematics, 2000;
Shah & Hoeffner, 2002). For these reasons, pupils’ diagram com-
petence is very likely a mediator of the influence of the mental
number line on general math achievement.

Conceptual Knowledge

In research on mathematics learning, conceptual knowledge is
seen as knowledge of the core rules and principles as well as of
their interrelations in a domain (Goldstone & Kersten, 2003;
Hiebert, 1986; Rittle-Johnson, Siegler, & Alibali, 2001). Accord-
ingly, it is assumed to be stored mentally in some form of rela-
tional representation, like schemas, hierarchies, or semantic net-
works (Byrnes & Wasik, 1991). Because conceptual knowledge is

360 SCHNEIDER, GRABNER, AND PAETSCH



abstract in nature, consciously accessible, and embedded in larger
knowledge structures, it can be verbalized and flexibly trans-
formed through inference, elaboration, and reflection. It is there-
fore not bound up with specific problems but can, in principle, be
generalized for a variety of problem types and external knowledge
representations in a domain (e.g., Baroody, 2003).

As an example, consider Hiebert’s (1992) analysis of what
makes a conceptual understanding of decimal fractions. On the one
hand, learners should know that fractions can quantify nonwhole
quantities of something. This is useful in many real-life situations.
On the other hand, learners have to understand the notational
system of decimal fractions, including its base-10 structure and the
fact that the decimal point separates whole units from 10ths units.
Conceptual knowledge about decimal fractions, therefore, includes
knowledge about relations between digits within a fraction, rela-
tions between different decimal fractions and their respective mag-
nitudes, relations between fractions and whole numbers, and rela-
tions between fractions and every-day-life situations (see also
Resnick et al., 1989).

Due to the rich and multifaceted nature of conceptual knowl-
edge, it is advisable to measure it by a combination of tasks of
different formats, such as asking people to evaluate the adequacies
of different strategies for solving problems (Siegler & Crowley,
1994), compare and categorize objects or numbers (Resnick et al.,
1989), represent relations in diagrams or sketches (Byrnes &
Wasik, 1991), or give verbal explanations of conceptual relations
(Rittle-Johnson & Alibali, 1999).

The influence of conceptual knowledge on students’ mathemat-
ical competence is straightforward. Due to its relational nature, it
enables the learner to see relations between different pieces of
knowledge, leading to the activation of background knowledge.
Thus, the student grasps the meaning and implications of specific
pieces of knowledge. This can help him or her to construct new
problem-solving strategies, to transfer strategies between related
types of problems, to select among alternative strategies, to mon-
itor strategy execution, and to check answer plausibility (Baroody,
2003; Rittle-Johnson et al., 2001). Due to these important func-
tions, many educational researchers see well-integrated conceptual
knowledge as one of the most important aims of school instruction
(National Council of Teachers of Mathematics, 2000; Programme
for International Student Assessment, 2006).

Intelligence

Intelligence, which may be defined as the “ability to reason,
plan, solve problems, think abstractly, comprehend complex ideas,
learn quickly and learn from experience” (Gottfredson, 1997, p.
13), is closely associated with learning and educational success
(for reviews, cf. Gustafsson & Undheim, 1996; Jensen, 1998;
Schmidt & Hunter, 1998). Measures of intelligence usually corre-
late at about .50 with school marks (i.e., grades given on report
cards), performance in scholastic achievement tests, and years of
education (Neisser et al., 1996). The relation between intelligence
and educational success appears to be of a general nature as the
predictive value of intelligence tests primarily derives from the g
factor (general intelligence; cf. Brody, 1999; Jensen, 1998), re-
flecting the variance that is shared by different intelligence sub-
scales (Spearman, 1904). In contrast to conceptual knowledge, the
g factor is a domain-general construct. Subscales of intelligence

tests usually measure the reasoning ability in a domain (e.g.,
numerical, verbal, or figural intelligence) but very little domain-
specific content knowledge.

The origins of the substantial and robust correlation between
intelligence and scholastic achievement, however, are largely un-
known and heavily disputed. Some researchers have suggested
reciprocal (e.g., Brody, 1997) causal relations; others have pro-
posed unidirectional relationships, in which intelligence influences
scholastic performance (e.g., Jensen, 2000) or vice versa (e.g.,
Blair, Gamson, Thorne, & Baker, 2005). Some even argued that
the observed association is due to similarities in intelligence and
achievement tests (e.g., Ceci, 1991; Flanagan, Andrews, & Gen-
shaft, 1997). A very recent study suggesting that intelligence
influences mathematical achievement was conducted by Watkins,
Lei, and Canivez (2007). They applied a cross-lagged panel design
to 289 students (mean age: 9 years) in which they assessed the
participants’ intelligence and achievement twice with a mean test–
retest interval of about 3 years. Using structural equation model-
ing, they found that the optimal model reflected a causal prece-
dence of intelligence on achievement. They interpreted their
findings following Jensen (1998), who emphasized the importance
of high general intelligence as a prerequisite for the successful
acquisition of knowledge in school.

Aim of the Present Investigation

The mental number line is assumed to underlie number sense,
that is, the fundamental ability to automatically and efficiently
process numerical quantity information. Although there is no con-
clusive empirical evidence, it has repeatedly been claimed that
individual differences in this basic capacity influence the acquisi-
tion of advanced mathematical concepts and, eventually, the
achieved mathematical competence (Dehaene, 1997). In contrast,
the relevance of mathematical conceptual knowledge and intelli-
gence for mathematical achievement is well-documented. Our aim
in the present investigation was to provide first insights into the
relationship between the mental number line, conceptual knowl-
edge, intelligence, and mathematical achievement in school.

While it has already been shown that the mental number line
influences children’s early abilities to understand and operate on
whole numbers (Gilmore, McCarthy, & Spelke, 2007; Holloway &
Ansari, in press), we focused on its influence on competencies,
which are just a step further advanced. We investigated fifth and
sixth graders’ knowledge about decimal fractions, since this topic
is taught shortly after whole-number arithmetic in many countries.
Three empirical studies are reported in which the relations between
the aforementioned variables were investigated using path analy-
ses. In all three studies, reliance on the mental number line was
operationalized as the strength of the distance and/or SNARC
effect, conceptual knowledge was assessed in the domain of dec-
imal fractions, and the mark in mathematics was taken as the
measure for scholastic mathematical achievement. The reported
studies are part of a larger research project on the relation between
conceptual and procedural knowledge in the domain of mathemat-
ics (Schneider & Stern, 2005, 2008).

Based on the findings from previous investigations outlined in
the introduction, we hypothesized that conceptual knowledge and
intelligence are correlated with each other and that both display a
significant association with mathematical achievement. The role of
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the mental number line, which was in the focus of the present
investigation, is more unclear. Following the arguments by
Dehaene (1997, 2001), as well as Case and Okamoto (1996), we
expected a significant association between the strength of the
distance effect and SNARC effect and mathematical achievement.

In order to reveal variables mediating the assumed link between
number line and mathematical achievement, we administered two
additional tasks. The first was the number line estimation task,
because participants who more strongly rely on the internal rep-
resentation of quantity on a mental number line should also per-
form better in tasks demanding a structurally similar external
representation form. This task was given in all three studies. We
used the second assessment, a test of graph understanding, in
Study 3 only to examine the hypothesis that the influence of the
mental number line transfers from external number line estimation
to competence in working with more complex representations such
as coordinate systems. Our path models directly mirror these
theoretical assumptions: Whenever possible we specified regres-
sion paths from distance effect, SNARC effect, conceptual knowl-
edge, and numerical intelligence to mathematical achievement. In
addition to these direct paths, we modeled indirect paths with
number line estimation accuracy as a mediator between the pre-
dictors and the math achievement.

Study 1

Research Questions

In Study 1, we administered a parsimonious design to provide
first data on the relation between the mental number line, concep-
tual knowledge, and mathematical school achievement. Individual
differences in reliance on the mental number line are operational-
ized by means of the distance effect size. If the mental number line
is related to mathematical achievement, we expected that a signif-
icant correlation between the size of the distance effect and the
mathematics mark should emerge. In addition to these three vari-
ables, the performance in an external number line test was included
as a variable that potentially moderates the influence of knowledge
and mental number line on the mathematics mark.

Method

Participants. The sample comprised 115 fifth graders from 11
schools in Berlin, Germany. They were volunteers and received
monetary compensation. The sample mean age was 11.3 years
(SD � 0.6, minimum � 10.2, maximum � 15.0). Of the children,
46.4% were girls. The children came to our research institute in
small groups and worked individually on computers in a quiet
room without seeing each other. The experimenter was present the
entire time and available for questions.

Procedure. We measured distance effect, conceptual knowl-
edge, number line estimation accuracy, number line estimation
speed, and mathematics marks in a session that lasted about 70 min
per child (Time 1). Five or six days later, during a second session,
we measured the distance effect again (Time 2) to investigate its
stability.

Statistical analysis. We investigated the covariance structure
of our data by means of path analyses in the program MPlus
(Muthén & Muthén, 1998–2006). We used the robust estimator

MLR (Muthén & Muthén, 1998–2006, pp. 423–426), which al-
lows for missing data and does not require a normal distribution of
the data. In our theoretical model, distance effect and conceptual
knowledge are predictors of both number line estimation accuracy
and mathematical achievement. The influence of the distance
effect on mathematical achievement can be direct as well as
mediated by number line estimation accuracy. For reasons of
parsimony and to ensure model identification, we included only
paths that connect bivariately correlated variables in the path
model.

Assessments. To assess the strength of each child’s distance
effect, we used 150 trials, the first 10 of which were practice trials
and were not analyzed. The children got feedback on their solution
correctness during the practice trials only. In each trial, a child saw
a whole number between 10 and 99 in the middle of the computer
screen. The child was asked to press a right-hand key on a standard
computer keyboard with his or her right index finger if the number
was larger than 55 and to press a left-hand key with his or her left
index finger if the number was smaller than 55. The numbers were
the same for all children and were selected by a pseudorandom
algorithm. Reaction times were measured from stimulus onset until
response. Incorrectly solved trials and outliers, defined as reaction
times lying more than five standard deviations above or below the
sample mean, were excluded from the analyses. For each trial,
the absolute numerical distance between the number presented and
the standard, 55, was computed. We then took the natural loga-
rithm of this value. For example, the first stimulus was 64 for each
child, which yields a distance of 9. The natural logarithm of 9 is
2.197. These logarithmic values were used as predictors of the
reaction times in a linear regression conducted for each child. The
standardized regression weight beta was taken as the measure of
the distance effect for that child. Because there is a negative
relationship between distance and reaction time, the regression
weights should be mostly negative.

Four different types of tasks were used to assess children’s
conceptual knowledge about decimal fractions. In the first task, the
children were asked to evaluate the correctness of eight verbally
described strategies for finding the position of a decimal fraction
on a number line by clicking one of two buttons on the screen.
Only four of the strategies were correct. In the second task, the
children were shown a decimal fraction together with four pie
charts. A part of each pie chart was shaded, and the children were
told to click on the pie chart where the proportion of the shaded
area compared to the entire pie area corresponded to the decimal
fraction. We computed the percentage of correct answers relative
to the 20 trials used in total. In this and all following tasks, decimal
fractions between zero and one in the German notation (i.e., with
a comma instead of a decimal point) with one to three digits after
the comma were used. In the third tasks, the students were shown
20 pairs of decimal fractions and were asked to click on the larger
number of each pair. Again the percentage of correct answers was
computed. In the fourth task, the children wrote down answers to
four questions about the general properties of decimal fractions in
a booklet. Their answers were coded independently by two trained
raters as fully correct (2 points), partly correct (1 point), missing or
wrong (0 points). For each child, we computed which percentage
of the maximum number of points he or she achieved. Finally, we
averaged the percentage values from the four different task types
into an overall measure of the child’s conceptual knowledge.
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We assessed number line estimation accuracy with 20 trials of a
task designed by Rittle-Johnson et al. (2001). In each trial, the
children saw a decimal fraction and a number line ranging from
zero to one on the screen. The number line had hatch marks as well
as labels only at its both ends, with the label 0 below the first hatch
mark and the label 1 below the second hatch mark. The decimal
fractions had one to three digits after the comma. Their values
were greater than zero and smaller than one. The children were
asked to move a lever on the screen to the position on the number
line indicated by the value of the decimal fraction. They were told
that accuracy was more important than speed. In accordance with
Rittle-Johnson et al. (2001), answers within �0.1 units around the
correct position were scored as correct by the assessment program.
We again computed the percentage of correct answers.

Number line estimation speed was measured in a similar man-
ner, but with three differences: (a) The children gave their answers
by freely clicking on the number line with the mouse, (b) they were
asked to optimize speed as well as accuracy of their answers, and
(c) the first three trials were not included in the analyses, because
they might have been biased by children’s general orientations in
the task surface. The solution times were averaged over the re-
maining 17 trials.

Mathematical school achievement. The students’ mathemati-
cal school achievement was measured in the form of their math-
ematics marks. The pupils were asked to write down the mark they
had received according to their latest school report. In Germany,
school marks range from 1 (best) to 6 (worst). Therefore, we
expected to find inverse relations between students’ marks and our
measures of estimation and knowledge. In a recent metaanalysis
(Kuncel, Credé, & Thomas, 2005), the correlation between self-
reported and actual mathematics marks was found to be r � .82 for
high school students. School marks have been shown to correlate
at about r � .60 to .70 with the results of pupils’ standardized tests
on scholastic performance (cf. Tent, 2006).

Results

Eight of the 115 children had missing data on one or more
variables, because either they did not complete all assessments or
there were problems with the computer hardware. Solution rate
on the distance effect tasks was .933 (SD � .094, minimum �
.500). The descriptive statistics of our measures are given in Table 1.
We found significant ( ps � .05) individual distance effects for
84.1% of the sample at Time 1 and for 77.8% of the sample at
Time 2. The means of the beta weights operationalizing the indi-
vidual children’s distance effect differed significantly from zero at
Time 1, t(108) � –25.2, p � .001, and at Time 2, t(106) � –21.9,

p � .001. The distance effect explained a mean variance propor-
tion of M � .126 (SD � .092) of the reaction times per child at
Time 1 and of M � .100 (SD � .080) at Time 2. The unstandard-
ized regression coefficients (b) had a sample mean of M � –117.5
(SD � 72.0) at Time 1 and of M � –117.8 (SD � 78.2) at Time
2. Thus, as necessary for our later analyses, we found a general
distance effect in our sample with large differences between per-
sons. The correlation of the distance effects found at Time 1 and
Time 2 (r � .501, p � .001) indicated that either the intrapersonal
stability of the distance effect or the retest reliability was low. The
scale reliabilities as estimated by Cronbach’s alpha were .78 for
number line estimation accuracy, .94 for number line estimation
speed, and .74 for conceptual knowledge.

The intercorrelation matrix of the variables is given in Table 2.
Conceptual knowledge, number line estimation accuracy, and
mathematics mark were highly significantly correlated. The dis-
tance effect, however, was not significantly related to any of these
variables. In additional explorative analyses, we found that the
solution times in the number estimation task were not significantly
correlated with any of our variables (all rs between –.15 and .15).

Based on our theoretical expectations and the intercorrelation
matrix, we specified the path model shown in Figure 1, which has
an excellent fit to the data, �2(3) � 1.405, comparative fit index �
1.000, root-mean-square error of approximation � 0.000. The
probability of finding the obtained or more extreme data under the
assumption that the model holds for the population is p � .704.
Table 3 shows the model parameters. All path coefficients are
highly significant. The good model fit indicates that relations not
specified in the model can indeed be neglected. The predictors
explain a variance proportion of .255 for children’s mathematics
marks and of .467 for number line estimation accuracy. As ex-
pected, children with higher conceptual knowledge or higher es-
timation accuracy have lower (i.e., better) marks.

Table 1
Number of Valid Cases, Means, Standard Deviations, Minimums, and Maximums of the
Measures in Study 1

Measure No. of valid cases M SD Min. Max.

Distance effect, Time 1 (�) 109 �0.331 0.137 �0.665 0.019
Distance effect, Time 2 (�) 107 �0.289 0.136 �0.612 0.068
Conceptual knowledge (%) 113 50.3 13.3 26.3 83.1
Number line estimation accuracy (%) 114 54.9 20.5 10.0 100.0
Mathematics mark (absolute) 114 2.46 0.78 1.00 5.00

Table 2
Intercorrelations of the Measures in Study 1

Measure
Conceptual
knowledge

Number line
estimation accuracy

Mathematics
mark

Distance effect (Time 1) .001 .080 .000
Conceptual knowledge — .677��� �.458���

Number line estimation
accuracy — — �.469���

��� p � .001.
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Discussion

The results of this study corroborate the well-established rela-
tionship between conceptual knowledge and mathematical
achievement. The bivariate correlation indicates that over 20% of
the variance in the mathematics mark can be accounted for by our
measure of conceptual knowledge. This finding appears highly
notable considering that we assessed knowledge about decimal
fractions that represents only a small part of the conceptual knowl-
edge involved in school mathematics. The results of the path
analysis in which the performance in the external number line task
is modeled as a potential mediating variable suggest both a direct
and indirect influence of conceptual knowledge on the mathemat-
ics mark.

The second hypothetical predictor of mathematical achieve-
ment, the distance effect, however, was uncorrelated with the
mathematics mark (r � .000 [sic]) as well as our other measures.
This null finding cannot be attributed to the absence of the distance
effect in the sample or very low variability. Therefore, this study
provides first evidence that the size of the distance effect might not
be related to higher order mathematical knowledge and perfor-
mance. Given the comparably low test–retest correlation of the
distance effect sizes over 5–6 days, it might also be questioned
whether the distance effect can be considered a trait variable.

Study 2

Research Questions

Study 1 provided no evidence of a relation between mental
number line and mathematical achievement. However, mental

number line was only measured in terms of the distance effect. In
Study 2, we introduced the SNARC effect as an alternative mea-
sure for the mental number line. If both effects reflect individual
differences in reliance on the mental number line, we expected that
they should correlate. Moreover, the administration of both mea-
sures allowed us to investigate whether the distance effect or the
SNARC effect represents a good predictor for variables of math-
ematical achievement. A larger number of trials were administered
in the measurement of the distance effect in Study 2. We did this
to find out whether the null correlation of the distance effect with
the other performance measures in Study 1 might be due to a low
reliability caused by using too few items.

Method

Participants. We used the same procedure as in Study 1, with
110 volunteering fifth graders from 13 different Berlin schools.
The sample mean age was 11.1 years (SD � 0.5, minimum � 9.4,
maximum � 12.3); 47.4% of the children were girls.

Procedure and assessments. All measures were identical to
Study 1 with two exceptions: (a) We measured the SNARC effect,
and (b) there were now 210 trials for the distance effect (of which
the first 10 were designated practice trials and were not included in
the analyses).

We measured the SNARC effect with 88 trials of the parity
judgment task (cf. Dehaene et al., 1993). In each trial, the partic-
ipants saw a number from zero to nine on the screen. In half of the
trials (Block A), the students were told to press a left-hand button
with their left index finger if the number was odd and to press a
right-hand button with their right index finger if the number was
even. In the other half of the trials (Block B), the children were
instructed to press the left-right button for even numbers and the
right-right button for odd numbers. The order of Block A and
Block B was randomized per child, while the trial order within the
blocks was always the same. The first four trials of each block, for
which the children got feedback on the correctness of their solu-
tions, were discarded as practice trials. As in Study 1, solution
times of incorrectly solved tasks and times lying more than five
standard deviations above or below the sample mean were ex-
cluded from the analyses. For each stimulus (0–9), we measured
how fast each child responded with the left hand or with the right
hand. The time measured for left-hand responses was subtracted
from the time measured for right-hand responses. For example, 1
participant needed 660 ms to respond to the stimulus zero correctly
with the left hand, but 715 ms to respond to the same stimulus
correctly with the right hand, leading to a reaction time difference
of 55 ms. The reaction time differences for the remaining nine
stimulus numbers for this participant were obtained the same way.

Figure 1. Path model of the relations between conceptual knowledge,
distance effect, number line estimation accuracy, and math marks in
Study 1.

Table 3
Model Estimated Path Coefficients in Study 1

Relation in the model
Unstandardized

coefficient SE
Standardized
coefficient p

Number line estimation accuracy on conceptual
knowledge 1.045 0.098 .683 �.001

Mathematics mark on conceptual knowledge �0.015 0.005 �.258 .002
Mathematics mark on number line estimation

accuracy �0.011 0.004 �.293 .002
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For each child, we then regressed the 10 reaction time differences
on the 10 respective stimuli magnitudes (0–9). Since persons
respond to small numbers faster with their left hand and to large
numbers faster with their right hand, we expected mostly negative
regression slopes. As recommended by Fias and Fischer (2005),
the beta coefficient of this slope was taken as measure of the
individual SNARC effect size.

Results

Table 4 shows the descriptive characteristics of all measures. Of
the 110 children, 10 had missing data on one or more variables due
to either hardware problems, not completing all assessments, or
exclusion of error trials and reaction time outliers from the anal-
yses. Solution rates were M � .880 (SD � .204) on the distance
effect tasks and M � .922 (SD � .114) on the SNARC effect tasks.
The distance effects of 7 children and the SNARC effects of 1
child were not computed, since the children solved less than 50%
of the respective tasks correctly. The coefficients operationalizing
the pupils’ distance effects were significantly different from zero,
t(102) � –23.2, p � .001. The distance effect explains a variance
proportion of M � .099 (SD � .095) of the reaction times per
child. The coefficients operationalizing the pupils’ SNARC effects
differed significantly from zero too, t(99) � –5.4, p � .001. The
SNARC effect explains a variance proportion of M � .126 (SD �
.128) of the reaction times per child. The unstandardized regres-
sion weights had a sample mean of –115.9 (SD � 87.5) for the
distance effect and of –11.2 (SD � 29.0) for the SNARC effect.
The average size of the SNARC effect conforms to previous
studies on children of our age group (e.g., Bachot, Gevers, Fias, &
Roeyers, 2005) and was somewhat larger than in previous studies
on adults (Fischer & Rottmann, 2005).

The scale reliabilities as estimated by Cronbach’s alpha were .83
for number line estimation accuracy and .71 for conceptual knowl-

edge. The intercorrelations presented in Table 5 substantiate the
finding of significant relations between conceptual knowledge,
number line estimation accuracy, and mathematics mark in Study
1. Neither the distance effect nor the SNARC effect were signif-
icantly correlated with mathematics mark. There was only a small
correlation between distance effect and number line estimation
accuracy. In addition, distance effect and SNARC effect were
significantly yet weakly correlated. Additional explorative analy-
ses revealed that the solution times for the number line estimation
tasks were significantly correlated with number line estimation
accuracy (r � .200) but not with any other variable tested.

Based on these intercorrelations and our theoretical expecta-
tions, we specified the model shown in Figure 2. This model had
an excellent fit to the data, �2(5) � 2.246, p � .814, comparative
fit index � 1.000, root-mean-square error of approximation �
0.000. The model parameters are reported in Table 6. The propor-
tions of explained variance were .425 for number line estimation
accuracy and .232 for mathematics mark.

Discussion

In line with our expectations, Study 2 has shown that distance
effect and SNARC effect are significantly correlated with each
other. Even though this finding may point to a common basis for
both behavioral effects, it should be emphasized that the size of the
correlation was very small, accounting for only about 6% of the
variance. Similar to Study 1, Study 2 also found no significant
association between distance effect or SNARC effect and mathe-
matics mark. There was only a weak correlation between the
distance effect and external number line accuracy, indicating that
the ability to represent and manipulate magnitudes on the mental
number line may partly be reflected in the competence to solve
estimation tasks with external number lines, which, in turn, influ-
ences mathematical achievement. Besides this weak effect, the

Table 4
Number of Valid Cases and Descriptive Characteristics of the Measures in Study 2

Measure
No. of

valid cases M SD Min. Max.

Distance effect (�) 103 �0.284 0.124 �0.574 0.007
SNARC effect (�) 100 �0.170 0.313 �0.715 0.413
Conceptual knowledge (%) 107 50.4 14.7 26.9 81.9
Number line estimation accuracy (%) 107 52.4 22.2 5.0 100.0
Mathematics mark (absolute) 107 2.49 0.94 1.00 6.00

Note. SNARC � spatial–numerical association of response codes.

Table 5
Intercorrelations of the Five Measures in Study 2

Measure SNARC effect
Conceptual
knowledge

Number line
estimation accuracy

Mathematics
mark

Distance effect .245� �.108 �.202� .120
SNARC effect — �.018 �.106 .082
Conceptual knowledge — — .645��� �.431���

Number line estimation accuracy — — — �.448���

Note. SNARC � spatial–numerical association of response codes.
� p � .05. ��� p � .001.
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results of the path analysis again showed a strong direct and
indirect influence of conceptual knowledge on the mathematics
mark.

Study 3

Research Questions

Studies 1 and 2 revealed that conceptual knowledge is strongly
related to mathematical achievement at school, while distance
effect and SNARC effect are not. The still unanswered questions,
however, are the following: How do these variables relate to the
individual’s numerical intelligence, and how much incremental
variance of students’ mathematical achievement can be explained
by the intelligence measure? Therefore, the participants’ numerical
intelligence was introduced as additional predictor in Study 3. In
light of considerable evidence that both knowledge and intelli-
gence impact on scholastic performance, we expected an indepen-
dent effect of intelligence on the mathematics mark.

Furthermore, Studies 1 and 2 have shown that the impact of
conceptual knowledge on mathematical performance might be
mediated by competence in using an external representation of
numbers. However, this held true only for the accuracy but not the
speed of task performance. Therefore, and for reasons of parsi-

mony, we only included the external number line accuracy in
Study 3.

Since competence in using external numerical representations
may also transfer to more complex representations such as coor-
dinate systems, an additional graph test was administered. We
explored how external number line performance and graph test
performance relate to each other and whether graph competence
represents a further mediating variable between mental number
line and higher order mathematical achievement.

Method

Participants. Participants were 204 volunteers from the fifth
and sixth grades of 14 Berlin schools, who were monetarily com-
pensated. The sample mean age was 11.3 years (SD � 0.07,
minimum � 9.3, maximum � 13.8). Of the children, 47.3% were
fifth graders and 51.2% were girls.

Procedure. As previously explained, this study is part of a
larger project. For logistical reasons, the measures analyzed in
Study 3 were assessed at the third point (Time 3) of a longitudinal
one-group design. The first two measurement points (Time 1 and
Time 2) were 1 day apart, while approximately 4 month lay
between Time 2 and Time 3. We assessed children’s conceptual
knowledge about decimal fractions and their accuracy on the
number line estimation task at all three measurement points. At
Time 3, we additionally measured the distance effect, the SNARC
effect, a graph test, and intelligence using the same method as in
Study 1 and Study 2.

Between Time 1 and Time 2, all of the children played the
catch-the-monster game, which was invented by Rittle-Johnson
et al. (2001). The children saw a decimal fraction and a number
line ranging from zero to one. Only the start point and the end
point of the number line were labeled. The children were told
that a monster was hiding at the position on the line indicated
by the decimal fraction and that they could catch the monster by
clicking there. After a child had entered his or her answer, the
monster appeared at the correct position of the decimal fraction,
thus providing feedback. In Rittle-Johnson et al.’s study, this
game successfully increased children’s conceptual knowledge
about decimal fractions and their solution rates on the number
line estimation task. The intervention is of importance for the
present study only in so far as the children tested at Time 3 had
more knowledge about decimal fractions than the children in
Study 1 and Study 2.

Figure 2. Path model of the relations between conceptual knowledge,
distance effect, spatial–numerical association of response codes (SNARC)
effect, number line estimation accuracy, and math marks in Study 2.

Table 6
Estimated Path Coefficients of the Model in Study 2

Relation in the model
Unstandardized

coefficient SE
Standardized
coefficient p

Regression parameters
Number line estimation accuracy on distance effect �25.037 14.435 �.142 .041
Number line estimation accuracy on conceptual

knowledge 0.952 0.104 .637 �.001
Mathematics mark on conceptual knowledge �0.015 0.007 �.243 .017
Mathematics mark on number line estimation accuracy �0.012 0.004 �.290 .003

Covariance parameters
Distance effect with SNARC effect 0.009 0.004 .247 .005

Note. SNARC � spatial–numerical association of response codes.
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Statistical analysis and assessments. At Time 3, the same
measures as in Study 2 were administered plus two additional
tests: an intelligence test and a graph test. In our theoretical model,
distance effect, SNARC effect, conceptual knowledge, and numer-
ical intelligence predict children’s mathematics marks. The influ-
ences of the distance effect and the SNARC effect are both direct
and mediated by a path leading over number line estimation
accuracy and graph competence.

The students completed the Kognitiver Fähigkeitstest (Heller &
Perleth, 2000), that is, the German version of Thorndike’s Cogni-
tive Abilities Test (e.g., Lohman et al., 2001), as a measure of their
intelligence. A standardized short form of the revised version,
adequate for our age group, was used. It contains a verbal, a
numerical, and a figural subscale. Only the numerical subscale,
comprising set comparison tasks and number series tasks, was used
in our analyses. The test is 90 min long and has an internal
consistency of .95 and correlations of .37–.51 with students’ math-
ematics marks.

The second new assessment was a newly constructed graph test.
The children saw six coordinate systems with one or two linear
graphs in them, respectively. A sentence describing the repre-
sented situation was written at the top of each coordinate
system. Four different interpretations of the specific processes
represented by the line graphs were offered under each coordi-
nate system. For a pair of two intersecting distance-time graphs
representing the bike rides of two girls, Anna and Beth, one
interpretation could, for example, be, “Where Anna’s graph is
on top of Beth’s graph, Anna is riding faster than Beth.” About
half of the interpretations were correct. The children had to
mark each of the 24 interpretations as either agreeing with the
graphs or not agreeing with the graphs. The percentage of
correct answers was computed per child. The graphs repre-
sented (a) distance traveled per time, (b) fuel needed per dis-
tance, (c) fat per kilogram cheese, and (d) liters of one kind of
lemonade per liters of a second kind of lemonade, when mixing
them. Some of the correct interpretations related to the meaning
of the widths or heights of the graphs, while others related to the
meaning of the slope as representing the proportion of y-change
and x-change (Shah & Hoeffner, 2002). The wrong interpreta-
tions included children’s typical graph misconceptions found in
previous studies (Leinhardt, Zaslavsky, & Stein, 1990; Me-
varech & Kramarsky, 1997). The test was iteratively optimized
in an unpublished pilot study with 40 pupils.

Results

Table 7 shows the descriptive characteristics of all measures. Of

the 204 children, 31 had missing data on one or more variables due
to either hardware problems, noncompletion of all assessments, or
data cleaning. Solution rates were M � .942 (SD � .048, mini-
mum � .700) on the distance effect tasks and M � .939 (SD �
.068, minimum � .510) on the SNARC effect tasks. The coeffi-
cients operationalizing the pupils’ distance effects were signifi-
cantly different from zero, t(102) � –38.3, p � .001. The distance
effect explains a variance proportion of M � 0.129 (SD � 0.085)
of the reaction times per child. The coefficients operationalizing
the pupils’ SNARC effects differed significantly from zero too,
t(172) � –7.5, p � .001. The SNARC effect explains a variance
proportion of M � 0.098 (SD � 0.133) of the reaction times per
child. The unstandardized regression weights had a sample mean
of –108.9 (SD � 53.2) for the distance effect and of –12.5 (SD �
25.7) for the SNARC effect.

As expected, the means for conceptual knowledge and number
line estimation accuracy were higher than in Studies 1 and 2 due
to the influence of the intervention. Nevertheless there is sufficient
between-persons variance and no ceiling effect. The Kognitiver
Fähigkeitstest total score, which was normed to M � 50 (SD �
10), was M � 53.8 (SD � 8.3, minimum � 26, maximum � 76)
in our sample, indicating, together with the mean mathematics
mark of 2.47, that our sample covers a wide competence range.
The correlation between the Kognitiver Fähigkeitstest total score
and mathematics mark was r � –.598, suggesting a high validity
of children’s self-reported mathematics mark as a competence
measure. The negative sign indicates that children with higher
intelligence got better (i.e., lower) marks.

The scale reliabilities as estimated by Cronbach’s alpha were .85
for number line estimation accuracy, .77 for conceptual knowl-
edge, and .49 for the graph test. Since the graph test items tap the
understanding of different graph components (height, width, and
slope) in different content areas, the low internal consistency likely
reflects the heterogeneity of the items.

The intercorrelations in Table 8 show highly significant rela-
tions between conceptual knowledge, numerical intelligence, num-
ber line estimation accuracy, graph test, and mathematics mark.
Neither the distance effect nor the SNARC effect were correlated
with these variables except for a rather small but significant
correlation between distance effect and number line estimation
accuracy ( p � .019).

Based on these intercorrelations and our theoretical expecta-
tions, we specified the model shown in Figure 3. Most indices
show a good fit of the model to the data, �2(11) � 17.269, p �
.100, comparative fit index � 0.980, root-mean-square error of
approximation � 0.053. The model parameters are reported in

Table 7
Number of Valid Cases and Descriptive Characteristics of the Measures in Study 3

Measure No. of valid cases M SD Min. Max.

Distance effect (�) 203 �0.336 0.125 �0.634 �0.027
SNARC effect (�) 173 �0.156 0.273 �0.909 0.623
Conceptual knowledge (%) 204 66.1 14.9 26.9 95.6
Number line estimation accuracy (%) 204 86.2 17.5 20.0 100.0
Mathematics mark (absolute) 200 2.47 0.91 1.00 5.00
KFT, numerical subscale 195 56.7 9.1 24.0 82.0
Graph test (%) 194 54.5 13.3 20.8 87.5

Note. KFT � Kognitiver Fähigkeitstest.
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Table 9. The explained variance proportions were .547 for number
line estimation accuracy, .271 for graph competence, and .398 for
mathematics mark.

Discussion

Several results corroborate the findings from Studies 1 and 2.
There is a strong relation between conceptual knowledge and
mathematical achievement. The path analysis of Study 3 suggests
that this influence may be mediated by the competence in using
simple visuospatial knowledge representations (i.e., external num-
ber lines) as well as more complex ones (i.e., graphs in Cartesian
coordinate systems) that are structurally similar to the internal
number line. In addition, the influence of external number line
performance on the mathematics mark seems to be mediated by the
graph competence.

Also similar to the results from Studies 1 and 2, neither measure
of reliance on the mental number line (distance effect and SNARC
effect) displayed a direct relation with more complex mathematical
performance. Although accuracy in the number line estimation
task seems to be influenced by the distance effect, the size of this
effect is negligibly small. In contrast to Study 2, distance and
SNARC effect were not significantly correlated.

In line with our expectations, the inclusion of numerical intel-
ligence in Study 3 could explain an incremental portion of the
variance of mathematical achievement. The results from the path
analysis suggest that its effect might be both direct and mediated,
similar to conceptual knowledge. The effect size for numerical
intelligence, however, was smaller than that for conceptual knowl-
edge.

General Discussion

During the past 2 decades, researchers have claimed that the
mental number line is not only important for the representation of
numerical quantities but also for mathematical competencies in
general (Case & Okamoto, 1996). Dehaene (2001, p. 16) postu-
lated “that higher-level cultural developments in arithmetic emerge
through the establishment of linkages between this core analogical
representation (the ‘number line’) and other verbal and visual
representations of number notations.” While this seems to be the
case for elementary arithmetic (Gilmore et al., 2007; Holloway &
Ansari, in press), our results show that the limits of this claim are
reached when it comes to the content of fifth- and sixth-grade
mathematics classes. Using tasks from the domain of decimal
fractions, we showed that in this age group, the influence of the

Figure 3. Path model of the relations between conceptual knowledge, numerical intelligence, distance effect,
spatial–numerical association of response codes (SNARC) effect, number line estimation accuracy, graph
competence, and math marks in Study 3. KFT � Kognitiver Fähigkeitstest.

Table 8
Full Intercorrelation Matrix of the Measures Used in Study 3

Measure SNARC effect
Conceptual
knowledge

KFT, numerical
subscale

Number line
estimation accuracy Graph test

Mathematics
mark

Distance effect �.027 �.113 �.074 �.164� �.005 .094
SNARC effect — �.060 �.094 �.094 �.104 .123
Conceptual knowledge — — .429��� .731 ��� .509��� �.569���

KFT, numerical subscale — — — .415 ��� .305��� �.463���

Number line estimation accuracy — — — — .323��� �.545���

Graph test — — — — — �.431���

Note. SNARC � spatial–numerical association of response codes; KFT � Kognitiver Fähigkeitstest.
� p � .05. ��� p � .001.
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mental number line on school achievement is negligible when
compared to the influences of conceptual knowledge and numer-
ical intelligence.

This finding conforms to the observation that with increasing
grade levels natural numbers become less important, while abstract
relations and rules become more important in math learning and
teaching. However, such abstract conceptual knowledge cannot
directly be transferred from the teacher to the learner, because
learners interpret new information in the light of their prior knowl-
edge. Hence, the facilitation of conceptual knowledge and the
reduction of misconceptions can only be effective if mathematics
teachers take the content of learners’ prior knowledge into account
(Mack, 1990; Nesher, 1987). Facing this rationale, recent efforts to
broaden the scope of conceptual change approaches from science
to mathematics learning seem especially worthwhile (Merenluoto
& Lehtinen, 2004; Vamvakoussi & Vosniadou, 2004). Currently a
lot more is known about the facilitation of conceptual change in
the domain of science learning than in mathematics learning (di-
Sessa, 2006). The search for commonalities and differences be-
tween these two fields is thus a useful direction for future research
(Vosniadou & Verschaffel, 2004).

Our dependent variable, the mathematics mark, reflects a
number of different competencies taught in fifth and sixth
grades in an undifferentiated way. Therefore, we complemented
it with a more specific competence measure, number line esti-
mation accuracy. Using decimal fractions as stimuli, we found
virtually no relation between children’s ability to use the ex-
ternal number line and their reliance on the internal number
line, as assessed by the distance effect and SNARC effect. In
contrast to our measures of the mental number line, an estima-
tion task with the external number line predicted mathematical
school achievement over and above conceptual knowledge.
This finding has two implications. First, it shows that the
relation between the internal and the external number line is
only indirect. Children’s estimation patterns on the external
number line should not be interpreted as direct evidence of their
use of the internal number line, as is sometimes done in the
literature. The internal and the external number line cannot be

equated. The former is a hypothetical construct postulated to
explain certain behavioral effects, and its neural bases are by no
means visually similar to external number lines (e.g., Feigen-
son, Dehaene, & Spelke, 2004; Nieder, 2005). The cognitive
processes by which activation patterns on the internal number
line and positions on the external number line are translated into
each other are an important area for future research. The second
implication of our results is the importance of external number
line estimation competencies for children’s mathematical
school achievement in addition to conceptual understanding and
intelligence. This finding replicates the results of Siegler and
Booth (2004), who found a correlation between a battery of
estimation tasks and a standardized math achievement test even
after controlling for intelligence and age.

Our main finding—that the reliance on the internal number line
has no substantial influence on number line estimation competence
and mathematical school achievement in general—comes as a
surprise. Nevertheless, in light of the three studies with indepen-
dent samples, we have no reason to doubt its validity. The relations
we found between all other variables besides the distance effect
and the SNARC effect are plausible and without exception repli-
cate well-established results of previous studies. We also found
highly significant distance effects and SNARC effects, with effect
sizes that, too, conform to previous findings and vary substantially
between participants.

In Study 3, the distance effect and the SNARC effect did not
correlate with each other, and in Study 2, they only weakly
correlated. This challenges the notion that these behavioral effects
share a common basis, that is, the mental number line. In addition,
Study 1 revealed a comparatively low correlation of the distance
effects measured twice within an interval of a few days. Thus, it
can be questioned whether the distance effect indeed reflects a trait
variable indicating the individual reliance on the mental number
line. This may also be true for the SNARC effect, which “does not
seem to tap into a fixed component of long-term representation of
numbers” (Fias & Fischer, 2005, p. 49). For instance, the spatial
reference frame on which numbers are allocated can easily be
changed. When asked to think of digits as times on an analog

Table 9
Model Estimated Path Coefficients in Study 3

Relation in the model
Unstandardized

coefficient SE
Standardized
coefficient p

Regression parameters
Number line estimation accuracy on distance effect �11.106 6.759 �.080 .050
Number line estimation accuracy on conceptual

knowledge 0.789 0.066 .676 �.001
Number line estimation accuracy on KFT,

numerical subscale 0.230 0.106 .120 .015
Graph competence on conceptual knowledge 0.485 0.078 .547 �.001
Graph competence on numerical intelligence 0.178 0.094 .123 .028
Graph competence on number line estimation

accuracy �0.099 0.063 �.131 0.058
Mathematics mark on conceptual knowledge �0.024 0.005 �.393 �.001
Mathematics mark on numerical intelligence �0.025 0.007 �.247 �.001
Mathematics mark on graph competence �0.010 0.004 �.144 .013

Covariance parameters
Conceptual knowledge with numerical intelligence 57.070 10.639 .424 �.001

Note. KFT � Kognitiver Fähigkeitstest.
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clock, participants preferentially responded to small numbers with
their right hand instead of their left hand (Bächtold, Baumüller, &
Brugger, 1998). Further, cross-cultural comparisons show that the
direction of the SNARC effect depends on the given culture’s
predominant direction for reading and writing texts (Gevers &
Lammertyn, 2005).

In the present research, we regarded the mental number line as
the core of a potentially innate number sense as proposed by
Dehaene (1997). However, it must be emphasized that many
definitions of number sense exist, and they vary greatly in defining
the skills encompassed by the construct. Berch (2005) listed 30
different features used to describe or define number sense in the
literature. The definitions of number sense fall into two types:
Number sense is either viewed as a lower order, innate, per-
ceptual sense of quantity, similar to the notion put forward by
Dehaene (1997), or it is seen as an “acquired ‘conceptual sense
making’ of mathematics” (Berch, 2005, p. 334). Irrespective of
which view might best capture the foundations and precursors
of mathematical competence, more research is needed into the
relation between number sense and mathematical school
achievement. For example, Jordan, Kaplan, Locuniac, and
Ramineni (2007) showed that number sense measured at the
beginning of kindergarten correlates at r � .70 with children’s
scores on standardized math achievement tests at the end of
their 1st year in school. However, the assessment of number
sense and the math achievement test in this study might have
partly assessed the same competencies as they both included
calculation problems. Clearly, future research is in need of
standardized and well-validated tests of number sense based on
precise definitions of the construct (see also Reys & Yang,
1998).

Paradigms for the in-depth investigation of internal knowledge
representations, such as the mental number line, have mainly been
developed by cognitive researchers, while behavioral indicators of
the number sense and mathematical school achievement are in the
focus of math educators and educational psychologists. The mutual
utility of more basic cognitive science research and more applied
pedagogical research is sometimes questioned. We see the field of
research on relations between the mental number line, number
sense, and math achievement as a very positive example of how
these different disciplines can benefit from each other (cf. Siegler,
2003).
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