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We tested whether adults can use integrated, analog, magnitude representations to compare the values of
fractions. The only previous study on this question concluded that even college students cannot form such
representations and instead compare fraction magnitudes by representing numerators and denominators
as separate whole numbers. However, atypical characteristics of the presented fractions might have
provoked the use of atypical comparison strategies in that study. In our 3 experiments, university and
community college students compared more balanced sets of single-digit and multi-digit fractions and
consistently exhibited a logarithmic distance effect. Thus, adults used integrated, analog representations,
akin to a mental number line, to compare fraction magnitudes. We interpret differences between the past
and present findings in terms of different stimuli eliciting different solution strategies.
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ison strategies

On a wide range of tasks, people represent natural number
magnitudes in a form akin to a mental number line. For example,
when people compare two natural numbers, their solution times
decrease logarithmically with increasing numerical distance be-
tween the numbers (Dehaene, Dupoux, & Mehler, 1990). The
continuous function suggests that people use analog magnitude
representations to compare natural numbers (Moyer & Landauer,
1967). The assumption of an integrated analog representation for
natural numbers, akin to a mental number line, also explains
interference between the numerical content of tasks and visuospa-
tial task characteristics (Fias & Fischer, 2005) as well as overlaps
between representations of natural numbers and representations of
space in the parietal cortex of the human brain (Hubbard, Piazza,
Pinel, & Dehaene, 2005).

The present study extends research on numerical representations
to the domain of fractions. In particular, it asked whether the
magnitudes of fractions are represented in an integrated, analog
format, similar to the mental number line used to represent natural
numbers. The one published study that has examined this issue
(Bonato, Fabbri, Umiltà, & Zorzi, 2007) concluded that even
educated adults do not represent the magnitudes of fractions in any
integrated form. Instead, Bonato et al. (2007) argued that adults
use strategies involving comparisons of the whole number com-
ponents of fractions (numerators or denominators) to circumvent
their inability to think about fractions as integrated magnitudes.

However, the results of the three experiments reported in the
present study argue against this conclusion. Our findings indicate
that students at both highly selective universities and nonselective
community colleges can represent the magnitudes of both single-
and multi-digit fractions on the same type of mental number line as
they use to represent natural numbers.

Mental Number Line Representations of
Natural Numbers

Several recent literature reviews indicate broad agreement about
many characteristics of mental number line representations of
natural numbers (Ansari, 2008; Izard & Dehaene, 2008). The
representation is used with multi-digit as well as single-digit
numbers (Dehaene et al., 1990), although additional factors seem
to come into play for multi-digit numbers (Nuerk, Weger, &
Willmes, 2001). Its use is evident by age 4 years, and some
findings suggest that it is used even in infancy (Cantlon, Brannon,
Carter, & Pelphry, 2006; Lipton & Spelke, 2003). Neural as well
as behavioral data indicate that such numerical representations
have a great deal in common with spatial representations of quan-
tities; quantitative information expressed in either numerical or
spatial form triggers activation of highly overlapping areas of the
intraparietal sulcus, and some individual neurons even respond to
both numerical and spatial stimuli (Tudusciuc & Nieder, 2007).

The mental number line construct is of more than theoretical
importance. Although the representation appears to be very widely
used during both childhood and adulthood, the precision with
which it is used is related to a variety of important mathematical
skills as well as to overall mathematical competence. Individual
differences in the precision of children’s whole number magnitude
representations are closely related to individual differences in
arithmetic, several types of estimation, magnitude comparison,
numerical categorization, and overall mathematics achievement
test scores (Booth & Siegler, 2008; Gilmore, McCarthy, & Spelke,
2007; Halberda & Feigenson, 2008; Holloway & Ansari, in press;
Laski & Siegler, 2007; Ramani & Siegler, 2008). The relation is
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causal as well. Experimental manipulations that improve the pre-
cision of whole number magnitude representations also improve
proficiency at magnitude comparison, numerical categorization,
estimation, and subsequent ability to learn answers to arithmetic
problems (Booth & Siegler, 2008; Siegler & Ramani, 2008; Whyte
& Bull, 2008). More generally, the mental number line provides an
intuitive feel for the magnitudes of whole numbers and their
interrelations, sometimes referred to as number sense (Dehaene,
1997; Jordan, Kaplan, Olah, & Locuniak, 2006; Jordan, Kaplan,
Locuniak, & Ramineni, 2007; Schneider et al., 2008).

Are Fractions Represented on a Mental Number Line?

Although these and other studies provide ample evidence that
natural numbers are represented on a mental number line, there are
both mathematical and empirical reasons to question whether
fractions are represented in the same way. Fractions differ from
whole numbers in many mathematical ways that could easily affect
how they are represented. Fractions are infinitely divisible. They
are not linked by successor relations; no fraction comes immedi-
ately before or after another fraction, and between any two frac-
tions are an infinite number of other fractions. This makes it
impossible to count fractions directly, which precludes one of the
main processes through which people learn about whole numbers.
The magnitudes of fractions do not increase in any consistent way
with the size of their components; 7 is greater than 4, but a fraction
with a numerator of 7 may or may not be larger than a fraction with
a numerator of 4. All of these properties seem likely to interfere
with formation of a mental number line for fractions.

Empirical evidence of a variety of types provides further reason
to doubt whether fraction magnitudes are represented on a mental
number line. Whole number magnitudes are represented fairly
accurately across diverse species, cultures, and age groups, leading
to proposals that mental number line representations of whole
numbers are innate (e.g., Feigenson, Dehaene, & Spelke, 2004;
Geary, 2005). Clearly, none of these properties hold true for
representations of fractions. Consider just the developmental data.
Infants accurately approximate whole number magnitudes (Fei-
genson, Carey, & Spelke, 2002), yet preadolescents and adoles-
cents have considerable difficulty approximating fraction magni-
tudes. This difficulty representing fraction magnitudes is evident in
people’s errors on tasks such as numerical magnitude comparison,
arithmetic, and estimation—tasks that with whole numbers involve
use of a mental number line representation (Ansari, 2008). It
would be hard to find a U.S. fourth grader who did not know that
345 is larger than 67, yet the large majority of U.S. fourth graders
err in choosing the larger of .345 and .67 (Resnick & Omanson,
1987; Rittle-Johnson, Siegler, & Alibali, 2001).

The same discrepancy between knowledge of whole numbers
and fractions is evident on arithmetic problems: A long search
would be required to find a second grader who would claim that
3 � 3 � 3, yet middle school students frequently claim the
equivalent when they write that 1/3 � 1/3 � 2/6 (National Math-
ematics Advisory Panel, 2008). Estimation provides another such
case. Approximation of whole number magnitudes between 0 and
100 is very accurate even among second graders (Geary, Hoard,
Byrd-Craven, Nugent, & Numtee, 2007), yet when a large, nation-
ally representative sample of U.S. eighth graders was asked to
estimate the closest of four answers to 12/13 � 7/8, both 19 and 21

were chosen more often than 2 (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1981). Even in ninth grade, roughly half of
students believe that fractions form a countable series, rather than
being infinitely divisible (Vamvakoussi & Vosniadou, 2004). In all
of these cases and many others, children confuse the characteristics
of fractions with those of whole numbers, a characteristic that has
been labeled the whole number bias (Gelman, 1991; Ni & Zhou,
2005).

Empirical Evidence About the Mental
Representation of Fractions

In the only previously published article that directly examined
whether adults use the mental number line to represent fractional
magnitudes, Bonato et al. (2007) concluded that they do not.
Indeed, Bonato et al. went further and claimed that even educated
adults do not represent the magnitude of fractions at all. Thus, they
wrote that in university students’ comparison of fractional magni-
tudes, “the real numerical value of the fraction was not accessed”
(p. 1410). Instead, Bonato et al. concluded that even educated
adults use strategies involving whole number components (numer-
ators and denominators) to circumvent their inability to understand
fractions.

The evidence on which Bonato et al. (2007) based this conclu-
sion came from experiments on numerical comparisons of frac-
tions. When people compare the magnitudes of pairs of whole
numbers, their mean reaction time decreases as a logarithmic
function of the distance between the magnitudes. The usual expla-
nation is that the approximate magnitudes of the two numbers are
activated on a mental number line where the representations of
more distant numbers overlap to a lesser degree (Ansari, 2008;
Izard & Dehaene, 2008; Stoianov, Kramer, Umilta, & Zorzi,
2008). This distance effect with whole numbers has been repli-
cated so often with different age groups, nationalities, and species,
and with both behavioral and brain imaging data, that it has been
called “the litmus test for determining the nature of basic repre-
sentations of numerical quantity” (Ansari, 2008, p. 279).

Bonato et al. (2007) reasoned that if people represent the nu-
merator and denominator of a fraction as independent components,
then the distances between numerators or between denominators
should predict reaction times better than the distances between the
fractions’ magnitudes. In four experiments with Italian university
students, Bonato et al. found that either distances between numer-
ators or distances between denominators (depending on the stim-
ulus set) did predict reaction times better than distances between
the fractions’ magnitudes. They concluded, “In line with results on
the whole number bias in children, these findings suggest that the
understanding of fractions is rooted in the ability to represent
discrete numerosities (i.e., integers) rather than real numbers” (p.
1410).

This conclusion was consistent with the data of Bonato et al.
(2007). However, their selection of stimuli raises doubts about its
general validity. Simply put, their stimuli lend themselves to
comparisons of whole number components in ways that unre-
stricted samples of fractions would not. In their Experiments 1 and
2, they presented participants with the standard fraction 1/5 and
asked them to compare it with fractions of the form 1/n. Thus, only
the denominator of the presented fractions varied and contributed
to differences between the fractions’ magnitudes. Faced with this
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set of problems, it is not surprising that the participants only
focused on the denominator when solving the magnitude compar-
ison task. After all, denominator values were perfectly predictive
of the correct answer, and the denominators were given in the
problem rather than requiring an extra step of approximating the
comparison fraction’s magnitude before performing the compari-
son.

In their Experiment 3, Bonato et al. (2007) asked participants to
compare to a standard of 1 the magnitudes of fractions of the form
n/4, n/5, and n/6, with n assuming all values from 1 to 9 (excluding
4/4, 5/5, and 6/6). All of these problems could be solved correctly
by applying the simple rule, “If numerator � denominator, the
answer is ‘greater’; if numerator � denominator, the answer is
‘smaller.’” Distance between numerator and denominator ac-
counted for considerable variance, but not as much variance as
distance between the numerator and 5, which Bonato et al. con-
cluded was the strategy that participants used (i.e., they converted
the standard fraction to 5/5, even when the presented standard was
4/4 or 6/6). In addition to this hypothesis being ad hoc, another
problem with it is that without understanding fraction magnitudes,
participants would have no obvious reason to substitute 1 for 4/4,
5/5, or 6/6. Only the knowledge that these fraction magnitudes are
equivalent justifies such a transformation. Yet another problem
with the interpretation is that this strategy either yields no answer
or an error on two of the problems, the ones where the numerator
of the comparison problem was also 5, yet the error rate for the
experiment made it extremely unlikely that the error rate on those
problems was 50–100% (error rates on specific problems were not
reported). In the stimulus set used in this experiment, distance
between numerator and denominator of the comparison fraction
correlated r � 1.00 with distance between the numerators of the
comparison and standard fractions, which accounts for how dis-
tance between the numerators could correlate highly with solution
times even if the numerators were not being compared.

In Experiment 4 of Bonato et al. (2007), fractions of the form
used in Experiments 1 and 2 were interleaved with fractions of the
form used in Experiment 3. The results were more complex than in
the first three experiments, but overall were consistent with their
description that participants did not access the value of the fraction
as a whole to perform the comparison. Again, it was reasonable to
use these simple approaches, given that they yielded fast and
accurate performance on this problem set. Doing so required
adaptive choices between the two useful strategies, but both chil-
dren and adults are highly adept at making such choices among
numerical strategies (Bisanz, 2003; Geary, 2006; Siegler, 1996).

To summarize, Bonato et al. (2007) provided compelling evi-
dence that people do not compare fraction magnitudes when prob-
lems can be solved quickly and accurately without doing so.
However, the applicability of this conclusion to fractions in gen-
eral is open to question. When comparison of whole number
components of fractions does not lead to consistently correct
performance, as is the case with the overwhelming majority of
possible fraction comparison problems, people may well compare
the fraction magnitudes.

The Present Experiments

There are at least two reasons to expect that people can compare
fraction magnitudes, as well as using the whole number compar-

ison strategies documented by Bonato et al. (2007). One reason is
that on problem-solving tasks in general, and numerical tasks in
particular, people typically know and use multiple representations
and strategies (Siegler, 1996). The numerical tasks on which
people have been found to use varied representations and strategies
include all four arithmetic operations, at least four types of esti-
mation, number conservation, probability, and inversion problems
(Campbell & Epp, 2005; Booth & Siegler, 2006; Geary, 2006;
LeFevre, Sadesky, & Bisanz, 1996; Siegler & Stern, 1998). Whole
number magnitudes are among the examples of this variability of
representations and strategies. In addition to the linear representa-
tions implied by the mental number line construct, adults use
circular internal representations of whole number magnitudes
when asked to do so (Bächtold, Baumüller, & Brugger, 1998).
Similarly, Siegler and Opfer (2003) found that most second grad-
ers used a linear representation to estimate the magnitudes of
whole numbers on 0–100 number lines but a logarithmic repre-
sentation on 0–1,000 number lines. The variability that is evident
in representations of whole number magnitudes seems likely to
characterize representations of fraction magnitudes as well.

A second argument in the same direction is that people generally
choose among alternative representations and strategies in adap-
tive ways (Lemaire, Arnaud, & Lecacheur, 2004; Luwel, Ver-
schaffel, Onghena, & De Corte, 2003; Siegler, 1996). Fast and
accurate approaches are used when they are available, and slower
or less accurate approaches are used when no better alternative is
known. The consistent availability of fast and accurate approaches
in Bonato et al. (2007) seems likely to have obscured the simul-
taneous availability of the slower and probably less accurate ap-
proach of comparing fraction magnitudes.

The present study tested four main hypotheses regarding repre-
sentations of fraction magnitudes. First, when a set of stimuli is
used in which comparisons of whole number components do not
lead to consistently correct performance, participants will show a
stronger distance effect for fraction magnitudes than for numerator
magnitudes or denominator magnitudes. Second, adults will gen-
erate highly accurate performance on comparison problems where
neither consistent reliance on numerators nor consistent reliance
on denominators would yield high accuracy. Third, as with com-
parisons of whole number magnitudes, the distance effect with
fraction magnitudes will more closely approximate a natural log-
arithmic function than a linear one. Fourth, the first three hypoth-
eses will be general across elite university and community college
populations and across fractions with single-digit and multi-digit
numerators and denominators. All of these hypotheses follow from
the assumption that adults can represent the magnitudes of frac-
tions on a similar type of mental number line as they use to
represent the magnitudes of whole numbers, with task character-
istics determining whether adults choose solution strategies that
make use of mental number line representations of fractions or
whether they rely on alternative strategies.

Experiment 1

Experiment 1 paralleled the experiments of Bonato et al. (2007)
in that the participants were university students and the stimuli
were fractions with single-digit numerators and denominators. The
main difference between the Bonato et al. experiments and our
Experiment 1 was that most of the fractions being compared in the
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present experiment did not have equal numerators or equal denom-
inators, nor could the answer be consistently found by deciding
whether the numerator or the denominator was larger. The hypoth-
eses were the first three stated in the immediately preceding
paragraph.

Method

Participants. We tested 66 undergraduate students (24
women) at Carnegie Mellon University, Pittsburgh, who partici-
pated for course credit. The quantitative proficiency of students at
this university tends to be quite high. In the most recent year for
which data were available, 71% of entering freshmen had math
SAT scores over 700, and 98% of entering freshmen had scores
over 600.

Problems. On each item, participants were asked to compare
a single-digit fraction with 3/5. The comparison fractions were 2/9,
2/7, 3/8, 4/9, 1/2, 2/3, 3/4, 7/9, 5/6, and 6/7. This set of 10 fractions
included substantial variation in numerators (1–7), denominators
(2–9), and magnitudes (.22–.86), thus avoiding the potential prob-
lem of restriction of range in some variables contributing to
variables with greater range being better predictors of perfor-
mance. Half of the comparison fractions were larger than the
standard (3/5), and half were smaller. Of the 10 fractions, 6 could
be correctly compared with the standard by focusing exclusively
on numerators (i.e., judging the fraction with the larger numerator
to be larger) and 6 by focusing exclusively on denominators (i.e.,
judging the fraction with the smaller denominator to be larger).

To describe the stimulus set in a form that can be compared
across the present and future experiments, we computed correla-
tions among numerators, denominators, and fractions for the 10
problems. Numerators and denominators correlated minimally
with the corresponding fraction: r � .02 and r � .13, respectively.
The correlation between the logarithms of each variable also were
minimal: for numerator and fraction value, r � .03, and for
denominator and fraction value, r � .07.

Procedure. Small groups of participants were tested in a
computer cluster for sessions of about 15 min; each student
worked at a different computer. The problems that they were
presented included four introductory trials and 200 fraction com-
parison trials. Introductory trials were designed to familiarize
participants with the response requirements; on each such trial, a
fraction with a letter as numerator and a letter as denominator (e.g.,
“a/b”) was presented in the center of the screen, and participants
responded by arbitrarily pressing either the a or l button. Compar-
ison trials were presented immediately after the introductory trials.
The 200 comparison trials included 20 blocks of the 10 problems.
Order of presentation of the 10 problems was randomized within
each block and was the same on that block for all participants.

On each comparison problem, the comparison fraction was
printed in white font in the middle of a black computer screen. The
numbers were about 0.6 in. high and were shown under a screen
resolution of 1,024 � 768 pixels. Participants were asked to push
the a key quickly when the comparison fraction’s value was below
3/5, and to do the same with the l key when the value exceeded 3/5.
As a reminder, the phrase “a: below 3/5” was printed in the bottom
left corner of the screen and “l: greater than 3/5” was printed in the
bottom right corner. Except for the comparison fraction and the
two reminders, the screen was empty.

On each trial, participants saw a fixation cross in the center of
the screen for 500 ms, a blank screen for 150 ms, and finally a
fraction that remained present at the center of the screen until the
participant pressed a or l. The time from stimulus onset to response
was measured in milliseconds. If participants erred more than 3
times in a block, a window popped up, asking them to try harder.

Results

One student was removed from the analyses because his per-
centage errors were more than 4 standard deviations higher than
those of any other participant. For the remaining participants,
mean error rate was 5%, SD � 7.2, range � 0–20%, and median
solution time was 0.7 s, SD � 0.3 s, range � 0.5–2.6 s, on the level
of individual trials. Trials on which participants answered incor-
rectly were excluded from the analyses of solution times.

We first analyzed the data aggregated at the group level, com-
puting for each fraction the mean error rate and the median
solution time across all persons and trials. These were used as
criterion variables in six separate regression analyses, with the
predictors being linear distance between the numerators of the
comparison fraction and the standard, distance between their de-
nominators, and distance between the fraction magnitudes. Only
the distance between the fraction magnitudes was a significant
predictor of sample median solution times and sample mean per-
centage errors (see Table 1, left side). Distance between the
magnitudes of the standard and comparison fractions explained
58% of the variance in solution times and 48% of the variance in
error rates on the 10 problems. In contrast, distance between the
numerators of the comparison and standard fractions and between
their denominators explained 0% of the variance.

Parallel regression analyses using as independent variables the
logarithm of the distance between numerators, between denomi-
nators, and between fraction magnitudes showed even stronger
effects (see Table 1, right side). The logarithmic distance between
fraction magnitudes explained 63% of the variance in median
solution times for each fraction and 74% of the variance in error
rates for each fraction, more in both cases than explained by the
linear distances. In contrast, logarithmic distance between numer-
ators and between denominators accounted for 0% of the variance
in both solution times and errors. As with the analyses of linear
distance, the analyses in which logarithmic distance was the inde-
pendent variable were based on all 10 fractions for the analyses of
denominators and of fraction magnitudes. For the analysis of
logarithmic distance between numerators, the analysis was based
on eight rather than 10 fractions, because on the other two prob-
lems, the numerators of the fractions being compared were equal,
and the natural logarithm of zero is not defined.

Figure 1 shows the sample’s median solution times and mean
percentage errors for each problem as functions of the comparison
fraction. Consistent with the analyses reported above, the two
graphs show approximately logarithmically decreasing patterns of
solution times and errors with increasing distance of the compar-
ison fraction from 3/5.

The one notable exception to this pattern was the lower than
predicted solution time for 1/2. Solution times for 1/2 had the
largest deviation from the best fitting logarithmic equation among
the 10 fractions. This could not be explained by the small sizes of
the whole number components of 1/2; a regression analysis
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showed no relation of the sum of numerator and denominator to
the solution time and error rate on these fractions. Instead, it
seemed likely that the especially fast and accurate performance on
1/2 was due at least in part to the magnitude of that fraction being
known far better than other fractional magnitudes. Even preschool-
ers usually know the magnitude of 1/2 (Miller, 1984; Singer-
Freeman & Goswami, 2001), and in a recent pilot study, many
adults explained their comparisons by saying that they just knew
that the comparison was greater than 1/2, a type of explanation
rarely cited with other fractions.

In a second step, we analyzed the data at the level of individual
participants. We repeated all analyses separately for each person,
using the individual trials as data points. The results were highly
similar to those at the group level (see Table 1). Distance between
fractions explained higher percentages of variance and yielded

more significant effects than distances between numerators or
denominators. This held true using either linear distance or loga-
rithmic distance between the comparison fraction and the standard.

Wilcoxon signed ranks tests, which can be used on repeated
measures data with nonnormal distributions, revealed that, with
distance between fractions as predictor, the logarithmic regressions
explained higher proportions of variance than the linear regres-
sions. This was true for error rates, Mdn � .035 versus .018, Z �
–5.971, p � .001, as well as for solution times, Mdn � .014 versus
.012, Z � –3.668, p � .001.

Discussion

The results of Experiment 1 supported all three hypotheses that
motivated the experiment. The presence of a substantial distance

Table 1
Results of the Regressions of Response Time (RT) or Error Rate on Numerical Distance in Experiment 1

Level of analysis, criterion,
and coefficients

Linear regression Logarithmic regression

Numerator
value

Denominator
value

Fraction
value

Numerator
value

Denominator
value

Fraction
value

Group level
Criterion: RT

Data points 10 10 10 8 10 10
� �.25 .15 �.79 �.37 .15 �.82
Adj. R2 .00 .00 .58�� .00 .00 .63��

Criterion: Error rate
Data points 10 10 10 8 10 10
� �.18 �.14 �.73 �.35 �.07 �.88
Adj. R2 .00 .00 .48�� .00 .00 .74��

Person level
Criterion: RT

Data points 200 200 200 160 200 200
Median adj. R2 .00 .00 .01 .00 .00 .01
SD of adj. R2 .01 .01 .03 .02 .01 .04
% of the sample with significant effect 9 3 48 15 6 48

Criterion: Error rate
Data points 200 200 200 160 200 200
Median adj. R2 .00 .00 .02 .01 .00 .04
SD of adj. R2 .01 .03 .04 .02 .04 .06
% of the sample with significant effect 14 14 55 34 11 65

�� p � .01.

Figure 1. Median solution time (left) and mean percentage errors (right) of comparisons against 3/5 as
functions of fraction magnitude in Experiment 1.
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effect for fraction magnitudes for both solution times and error
rates, and the absence of any effect for distance between numer-
ators and between denominators, indicated that when problems are
not constrained to make whole number components straightfor-
ward predictors of correct answers, adults rely on fraction magni-
tudes to solve comparison problems. The percentage correct was
95%, far higher than could have been obtained by comparing only
the numerators or only the denominators of these fractions. In
addition, numerator comparisons and denominator comparisons
would have yielded 100% errors on some problems. As shown in
Figure 1, this clearly did not occur. Finally, as is typically the case
on tasks involving comparisons of whole numbers, the natural
logarithm of the distance between fraction magnitudes was a better
predictor of performance than was the linear distance. All of these
findings indicate that participants relied on the magnitudes of
fractions to perform the comparisons, rather than on the whole
number components.

One finding that was not anticipated was the especially fast and
accurate performance that participants generated in comparing 1/2
to 3/5. This comparison produced the largest deviation from the
overall logarithmic pattern of solution times shown in Figure 1.
The likely sources of this effect were participants’ knowledge of
the absolute magnitude of 1/2 and their ability to quickly and
accurately code the magnitudes of other fractions (in this case 3/5)
relative to it. The finding indicates that in addition to being able to
solve fraction comparison problems by comparing fraction mag-
nitudes, numerator magnitudes, and denominator magnitudes,
adults can solve such problems via knowledge of specific fractions
and coding of other fractions in terms of them. Whether fractions
other than 1/2 can be used in this way remains an open question.

Experiment 2

All fractions presented in Experiment 1 had single-digit numer-
ators and denominators. However, many fractions are more com-
plex, and the challenge of representing the magnitudes of these
fractions is much greater. University students might have enough
experience with single-digit fractions to form number line repre-
sentations of their magnitudes, even if they cannot form such
representations of fractions in general.

In Experiment 2, we tested the generality of the Experiment 1
findings by presenting participants with a problem set in which
more than 80% of fractions had two-digit numerators and denom-
inators. This preponderance of two-digit fractions led to Experi-
ment 2 presenting a different and considerably more challenging
task than that in Experiment 1 or in previous research on fraction
comparisons. The Experiment 2 problem set also included a
greater number of fractions than the problem set used in Experi-
ment 1, so that we could discriminate more precisely between
logarithmic and linear functions for the distance effect.

The basic hypothesis of Experiment 2 was that participants
would use an integrated analog representation, akin to a mental
number line, to represent multi-digit as well as single-digit frac-
tions. Therefore, all three predictions from Experiment 1 were
expected to hold true on this more challenging set of fraction
comparison problems.

Method

Participants were 30 undergraduate students (9 women) at Car-
negie Mellon University, none of whom participated in Experi-
ment 1. The fractions that they were asked to compare with 3/5
were 20/97, 1/4, 26/89, 30/91, 28/71, 31/72, 32/69, 1/2, 25/49,
23/44, 33/62, 5/9, 29/51, 24/41, 22/37, 27/43, 37/58, 35/54, 2/3,
36/53, 38/55, 40/57, 41/56, 39/50, 47/59, 6/7, 43/48, 49/52, and
46/47. These 29 fractions are evenly distributed around the com-
parison standard of 3/5, each numerator and each denominator is
only used in one fraction, and all fractions are in simplest form.
The correlation of linear distance between the comparison and
standard fractions with linear distance between numerators was
r � .13. Its correlation with the linear distance between denomi-
nators was r � .26. The corresponding correlations involving
distances between the natural logarithms were r � .04 and r � .01,
respectively.

Each fraction was presented only once, leading to a total of 29
trials. As in Experiment 1, solution times on error trials were
excluded from the analyses.

During Experiment 1, we observed that participants sometimes
took their fingers off the answer keys between trials, which could
distort their solution times. To prevent this in Experiment 2, the
participants were required to push both answer keys to trigger the
display on each trial. All other aspects of the procedure were
identical to those in Experiment 1.

Results

The mean error rate was 6%, SD � 5, ranging from 0% to 17%
on the 29 problems. The median solution time on individual trials
was 4.8 s, SD � 3.5, ranging from 1.6 s. to 17.5 s on the 29
problems.

At the group level, distances between the standard (3/5) and the
comparison fraction accounted for significant variance in both
sample median solution time (48%) and sample mean percentage
errors (39%) on each problem (see Table 2). In contrast, distances
between the numerators of the standard and comparison fractions
and between their denominators were unrelated to median solution
time and error rate on the corresponding problems.

As shown in Figure 2, mean solution times were much longer
with the multi-digit fractions presented in this experiment than
with the single-digit fractions presented in Experiment 1 (4.8 s vs.
0.7 s). Solution times on different problems also varied far more
than in Experiment 1 (SDs � 3.5 s vs. 0.3 s).

Figure 2 also suggests that the distance effect again followed a
logarithmic function. Consistent with this hypothesis, the logarith-
mic predictor accounted for considerably more variance in solution
times on each problem than did the best fitting linear function
(R2 � .70 vs. .48). Similarly, the logarithmic function accounted
for considerably more variance in errors on each problem than did
the best fitting linear function (R2 � .63 vs. .39). As in Experiment
1, the solution time for 1/2 showed the largest negative deviation
from the logarithmic function of any of the 29 fractions, 2.8 s
versus the predicted 6.2 s.

We repeated all regressions separately for each person. As in
Experiment 1, the results on the person level were very similar to
the results on the group level. Distances between fraction values
explained higher proportions of variance and yielded more signif-
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icant effects than distances between numerators or denominators.
This held true for error rates as well as solution times.

As with the simpler fractions in Experiment 1, Wilcoxon signed
ranks tests indicated that the logarithmic function explained higher
proportions of variance than the linear regressions for both per-
centage errors, Mdn � .070 versus .027, Z � –2.606, p � .009, and
solution times, Mdn � .270 versus .189, Z � –3.579, p � .001.

Discussion

The results with this much more challenging set of fraction
comparison problems replicated and extended the findings of
Experiment 1. Again, we found strong effects for the distance
between fraction magnitudes but not for the distance between
numerators or denominators. Almost all numerators and almost all
denominators were much larger than the numerators and the de-
nominator in the standard, which meant that comparing the nu-
merators of the standard and the comparison fraction or comparing

their denominators would have led to very high error rates, far
higher than the 6% that was observed.

The accuracy of the fraction comparisons was especially strik-
ing, because the participants would have been very unlikely to
have much experience with the specific fractions that were pre-
sented. People encounter individual two-digit fractions (e.g.,
26/89) far less often than single-digit fractions (e.g., 3/4). It seems
extremely unlikely that people could recall the magnitudes of such
two-digit fractions from long-term memory and use these memo-
rized relations on the experimental task. Instead, participants
needed to estimate the magnitude of the comparison fraction and
relate it to the magnitude of the standard. This interpretation was
consistent with the sample’s median solution time of 4.8 s, much
longer than the solution times of less than 1 s in Experiment 1. The
unfamiliarity of the specific two-digit fractions, the long solution
times, and the relatively low error rate (6%) were consistent with
the view that participants solved the two-digit fraction comparison

Table 2
Results of the Regressions of Response Time (RT) or Error Rate on Numerical Distance in Experiment 2

Level of analysis, criterion,
and coefficients

Linear regression Logarithmic regression

Numerator
value

Denominator
value

Fraction
value

Numerator
value

Denominator
value

Fraction
value

Group level
Criterion: RT

� .03 �.06 �.70 .16 .16 �.84
Adjusted R2 .00 .00 .48��� .00 .00 .70���

Criterion: Error rate
� �.06 �.12 �.64 .02 .03 �.80
Adjusted R2 .00 .00 .39��� .00 .00 .63���

Person level
Criterion: RT

Median adjusted R2 .00 .00 .18 .00 .00 .29
SD of adjusted R2 .05 .03 .12 .04 .04 .19
% of the sample with significant effect 7 3 70 7 7 73

Criterion: Error rate
Median adjusted R2 .00 .00 .01 .00 .00 .01
SD of adjusted R2 .02 .02 .04 .02 .01 .11
% of the sample with significant effect 0 0 8 4 0 28

Note. All analyses were carried out with the 29 fractions as data points.
��� p � .001.

Figure 2. Median solution time (left) and mean percentage errors (right) of comparisons against 3/5 as
functions of fraction magnitude in Experiment 2.
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problems by estimating the fractions’ magnitudes and then com-
paring the estimate with the standard.

Experiment 3

The participants in Experiments 1 and 2 were students at a very
selective university with high mathematics achievement test
scores. This raised the question of whether the results of Experi-
ments 1 and 2 are limited to adults with unusually strong mathe-
matical skills. The mathematics skills of the participants in Bonato
et al. (2007) were not described, but they might well have been
different from those of the students in the present Experiments 1
and 2. If so, some or all of the difference between the present
findings and those previous ones might be due to the mathematics
skills of the participants, rather than to differences in the problem
sets.

Experiment 3 addressed this issue. It was identical to Experi-
ment 2, except that the participants were students at a community
college with open admissions. These students were presumed to be
far less mathematically skilled than the students in Experiments 1
and 2. The goal was to determine whether only mathematically
outstanding adults compare fractions on the basis of fraction
magnitudes or whether other adults also do.

Method

The procedures, problems, and other aspects of Experiment 3
were identical to those in Experiment 2. The one difference was
that the 22 participants (11 women) were students at Community
College of Allegheny County, a junior college at which the only
entrance requirements are that the students be at least 18 years old
and have either a high school diploma or GED.

Results

As expected, the absolute level of performance among the
community college students was considerably lower than that of

the more mathematically knowledgeable participants in Experi-
ment 2. The mean error rate of 30% (SD � 20.8, range � 4–69%)
was much higher than the rate of 6% on the same problems in
Experiment 2, and the median solution time of 10.7 s (SD � 7.0,
range � 2.9–29.5 s) was considerably higher than the median of
4.8 s in the earlier experiment.

Despite these differences in participants’ proficiency, the pat-
terns of solution times and errors paralleled those in the previous
experiment. As shown in Table 3 and Figure 3, on the group level,
neither distance between numerators nor distance between denom-
inators predicted either solution times or errors on the 29 fraction
comparison problems. In contrast, the distance between fraction
magnitudes accounted for substantial percentages of variance in
both solution times (36%) and percentage errors (26%).

As in Experiments 1 and 2, we examined the fit of the natural
logarithm of the distance between the comparison and standard
fractions’ numerators, denominators, and magnitudes to speed and
accuracy on the 29 problems. As shown in Table 3, the fit of the
logarithmic function to the percentage errors on each problem was
somewhat better than the fit of the linear function to them, R2 �
.35 versus .26. Also as shown, the fit of the linear function to the
median solution time on each problem was slightly better than that
of the logarithmic function, R2 � .36 versus .32. As in the prior
experiments, the solution time for 1/2 was considerably faster
(5.6 s) than would have been expected from the best fitting natural
logarithmic function (10.4 s). The negative deviation from the
value predicted by the logarithmic equation was the fourth largest
among the 29 problems.

We repeated the regression analyses separately for each person.
Again, the results showed a substantial distance effect for fraction
values and almost no effects of numerators and denominators as
indicated by the sample median R2 values of 0 for these regres-
sions.

Wilcoxon signed ranks test indicated that the distance effect
with fraction values as predictor and solution rates as criterion

Table 3
Results of the Regressions of Response Time (RT) or Error Rate on Numerical Distance in Experiment 3

Level of analysis, criterion,
and coefficients

Linear regression Logarithmic regression

Numerator
value

Denominator
value

Fraction
value

Numerator
value

Denominator
value

Fraction
value

Group level
Criterion: RT

� .03 �.06 �.62 .06 .08 �.59
Adjusted R2 .00 .00 .36��� .00 .00 .32���

Criterion: Error rate
� .23 �.10 �.53 .24 .14 �.61
Adjusted R2 .02 0 .26�� .02 0 .35���

Person level
Criterion: RT

Median adjusted R2 .00 .00 .03 .00 .00 .08
SD of adjusted R2 .09 .11 .12 .12 .13 .12
% of the sample with significant effect 5 9 45 9 18 36

Criterion: Error rate
Median adjusted R2 .00 .00 .05 .00 .00 .07
SD of adjusted R2 .02 .01 .07 .02 .01 .12
% of the sample with significant effect 0 0 32 0 0 41

Note. All analyses were carried out with the 29 fractions as data points.
�� p � .01. ��� p � .001.
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is fit better by a logarithmic function than by a linear function
(Mdn � .066 vs. .053, Z � –2.047, p � .041). With solution
times as criterion, the logarithmic function also explained
higher proportions of variance than the linear function (Mdn �
.083 vs. .031), but the difference was not significant, Z �
–1.374, p � .170.

To test whether the strength of the distance effect differs be-
tween mathematically more and less skilled individuals, we com-
pared the logarithmic distance effects found with reaction times on
the person level in Experiment 2 and Experiment 3. As indicated
by a Mann–Whitney test, the distance effect explained a much
higher variance proportion for the highly skilled individuals in
Experiment 2 (Mdn � .294) than for the less skilled students in
Experiment 3 (Mdn � .084), U � 176.5, p � .004. The distance
effect with percentage correct could not be compared across ex-
periments because of ceiling effects among the highly skilled
participants in Experiment 2, who answered 94% of problems
correctly.

Discussion

The results of Experiment 3 replicated the main findings of
Experiments 1 and 2 with a less mathematically skilled, and more
representative, sample. The replication is noteworthy because
there were large differences in mathematical knowledge between
the university students in Experiment 2 and the community college
students in Experiment 3. Consistent with these differences in
knowledge, the university students were much faster and more
accurate in comparing the fractions. Nonetheless, for the commu-
nity college sample, as for the university sample, distance between
fraction magnitudes was a much better predictor of solution times
and error rates than distance between numerators or distance
between denominators.

General Discussion

Can Adults Represent Fractional Magnitudes?

In the only previously published study on adults’ representations
of fractions, Bonato et al. (2007) found distance effects for the
magnitudes of numerators and denominators but not for the mag-
nitudes of the fractions being compared. They concluded that even

educated adults are unable to represent fraction magnitudes and
therefore resort to separately processing the fractions’ whole num-
ber components.

The present results cast serious doubt on this conclusion. The
findings indicate that adults can represent the magnitudes of frac-
tions, that the representation resembles the mental number line
used with whole numbers, and that adults use this representation to
compare fraction magnitudes when simpler approaches would not
yield accurate performance.

All four of the hypotheses of the present study were based on
the belief that adults can represent fraction magnitudes. The
results were consistent with each of them. The distance effect
was far stronger for distances between fractions than for dis-
tances between numerators or denominators. Comparisons were
consistently correct on problem sets where comparisons of
whole number components could not yield high degrees of
accuracy. As with whole numbers, a logarithmic function fit the
data better than a linear function. Finally, all of these conclu-
sions held true over a range of populations and stimuli: for
students at both highly selective universities and nonselective
community colleges, for both single-digit and multi-digit frac-
tions, and for a small set of fractions presented 20 times and for
a larger set of fractions presented once.

The consistency of use of representations of fraction magnitudes
to perform the fraction comparison task is evident in its being
unnecessary to aggregate over many trials for strong distance
effects to emerge. Extensive aggregation is normally used to obtain
the distance effect with whole numbers. For example, Dehaene et
al. (1990) used more than 240 comparison trials per person in each
of their three experiments. By contrast, in the present Experiments
2 and 3, reliable distance effects emerged with only 29 trials per
person. The distance effects were not only found when data were
aggregated over persons but also for considerable numbers of
individual participants in all three experiments. Given the small
number of trials, this is a conservative test of our hypotheses and
shows the reliability of the distance effect for fractions. In all, the
distance effect with solution times was stronger and more stable
across the three experiments than the distance effect with error
rates, which might be due to the small numbers of trials and to the
even smaller number of errors the university students made on
these trials.

Figure 3. Median solution time (left) and mean percentage errors (right) of comparisons against 3/5 as
functions of fraction magnitude in Experiment 3.
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Two very recent fMRI studies provide further evidence for the
integrated magnitude representations for fractions that were im-
plied by our results. Both studies found that brain activation in
regions specialized for magnitude representation systematically
covaries with the distance between fractions but not with the
distance between their numerators or denominators (Ischebeck,
Schocke, & Delazer, in press; Jacob & Nieder, 2009).

Although these results indicate important similarities between
whole number and fraction magnitude representations, the results
also indicate differences between them. Comparisons of fraction
magnitudes are generally slower and less accurate than compari-
sons of whole numbers, with the single exception of mathemati-
cally sophisticated adults’ solution times on single-digit fractions.
Comparisons of fraction magnitudes also vary far more with
individual and stimulus differences than do comparisons of whole
number magnitudes. Experiments 1 and 2 indicate that adults take
much more time to compare two-digit than one-digit fractions
(median times of 0.7 s vs. 4.8 s). Experiments 2 and 3 indicate that
adults at a highly selective university were both much faster and
much more accurate than students at a community college (median
solution times of 4.8 vs. 10.7 s, and mean error rates of 6% vs.
30%). To our knowledge, such large differences have never been
found with adults’ comparisons of whole numbers.

The lower absolute level of performance for fractions than for
whole numbers and the larger differences between individuals and
between stimuli for fractions than for whole numbers appear to
reflect the same mental number line representation being used with
differing degrees of noise in the representations of magnitudes. In
a number of ways, adults’ performance with fractions resembles
elementary school children’s performance with whole numbers.
For example, just as adults with greater mathematical sophistica-
tion generate more precise representations of fraction magnitudes,
children with higher mathematical achievement test scores gener-
ate more precise representations of whole number magnitudes
(Booth & Siegler, 2006; Geary et al., 2007). Decreasing noise in
whole number magnitude representations was particularly evident
in Siegler and Booth’s (2004) finding that younger children’s
repeated estimates of the same number’s magnitude were less
variable than those of older children. Similarly, just as adults
represent single-digit fractions much more precisely than multi-
digit fractions, children much more precisely represent magnitudes
of smaller whole numbers than larger ones (Feigenson et al., 2002;
Siegler & Opfer, 2003). Thus, the large literature on children’s
(and adults’) representations of whole numbers provides a useful
base for thinking about adults’ (and children’s) representations of
fractions.

Strategy Choices and Representations of Fractional
Magnitudes

Integrating the present results with those of Bonato et al. (2007)
shows that people’s mental magnitude representations of fractions
cannot be investigated separately from their strategy choices.
Bonato et al. showed that small variations in the types of fractions
being compared led to different strategies for using the whole
number components of fractions (i.e., comparing numerators only
or denominators only). The present study showed that variations in
the type of fractions being compared led to a fundamentally

different solution strategy, one that involves integrated magnitude
representations of fractions.

These findings demonstrate striking similarities between peo-
ple’s strategy choices with whole numbers and fractions. The
extensive literature on strategy choices with whole numbers has
shown that people usually know and use alternative strategies for
solving a task, that use of these strategies varies within sessions
and even within problems, and that people flexibly adapt strategy
choices to problem characteristics (cf. Bisanz, 2003; Geary, 2006;
Siegler, 1996). All of these properties also seem to hold true for
fractions. When a task can be solved by a simple strategy (i.e.,
comparing numerators or denominators alone), people do so. They
only use the more demanding strategy of estimating fraction mag-
nitudes and then comparing them when that approach is necessary
for answering accurately.

These findings also suggest that better understanding represen-
tations of fractional magnitudes will require trial-by-trial assess-
ments of the strategies that are used to represent and compare
fractions. The combination of observations of overt behavior and
immediately retrospective verbal reports have been found to be
useful for producing valid trial-by-trial strategy assessments with
whole numbers, and given the similar time required to compare
fractional magnitudes, the same seems likely to be true for this
task.

Ignoring strategic variability and the relations between problem
characteristics and strategy choices can produce misleading con-
clusions about underlying cognitive processes (Siegler, 1987). In
contrast, attending to strategic and representational variability and
the ways that people choose among alternative approaches can
provide insights into the processes underlying obtained results
(LeFevre et al., 1996; Nuerk, Kaufmann, Zoppoth, & Willmes,
2004; Siegler, 1987). Further research that directly examines strat-
egy use and strategy choice with fraction problems thus seems
warranted.
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