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This article proposes an integrated theory of acquisition of knowl-
edge about whole numbers and fractions. Although whole numbers
and fractions differ in many ways that influence their develop-
ment, an important commonality is the centrality of knowledge
of numerical magnitudes in overall understanding. The present
findings with 11- and 13-year-olds indicate that, as with whole
numbers, accuracy of fraction magnitude representations is closely
related to both fractions arithmetic proficiency and overall mathe-
matics achievement test scores, that fraction magnitude represen-
tations account for substantial variance in mathematics
achievement test scores beyond that explained by fraction arith-
metic proficiency, and that developing effective strategies plays a
key role in improved knowledge of fractions. Theoretical and
instructional implications are discussed.
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1. Introduction

Prominent contemporary theories of numerical development have focused on development of
knowledge about whole numbers, relegating development of knowledge about other types of num-
bers, such as fractions and negative numbers, to secondary status (e.g., Geary, 2006; Leslie, Gelman,
& Gallistel, 2008; Wynn, 2002). To the extent that these theories address development of understand-
ing of other types of numbers, it is usually to note differences between their acquisition and that of
whole numbers, and to document ways in which whole number understanding distorts understanding
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of them. Learning about whole numbers is depicted as fundamentally different from, and discontinu-
ous with, learning about other types of numbers.

To cite one example, advocates of privileged domains theories argue that specialized learning
mechanisms make it easier to learn about whole numbers than about fractions or other types of num-
bers (Gelman & Williams, 1998; Wynn, 2002). Indeed, some proponents of privileged domains ap-
proaches argue that constraints that facilitate learning about whole numbers interfere with
learning about fractions. This perspective is reflected in Gelman and Williams’ (1998, p. 618) claim
that, ‘‘children’s knowledge of natural numbers (a core domain) serves as a conceptual barrier to later
learning about other numbers and their mathematical structures, for example, fractions.’’ Gelman and
Williams’ argument was that fractions learning is hindered (and whole number learning helped) by
children being predisposed to assume that each number has a unique successor, that sets can be
counted by assigning numbers to objects in a 1:1 fashion, and that the final number in a count can
be used to represent the cardinality of the set that was counted. Similarly, Wynn (1995, p. 176) argued
‘‘There are also limits to the kinds of numerical entities the accumulator mechanism represents. It
does not represent numbers other than positive numbers. . .For example, children have great difficulty
learning to think of fractions as numerical entities. . .These facts suggest that the positive integers –
the very values that the accumulator model is capable of representing – are psychologically privileged
numerical entities.’’

Evolutionary theories of numerical development take a similar stance. For example, Geary’s (2006)
evolutionary theory proposes that whole numbers are biologically primary and that fractions and other
types of numbers are biologically secondary. Within this theory, as within the privileged domains ap-
proach, the constraints and biases that make whole numbers easy to learn (e.g., that counting objects in
a set should yield a unique cardinal value, which corresponds to the last number counted) make frac-
tions hard to grasp, because the biases are helpful with whole numbers but misleading with fractions.

Some conceptual change theories (Ni & Zhou, 2005; Vosniadou, Vamvakoussi, & Skopeiliti, 2008)
place greater emphasis on development of fractions knowledge than do privileged domains and evo-
lutionary theories, but they are similar in emphasizing differences between learning about whole
numbers and fractions and in emphasizing how the ‘‘whole number bias’’ interferes with fractions
learning. For example, Vamakoussi and Vosniadou (2010) proposed that before encountering rational
numbers, children form a ‘‘coherent explanatory framework of number as counting number which, in
terms of the theoretical framework that we propose, constitutes an initial, domain-specific theory of
number’’ (italics in original). They go on to say (p. 187), ‘‘Within the framework theory approach to
conceptual change, the phenomenon of students’ misconceptions due to faulty natural number rea-
soning. . .(is) an indication that students draw heavily on their initial understandings of number to
make sense of rational numbers.’’

Although these theories differ in many particulars, they share an underlying commonality. All posit
qualitative differences between an early developing, ‘‘natural’’ understanding of whole numbers and a
later developing, flawed or hard-won, understanding of fractions. To the extent that relations between
the two are posited, the earlier developing understanding of whole numbers is said to interfere with
the later developing understanding of rational numbers. The theory of numerical development pro-
posed in this article differs in emphasizing a crucial continuity between acquisition of understanding
of whole numbers and fractions, as well as differences between the acquisitions.

1.1. An integrated theory of numerical development

In the present article, we propose an alternative theory of numerical development that emphasizes
a key developmental continuity across all types of real numbers. This theory proposes that numerical
development is at its core a process of progressively broadening the class of numbers that are under-
stood to possess magnitudes and of learning the functions that connect that increasingly broad and
varied set of numbers to their magnitudes. In other words, numerical development involves coming
to understand that all real numbers have magnitudes that can be ordered and assigned specific loca-
tions on number lines. The basic idea resembles Case and Okamoto’s (1996) proposal that the central
conceptual structure for whole numbers, a mental number line, is eventually extended to other types
of numbers, including rational numbers.
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Within the present theory, a complementary, and equally crucial, part of numerical development is
learning that many properties that are true of whole numbers –having unique successors, being count-
able, including finite number of entities within any given interval, allowing expression as a single
symbol, invariably increasing or staying the same with addition and multiplication, and invariably
decreasing or staying the same through subtraction and division – are not true of numbers in general.
The difficulty of learning this lesson, and the behavioral consequences of failing to learn it, are the fo-
cus of the theories of numerical development described above. These difficulties are real, dramatic,
and important, but they are not the whole story.

One way of thinking about this pair of developments (learning the properties shared and not
shared by different types of numbers) is as a gradual change from initially conceptualizing numbers
in terms of characteristic features (salient properties of whole numbers that are not necessarily prop-
erties of other types of numbers) to later distinguishing between defining features (properties of all
real numbers, in particular their magnitudes) and features that apply to some but not all classes of
numbers. This change is analogous to the shift from characteristic to defining features in semantic
development described by Keil and Batterman (1984). Keil and Batterman noted that young children
often categorize objects and events on the basis of salient features that are not definitional for the
category. For example, 5- and 6-year-olds tend to categorize a land area as an island if and only if
it is warm and sunny, to categorize a vehicle as a taxi if and only if it is yellow and has four wheels,
and to categorize an uncle if and only if he is an adult, as well as a sibling of one of the child’s par-
ents, or the husband of the child’s aunt. Semantic development for these and many other categories
requires learning that less salient features are definitional, regardless of the presence or absence of
characteristic features. Thus, for most 9- and 10-year-olds, islands must be surrounded by water on
all sides, regardless of their climate; taxis must pick up passengers who pay for being driven to cho-
sen locations, regardless of the vehicles’ appearance; uncles only must be male siblings of the child’s
mother or father, or the husband of the child’s aunt, regardless of the uncle’s age. As in numerical
development, the change from emphasizing characteristic features to emphasizing defining features
of semantic categories occurs gradually over a period of years and occurs at different times for
different entities (different categories in one case; different ranges and types of numbers in the
other).

One implication of the present theory of numerical development is that acquisition of knowledge
about fractions emerges as a crucial process in numerical development, rather than being of secondary
importance. Learning about fractions provides the first major opportunity for children to learn that a
variety of salient and invariant properties of whole numbers are not definitional for numbers in general.
This understanding does not come easily; although children receive repeated instruction on fractions
starting in third or fourth grade (NCTM, 2006), even high school and community college students often
confuse properties of fractions and whole numbers (Schneider & Siegler, 2010; Vosniadou, et al., 2008).

The importance of fractions within the present theory of numerical development dovetails with the
importance of fractions within mathematics education. Learning of fractions has long been recognized
as a serious challenge for teachers and mathematics educators. This is not only true in the US; similar
difficulties with fractions have been noted in many countries, including ones with high mathematics
achievement, such as Japan (Nunes & Bryant, 2008; Stafylidou & Vosniadou, 2004; Yoshida & Sawano,
2002). These difficulties in learning fractions led the National Mathematics Advisory Panel (2008 p.
18) to conclude, ‘‘The most important foundational skill not presently developed appears to be profi-
ciency with fractions (including decimals, percent, and negative fractions). The teaching of fractions
must be acknowledged as critically important and improved before an increase in student achieve-
ment in algebra can be expected.’’

The research presented in this article tests two main predictions (as well as several other less fun-
damental predictions) that arise from the present theory and that do not follow from any of the theories
of numerical development described above. If fractions are crucial for overall mathematical under-
standing, and if understanding magnitudes is crucial for understanding fractions, then (1) Understand-
ing of fraction magnitudes should be strongly related to proficiency at fractions arithmetic; and (2)
Understanding of fraction magnitudes should be strongly related to overall mathematical knowledge.

Neither of these relations is obvious or logically necessary. Children could memorize fraction arith-
metic algorithms without understanding the magnitudes of the fractions being manipulated. Indeed,
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many mathematics educators have lamented that this is exactly what most students do (e.g., Cramer,
Post, & del Mas, 2002; Hiebert & Wearne, 1986; Mack, 1995; Sowder et al., 1998). However, rote mem-
orization without understanding tends to be inaccurate over short time periods and becomes even
more inaccurate over longer periods (Reyna & Brainerd, 1991). Thus, fraction arithmetic procedures
seemed likely to be more accurately remembered by children who understand the magnitudes of
the fractions used in the computation than by children who do not understand the fraction magni-
tudes. One reason is that accurate fraction magnitude representations make it possible to estimate
the results of fraction arithmetic operations and to reject implausible solutions. This, in turn, might
lead children to reject flawed arithmetic procedures that produced implausible solutions and to con-
tinue trying to learn a procedure that generates reasonable answers. Consistent with this perspective,
Hecht (Hecht, 1998; Hecht, Close, & Santisi, 2003; Hecht & Vagi, 2010) has found repeatedly that mea-
sures of conceptual understanding of fractions correlate positively with fraction addition skill. Another
reason for the prediction is that knowledge of whole number arithmetic correlates positively with
knowledge of whole number magnitudes (Booth & Siegler, 2008; Siegler & Ramani, 2009). If knowl-
edge of magnitudes play the same role with fractions as it does with whole numbers, as envisioned
by the present theory, similar relations between knowledge of numerical magnitudes and arithmetic
would be expected with both types of numbers.

The prediction that fraction magnitude knowledge would be related to overall mathematics
achievement test scores also was somewhat counter-intuitive, in that fractions magnitude knowledge
is assessed little if at all on such tests. Thus, only one of the many items on the online practice battery
for the test used to assess overall mathematics achievement in the present study examined knowledge
of fraction magnitudes. However, knowledge of whole number magnitudes is related to mathematics
achievement test scores, despite the lack of items assessing whole number magnitudes on standardized
achievement tests. Moreover, understanding fractions magnitudes was hypothesized to improve learn-
ing of fractions arithmetic and understanding of pre-algebra and algebra equations (e.g., 3/4X = 6),
types of knowledge that are assessed on the standardized achievement test given to the students exam-
ined in the present study. Consistent with these predictions, Kalchman, Moss, and Case (2001) found
that an instructional program that emphasized fraction magnitudes was highly effective in promoting
understanding of rational numbers, including decimals and percentages as well as fractions.

Numerical development clearly includes many important acquisitions other than knowledge of
numerical magnitudes, such as learning to count and to solve arithmetic problems. However, under-
standing of numerical magnitudes appears to be particularly central to understanding what numbers
are, and has been shown to be related to many other aspects of mathematical development, including
counting (Ramani & Siegler, 2008; Whyte & Bull, 2008) arithmetic (Booth & Siegler, 2008; Geary,
Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Siegler
& Ramani, 2009), memory for and categorization of numbers (Laski & Siegler, 2007; Opfer &
Thompson, 2008; Thompson & Siegler, 2010), and mathematics achievement test scores (Booth &
Siegler, 2006; Geary et al., 2007, 2008; Halberda, Mazzocco, & Feigenson, 2008; Siegler & Booth,
2004). Moreover, manipulations that improve numerical magnitude knowledge have been shown to
be causally related to increased proficiency in other important skills, including arithmetic (Booth &
Siegler, 2008; Siegler & Ramani, 2009) and counting (Ramani & Siegler, 2008; Whyte & Bull, 2008).
These are among the reasons why the present theory of numerical development focuses on acquisition
of knowledge about numerical magnitudes. In the remainder of this introductory section, we first
summarize current knowledge of whole number magnitude representations and their relation to
developmental and individual differences in mathematical understanding, then summarize current
knowledge of the development of understanding of fractions, and then describe the present study.

1.2. Development of representations of whole number magnitudes

A wide range of theories of numerical cognition propose that knowledge of whole numbers is
organized around a mental number line, in which number symbols (e.g., ‘‘7’’) are connected to
non-verbal representations of quantity in an ordered, horizontally-oriented array. The non-verbal
representations of quantity appear to be largely spatial (e.g., de Havia & Spelke, 2010; Gevers,
Ratinckx, De Baene, & Fias, 2006), though other sensory modalities also seem to be included in the
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representation (e.g., Jordan & Baker, 2007; Lourenco & Longo, 2010). Both behavioral and brain imag-
ing data support the mental number line construct (Ansari, 2008). One large body of evidence comes
from studies of the SNARC Effect (spatial-numerical associations of response codes), the tendency of
people in cultures with left-to-right orthographies to respond faster on the left to smaller numbers
and on the right to larger numbers. For example people more quickly answer the question, ‘‘Which
is bigger, 7 or 4’’ when 7 is chosen with a right-side key press than with a left-side key press (Dehaene,
Bossini, & Giraux, 1993). The SNARC effect is present not only for tasks that are related to magnitude,
such as numerical magnitude comparison, but also for tasks that have no relation to magnitude, such
as judging whether numbers are odd or even, suggesting automatic access to the number line repre-
sentation (Hubbard, Piazza, Pinel, & Dehaene, 2005). Brain-damaged patients with left-side neglect
displace upward (rightward on the number line) their bisections of numerical ranges of more than
a few numbers (e.g., they estimate that the midpoint of the range 11–19 is 17), just as they do with
physical lines (Zorzi, Priftis, & Umiltà, 2002). The horizontal, intra-parietal sulcus (HIPS), a brain area
believed to be central to the mental number line, shows greater activation during comparison of num-
bers close in magnitude than during comparison of numbers further apart, presumably because finer
magnitude discriminations require greater activation of relevant brain areas (Ansari, 2008; Hubbard
et al., 2005).

A non-verbal foundation for this mental number line is present even in infancy. From at least age 6
months, infants can choose the more numerous of two sets of dots, as long as the ratio of the sets is at
least 2:1. Over the ensuing months, infants become able to discriminate between sets with smaller
ratios, such as 3:2 (Lourenco & Longo, 2010), with the development of this approximate number sys-
tem continuing for many years (Halberda et al., 2008).

When preschoolers first learn about numerals (symbolically expressed whole numbers), they do
not connect the numerals to the numbers’ magnitudes. Whether the task involves being asked to give
an experimenter N objects, to identify the larger of two numbers, or to identify the number of objects
counted, 2- to 4-year-olds who can count flawlessly from 1 to 10 often do not show knowledge of
the magnitudes of numbers in that range (Le Corre, Van de Walle, Brannon, & Carey, 2006; Opfer,
Thompson, & Furlong, 2010; Ramani & Siegler, 2008; Schaeffer, Eggleston, & Scott, 1974).

A task that has proved particularly useful for studying the development of whole number magni-
tude representations, both in this early period and for years thereafter, is number line estimation. A
typical number line estimation task involves presenting lines with a number at each end (e.g., 0
and 100) and no other numbers or marks in-between, and asking participants to locate a third number
on the line (e.g., ‘‘Where does 74 go?’’). Then a new number line is presented, and participants are
asked to locate a different number on that line. The procedure continues until participants have esti-
mated numbers from all parts of the numerical range.

The number line task has several important advantages for measuring representations of numerical
magnitudes. It can be used with any real number – large or small, positive or negative, integer or frac-
tion, rational or irrational. It transparently reflects the ratio characteristics of the number system. Just
as 80 is twice as large as 40, so the estimated location of 80 should be twice as far from 0 as the esti-
mated location of 40. The task is practiced infrequently compared to skills such as counting and arith-
metic, so estimates reflect people’s sense of the magnitudes of the numbers rather than memorization
of procedures that have been repeatedly practiced.

Ideally, the function relating actual and estimated positions of numbers on a number line should be
linear, with a slope of 1, as in the equation y = x. Although this relation might seem obvious, children
do not understand it for a surprisingly long time. Instead, estimation patterns undergo a transition
from a logarithmic to a linear function, that is, from a function in which estimated magnitudes at
the low end of the scale are further apart than estimated magnitudes at the high end to a representa-
tion in which estimates are equally spaced for equal differences between numbers. The transition oc-
curs earlier for small numerical ranges than for larger ones. For example, 3- and 4-year-olds’ number
line estimates for the numbers 0 to 10 follow a logarithmic pattern, whereas 5- and 6-year-olds’ esti-
mates follow a linear pattern (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Opfer et al., 2010).
This means that 3- and 4-year-olds’ estimates of 2 and 3 are farther apart than their estimates of 7 and
8, whereas 5- and 6-year-olds’ estimates for 2 and 3 are the same distance apart as for 7 and 8. Similar
transitions occur between kindergarten and 2nd grade for the 0–100 range (Geary et al., 2007, 2008;
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Siegler & Booth, 2004), between 2nd and 4th grade for the 0–1000 range (Opfer & Siegler, 2007), and
between 3rd and 6th graders for 0–10,000 and 0–100,000 number lines (Thompson & Opfer, 2010)
(see Siegler, Thompson, and Opfer (2009) for a review).

As implied by the hypothesis that number line estimation reflects a general representation of
numerical magnitudes, the same developmental changes from non-linear to linear estimation patterns
occur at the same ages on at least two other estimation tasks: numerosity estimation (‘‘There is 1 dot
in this beaker and 1000 in this one; hold down the mouse until there are N dots in this empty beaker.’’)
and measurement estimation (‘‘This short line is 1 zip long; this long line is 1000 zips long; draw a line
N zips long.’’) (Booth & Siegler, 2006). Similar developmental patterns in the same age ranges have
been demonstrated on tasks other than estimation; for example, categorization of the numbers
0–100 shifts from a logarithmic to a linear distribution between kindergarten and 2nd grade (Laski
& Siegler, 2007) and for the numbers 0–1000 for 2nd graders who receive corrective feedback on
the placement of numbers near 150 on number lines (Opfer & Thompson, 2008).

In addition to these developmental patterns, consistent individual differences have been found on a
variety of tasks hypothesized to measure numerical magnitude representations of whole numbers. For
example, most 2nd and 4th graders either produced linear patterns on all three estimation tasks that
they were presented (number line, numerosity, and measurement estimation) or did not produce lin-
ear patterns on any of them. Individual differences in numerical magnitude representations also have
been found to be positively related to other individual differences in mathematical knowledge, includ-
ing individual differences in arithmetic competence (Booth & Siegler, 2006; Gilmore, McCarthy, &
Spelke, 2007; Halberda et al., 2008; Holloway & Ansari, 2008; Mundy & Gilmore, 2009; Schneider
et al., 2008) and scores on standardized math achievement tests (Booth & Siegler, 2006; Halberda
et al., 2008; Laski & Siegler, 2007; Siegler & Booth, 2004).

Findings regarding whole number magnitude representations also have illuminated other
aspects of numerical knowledge, such as arithmetic. If learning answers to arithmetic problems
were solely a matter of rote memorization, there would be no particular reason to expect a rela-
tion between the accuracy of magnitude representations and arithmetic competence. However, if
learning answers to arithmetic problems is a meaningful process, accurate magnitude representa-
tions might indicate the implausibility of many answers and the plausibility of a few, producing
more peaked distributions of activation around the correct answer, thus facilitating correct
retrieval. Consistent with the latter perspective, experiences that improve numerical magnitude
representations not only increase subsequent learning of correct answers to arithmetic problems
but also lead to errors being closer to the correct answer on trials where children err (Booth &
Siegler, 2008; Siegler & Ramani, 2009).

1.3. Development of fraction magnitude representations

A variety of findings call into question whether magnitudes play as great a role in knowledge of
fractions as they do with whole numbers. Indeed, these findings raise questions about whether most
children and adults represent fraction magnitudes at all. When a nationally representative sample of
US 8th graders was asked on the National Assessment of Educational Progress (NAEP) to choose
whether 12/13 + 7/8 is closest to 1, 2, 19, or 21, the answer 2 was chosen by fewer students than either
19 or 21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981). The lack of understanding of fraction
magnitudes implied by this finding was not an ephemeral phenomenon; on a recent NAEP, only
50% of 8th graders correctly ordered three fractions (NCTM, 2007). This poor performance cannot
be explained by children not trying hard on group-administered standardized achievement tests; a re-
cent study that involved 1:1 testing of 6th graders with a mean IQ of 116 reported only 59% correct
ordering of a set of fractions (Mazzocco & Devlin, 2008). The problem also is not limited to rational
numbers written in common fractions notation; in an experimental study, more than half of 5th grad-
ers consistently erred when comparing the magnitudes of two decimals when the larger decimal had
fewer digits (e.g., .345 versus .67) (Rittle-Johnson, Siegler, & Alibali, 2001). Nor does the problem dis-
appear after middle school; fewer than 30% of 11th graders correctly translated .029 as 29/1000 on the
2004 NAEP (Kloosterman, 2010). Some investigators have concluded that even university students do
not represent fraction magnitudes in a systematic way (Bonato, Fabbri, Umiltà, & Zorzi, 2007).
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The issue of whether magnitude representations are central to understanding of fractions calls into
question the generality of conclusions about developmental and individual differences in numerical
knowledge that have been derived from studies of whole numbers. Consider age-related changes in
numerical representations. As noted, transitions from logarithmic to linear representations of whole
numbers have been documented over a wide age span for different ranges of whole numbers. How-
ever, it is unknown whether such logarithmic to linear transitions are unique to whole numbers or
whether they also occur with other types of numbers, such as fractions.

Current understanding of individual differences in numerical magnitude representations is limited
in the same way. Also as noted previously, accuracy of whole number magnitude representations has
been found to correlate quite strongly with standardized mathematical achievement test scores, arith-
metic proficiency, and other measures of mathematical knowledge. Again, whether such consistent
individual differences extend beyond whole numbers is unknown.

In addition to the predicted similarities between the role of magnitude representations for fractions
and whole numbers, several differences between development of fractions and whole number magni-
tude knowledge also were expected. One was that logarithmic representations of fraction magnitudes
were not expected to be apparent. Dehaene and his colleagues (e.g., Dehaene & Mehler, 1992) have
hypothesized that logarithmic representations of whole number magnitudes reflect the frequency of
encountering different numbers. Because people much more frequently encounter small whole num-
bers than larger ones, the psychological space between the small numbers seems larger. For example,
2 and 4 are encountered more frequently than 82 and 84, and thus seem more different and further apart
(Dehaene, 1997). However, frequency of encountering fractions appears unrelated to the fractions’ mag-
nitudes. Fractions such as ½, 1=4, and 3=4 are much more common than both smaller fractions (e.g., 1/29)
and larger ones (e.g., 28/29). If relative frequency of encountering whole numbers explains logarithmic
representations of whole numbers, and if relative frequency of encountering fractions is unrelated
to fractions’ magnitudes, logarithmic fractions magnitude representations would not be expected.

Another important way in which development of knowledge of fractions magnitudes seems likely
to differ from development of whole number magnitudes is in the role of strategies. Although strategic
influences have been recognized in a wide range of problem solving and reasoning contexts (Siegler,
1996), reviews of the literature on whole number magnitude representations (e.g., Ansari, 2008;
Dehaene, Dehaene-Lambertz & Cohen, 1998; Fias & Fischer, 2005; Hubbard et al., 2005) typically do
not even mention strategies or strategy choices (for exceptions, see Geary et al., 2007, 2008). The im-
plicit assumption is that people invariably use a particular representation of numerical magnitudes
and that the research task is to determine the characteristics of that representation. Sometimes, the
assumption is explicit, as when Dehaene (1997, p. 78) described logarithmic representations of whole
number magnitudes as occurring ‘‘like a reflex’’ that cannot be inhibited. Consistent with the assump-
tion that magnitude representation is an automatic, non-strategic process, number line estimation
with whole numbers is no less accurate under time pressure than without time pressure (Siegler &
Opfer, 2003).

The lack of emphasis on strategies for choosing whole number magnitude representations might
reflect such strategies not being important in processing numerical magnitudes in general, perhaps
because magnitudes are automatically accessed through the approximate number system (Feigenson,
Dehaene, & Spelke, 2004). Another possibility, however, is that strategies for representing numerical
magnitudes might be more apparent with fractions than with whole numbers. Fractions are encoun-
tered much less often than whole numbers, and processing of their magnitudes seems likely to be
slower and under greater voluntary control, qualities identified by Ericsson and Simon (1980) as char-
acteristic of tasks on which people can accurately report strategy use. In other numerical domains that
meet the Ericsson and Simon criteria, such as whole number arithmetic, trial-by-trial strategy assess-
ments have proved useful in explaining both developmental and individual differences in accuracy
and speed (Siegler, 1996). The same seemed likely to be true with fractions.

1.4. The present study

In the current study, we presented 6th and 8th graders (11- and 12-year-olds and 13- and 14-year-
olds) with three assessments of fraction magnitude knowledge – 0–1 number line estimation, 0–5
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number line estimation, and 0–1 magnitude comparison – as well as with fraction arithmetic prob-
lems. Verbal reports of strategy use were obtained immediately after each number line estimation
and arithmetic problem, to allow examination of relations between strategy use and speed and accu-
racy on each task. We also obtained students’ mathematics achievement test scores, to examine their
relation to the three measures of fraction magnitude knowledge and to fraction arithmetic proficiency.
We made six predictions; the first two were based on previous findings that knowledge of fractions is
generally poor, and the last four reflected the present hypothesis that understanding of fraction mag-
nitudes is closely related to other types of knowledge of fractions and other aspects of mathematics:

(1) Even after years of fractions instruction, fraction magnitude representations, whether measured
by magnitude comparison or number line estimation, will be quite inaccurate in both 6th and
8th grade.

(2) Despite information about fractions magnitudes being taught explicitly in 3rd and 4th grade
(NCTM, 2007), this understanding should still be increasing between 6th and 8th grade, due
to students learning about fraction magnitudes from solving problems involving proportions
and percentages in those grades.

(3) No logarithmic to linear transition should be present with fractions, because frequency of
encountering fractions (and therefore knowledge of specific fractions) is correlated minimally
if at all with fraction magnitudes, at least in the 0–1 range.

(4) Students should use a variety of strategies to solve fraction number line estimation and arith-
metic problems, and the quality of these strategies should be related to students’ accuracy and
speed in solving problems, as with whole number arithmetic.

(5) Individual differences in knowledge of fractions magnitudes should correlate highly with suc-
cess at solving fraction arithmetic problems.

(6) Individual differences in knowledge of fractions magnitudes should correlate highly with indi-
vidual differences in overall mathematics achievement test scores.

2. Method

2.1. Participants

Participants were 24 6th graders (M CA = 11.69, SD = 0.44; 50% girls; 88% Caucasian, 8% Asian, 4%
Biracial) and 24 8th graders (M CA = 13.69, SD = 0.61; 50% girls; 92% Caucasian, 4% Asian, 4% Hispanic),
recruited from two, predominantly middle-income, public school districts near Pittsburgh, PA. All chil-
dren who returned consent forms were included in the study. The mathematics proficiency of students
in the study was slightly above the state average; 81% of students in the sample scored at or above a
proficient level on the state test of mathematics achievement (the PSSA), versus 74% for sixth and
eighth graders in the state as a whole and 79% for their schools as a whole (http://www.portal.state.
pa.us/portal/server.pt/community/school_assessments/7442/2008-2009_pssa_and_ayp_results/60028).
Testing was done by a female Caucasian research associate.

2.2. Tasks

2.2.1. Number line estimation
On each number line estimation task, participants were sequentially presented 10 number lines on

a computer screen. On the 0–1 task, each number line included a left endpoint labeled ‘‘0,’’ a right end-
point labeled ‘‘1,’’ and no other marks or numbers. Above the midpoint of each line was a fraction
whose position participants needed to estimate: 1/19, 1/7, 1/4, 3/8, 1/2, 4/7, 2/3, 7/9, 5/6, or 12/13.
The 0–5 task was identical, except that ‘‘5’’ was written at the right end of the number line, and the
fractions were 1/19, 4/7, 7/5, 13/9, 8/3, 11/4, 10/3, 7/2, 17/4, and 9/2. In both cases, one fraction
was drawn from each tenth of the number line, and presentation order was random. Participants re-
sponded on each trial by moving the cursor to the desired position on the number line and clicking the
mouse. After children explained their answer, an unmarked number line and a different fraction ap-
peared on the screen.

http://www.portal.state.pa.us/portal/server.pt/community/school_assessments/7442/2008-2009_pssa_and_ayp_results/60028
http://www.portal.state.pa.us/portal/server.pt/community/school_assessments/7442/2008-2009_pssa_and_ayp_results/60028
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2.2.2. Magnitude comparison
Participants were asked to compare to 3/5 a fraction shown on the computer screen: 3/8, 5/8, 2/9,

4/5, 4/7, 5/9, 8/9, or 2/3. If the fraction was smaller than 3/5, the participant was to press the ‘‘a’’ key; if
the fraction was larger than 3/5, the participant was to press the ‘‘l’’ key.

2.2.3. Fraction arithmetic
Participants were presented 8 problems, 2 for each of the 4 arithmetic operations: 3/5 + 1/2,

3/5 + 2/5, 3/5 – 1/2, 3/5 – 2/5, 3/5 � 1/2, 3/5 � 2/5, 3/5 � 1/2, and 3/5 � 2/5. One of the two problems
for each arithmetic operation had operands with equal denominators. Problems appeared one at
a time on the computer screen, and participants typed their answers to the problems on the
computer keyboard. Participants were able to use scrap paper to help them solve the arithmetic
problems.

2.2.4. Standardized math achievement test
The mathematics section of the Pennsylvania System of School Assessment (PSSA), the standard-

ized state achievement test used in Pennsylvania, provided a measure of students’ overall knowledge
of mathematics toward the end of 5th and 7th grades, roughly half a year before the study was con-
ducted. At both grade levels, the PSSA samples a wide range of skills including knowledge of whole
number and fraction arithmetic; probability and statistics; interpretation of tables, graphs, and fig-
ures; pre-algebra; geometry; and series extrapolation.

2.3. Design and procedure

Participants were tested individually in a quiet room in their school and completed all tasks on a
laptop computer during a single session that lasted roughly 30 min. The tasks and the problems on
each task were presented in random order. Participants completed all problems on one task before
solving any problems on the next. After participants answered each problem, the program prompted
them to explain their strategy by speaking into a microphone. Participants were asked to describe
what they thought in their head, what they wrote on scrap paper, and how they generated their an-
swer. These explanations were audio recorded for later coding.
3. Results

3.1. Number line estimation

We examined three aspects of the 6th and 8th graders’ number line estimates: accuracy, linearity,
and strategies.

3.1.1. Accuracy
Accuracy of number line estimation was indexed by percent absolute error (PAE), defined as:
PAE ¼ ðjChild’s Answer� Correct AnswerjÞ=Numerical Range
For example, if a child was asked to locate 5/2 on a 0–5 number line, and marked the location cor-
responding to 3/2, the PAE would be 20% ((|1.5 – 2.5|)/5). Note that PAE varies inversely with accuracy;
the higher the PAE, the less accurate the estimate.

A 2 (Grade: 6th or 8th) � 2 (Number line: 0–1 or 0–5) ANOVA revealed that estimates were more
accurate on 0–1 than on 0–5 number lines, PAEs = 13% and 24%, F(1, 46) = 46.99, p < .001, partial
g2 = .51, and that 8th graders’ estimates were more accurate than those of 6th graders, PAE’s = 15%
and 22%, F(1, 46) = 4.87, p < .05, partial g2 = .10. Although the interaction was not statistically signifi-
cant, 8th graders were more accurate than 6th graders on the 0–5 number lines, PAE = 19% versus 29%,
t(46) = 2.46, p < .05, d = .77, but the two groups did not differ on the 0–1 number lines, PAE = 11% ver-
sus 15%, t(46) = 1.40, n.s.
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Accuracy of number line estimation on the 0–1 and 0–5 scales was quite strongly related for both
older and younger children. Correlations between PAE on the 0–1 and 0–5 number line estimation
tasks were r (22) = .56, p < .01 for 6th graders and r (22) = .61, p < .01 for 8th graders.

3.1.2. Linearity
To describe the pattern of number line estimates, we computed the best fitting logarithmic and lin-

ear functions relating the fraction that was presented to participants’ estimates of its position on the
number line. Most 6th and 8th graders’ number line estimates fit a linear function better than a log-
arithmic one. On 0–1 estimates, the best fitting linear function for the group mean estimates on each
fraction accounted for 98% of the variance in the 6th graders’ estimates and 100% of the variance in 8th
graders’ estimates, whereas the best fitting logarithmic function accounted for 86% of the variance in
both 6th and 8th graders’ estimates. The relatively good absolute fits of the logarithmic functions ap-
peared to be due in large part to the substantial correlations inherently present between logarithmic
and linear functions. Analyses of individual performance indicated that on 0–1 number lines, the lin-
ear function fit better than the logarithmic function for 79% of 6th graders, mean R2

lin = .57 versus mean
R2

log = .49, t(23) = 3.95, p < .001, d = .98, and for 88% of 8th graders, mean R2
lin = .81 versus mean

R2
log = .69, t(23) = 6.30, p < .001, d = 1.66.

A similar pattern emerged with 0–5 number lines for 8th graders. The best fitting linear function
for the group mean estimates of each fraction accounted for 96% of the variance in the 8th graders’
0–5 number line estimates, whereas the best fitting logarithmic function accounted for 66% of the var-
iance. Analyses of individual performance indicated that the best fitting linear function accounted for
greater variance in estimates on 0–5 number lines than the best fitting logarithmic function for 75% of
8th graders, mean R2

lin = .62 versus mean R2
log = .47, t(23) = 3.36, p < .01, d = .78. In contrast, no simple

function fit most 6th graders’ estimates on 0–5 number lines at all well. For the group mean estimates,
the best fitting linear function accounted for 13% of variance, and the best fitting logarithmic function
accounted for 42%. For individual 6th graders, the best fitting linear function accounted for 26% of the
variance in estimates on 0–5 number lines, and the best fitting logarithmic function accounted for 28%
(n.s.).

As these results suggest, on 0–1 number lines, percent variance in individual children’s estimates
accounted for by the best fitting linear function increased from 6th to 8th grade, mean R2

lin = 57% versus
81%, t(46) = 2.47, p < .05, d = .70. Increases from 6th to 8th grade also were evident in the slope of indi-
vidual children’s best fitting linear function, mean slope = .58 versus .87, t(46) = 2.55, p = .01, d = .73.
Similarly, on 0–5 number lines, percent variance in individual children’s estimates accounted for by
the best fitting linear function increased between 6th and 8th grade from 26% to 62%, t(46) = 3.76,
p < .001, d = 1.09, and the mean slope of individual children’s best fitting linear function increased
from .16 to .61, t(46) = 3.41, p < .001, d = .99. Thus, the 8th graders’ estimates fit the ideal function
y = x (estimated value = presented value) considerably better than did the 6th graders’ estimates for
both 0–1 and 0–5 number lines.

3.2. Strategies

Considerable strategy use was apparent on number line estimation with fractions, particularly on
0–5 number lines. This frequency of strategy use was related to the accuracy of estimates.

3.2.1. Classification of strategies
Strategies were classified on the basis of overt behavior and immediately retrospective self-reports.

When overt behavior clearly indicated the child’s approach, that behavior was the basis of the strategy
assessment; otherwise, the child’s self-report was used.

The two main types of number line estimation strategies were numerical transformation strategies,
in which participants transformed the presented fraction to a more convenient number, and number
line segmentation strategies, in which participants generated subjective landmarks on the number line
to help locate the fractions. Both types of strategies could be, and often were, used on a single trial;
children could transform the fraction to a more convenient numerical form and segment the number
line in a way that helped them locate the fraction on it.
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In coding numerical transformation strategies, we distinguished only between using a numerical
transformation and not using one. The most common numerical transformations were rounding the
fraction (‘‘5/9 is a bit more than ½’’), simplifying it (‘‘9/5 = 1 and 4/5, which is a little less than 2’’),
or translating it into a different form (‘‘12/13 is about 90%). The reason for not distinguishing among
these numerical transformations was that they overlapped and could not be reliably distinguished. For
example, the statement ‘‘12/13 is about 90%’’ involves a translation from a common fraction to a per-
centage, but it also involves rounding (12/13 actually is more than 90%).

The main number line segmentation strategies were division into halves; division into fifths or
whole number units (e.g., placing marks on a 0–5 number line at the estimated positions of 1, 2, 3,
and 4); division into units corresponding to the denominator (e. g., dividing a 0–1 number line into sev-
enths to locate 4/7); flawed approaches (e.g., on a 0–1 number line, reporting, ‘‘I put 3/7 near 0 because
3 rounds down’’); and none/unknown (e.g., saying, ‘‘I don’t know’’). The lengthy solution times on none/
unknown trials, roughly 10 s, suggested that children might have used some strategy, but neither self-
reports nor overt behavior indicated what it was. Other numerical transformation and number line
segmentation strategies were used occasionally, but as indicated in Table 1, both 6th and 8th graders
appeared to use the specified approaches on the large majority of trials.

These strategies took a substantial amount of time to execute. The mean of the median solution
times across number lines and age groups was 9.5 s. On 0–1 number lines, the means of the medians
of individual children’s solution times were 8.4 s for 6th graders and 7.3 s for 8th graders; on 0–5
number lines, they were 11.9 s for 6th graders and 10.3 s for 8th graders. These times were far longer
than the times that children of these ages take on number line estimation with whole numbers. For
example, Siegler and Opfer (2003) found that imposing a 4 s limit on number line responses had no
effect on 2nd, 4th, and 6th graders’ accuracy relative to allowing unlimited response time. The re-
sponse times suggest that fractions number line estimation is far from automatic; rather, it appears
to be a controlled, strategic process.

3.2.2. Frequency of strategy use
Transformation and segmentation strategies were used on at least some trials by the large majority

of both older and younger children. Among 8th graders, 75% of children were classified as using a
numerical transformation strategy at least once on 0–1 number lines, as were 79% on 0–5 number
lines. The corresponding percentages for the segmentation strategy were 83% and 92%. Among 6th
graders, 50% were classified as using a numerical transformation strategy at least once on 0–1 number
lines, as were 58% on 0–5 number lines. The corresponding percentages for segmentation strategies
were 83% and 79%.

A 2 (grade) � 2 (Number line) ANOVA on the number of trials on which a numerical transformation
strategy was used indicated that participants used numerical transformation strategies more often on
0–5 than on 0–1 number lines, 44% of trials versus 14%, F(1, 46) = 38.83, p < .001, partial g2 = .46. The
analysis also indicated that 8th graders used numerical transformation strategies more often than 6th
graders did, 39% versus 19% of trials, F(1, 46) = 10.68, p < .005, partial g2 = .19. As shown in the leftmost
two columns of data in Table 1, a grade � number line interaction was also present, F(1, 46) = 4.43,
p < .05, partial g2 = .09. Both 8th and 6th graders used numerical transformation strategies more often
on 0–5 than on 0–1 number lines, but the difference was larger for 8th graders, 59% versus 18%,
t(23) = 6.09, p < .001, d = 1.49, than for 6th graders, 25% versus 7%, t(23) = 2.89, p < .01, d = .74.
Table 1
Percent use of numerical transformation and number line segmentation strategies for number line estimation.

Grade/number line Numerical transformations Number line segmentation

Round, simplify, translate None/unknown Halves Fifths Denominators Flawed None/unknown

6th 0–1 7 91 22 0 16 0 61
6th 0–5 25 71 10 18 2 0 68
8th 0–1 18 81 26 0 12 3 59
8th 0–5 59 41 11 38 1 5 46

Note: Percentages do not always add to 100% due to occasional use of other strategies.
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A parallel grade � number line ANOVA was conducted on the number of trials on which number
line segmentation strategies were used. It revealed a grade by number line interaction,
F(1, 46) = 6.95, p = .01, partial g2 = .13. On 0–1 number lines, 6th and 8th graders used segmentation
strategies equally often (39% and 41% of trials), but on 0–5 number lines, 8th graders used segmenta-
tion strategies considerably more often than 6th graders did, 54% versus 32%, t(46) = 2.42, p < .05,
d = .70. Thus, for both numerical transformation and number line segmentation strategies, develop-
mental differences in strategy use were greater on the more demanding 0–5 number lines.

3.2.3. Strategy use and estimation accuracy
Frequency of use of numerical transformation strategies was highly predictive of PAE on 0–5 num-

ber lines: for 6th graders, R2 = .51, F(1, 22) = 22.69, p < .001; for 8th graders, R2 = .79, F(1, 22) = 80.45,
p < .001. On 0–1 number lines, frequency of numerical transformations was somewhat predictive of
PAE for 8th graders, R2 = .18, F(1, 22) = 4.80, p < .05, though not for 6th graders (n.s.).

The corresponding analysis of the relation between frequency of use of segmentation strategies and
number line accuracy used as predictors the frequency of (1) halves division, (2) denominator-based
division, (3) whole number division (fifths), (4) flawed strategies, and (5) no strategy or unknown
strategy. On 0–5 number lines, the 6th graders’ estimation accuracy (PAE) was predicted by the fre-
quency of division of the number line into whole number segments, R2 = .32, F(1, 22) = 10.20,
p < .005. The 8th graders’ estimation accuracy was predicted by frequency of the halves strategy
and infrequency of no strategy, the two variables together accounting for 38% of the variance in
PAE, F(2, 21) = 6.44, p < .01. On 0–1 number lines, 6th graders’ accuracy was predicted by frequency
of division into the number of units indicated by the denominator, R2 = .18, F(1, 22) = 4.90, p < .05;
8th graders’ accuracy was predicted by infrequency of flawed strategies, R2 = .27, F(1, 22) = 8.14,
p < .01. Thus, both numerical transformation and number line segmentation strategies were related
to estimation accuracy.

3.3. Magnitude comparison

3.3.1. Accuracy
Number of correct magnitude comparisons tended to improve from 6th to 8th grade, 68% versus

79% correct, t(46) = 1.78, p < .10. In both grades, distance of the comparison fraction from 3/5 was re-
lated to number of correct answers for that fraction: r (6) = .76, p < .05 for 6th graders, and r (6) = .66,
p < .10, for 8th graders. This distance effect with fractions parallels that often found with whole num-
bers (e.g., Moyer & Landauer, 1967).

Because magnitude comparison and number line estimation are both believed to reflect under-
standing of numerical magnitudes, individual differences on the two tasks were expected to be re-
lated. Consistent with this expectation, number of correct magnitude comparisons and PAE on 0–1
number lines correlated significantly both for 6th graders, r (22) = �.48, p < .05, and for 8th graders,
r (22) = �.70, p < .05 (Tables 5 and 6). Number of correct magnitude comparisons and PAE for 0–5
number line estimates correlated r (22) = �.33, n. s. for 6th graders and r (22) = �.67, p < .01 for 8th
graders. (The negative correlations reflect greater magnitude knowledge being indexed by higher per-
cent correct on magnitude comparison and lower PAE on number line estimation).

3.4. Arithmetic

We examined accuracy and strategy use for fractions arithmetic, as well as the relation between
the two.

3.4.1. Accuracy
A 2 (Grade) � 4 (Operation: addition, subtraction, multiplication, or division) � 2 (Denominator:

same or different) ANOVA on number of correct fraction arithmetic answers yielded main effects
for all three variables: grade (32% correct for 6th graders versus 60% for 8th graders,
F(1, 46) = 11.65, p < .001, partial g2 = .20); arithmetic operation (48% correct for addition, 51% for sub-
traction, 60% for multiplication, and 25% for division, F(3, 138) = 9.28, p < .001, partial g2 = .17); and
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denominator (49% correct for equal denominators versus 43% correct for different denominators,
F(1, 46) = 4.19, p < .05, partial g2 = .08).

As shown in Table 2, accuracy improved for all four fraction arithmetic operations between 6th and
8th grade. The very low percent correct on 6th graders’ division of fractions reflected the fact that, con-
trary to our expectation, these students had not been taught division of fractions at the time the study
was conducted. Even ignoring the data on 6th graders’ division of fractions, the results indicated strik-
ingly poor knowledge of fraction arithmetic at both grade levels. The 6th graders erred on the majority
of items on all four arithmetic operations, and the 8th graders erred on 40% of items.

The ANOVA also revealed an interaction between arithmetic operation and equality of denomina-
tors, F(3, 138) = 7.24, p = .01, partial g2 = .14. This interaction seemed likely to be due to differences
among the four fraction arithmetic algorithms. Adding and subtracting fractions require common
denominators, whereas multiplying and dividing them do not. Thus, accuracy on fraction addition
and subtraction problems with common denominators should be higher than on problems without
them, because being presented with common denominators eliminates the need to generate them
without changing the value of the fraction. Consistent with this logic, children answered fraction addi-
tion and subtraction problems with common denominators more accurately than fraction addition
and subtraction problems without them (for addition, 58% versus 38% correct, t(47) = 2.87, p < .01,
d = .40; for subtraction, 60% versus 42%, t(47) = 3.29, p < .01, d = .46). Also consistent with the logic,
accuracy was no higher on fraction multiplication and division problems with common denominators
than on ones without them (for multiplication, 52% versus 67%, t(47) = 1.85, p < .10; for division, 25%
versus 25%, n.s.). The marginally significant effect for fraction multiplication problems with common
denominators being solved less often was due to 34% of 6th and 8th graders treating such items like
addition problems, and incorrectly maintaining the denominators despite multiplying the numerators
(e.g., claiming 3/5 � 2/5 = 6/5).

3.5. Strategies

The 6th and 8th graders were classified as using four main fraction arithmetic strategies. Correct
strategies involved use of a procedure that yielded the correct answer if executed correctly. Indepen-
dent whole numbers strategies involved performing the arithmetic operation on the numerators and
denominators separately, as if they were independent whole numbers (e.g., 3/5 + 1/2 = 4/7). Wrong
fractions operation strategies involved treating the numerator or denominator incorrectly in a way that
would be correct for that component in a different fractions arithmetic operation (e.g., maintaining the
common denominator on a multiplication problem, as in 3/5 � 2/5 = 6/5). None/unknown strategy usu-
ally involved saying, ‘‘I guessed’’ or ‘‘I don’t know.’’ Correct strategies were used on 49% of trials, inde-
pendent whole number strategies on 27%, wrong fractions operation strategies on 15%, no strategy or
unknown strategy on 6%, and idiosyncratic incorrect strategies on 3%.

3.5.1. Correct strategies
Because children erred on 14% of attempted uses of correct arithmetic strategies (28 errors in 198

attempted uses), we analyzed the frequency of attempted use of correct strategies, independent of
Table 2
Percent correct on fractions arithmetic problems with equal and unequal denominators.

Operation Denominator Sixth grade Eighth grade

Addition Equal 54 63
Addition Unequal 21 54
Subtraction Equal 54 67
Subtraction Unequal 25 58
Multiplication Equal 38 67
Multiplication Unequal 54 79
Division Equal 4 46
Division Unequal 4 46
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whether they generated a correct answer. A 2 (Grade) � 2 (Arithmetic Operation: Addition/subtrac-
tion or multiplication/division) � 2 (Denominator: equal or unequal) ANOVA showed greater fre-
quency of correct fraction arithmetic strategies for 8th than for 6th graders, 64% versus 34%,
F(1, 46) = 11.12, p < .005, partial g2 = .20, and greater use of correct strategies for problems with equal
than with unequal denominators, 53% versus 45%, F(1, 46) = 11.50, p < .001, partial g2 = .20 (Tables 3
and 4).

An interaction between equality of denominators and arithmetic operation was also present,
F(1, 46) = 10.68, p < .005, partial g2 = .19. Consistent with the need for equal denominators when add-
ing and subtracting fractions but not when multiplying and dividing them, this interaction emerged
because correct strategies were used more often on addition and subtraction problems with equal
denominators than on problems with unequal denominators, 63% versus 42%, t(47) = 3.91, p < .001,
d = .57, whereas correct strategies were used equally often on multiplication and division problems
with equal and unequal denominators (44% and 48%, respectively).

3.5.2. Independent whole numbers strategy
Treating numerators and denominators as if they were independent whole numbers led to errors

on three of the four arithmetic operations (e.g., 3/5 – 1/2 = 2/3), though it led to correct answers on
multiplication problems (e.g., 3/5 � 1/2 = 3/10). Because it was impossible to tell for multiplication
problems whether children used the correct approach or the independent whole numbers approach,
we assumed that correct answers on multiplication problems reflected a correct strategy and omitted
multiplication from analyses of the independent whole numbers strategy. Therefore, statistical anal-
yses of use of the incorrect whole numbers strategy contrasted its use on addition and subtraction
problems to its use on division problems.

A grade � arithmetic operation � equality of denominators ANOVA indicated that the independent
whole numbers strategy was applied more often to problems with unequal denominators than to
problems with equal denominators, 40% versus 32%, F(1, 46) = 5.78, p < .05, partial g2 = .11, and that
the strategy tended to be used more often by 6th than by 8th graders, 44% versus 27%,
F(1, 46) = 2.99, p < .10, partial g2 = .06. An interaction between arithmetic operation and equality of
denominators was also present, F(1, 46) = 5.63, p < .05, partial g2 = .11. On addition and subtraction
problems, the independent whole numbers strategy was more common on problems where denom-
inators were unequal than on ones where they were equal, 46% versus 30%, t(47) = 3.92, p < .001,
d = .59. In contrast, the independent whole numbers strategy was applied equally often on division
problems, regardless of whether denominators were equal or unequal, 33% for both. Apparently, the
instructional message that addition and subtraction of fractions require equal denominators is strong
enough to prevent some children from applying the independent whole numbers strategy to addition
and subtraction problems with equal denominators. However, either because these children do not
know how to create equal denominators or because they forget to create them on unequal denomina-
tor problems, they treat numerators and denominators on other problems as independent whole
numbers.
Table 3
Percent use of fractions arithmetic strategies, 6th grade.

Operation/
denominator

Correct Independent
whole numbers

Wrong fractions
operation

None/
unknown

Addition/equal 54 33 4 4
Addition/unequal 25 54 4 13
Subtraction/equal 50 38 13 0
Subtraction/unequal 25 54 8 4
Multiplication/equal 50 – 42 4
Multiplication/unequal 54 – 25 13
Division/equal 8 42 29 13
Division/unequal 8 46 21 21

Notes: The independent whole number strategy is the correct strategy for multiplication
problems; to avoid double counting, trials that fit both strategies were counted as correct.
Percentages do not always add to 100% due to occasional use of other strategies.



Table 5
Correlations among fractions tasks and achievement test scores, 6th grade.

Number
line
0–5 PAE

Magnitude
comparison
accuracy

Arithmetic
accuracy

PSSA
math

Number line 0–1 PAE .56** �.48* �.56** �.67**

Number Line 0–5 PAE �.33 �.55** �.54**

Magnitude comparison
accuracy

.55** .60**

Arithmetic accuracy .48*

* p < .05.
** p < .01.

Table 6
Correlations among fractions tasks and achievement test scores, 8th grade.

Number
line
0–5 PAE

Magnitude
comparison
accuracy

Arithmetic
accuracy

PSSA
math

Number line 0–1 PAE .61** �.70* �.64** �.63**

Number line 0–5 PAE �.67** �.70** �.86**

Magnitude comparison accuracy .64** .62**

Arithmetic accuracy .79**

* p < .05.
** p < .01.

Table 4
Percent use of fractions arithmetic strategies, 8th grade.

Operation/
denominator

Correct Independent
whole
numbers

Wrong
fractions
operation

None/
unknown

Addition/equal 75 25 0 0
Addition/unequal 58 38 0 4
Subtraction/equal 71 25 4 0
Subtraction/unequal 58 38 0 0
Multiplication/equal 71 – 25 4
Multiplication/

unequal
79 – 17 0

Division/equal 46 25 17 8
Division/unequal 50 21 25 4

Notes: The independent whole number strategy is the correct strategy for multiplication
problems; to avoid double counting, trials that fit both strategies were counted as correct.
Percentages do not always add to 100% due to occasional use of other strategies.
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3.5.3. Wrong fractions operation strategy
Children fairly often imported procedures that would have been correct for other fractions arith-

metic operations but were incorrect for the operation that was requested. Most wrong fractions oper-
ation procedures occurred on multiplication and division problems. These procedures involved
establishing a common denominator, as if solving an addition or subtraction problem, and then mul-
tiplying the numerators (on multiplication problems) or dividing them (on division problems) and
leaving the denominator unchanged. For example, when presented 3/5 � 1/2, some children responded
‘‘30/10.’’ They generated this answer by first transforming the fractions to 6/10 and 5/10 and then cor-
rectly multiplying the numerators but leaving the common denominator unchanged, as in fraction
addition and subtraction.
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As indicated by this description, participants used wrong fractions operation strategies far more of-
ten on multiplication and division problems than on addition and subtraction problems, 25% versus
4%, F(1, 46) = 25.31, p < .001, partial g2 = .36. Participants also tended to use wrong fractions operation
strategies more often on problems with the same denominator than on problems with different
denominators, 17% versus 13%, F(1, 46) = 3.08, p < .10, partial g2 = .06. The presence of a common
denominator might have activated the procedure used in addition and subtraction, in which numer-
ators are operated on in the way indicated by the addition or subtraction sign and denominators are
left unchanged.

3.5.4. Variability of strategy use
As with whole number arithmetic, fractions arithmetic was highly variable within as well as be-

tween participants. Among 6th graders, 4% of children used a single strategy on all eight problems,
46% used two strategies, and 50% used three or four strategies. Among 8th graders, 33% used a single
strategy (in all cases, the correct strategy), 29% used two strategies, and 38% used three or four strat-
egies. This variability was partially attributable to participants knowing how to solve problems for
some arithmetic operations but not others, but considerable variability also was present within arith-
metic operations. Most 6th graders (54%), and a substantial minority of 8th graders (38%) used differ-
ent strategies for the two problems on at least one of the four arithmetic operations. In 81% of such
cases, the child used a correct and an incorrect strategy; in the other 19% of cases, the child used
two different incorrect strategies.

3.6. Violations of principles

As suggested by the frequency of use of inappropriate strategies, children’s answers to the fraction
arithmetic problems often violated basic principles of arithmetic: that adding two positive numbers
must produce a sum greater than either addend; that subtracting a positive number must produce
a difference smaller than the number being subtracted from; that multiplying a positive number by
a number between 0 and 1 must reduce the size of the other number; and that dividing a positive
number by a number between 0 and 1 must produce a quotient greater than the number being di-
vided. Overall, 39% of answers violated these principles: 40% for addition, 42% for subtraction, 39%
for multiplication, and 33% for division. A 2 (grade) � 4 (arithmetic operation) ANOVA indicated that
6th graders’ answers violated the principles more often than 8th graders’ answers, 46% versus 30%,
F(1, 46) = 4.45, p < .05, partial g2 = .09.

3.7. Individual differences

Individual differences in performance across tasks were highly consistent. As shown in Tables 5 and
6, 11 of the 12 correlations among the experimental tasks were significant, with the correlations for
6th graders generally being around r = .50 and those for 8th graders ranging from r = .60 to r = .70.
These strong relations are consistent with the theoretical assumption that understanding of numerical
magnitudes underlies performance on all of these tasks, even on fraction arithmetic, which in princi-
ple could reflect rote memorization of correct algorithms and therefore could be unrelated to perfor-
mance on the tasks used to assess magnitude knowledge.

Perhaps the most striking result obtained in this study was the strength of the relations between
number line estimation accuracy (PAE) and math achievement test scores (Tables 5 and 6). The four
correlations ranged from r = �.54 to r = �.86.

To test whether a common relation to fractions arithmetic explained the relation between the mea-
sures of fractions magnitude knowledge and mathematics achievement test scores, we conducted
hierarchical regression analyses, in which participants’ number of correct fractions arithmetic answers
was first entered as a predictor of their PSSA scores, and then the participants’ PAE scores on 0–1 and
0–5 number line estimation were entered as additional predictors.

Accuracy of number line estimation proved to be an independent predictor of mathematics
achievement test scores for both 6th and 8th graders. For the 23 of 24 6th graders for whom test data
were available, arithmetic performance accounted for 23% of the variance in PSSA scores,
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F(1, 21) = 6.15, p < .05, adding 0–1 number line estimation PAE added 24% further variance,
F(1, 20) = 8.76, p < .01), and the two variables together accounted for 46% of the variance in achieve-
ment test scores. Entering 0–5 number line estimation as a predictor accounted for 4% further inde-
pendent variance (n.s.).

Entering number line estimation before arithmetic resulted in a very different outcome. The 6th
graders’ 0–1 number line estimation PAE accounted for 45% of the variance in their achievement test
scores, F(1, 21) = 16.97, p < .001; entering fraction arithmetic accuracy added only 1% to the explained
variance (n.s.).

Achievement test data were unavailable for five 8th graders, due to some parents not giving per-
mission for experimental personnel to see their child’s achievement test data and some participants
not having attended the district the previous year. However, the relations for the 8th graders for
whom achievement test data were available were similar to the data for the 6th graders. The analyses
again showed that accuracy of number line estimation explained substantial variance in achievement
test performance, above and beyond the variance explained by fraction arithmetic performance. The
only difference was that for the 8th graders, PSSA performance was better predicted by performance
on 0–5 number lines than on 0–1 number lines. When entered first, arithmetic performance accounted
for 62% of variance in PSSA scores, F(1, 17) = 27.22, p < .001. Entering 0–1 number line estimation next
accounted for an additional 4% (n.s.), and entering 0–5 number line PAE third accounted for an addi-
tional 15% of variance, F(1, 15) = 11.15, p < .005. The three variables together accounted for 80% of the
variance in PSSA scores.

Entering 0–1 number line estimation first accounted for 41% of the variance in the 8th graders’
PSSA scores, F(1, 17) = 11.57, p < .005, entering 0–5 number line estimation next added a further
34% of variance, F(1, 16) = 21.93, p < .001, and adding arithmetic last added a marginally significant
5% of variance, F(1, 15) = 4.07, p < .10. Thus, for both 6th and 8th graders, number line estimation
added substantially to the variance in overall achievement test performance accounted for by arith-
metic performance, but the converse was not the case.

These results argue against the possibility that the relations among arithmetic, magnitude knowl-
edge and overall achievement might be due to shared relations to IQ. The substantial relations be-
tween fraction magnitude knowledge and mathematics achievement that remained after arithmetic
knowledge was statistically controlled, and the lack of the converse relation when magnitude knowl-
edge was controlled, indicated that a common relation of the three variables to IQ did not explain the
relation of magnitude fractions knowledge and mathematics achievement.

4. Discussion

The present integrated theory of numerical development differs from privileged domains, evolu-
tionary, and conceptual change approaches in its emphasis on acquisition of knowledge about numer-
ical magnitudes as a basic process uniting the development of understanding of all real numbers. This
theoretical perspective led to a number of accurate predictions that would not have followed from the
other theories. In particular, these alternative theories would not have predicted that individual dif-
ferences in knowledge of fractions magnitudes would correlate highly with success at solving fractions
arithmetic problems; that differences in fractions magnitude knowledge would correlate highly with
individual differences in mathematics achievement test scores; or that performance across different
tasks that measure fractions magnitude knowledge would be highly correlated. Moreover, the alterna-
tive theories also would not have predicted that development of fractions would have involved
increasingly accurate linear magnitude representations and that it would not involve a transition from
logarithmic to linear representations.

The lack of such predictions does not indicate that these alternative theories of numerical develop-
ment are wrong; however, it does suggest that they are incomplete in an important way. Development
in general is marked by continuities as well as discontinuities; by focusing exclusively on discontinu-
ities between whole numbers and fractions knowledge, these alternative theories provide a one-sided
depiction of numerical development. Recognizing and documenting commonalities and continuities,
as well as differences and discontinuities, makes possible a more balanced theory. It also makes
possible a more comprehensive theory of numerical development, including detailed analyses of
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acquisition of understanding of all types of real numbers, acquisitions that are made from infancy
through adolescence.

The present theoretical approach and empirical data also argue for the feasibility of applying to
fractions (and quite likely other types of numbers) powerful and revealing methods and analytic tech-
niques that have greatly increased understanding of whole numbers. Further, it raises numerous ques-
tions whose answers are currently unknown. In the remainder of this article, we examine implications
of the present research for theories of magnitude representation, for the development of fractions and
arithmetic, and for improving mathematics education.
4.1. Implications for understanding numerical magnitude representations

4.1.1. Relations between whole number and fraction magnitude representations
The mental number line has proved to be a useful construct for thinking about whole number mag-

nitude representations and for summarizing and predicting patterns of speed and accuracy, develop-
mental and individual differences, behavioral data and brain imaging data. The present findings
indicate that the mental number line is also a useful way of thinking about fractions magnitudes,
and that representations of fraction and whole number magnitudes have a number of features in com-
mon. Consider five commonalities between the role of magnitude representations with whole num-
bers and with fractions that are documented in the present study. As with whole numbers:

(1) Alternative measures of fraction magnitude knowledge are highly correlated.
(2) Numerical magnitude comparisons with fractions yield distance effects.
(3) Knowledge of different ranges of fractions develops at different times (earlier for fractions from

0 to 1 than from 0 to 5).
(4) Knowledge of fraction magnitudes varies greatly among individuals and correlates with both

arithmetic proficiency and mathematics achievement test scores;
(5) Relations between fraction magnitude representations and mathematics achievement test

scores extend beyond their common relation to arithmetic knowledge.

These commonalities attest to the value of viewing whole numbers and fractions development
within a single, integrated theory.

Findings from this study also indicate important ways in which development of fractions magni-
tude knowledge differs from that of whole numbers.

(1) Knowledge of fraction magnitudes is acquired at much older ages. At least through 8th grade, it
is far less precise than knowledge of whole number magnitudes.

(2) Unlike whole number magnitude representations, fractions magnitude representations are not
accessed automatically;

(3) Explicit, reportable strategies play a much larger role in estimation of fractions magnitudes than
in estimation of whole number magnitudes.

(4) Logarithmic representations are uncommon or absent altogether with fractions, at least for frac-
tions where both numerators and denominators vary (unlike the task presented by Opfer and
DeVries (2008), who demonstrated that children could be induced to extend their logarithmic
representation of whole numbers to fractions on a task where numerators were constant and
only denominators varied).

4.1.2. Processes contributing to the development of accurate fraction magnitude representations
How do children come to extend the mental number line representation from whole numbers to

fractions? Research on the development of whole number magnitude representations suggests that
analogies to better understood numbers might play an essential role. Thompson and Opfer (2010)
found that encouraging second graders to draw analogies from their representations of numbers in
the 0–100 range to numbers in the 0–1000, 0–10,000, and 0–100,000 ranges led the children to extend
their linear representation of the smaller numbers to the larger numerical ranges.
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In the present study, the strategies that 6th and 8th graders reported indicate that analogies to
whole numbers also are used to generate magnitude representations for fractions. One common,
and effective, strategy was to translate the fraction being estimated into a percentage of the distance
between the two endpoints and then to use the percentage as if it were a whole number on a 0–100
number line. For example a child might reason that 4/5 was 80% of the distance between 0 and 1 and
proceed as if locating 80 on a 0–100 number line. Improvements in number line estimation accuracy
between 6th and 8th grades seems partially attributable to the 8th graders, but not the 6th graders,
having been taught about percentages.

This analysis of the likely role of analogy in learning about fraction magnitudes places previous
claims about the ‘‘whole number bias’’ (Ni & Zhou, 2005) in a different light. The basic idea of the
whole number bias is that analogies to whole numbers interfere with learning about fractions. This
bias has been cited to explain a variety of difficulties in fractions learning, including difficulty under-
standing that fractions do not have unique successors (Vamakoussi & Vosniadou, 2010); faulty fraction
arithmetic rules, such as adding numerator to numerator and denominator to denominator to add
fractions (Gelman, 1991; Mack, 1995); inaccurate magnitude comparison rules, for example judging
that when fractions have equal numerators, the fraction with the larger denominator is greater (Staf-
ylidou & Vosniadou, 2004); and inaccurate rules for comparing decimal fractions, for example the rule
that the more digits, the larger the number (Resnick & Omanson, 1987).

Another way of viewing the same data, however, is that difficulty learning about fractions stems
from drawing inaccurate analogies to whole numbers, rather than from drawing analogies between
whole numbers and fractions per se. Encouraging children who are learning about fractions to draw
correct analogies to whole numbers, for example that fractions, like whole numbers, can express a
proportion of another number (3/5: 1:: 60: 100:: 60% of 100) or that fractions, like whole numbers,
can provide absolute measures of quantity (6 in. = ½ foot = 1/6 yard) might improve understanding
of fractions. Fractions are far from the only domain that poses the challenge of resisting superficially
appealing analogies in favor of less obvious but deeper ones (Gentner & Markman, 1997; Hummel &
Holyoak, 2003). Drawing the explicit analogy that fractions are like whole numbers in having magni-
tudes that can be ordered and represented on number lines might also be helpful.

Another likely contributor to acquisition of fraction magnitude representations is frequency of
exposure to, and knowledge about, specific fractions. The two most common fractions that were pre-
sented on the number line estimation task – 1/2 and 1/4 – elicited the most accurate estimates of any
of the 20 fractions that were presented. Children might learn about the magnitude of ½ through expe-
riences sharing and dividing candy bars, cookies, drinks, and other desired goods. They also might
learn that a quarter of a dollar is the same as 1=4 of a dollar, and use this knowledge to further their
understanding of 1/4. Learning the magnitudes of a relatively small set of commonly encountered
fractions – ½, 1/3, 2/3, 1=4, and 3=4 – might provide a basis for representing fraction magnitudes more
generally, at least in the 0–1 range.

A third likely contributor to the acquisition process is knowledge of rules, such as that fraction
magnitudes increase with increases in numerators and decrease with increases in denominators. Such
rules might be involved in extending knowledge of the magnitudes of commonly encountered frac-
tions to fractions in general (1/2 > 1/3 > 1=4 > 1/12 > 1/37. . .).

The present integrated theory of numerical development also raises a number of questions about
the development of numerical magnitudes that the present research did not address:

(1) How are representations of whole number and fraction magnitudes related at a given point in
time?

(2) Do accurate whole number magnitude representations at younger ages predict accurate fraction
magnitude representations later?

(3) Does earlier fraction magnitude knowledge predict later understanding of algebra?
(4) How is knowledge of whole number division, an operation that is logically related to fractions,

empirically related to fraction magnitude representations?
(5) How is knowledge of other whole number arithmetic operations and whole number magnitude

representations related to knowledge of fraction arithmetic and magnitude representations?
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(6) How are fraction magnitude representations related to understanding of fractions principles,
such as infinite divisibility; ability to translate among decimals, percentages, and fractions;
and other aspects of fractions knowledge?

(7) Do magnitude representations play a similar role in acquisition of knowledge of negative num-
bers as with positive whole numbers and fractions?

(8) Are the brain areas that are activated by fraction magnitude processing the same as those acti-
vated by whole number magnitude processing?

As illustrated by these questions, pursuing an integrated theory promises to broaden and deepen
our understanding of numerical development.

4.2. Implications for understanding arithmetic

The present findings indicate that understanding of fraction magnitudes and fractions arithmetic
are closely related. If learning fraction arithmetic algorithms reflected rote memorization, as has often
been claimed (e.g., Cramer & Bezuk, 1991; Hiebert, 1986; Kerslake, 1986), there would be no reason to
expect such a relation. However, the strong correlations between fractions arithmetic and all three
measures of magnitude knowledge in both 6th and 8th grades indicate that conceptual and procedural
knowledge of fractions are intertwined. (See Hecht (1998), Hecht, Close, and Santisi (2003), Hecht and
Vagi (2010), and Schneider and Stern (2010) for similar findings.)

One plausible interpretation of these results is that magnitude knowledge makes it easier to learn
and remember fraction arithmetic algorithms. This might occur through children with good magni-
tude knowledge of fractions rejecting procedures that produce unreasonable answers, such as operat-
ing independently on numerator and denominator often does, and searching longer for procedures
that produce reasonable answers. For example, children might reject the procedure that produces
arithmetic errors of the form 3/5 – 1/2 = 2/3 if they recognized that subtracting a positive number can-
not lead to an answer larger than the number being subtracted from. This could lead them to try other
procedures and test whether they yielded plausible answers.

Alternatively, some children might better remember the arithmetic procedures that they are
taught, and those children’s correct execution of the algorithms might enable them to learn about frac-
tion magnitudes through observing the answers to fraction arithmetic problems. Rittle-Johnson et al.’s
(2001) finding of initial knowledge of arithmetic procedures predicting gains in conceptual under-
standing, including magnitudes, is consistent with this view. The present data do not allow discrim-
ination between these paths, but the data do indicate a strong relation between knowledge of
fraction magnitudes and fraction arithmetic skill that is in need of explanation.

Another implication for understanding fraction arithmetic is methodological: The same strategy
assessment techniques that have proved useful with whole number arithmetic also are useful for
investigating fractions arithmetic. As with whole number arithmetic, individual children used a
variety of fractions arithmetic strategies. Even on a single fractions arithmetic operation, strategy
use varied with problem characteristics, notably with the equality or inequality of denominators.
The quality of fraction arithmetic strategy use was related to both knowledge of numerical mag-
nitudes and to overall mathematics achievement test scores. In whole number arithmetic, these
strategy assessment techniques have provided a base for computer simulation models of arithme-
tic learning that accounted for numerous findings regarding variations in accuracy, solution times,
and strategy use across problems; discovery of useful new strategies; individual differences in
arithmetic proficiency; and changes in speed, accuracy, and strategy use with problem-solving
experience (Shrager & Siegler, 1998; Siegler & Shipley, 1995). The prominence of strategy use in
fractions arithmetic suggests that similar models might be applicable to that area, and that it
might be possible to formulate a common model of development of whole number and fractions
arithmetic.

A third implication for understanding fractions arithmetic is that fraction arithmetic errors often
reflect confusion about the right strategy, together with a lack of constraints on the magnitudes of an-
swers, rather than a consistent whole number bias or other systematic misunderstanding. Previous
descriptions of children’s poor understanding of fractions arithmetic usually have attributed the
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children’s difficulty to systematic misconceptions, in particular the whole number bias. This bias has
been said to lead to children treating numerators and denominators as independent whole numbers
and operating on them independently, for example by subtracting numerator from numerator and
denominator from denominator (Carpenter et al., 1981; Gelman, 1991; Kilpatrick, Swafford, & Findell,
2001). However, the present findings revealed greater variability in fraction procedures than implied
by this attribution of errors to a systematic misconception. Roughly half of arithmetic errors stemmed
from applying whole number algorithms independently to numerators and denominators, but a sim-
ilar percentage reflected using parts of algorithms that would have been correct for a different fraction
arithmetic operation or trying other erroneous procedures. The inconsistency of strategies even within
a single arithmetic operation was striking; 40% of children correctly solved one of the pair of problems
for a single arithmetic operation and erred on the other.

This variability suggests that the whole number bias is only part of the problem in understand-
ing fractions arithmetic. Rather than reflecting a systematic misconception, fractions arithmetic
knowledge seems piecemeal; understanding of whole numbers is one source of ideas about how
to solve fractions arithmetic problems, but other types of numerical knowledge are also incorpo-
rated. It also is unclear whether children who use erroneous fractions arithmetic procedures be-
lieve that those procedures are correct. They might well be skeptical about their correctness but
have learned that saying ‘‘I don’t know’’ is not an acceptable alternative in school mathematics.
This issue could be addressed through studies that examine children’s confidence in their fraction
arithmetic answers.

4.3. Instructional implications

In the United States, instruction in fractions emphasizes part-whole interpretations far more than
other interpretations of fractions (Ni & Zhou, 2005; Sophian, 2007; Thompson & Saldanha, 2003). For
example, students are taught to interpret 1/5 as one of five slices of pizza, but less often to think of 1/5
as one fifth of the distance from zero to one on a number line (Moseley, Okamoto, & Ishida, 2007). This
is quite different than the approach to teaching fractions in Japan, China, and other countries where
students understand fractions better. Indeed, many teachers in the US can only explain fractions in
terms of the part-whole interpretation, unlike teachers in China and Japan who also emphasize num-
ber line and other interpretations (Ma, 1999; Moseley et al., 2007).

Part-whole interpretations have the advantages of concreteness and accessibility. When numera-
tors and denominators are small and positive and the numerator is less than the denominator, it is
easy to think about N parts of a whole that includes M parts. For example, children have little difficulty
understanding that if a pizza is cut into four pieces, then each piece is 1/4 of the pizza (Mix, Levine, &
Huttenlocher, 1999). However, the part-whole interpretation of fractions also has some serious limi-
tations. Negative fractions cannot be represented in this way, it is very difficult to imagine fractions
with large numerators and denominators (e.g., 734/878), and improper fractions can be confusing
within the part-whole interpretation, as illustrated by one learner’s reaction to being presented 4/3,
‘‘You cannot have four parts of an object that is divided into three parts’’ (Mack, 1993). Moreover,
there is nothing in the operation of dividing an object into N parts that says that the size of the parts
must be equal; many students fail to understand that the parts must be equal for fractions to have any
consistent meaning (Sophian, 2007).

The data from the present study, along with data from previous studies showing beneficial effects
on whole number knowledge of instruction that emphasizes numerical magnitudes (e.g., Siegler &
Ramani, 2009), indicate that emphasizing that fractions are measurements of quantity might improve
learning about fractions. Indeed, a common feature of instructional studies that have yielded espe-
cially promising results in teaching rational numbers, such as work by Robbie Case and his associates,
is that they emphasize that fractions are measures of quantity (e.g., Cramer et al., 2002; Fujimura,
2001; Keijzer & Terwel, 2003; Moss & Case, 1999; Rittle-Johnson & Koedinger, 2002, 2009). The pres-
ent integrated theory of numerical development helps to explain the prevalence of this common fea-
ture of successful instruction: If magnitudes are central to understanding fractions as well as whole
numbers, then instruction that emphasizes magnitude understanding is more likely to succeed than
instruction that does not emphasize magnitude understanding.



294 R.S. Siegler et al. / Cognitive Psychology 62 (2011) 273–296
Acknowledgments

We thank Callie Hammond for data collection, coding, and analyses, the administrators, parents,
and teachers at Canon McMillan and Brentwood School Districts in Pennsylvania, Courtney Harano
and David Rush for help creating the strategy coding scheme, and Laura Daniel for help with data anal-
yses. The research was funded by Department of Education Grants R305A080013 and R305H050035.
References

Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience,
9, 278–291.

Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental
Psychology, 41, 545–551.

Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of
Experimental Psychology: Human Perception and Performance, 33, 1410–1419.

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental
Psychology, 42(1), 189–201.

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4),
1016–1031.

Carpenter, T. P., Corbitt, M. K., Kepner, H., Jr., Lindquist, M. M., & Reys, R. (1981). Results from the second mathematics assessment
of the National Assessment of Educational Progress. Washington, DC: National Council of Teachers of Mathematics.

Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of
the Society for Research in Child Development, 61(1–2).

Cramer, K., & Bezuk, N. (1991). Multiplication of fractions: Teaching for understanding. Arithmetic Teacher, 39, 34–37.
Cramer, K. A., Post, T. R., & del Mas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the

effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in
Mathematics Education, 33(2), 111–144.

de Havia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21, 653–660.
Dehaene, S. (1997). The number sense: How the mind creates mathematics. NY: Oxford University Press.
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental

Psychology: General, 122, 371–396.
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain.

Trends in Neuroscience, 21, 355–361.
Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 12, 119–149.
Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87, 215–251.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.
Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition

(pp. 43–54). New York: Psychology Press.
Fujimura, N. (2001). Facilitating children’s proportional reasoning: A model of reasoning processes and effects of intervention

on strategy change. Journal of Educational Psychology, 93, 589–603.
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement

deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359.
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with

mathematical learning disability. Developmental Neuropsychology, 33, 277–299.
Geary, D. C. (2006). Development of mathematical understanding. In W. Damon, et al. (Eds.), Handbook of child psychology:

Cognition, perception, and language (Vol. 2, pp. 777–810). Hoboken, NH: Wiley.
Gelman, R. (1991). Epigenetic foundations of knowledge structures: Initial and transcendent constructions. In S. Carey & R.

Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 293–322). Hillsdale, NJ: Erlbaum.
Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and learning: Domain specificity and

epigenesis. In W. Damon, D. Kuhn, & R. S. Siegler (Eds.), Handbook of child psychology. New York: Wiley.
Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52, 45–56.
Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route

architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53, 58–68.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589–591.
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with

maths achievement. Nature, 455(7213), 665–669.
Hecht, S. A. (1998). Toward an information-processing account of individual differences in fraction skills. Journal of Educational

Psychology, 90, 545–559.
Hecht, S. A., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child

Psychology, 86, 277–302.
Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational

Psychology, 102(4), 843–858.
Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Erlbaum.
Hiebert, J., & Wearne, D. (1986). Procedures over concepts: The acquisition of decimal number knowledge. In J. Hiebert (Ed.),

Conceptual and procedural knowledge: The case of mathematics (pp. 199–223). Hillsdale, NJ: Erlbaum.
Holloway, I., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number

comparison. Developmental Science, 11, 644–649.



R.S. Siegler et al. / Cognitive Psychology 62 (2011) 273–296 295
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature
Reviews Neuroscience, 6, 435–448.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological
Review, 11, 220–264.

Jordan, K. E., & Baker, J. (2007). Multisensory information boosts numerical matching abilities in young children. Developmental
Science, 10, 1–9.

Kalchman, M., Moss, J., & Case, R. (2001). Psychological models for the development of mathematical understanding: Rational
numbers and functions. In M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 1–38).
Mahwah, NJ: Erlbaum.

Keijzer, R., & Terwel, J. (2003). Learning for mathematical insight: A longitudinal comparative study on modeling. Learning and
Instruction, 13, 285–304.

Keil, F. C., & Batterman, N. (1984). A characteristic-to-defining shift in the development of word meaning. Journal of Verbal
Learning and Verbal Behavior, 23, 221–236.

Kerslake, D. (1986). Children’s strategies and errors. London: NFER-Nelson.
Kilpatrick, J., Swafford, J., & Findell, B., (Eds.) (2001). Adding it up: Helping children learn mathematics. Washington, DC: National

Academy Press (by the Mathematics Learning Study Committee/National Research Council).
Kloosterman, P. (2010). Mathematics skills of 17-year-old students in the United States: 1978–2004. Journal for Research in

Mathematics Education, 41, 20–51.
Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization,

number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.
Le Corre, M., Van de Walle, G., Brannon, E. M., & Carey, S. (2006). Re-visiting the competence/performance debate in the

acquisition of the counting principles. Cognitive Psychology, 52, 130–169.
Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number concepts. Trends in Cognitive Sciences,

12(6), 213–218.
Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881.
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers understanding of fundamental mathematics in China and the

United States. Mahwah, NJ: Erlbaum.
Mack, N. K. (1993). Learning rational numbers with understanding. The case of informal knowledge. In T. P. Carpenter, E.

Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 85–105). Hillsdale, NJ: Erlbaum.
Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for

Research in Mathematics Education, 26(422–441).
Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and holes: Gaps in rational number sense in children with vs. without

mathematical learning disability. Developmental Science, 11(5), 681–691.
Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164–174.
Moseley, B. J., Okamoto, Y., & Ishida, J. (2007). Comparing U.S. and Japanese elementary school teachers’ facility for linking

rational number representations. International Journal of Science and Mathematics Education, 5, 165–185.
Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental

curriculum. Journal for Research in Mathematics Education, 30, 127–147.
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215(1519–1520).
Mundy, E., Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of

Experimental Child Psychology 103, 490-5-2.
National Council of Teachers of Mathematics (NCTM) (2006). Curriculum focal points for prekindergarten through grade 8

mathematics. Washington, DC: National Council of Teachers of Mathematics. <http://www.nctm.org/focalpoints/down-
loads.asp>.

National Council of Teachers of Mathematics (NCTM) (2007). Second handbook of research on mathematics teaching and learning.
Washington, DC: National Council of Teachers of Mathematics.

Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number
bias. Educational Psychologist, 40, 27–52.

NMAP (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S.
Department of Education.

Nunes, T., Bryant, P. (2008). Key understanding in mathematics learning. Paper 3: Understanding rational numbers and intensive
quantities. <www.nuffieldfoundation.org>.

Opfer, J. E., & DeVries, J. M. (2008). Representational change and magnitude estimation: Why young children can make more
accurate salary comparisons than adults. Cognition, 108, 843–849.

Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55,
169–195.

Opfer, J. E., & Thompson, C. A. (2008). The trouble with transfer: Insights from microgenetic changes in the representation of
numerical magnitude. Child Development, 79(3), 788–804.

Opfer, J. E., Thompson, C. A., & Furlong, E. E. (2010). Early development of spatial-numeric associations: Evidence from spatial
and quantitative performance of preschoolers. Developmental Science, 13(5), 761–771.

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge
through playing number board games. Child Development, 79(2), 375–394.

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.), Advances in instructional psychology
(pp. 41–95). Hillsdale, NJ: Erlbaum.

Reyna, V. F., & Brainerd, C. J. (1991). Fuzzy-trace theory and children’s acquisition of scientific and mathematical concepts.
Learning and Individual Differences, 3, 27–60.

Rittle-Johnson, B., Koedinger, K. (2002). Comparing instructional strategies for integrating conceptual and procedural
knowledge. In D.S. Mewborn, et al. (Eds.), Proceedings of the twentyfourth annual meeting of the north American chapters of
the international group for the psychology of mathematics education (pp. 969–978). Columbus, OH: ERIC Clearinghouse for
Science, Mathematics, and Environmental Education.

http://www.nctm.org/focalpoints/down-loads.asp
http://www.nctm.org/focalpoints/down-loads.asp
http://www.nuffieldfoundation.org


296 R.S. Siegler et al. / Cognitive Psychology 62 (2011) 273–296
Rittle-Johnson, B., & Koedinger, K. (2009). Iterating between lessons on concepts and procedures can improve mathematics
knowledge. British Journal of Educational Psychology, 79, 483–500.

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in
mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362.

Schaeffer, B., Eggleston, V. H., & Scott, J. L. (1974). Number development in young children. Cognitive Psychology, 6, 357–379.
Schneider, M., Heine, A., Thaler, V., Torbeyns, J., De Smedt, B., Verschaffel, L., et al (2008). A validation of eye movements as a

measure of elementary school children’s developing number sense. Cognitive Development, 23(3), 409–422.
Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human

Perception and Performance, 36, 1227–1238.
Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod

approach. Developmental Psychology, 46(1), 178–192.
Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological Science, 9,

405–410.
Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press.
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.
Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical

quantity. Psychological Science, 14, 237–243.
Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games – But not circular ones – Improves low-income

preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545–560.
Siegler, R. S., & Shipley, C. (1995). Variation, selection, and cognitive change. In T. Simon & G. Halford (Eds.), Developing cognitive

competence: New approaches to process modeling (pp. 31–76). Hillsdale, NJ: Erlbaum.
Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many

time scales. Mind, Brain, and Education, 2, 143–150.
Sophian, C. (2007). The origins of mathematical knowledge in childhood (studies in mathematical thinking and learning). Mahwah,

NJ: Erlbaum.
Sowder, J., Armstrong, B., Lamon, S., Simon, M., Sowder, L., & Thompson, A. (1998). Educating teachers to teach multiplicative

structures in the middle grades. Journal of Mathematics Teacher Education, 1, 127–155.
Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning

and Instruction, 14(503–518).
Thompson, P. W., Saldanha, L. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, G. Martin, and D. Schifter, (Eds.),

Research companion to the principles and standards for school mathematics (pp. 95–114). Reston, VA: National Council of
Teachers of Mathematics.

Thompson, C. A., & Opfer, J. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational
changes in numerical cognition. Child Development, 81, 1768–1786.

Thompson, C. A., & Siegler, R. S. (2010). Linear numerical magnitude representations aid children’s memory for numbers.
Psychological Science, 21, 1274–1281.

Vamakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school
students’ understanding of rational numbers and their notation. Cognition and Instruction, 28, 181–209.

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to conceptual change. In S. Vosniadou
(Ed.), International handbook of research on conceptual change (pp. 3–34). Mahwah, NJ: Erlbaum.

Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental
Psychology, 44(2), 588–596.

Wynn, K. (1995). Infants possess a system of numerical knowledge. Current Directions in Psychological Science, 4, 172–177.
Wynn, K. (2002). Do infants have numerical expectations or just perceptual preferences? Developmental Science, 2, 207–209.
Yoshida, H., & Sawano, K. (2002). Overcoming cognitive obstacles in learning fractions: Equal-partitioning and equal-whole.

Japanese Psychological Research, 44, 183–195.
Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138.


	An integrated theory of whole number and  fractions development
	Introduction
	An integrated theory of numerical development
	Development of representations of whole number magnitudes
	Development of fraction magnitude representations
	The present study

	Method
	Participants
	Tasks
	Number line estimation
	Magnitude comparison
	Fraction arithmetic
	Standardized math achievement test

	Design and procedure

	Results
	Number line estimation
	Accuracy
	Linearity

	Strategies
	Classification of strategies
	Frequency of strategy use
	Strategy use and estimation accuracy

	Magnitude comparison
	Accuracy

	Arithmetic
	Accuracy

	Strategies
	Correct strategies
	Independent whole numbers strategy
	Wrong fractions operation strategy
	Variability of strategy use

	Violations of principles
	Individual differences

	Discussion
	Implications for understanding numerical magnitude representations
	Relations between whole number and fraction magnitude representations
	Processes contributing to the development of accurate fraction magnitude representations

	Implications for understanding arithmetic
	Instructional implications

	Acknowledgments
	References


