


Clusters in Semantic Space
Analysing natural language texts to model word meaning as a

procedural representation�

Burghard B. Rieger

This paper will report on one of the objectives of a project in Computational Seman-
tics currently being worked on by the MESY-group at the Technical University of Aachen.
Among others, the project is concerned with the development of automatic frame con-
struction from natural language discourse. Both, in linguistic semantics and in artifi-
cial intelligence, most of the language data processed is still obtained introspectively or
by way of questioning test-persons. Based mainly on the investigator’s or the system-
designer’s own linguistic competence and/or world knowledge, the relevant data for the
modelling of semantic and/or conceptual structures has a more or less ad hoc character
and often lacks intersubjective control. Therefore, we have been and are trying to circum-
vent this deficiency by developing an algorithmic procedure that takes natural language
texts on a certain subject domain as input and produces as output a distance-like data-
structure of linguistically labeled space points whose positions represent (connotative)
meanings.

1. As outlined and discussed elsewhere (RIEGER 1979, 1980, 1981a) statistical means can
be applied for the empirical analysis of discourse and the formal representation of vague
word meanings in natural language texts. These procedures allow for the systematic
modelling of a fragment of the lexical structure constituted by the vocabulary employed
in the texts as part of the concomitantly conveyed world knowledge concerned. The
modified correlation coefficients used will map the lexical items onto fuzzy subsets of
the vocabulary according to the numerically specified reqularities these items have been
used with in the discourse analysed. The resulting system of sets of fuzzy subsets is
a relational datastructure which may be interpreted topologically as a hyperspace with
a natural metric. Its linguistically labeled elements represent meaning points, and their
mutual distances represent meaning differences.

The position of a meaning point may be described by its semantic environment. This
is determined by those other points in the semantic hyperspace which — within a given
diameter — are most adjacent to the first one. Figure 1 shows the topological environ-
ments of two meaning points ALPEN (alps) and INDUSTRIE (industry) as computed from
a corpus of German newspaper texts comprising some 8 ooo tokens of 360 types in 175
texts from the 1964 editions of the daily DIE WELT.

Having seen that the environments do in fact assemble meaning points of a certain
semantic affinity, three questions arise which will be discussed in the following:

� first, are there regions of point density in the semantic space, forming clouds and
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Topological environment E(zs� r); s � ALPEN DIE WELT

Range r � 9�8900

URLAUB 3�9977 FAHR EN ER T 4�5023
AUTO 5�6149 GAST 7�0474
BAHN 7�2863 RETT EN UNG 7�3960
SPORT LER 8�0673 BERG 8�1442
SKI 8�2592 TOUR 8�8162
LUFT 8�8245 PISTE 9�2650
TOD 9�2724 GEFAHR LICH 9�3234
LIFT 9�4442 SICHER HEIT N UNG 9�3234
LAUT EN 9�4442 ALLE 9�6397
SCHNEE EIEN 9�7497 ABFAHR EN T 9�8102
GLÜCK LICH 9�8102

Topological environment E(zs� r); s � INDUSTRIE
Range r � 18�000

ELEKTRO NISCH 2�106 LEIT EN R UNG 2�369
BERUF LICH 2�507 SCHUL E R 3�229
SCHREIB EN 3�328 COMPUTER 3�667
FÄHIG KEIT 3�959 SYSTEM ATIK 4�040
ERFAHR EN UNG 4�294 KENN EN TNIS 5�285
DIPLOM 5�504 TECHN IK ISCH 5�882
UNTERRICHT EN 7�041 ORGANISATION 8�355
WUNSCH EN 8�280 ZONE 8�546
BITTE N 9�429 STELLE 11�708
UNTERNEHME R N 14�430 STADT 16�330
GEBIET 17�389 VERBAND 17�569

Figure 1

clusters which might indicate a semantic (paradigmatic and/or syntagmatic) struc-
turedness;

� second, can these be detected and described automatically by methods of cluster
analysis, and, if so;

� third, how do these clusters look like and of what meaning points are they com-
posed of?

2. According to BOCK (1974) cluster analysis is a collection of methods for automatic
classification. Automatic classification refers to a number of mathematical-statistical pro-
cedures which aim to detect inherent similarities among sets or elements of sets in order
to decide on the formation of greater partitions among them. These are considered clas-
sifications of elements or objects of a certain kind which can be achieved by objective,
or rather intersubjectively controllable operations which do not necessitate an analysing
subject’s knowledge or ability.
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Figure 2

Methods of automatic classification require distance-like data to be processed, i.e. ob-
jects or entities whose similarity may be measured by a numerical expression the values
of which satisfy the condition of a metric. This is the case with what we have analysed
and defined to be the fuzzy subsets of the vocabulary or, equivalently, meaning points in
the semantic hyperspace. Submitted to the cluster analysing algorithms provided by, for
instance, the IMSL-program-library, the meaning points of one topological environment
would be grouped together according to the least differences between them in classes of
successive agglomeration.

The program produces a so-called dendrogram of this agglomerative process which
has the form of a tree (Fig. 2), generated from its leaves up to the root. Here we have
eight elements at the bottom, numbered from 1 to 8. On the first level these are eval-
uated according to their mutual similarities, resulting in elements 3 and 4 being found
least different, to form the new class number 9. Then the whole procedure is repeated
on the second level, resulting in the merge of class number 9 with element number 5,
forming the new class number 10, and so forth. Now, at each level, the cluster analysing
algorithm produces a new partition of the original set of elements whose similarities will
numerically be specified on the similarity range.

Within each cycle of the cluster algorithm a decision is made on the highest similarity
or least difference between the elements or classes concerned. This decision depends on
the cluster-criterion employed which hence will partly determine the results.

We have tested only the three most commonly applied criteria, namely single, complete
and average linkage to compare their differing performance on our data. To give an idea in
what respect these three differ, Figure 3 (taken with kind permission from WICKMANN

1980) shows an example of three element-classes A1, A2 and A3 that merge differently
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Figure 3

when single, complete or average linkage is applied.
For single linkage the smallest distances between all pairs of elements of mutually

exclusive class-memberships are ascertained, in our case the distances a, b and c. The
minimum distance value found to be a, this indicates that on the next level class A1 will
merge with A2.

For complete linkage not the smallest but the greatest distances of all pairs of elements
of mutually exclusive class-memberships are ascertained, namely d, e and f , the mini-
mum of which, f , again determines the merge of the class A1 with A3 on the next level.

For average linkage not only singular pairs of elements are considered but all elements
of a class contribute to a mean value which can be interpreted as the centre-of-gravity of
the data cloud constituting a class. From the distances between these centres, namely g,
h, and i, the minimum distance h is selected to determine the merge of classes A2 with A3
in this example.
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Figure 4. ALPEN Cluster Single Linkage
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Figure 5. ALPEN Cluster Complete Linkage
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Figure 6. ALPEN Cluster Average Linkage
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3. The figures 4, 5 and 6 show fragments of dendrograms, analysing an environmental
set of meaning points centred around the one with the label ALPEN (the alps) under all
three cluster-criteria. As these examples are hard to follow up, a synopsis of the three
partitioning hierarchies are given in Figure 7. Apparently, all three linkage procedures
produce certain core groupings of meaning-points, i.e. partitions merging on a relatively
low level of similarity; which seem to be uneffected by whatever cluster criterion is em-
ployed for their descripitve representation. This applies to the two clusters of what we
may call the alpine winter holiday field (TOUR, LIFT, ABFAHRT, SKI, AUTO, FAHREN) and
(PISTE, BERG, RETTEN, SPORTLER, URLAUB, BAHN) as well as to the two others concern-
ing different aspects of it (SICHER, GLÜCK) and (SCHNEE, TOD, LUFT, GEFAHR) As may
be seen from a comparison of all three dendrograms, however, there are a few meaning-
points (ALLE, BAHN), GAST, (GEFAHR), LAUT, whose merging behaviour exhibits that
their distances relative to the others must be rather high. Depending on the cluster crite-
ria, this causes changing memberships of these meaning points in partitions of relatively
high merging level as shown in the dendrograms. The different performances of the
three cluster criteria employed are obvious, and the advantage of AL over SL and CL is
apparent, so we accepted average linkage (AL) to be preferred for our purpose.

Applying cluster analysis on the semantic space data on a large scale proved that the
distribution of meaning points in the hyperspace are in fact structured in semantically rel-
evant clouds and clusters of higher density. This presupposition being ascertained objec-
tively, the semantic hyperspace may serve as data base for a dynamic meaning represen-
tation by generating connotative dependency structures (CDS) as introduced in RIEGER

(1981 b).
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