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essing systems.Burghard B. RiegerFB II: Department of Computational Linguisti
s { University of Trier, GermanyE-mail: rieger�ldv01.Uni-Trier.deAbstra
tOther than the 
lear-
ut realisti
 division betweeninformation pro
essing systems and their surroundingenvironments employed sofar in models of natural lan-guage understanding by ma
hine, it is argued here thata semioti
 approa
h based on an e
ologi
al understand-ing of informational systems is feasible and more ad-equate. A 
riti
al evaluation of 
ognitive approa
hesin knowledge-based 
omputational linguisti
s togetherwith the seminal notions of situation and languagegame are 
ombined to allow for a pro
edural modelingand numeri
al re
onstru
tion of pro
esses that sim-ulate the 
onstitution of meanings and the interpre-tation of signs prior to any predi
ative and proposi-tional representations whi
h dominate traditional for-mats in syntax and semanti
s. The emergen
e of se-manti
 stru
ture as a self-organizing pro
ess is studiedin Semioti
 Cognitive Information Pro
essing Systemson the basis of word usage regularities in natural lan-guage dis
ourse whose linearly agglomerative (syntag-mati
) and whose sele
tively inter
hangeable (paradig-mati
) 
onstraints are exploited by text analysing al-gorithms. They a

ept natural language dis
ourse asinput and produ
e a ve
tor spa
e stru
ture as outputwhi
h may be interpreted as an internal (endo) rep-resentation of the SCIP system's states of adaptationto the external (exo) stru
tures of its environment asmediated by the dis
ourse pro
essed. The system's ar-
hite
ture is a two-level 
onse
utive mapping of dis-tributed representations of systems of (fuzzy) linguisti
entities whose states a
quire symboli
 fun
tions that
an be equaled to (basal) referen
ial 
ore predi
ates(like: on the left, in front et
.) . Test results from anexperimental setting with varying fuzzy interpretationsof hedges (like: extremely nearby, very faraway et
.)are produ
ed to illustrate the SCIP system's miniature(
ognitive) language understanding and meaning a
-quisition 
apa
ity without any initial expli
it synta
ti
and semanti
 knowledge.�Pro
eedings of 10th IEEE-ISIC-Wksh. Semioti
 Modelingand Situation Analysis 
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1 An e
ologi
al approa
h to semioti
sLife may be understood as the ability to survive byadapting to 
hanging requirements in the real world.Living systems do so by way of pro
essing informa-tion they re
eive or derive from relevant portions oftheir surrounding environments, of learning from theirexperien
e, and of 
hanging their behaviour a

ord-ingly. In 
ontrast to other living systems whi
h trans-mit experien
ial results of environmental adaptationonly biogeneti
ally1 to their des
endants, human in-formation pro
essing systems have additional meansto 
onvey their knowledge to others. In addition to theverti
al transmission of system spe
i�
 (intraneous)experien
e through (biogeneti
ally su

essive) gener-ations, mankind has 
omplementally developed hor-izontal means of mediating spe
i�
 and foreign (ex-traneous) experien
e and knowledge to (biogeneti
allyunrelated) fellow systems within their own or any latergeneration. This is made possible by a semioti
 movethat allows not only to distinguish pro
esses from re-sults of experien
e but also to 
onvert the latter toknowledge fa
ilitating it to be re-used, modi�ed andimproved in learning . Vehi
le and medium of thismove are representations, i.e. 
omplex sign systemswhi
h 
onstitute languages and form stru
tures, 
alledtexts whi
h may be realized in 
ommuni
ative pro-
esses, 
alled a
tualisation.In terms of the theory of information systems,texts|whether internal or external to the systems|fun
tion like virtual environments2. Considering the1A

ording to standard theory there is no dire
t geneti
 
od-ing of experien
ial results but rather indire
t transmission ofthem by sele
tional advantages whi
h organisms with 
ertaingeneti
 mutations gain over others without them to survive un-der 
hanging environmental 
onditions.2Simon's [14℄ remark "There is a 
ertain arbitrariness indrawing the boundary between inner and outer environmentsof arti�
ial systems. . . . Long-term memory operates like a se
-ond environment, parallel to the environment sensed througheyes and ears" (pp. 104) is not a 
ase in point here. As willbe
ome 
lear in what follows, his distin
tion of inner (mem-ory stru
ture) and outer (world stru
ture) environments of asystem misses the spe
ial semioti
 quality of natural language



system-environment relation, virtuality may be 
har-a
terized by the fa
t that it dispenses with the iden-tity of spa
e-time 
oordinates for system-environmentpairs whi
h normally prevails for this relation whenquali�ed to be indexed real.It appears, that this dispensation of identity (spa
e-time-dispensation, for short) is not only 
onditionalfor the possible distin
tion of (mutually and relativelyindependent) systems from their environments, butestablishes also the notion of representation.A

ordingly, immediate or spa
e-time-identi
alsystem-environments existing in their spa
e-time-identity may well be distinguished from mediate orspa
e-time-dispensed system-environments whose par-ti
ular representational form (texts) 
orresponds totheir parti
ular status both, as language material (be-ing signs), and as language stru
ture (having mean-ing). This double identity 
alls for a parti
ular modusof a
tualisation (understanding) that may be 
hara
-terized as follows:For systems appropriately adapted and tuned to su
henvironments a
tualisation 
onsists essentially in atwofold embedding to realize� the spa
e-time-identity of pairs of immediatesystem-environment 
oordinates whi
h will let thesystem experien
e the material properties of textsas signs (i.e. by fun
tions of physi
al a

ess andmutually homomorphi
 appearan
e). These prop-erties apply to the per
epts of language stru
turespresented to a system in a parti
ular dis
ourse sit-uation, and� the representational identity of pairs of mediatesystem-environment parameters whi
h will let thesystem experien
e the semanti
 properties of textsas meanings (i.e. by fun
tions of emergen
e, iden-ti�
ation, organisation, representation of stru
-tures). These apply to the 
omprehension of lan-guage stru
tures re
ognized by a system to formthe des
ribed situation.Hen
e, a

ording to the theory of information sys-tems, fun
tions like interpreting signs and understand-ing meanings translate to pro
esses whi
h extend thefragments of reality a

esssible to a living (naturaland possibly arti�
ial) information pro
essing system.This extension applies to both, the immediate andme-diate relations a system may establish a

ording to itsown evolved adaptedness or dispositions (i.e. innateand a
quired stru
turedness, pro
essing 
apabilities,represented knowledge).The a
tualisation of environments, however, doessigns whose twofold environmental embedding (textual stru
-ture) 
uts a

ross the inner/outer distin
tion, resolving both,memory and world stru
tures in be
oming representational forea
h other.

not merely add to the amount of experien
ial results,but 
onstitutes instead a signi�
ant 
hange in experi-en
ial modus. This 
hange is 
hara
terized by the fa
tthat only now the pro
esses of experien
e may be real-ized as being di�erent and hen
e be separated from theresults of experien
e whi
h may thus even be repre-sented, other than in immediate system-environmentswhere result and pro
ess of experien
e appear to beindistinguishable. Splitting up experien
e in experien-
ial pro
esses and experien
ial results|the latter be-ing representational and in need for a
tualisation bythe former|is tantamount to the emergen
e of virtualexperien
es whi
h have not to bemade but 
an insteadjust be tried, very mu
h like hypotheses in an experi-mental setting of a testbed. These results|like in im-mediate system-environments|may be
ome part of asystem's adaptive knowledge but may also|di�erentfrom immediate system-environments|be negle
tedor tested, a

epted or dismissed, repeatedly a
tual-ized and re-used without any risk for the system's ownsurvival, stability or adaptedness.The experimental quality of textual representationswhi
h in
reases the potentials of adaptive informationpro
essing immensely, will have to be 
onstrained si-multaneously by dynami
 stru
tures, 
orresponding toknowledge. The built-up, employment, and modi�
a-tion of these stru
tural 
onstraints3 is 
ontrolled bypro
edures whose pro
esses determine 
ognition andwhose results 
onstitute adaptation. Systems prop-erly adapted to textual system-environments have a
-quired these stru
tural 
onstraints (language knowl-edge) and 
an perform 
ertain operations eÆ
ientlyon them (language understanding). These are prereq-uisites to re
ognizing mediate (textual) environmentsand to identify their need for and the systems' ownability to a
tualize the mutual (and trifold) related-ness 
onstituting what Peir
e [3℄ 
alled semiosis4.Systems 
apable of and tuned to su
h knowledge-based pro
esses of a
tualisation will in the sequel bereferred to as semioti
 
ognitive information pro
ess-ing systems (SCIPS).2 Language and 
ognitionPer
eption, identi�
ation, and interpretation of(external or internal) stru
tures may be 
on
eivedas some form of information pro
essing whi
h (nat-ural or arti�
ial) 
ognitive systems|due to their ownstru
turedness|are able to perform. Under this uni-fying paradigm for 
ognition, resear
h programs in3What Simon [14℄ 
alls memory in his questioning the inner-outer-disti
tion of 
ognitive systems and their environments.4"By semiosis I mean [. . . ℄ an a
tion, or in
uen
e, whi
his, or involves, a 
o�operation of three subje
ts, su
h as sign, itsobje
t, and its interpretant, this tri-relative in
uen
e not beingin any way resolvable into a
tions between pairs." (p.282)131




ognitive linguisti
s and 
ognitive language pro
ess-ing 
an roughly be 
hara
terized to 
onsist of subtleforms in 
onfronting models of 
ompeten
e theory oflanguage with observable phenomena of 
ommuni
a-tive language performan
e to explore the stru
ture ofmental a
tivities believed to underlie language learn-ing and understanding by way of modeling these a
-tivities pro
edurally to enable algorithmi
 implemen-tation and testing by ma
hine simulation.Whereas traditional approa
hes in arti�
ial intelli-gen
e resear
h (AI) or 
omputational linguisti
s (CL)model 
ognitive tasks or natural language understand-ing in information pro
essing systems a

ording tothe realisti
 view of semanti
s, it is argued here thatmeaning need not be introdu
ed as a presuppositionof semanti
s but may instead be derived as a resultof pro
edural modeling5 as soon as a semioti
 line ofapproa
hes to 
ognition will be followed [4℄.2.1 Understanding: situationsThe present approa
h is based upon a phenomeno-logi
al (re-)interpretation of the formal 
on
ept of sit-uation [1℄ and the analyti
al notion of language game.The 
ombination of both lends itself easily to opera-tional extensions in empiri
al analysis and pro
eduralsimulation of asso
iative meaning 
onstitution whi
hwill grasp essential parts of the pro
ess of understand-ing .A

ording to Situation Semanti
s any language ex-pression is tied to reality in two ways: by the dis-
ourse situation allowing an expression's meaning be-ing interpreted and by the des
ribed situation allowingits interpretation being evaluated truth-fun
tionally.Within this relational model of semanti
s, mean-ing may be 
onsidered the derivative of informationpro
essing whi
h (natural or arti�
ial) systems|dueto their own stru
turedness|perform by re
ognizingsimilarities or invariants between situations that stru
-ture their surrounding realities (or fragments thereof).By as
ertaining these invariants and by mappingthem as uniformities a
ross situations, 
ognitive sys-tems properly attuned to them are able to identify5Pro
edural models denote a 
lass of models whose interpre-tation is not (yet) tied to the semanti
s provided by an underly-ing theory of the obje
ts (or its expressions) but 
onsist (sofar)in the pro
edures and their algorithmi
 implementations whoseinstantiations as pro
esses (and their results) by way of 
om-puter programs provide the only means for their testing andevaluation. The la
k of an abstra
t (theoreti
al) level of rep-resentation for these pro
esses (and their results) apart fromthe formal notation of the underlying algorithms is one of thereasons why fuzzy sets and possibility theory [17℄ and theirlogi
al and pro
edural derivates were well
ome as providing anopen format for 
omputational approa
hes to natural languagesemanti
s without obligation neither to reje
t nor to a

ept tra-ditional formal and modeltheoreti
 
on
epts.

and understand those bits of information whi
h ap-pear to be essential to form these systems' parti
ularviews of reality: a 
ow of types of situations relatedby uniformities like e.g. individuals, relations, andtime-spa
e-lo
ations. These uniformities 
onstrain asystem's external world to be
ome its view of realityas a spe
i�
 fragment of persistent (and remembered)
ourses of events whose expe
tability renders them in-terpretable or even obje
tive.In semioti
 sign systems like natural languages,su
h uniformities appear to be signalled also by word-types whose employment as word-tokens in textsexhibit a spe
ial form of stru
turally 
onditioned
onstraints. Not only allows their use the speak-ers/hearers to 
onvey/understand meanings di�er-ently in di�erent dis
ourse situations (eÆ
ien
y), butat the same time the dis
ourses' total vo
abulary andword usages also provide an empiri
ally a

essible ba-sis for the analysis of stru
tural (as opposed to referen-
ial) aspe
ts of event-types and how these are relatedby virtue of word uniformities a

ross phrases, sen-ten
es, and texts uttered. Thus, as a means for theintensional (as opposed to the extensional) des
riptionof (abstra
t, real, and a
tual) situations, the regular-ities of word-usages may serve as an a

ess to anda representational format for those elasti
 
onstraintswhi
h underly and 
ondition any word-type's mean-ing , the interpretations it allows within possible 
on-texts of use, and the information its a
tual word-tokenemployment on a parti
ular o

asion may 
onvey.2.2 Communi
ating: language gamesThe notion of language games [16℄ "
omplete inthemselves, as 
omplete systems of human 
ommu-ni
ation" is primarily 
on
erned with the way of howsigns are used "simpler than those in whi
h we use thesigns of our highly 
ompli
ated everyday language".Operationalizing this notion and analysing a greatnumber of texts for usage regularities of terms 
anreveal essential parts of the 
on
epts and hen
e themeanings 
onveyed by them. This approa
h [4℄ hasalso produ
ed some eviden
e that an analyti
al pro-
edure appropriately 
hosen 
ould well be identi�edalso with solving the representational task if basedupon the universal 
onstraints known to be valid forall natural languages.The philosophi
al 
on
ept of language game 
an be
ombined with the formal notion of situations allow-ing not only for the identi�
ation of an 
ognitve sys-tem's (internal) stru
ture with the (external) stru
-ture of that system's environment. Being tied to theobservables of a
tual language performan
e ena
ted by
ommuni
ative language useage opens up an empiri-
al approa
h to pro
edural semanti
s. Whatever 
an132



formally be analysed as uniformities in Barwiseiandis
ourse situations may eventually be spe
i�ed byword-type regularities as determined by 
o-o

urringword-tokens in pragmati
ally homogeneous samples oflanguage games. Going ba
k to the fundamentals ofstru
turalisti
 des
riptions of regularities of syntag-mati
 linearity and paradigmati
 sele
tivity of lan-guage items, the 
orrelational analyses of dis
oursewill allow for a multi-level word meaning and worldknowledge representation whose dynamism is a dire
tfun
tion of elasti
 
onstraints established and/or mod-i�ed in language 
ommuni
ation.As has been outlined in some detail elsewhere [5℄[7℄ [9℄ [13℄ the meaning fun
tion's range may be 
om-puted and simulated as a result of exa
tly those (semi-oti
) pro
edures by way of whi
h (representational)stru
tures emerge and their (interpreting) a
tualisa-tion is produ
ed from observing and analyzing the do-main's regular 
onstraints as imposed on the linearordering (syntagmati
s) and the sele
tive 
ombination(paradigmati
s) of natural language items in 
ommu-ni
ative language performan
e. For natural languagesemanti
s this is tantamount to (re)present a term'smeaning potential by a fuzzy distributional patternof the modelled system's state 
hanges rather than asingle symbol whose stru
tural relations are to repre-sent the system's interpretation of its environment.Whereas the latter has to ex
lude, the former willautomati
ally in
lude the (linguisti
ally) stru
tured,pragmati
 
omponents whi
h the system will both,embody and employ as its (linguisti
) import to iden-tify and to interpret its environmental stru
tures bymeans of its own stru
turedness.3 Knowledge and representationIn knowledge based 
ognitive linguisti
s and seman-ti
s, resear
hers normally will eli
it ne
essary infor-mation on linguisti
 (lexi
al, synta
ti
, semanti
) andworld knowledge by exploring (or making test-personsexplore) their own linguisti
 or 
ognitive 
apa
itiesand memory stru
tures in order to depi
t their �nd-ings in (or let hypotheses about them be tested onthe bases of) traditional forms of representation. Be-ing based upon pre-de�ned and rather stati
 
on
eptof knowledge, these representations are 
on�ned topredi
ative and propositional expressions whi
h 
anbe mapped in well established (
on
ept-hierar
hi
al,logi
ally dedu
tive) formats. As su
h they tend to la
kthe 
exibility and dynami
s of re-
onstru
tive modelstru
tures more reminis
ent of language understand-ing and better suited for automati
 analysis and rep-resentation of meanings from texts. Su
h devi
es havebeen re
ognized to be essential [15℄ for any simula-tive modeling 
apable to set up and modify a sys-

tem's own knowledge stru
ture, however shallow andvague its semanti
 knowledge and inferen
ing 
apa
-ity may appear 
ompared to human understanding.The semioti
 approa
h argued for here appears to be afeasible alternative [6℄ fo
ussing on the dynami
 stru
-tures whi
h the speakers'/hearers' 
ommuni
ative useof language in dis
ourse will both, 
onstitute and mod-ify, and whose re
onstru
tion may provide a paradigmof 
ognition and a model for the emergen
e of mean-ing. In [10℄ [11℄ a 
orresponding meaning representa-tion formalism has been de�ned and tested whose pa-rameters may automati
ally be dete
ted from naturallanguage texts and whose non-symboli
 and distribu-tional format of a ve
tor spa
e notation allows for awide range of useful interpretations.3.1 Quantitative text analysisBased upon the fundamental distin
tion of natu-ral language items' agglomerative or syntagmati
 andsele
tive or paradigmati
 relatedness, the 
ore of therepresentational formalism 
an be 
hara
terized as atwo-level pro
ess of abstra
tion. The �rst (
alled �-abstra
tion) on the set of fuzzy subsets of the vo
abu-lary provides the word-types' usage regularities or 
or-pus points, the se
ond (
alled Æ-abstra
tion) on thisset of fuzzy subsets of 
orpus points provides the 
orre-sponding meaning points as a fun
tion of word-typeswhi
h are being instantiated by word-tokens as em-ployed in pragmati
ally homogeneous 
orpora of nat-ural language texts.The basi
ally des
riptive statisti
s used to graspthese relations on the level of words in dis
ourse are
entred around a 
orrelational measure (Eqn. 1)to spe
ify intensities of 
o-o

urring lexi
al items intexts, and a measure of similarity (or rather, dissim-ilarity) (Eqn. 4) to spe
ify these 
orrelational valuedistributions' di�eren
es. Simultaneously, these mea-sures may also be interpreted semioti
ally as set the-oreti
al 
onstraints or formal mappings (Eqns. 2 and5) whi
h model the meanings of words as a fun
tionof di�eren
es of usage regularities.�i;j allows to express pairwise relatedness of word-types (xi; xj) 2 V � V in numeri
al values rangingfrom �1 to +1 by 
al
ulating 
o-o

urring word-tokenfrequen
ies in the following way�(xi; xj) = PTt=1(hit � eit)(hjt � ejt)�PTt=1(hit � eit)2PTt=1(hjt � ejt)2� 12 ; (1)�1 � �(xi; xj) � +1where eit = HiL lt and ejt = HjL lt, with the text
or-pus K = fktg; t = 1; : : : ; T having an overall lengthL = PTt=1 lt; 1 � lt � L measured by the num-ber of word-tokens per text, and a vo
abulary V =133



fxng;n = 1; : : : ; i; j; : : : ; N whose frequen
ies are de-noted by Hi =PTt=1 hit; 0 � hit � Hi.Evidently, pairs of items whi
h frequently either 
o-o

ur in, or are both absent from, a number of textswill positively be 
orrelated and hen
e 
alled aÆned,those of whi
h only one (and not the other) frequentlyo

urs in a number of texts will negatively be 
orre-lated and hen
e 
alled repugnant.As a fuzzy binary relation, ~� : V � V ! I 
an be
onditioned on xn 2 V whi
h yields a 
risp mapping~� j xn : V ! C; fyng =: C (2)where the tupels h(xn;1; ~�(n; 1)); : : : ; (xn;N ; ~�(n;N))irepresent the numeri
ally spe
i�ed, syntagmati
 usageregularities that have been observed for ea
h word-type xi against all other xn 2 V . �-abstra
tion overone of the 
omponents in ea
h ordered pair de�nesxi(~�(i; 1); : : : ; ~�(i; N)) =: yi 2 C (3)Hen
e, the regularities of usage of any lexi
al item willbe determined by the tupel of its aÆnity/repugnan
y-values towards ea
h other item of the vo
abularywhi
h|interpreted as 
oordinates| 
an be repre-sented by points in a ve
tor spa
e C spanned by thenumber of axes ea
h of whi
h 
orresponds to an entryin the vo
abulary.
~Æ jyn Æ ~� jxn

~� jxi ~Æ jyjV���O~� S ���9�
C# ��z ~Æ

-�������� �������RFigure 1: Fuzzy mapping relations ~� and ~Æ betweenthe stru
tured sets of vo
abulary items xn 2 V , of
orpus points yn 2 C, and of meaning points zn 2 S.3.2 Distributed meaning representationConsidering C as representational stru
ture of ab-stra
t entities 
onstituted by syntagmati
 regularitiesof word-token o

urren
es in pragmati
ally homoge-neous dis
ourse, then the similarities and/or dissimi-larities of these entities will 
apture their 
orrespond-ing word-types' paradigmati
 regularities. These maybe 
al
ulated by a distan
e measure Æ of, say, Eu-


lidian metri
Æ(yi; yj) =  NXn=1(�(xi; xn)� �(xj ; xn))2! 12 ; (4)0 � Æ(yi; yj) � 2pnThus, Æ may serve as a se
ond mapping fun
tion torepresent any item's di�eren
es of usage regularitiesmeasured against those of all other items. As a fuzzybinary relation, ~Æ : C � C ! I 
an be 
onditioned onyn 2 C whi
h again yields a 
risp mapping~Æ j yn : C ! S; fzng =: S (5)where the tupels h(yn;1; ~Æ(n; 1)); : : : ; (yn;N ~Æ(n;N))irepresents the numeri
ally spe
i�ed paradigmati
stru
ture that has been derived for ea
h abstra
t syn-tagmati
 usage regularity yj against all other yn 2 C.The distan
e values 
an therefore be abstra
ted anal-ogous to Eqn. 3, this time, however, over the other ofthe 
omponents in ea
h ordered pair, thus de�ning anelement zj 2 S 
alled meaning point byyj(~Æ(j; 1); : : : ; ~Æ(j;N)) =: zj 2 S (6)Identifying zn 2 S with the numeri
ally spe
i�edelements of potential paradigms, the set of possible
ombinations S � S may stru
turally be 
onstrainedand evaluated without (dire
t or indire
t) re
ourse toany pre-existent external world. Introdu
ing a Eu-
lidian metri
 � : S � S ! I (7)the hyperstru
ture hS; �i or semanti
 hyper spa
e(SHS) is de
lared 
onstituting the system of meaningpoints as an empiri
ally founded and fun
tionally de-rived representation of a lexi
ally labelled knowledgestru
ture (Tab. 1).SCIP�S : fO;B;W;F ;KgOrientation : O :=f ~N = (0; 1); ~O = (1; 0);~S = (0;�1); ~W = (�1; 0)gMobility : B :=fk(0; 1); k(1; 1); k(1; 0); k(1;�1);k(0;�1); k(�1;�1); k(�1; 0); k(�1; 1): k = 1gPer
eption :W :=fK := fktg; L :=PTt=1 lt; V := fxig;Hi :=PTt=1 hit : i = 1; : : : ; j; : : : ; NgPro
essing : F :=f�; Æ; �; : : :g;K :=f~� j x; ~Æ j y; : : :gSemanti
s : noneSyntax : noneTable 2: Colle
tion of SCIP-systemi
 properties.134



V � V �-abstra
tion C � C Æ-abstra
tion S � S+ +~� x1 : : : xNx1 �11 : : : �1N... ... . . . ...xN �N1 : : : �NN ~� j xi�! ~Æ y1 : : : yNy1 Æ11 : : : Æ1N... ... . . . ...yN ÆN1 : : : ÆNN ~Æ j yj�! � z1 : : : zNz1 �11 : : : �1N... ... . . . ...zN �N1 : : : �NN P* *Syntagmati
 C o n s t r a i n t s Paradigmati
Table 1: Formalizing (syntagmati
/paradigmati
) 
onstraints by 
onse
utive (�- and Æ-) abstra
tions over usageregularities of items xi; yj respe
tively.SCIP�E : fRE;RO;RR;D; `RgRef�plane :RE :=fPn;m : 9Rn;m 2 RR(n0;m0; g);Pn;m 2 Rn;mgRef�obje
ts :RO :=f2; 4; 
; : : : gRef�grid : RR(n0;m0; g) := fRn;m =[(n� 1)g; ng℄� [(m� 1)g;mg℄1 � n � n0 ; 1 � m � m0 ; g > 0gDire
tions : D :=f ~N := (0; 1); ~O := (1; 0);~S := (0;�1); ~W := (�1; 0)gObj�lo
ation : `R : RO �! RETable 3: Colle
tion of SCIP-environmental properties.As a result of the two-stage 
onse
utive mappingsany meaning point's position in SHS is determined byall the di�eren
es (Æ- or distan
e-values) of all regu-larities of usage (�- or 
orrelation-values) ea
h lexi
alitem shows against all others in the dis
ourse anal-ysed. Without re
urring to any investigator's or histest-persons' word or world knowledge (semanti
 
om-peten
e), but solely on the basis of usage regularitiesof lexi
al items in dis
ourse resulting from a
tual or in-tended a
ts of 
ommuni
ation (
ommuni
ative perfor-man
e), text understanding is modelled pro
edurallythe pro
ess to 
onstru
t and identify the topologi
alpositions of any meaning point zi 2 hS; �i 
orrespond-ing to the vo
abulary items xi 2 V whi
h 
an formallybe stated as 
omposition of the two restri
ted relations~Æ j y and ~� j x (Fig. 1).Pro
essing natural language texts the way thesealgorithms do would appear to grasp some interest-ing portions of the ability to re
ognize and representand to employ and modify the stru
tural informationavailable to and a

essible under su
h performan
e.A semioti
 
ognitive information pro
essing system(SCIPS) endowed with this ability and able to per-form likewise would 
onsequently be said to have 
on-stituted some text understanding . The problem is,however, whether (and if so, how) the 
ontents of whatsu
h a system is said to have a
quired 
an be tested,i.e. made a

essible other than by the language texts

in question and/or without 
ommitting to a presup-posed semanti
s determining possible interpretations.Word: the sign-obje
t identi�ed as vo
abulary ele-ment (type) whose o

urren
es in (linear) sets of sign-obje
ts (tokens) are 
ountableSenten
e: the (non-empty, linear) set of words to forma 
orre
t expression of a true proposition denoting arelation of system-position and obje
t-lo
ationText: the (non-empty, linear) set of senten
es withidenti
al pairs of 
ore-predi
ates denoting system-obje
t-relations resulting from linear movement anddire
tly adja
ent system-positionsCorpus: the (non-empty) set of texts 
omprising de-s
riptions of (any or all) fa
tually possible system-obje
t relations within a spe
i�ed systemi
 and en-vironmental settingTable 4: SCIP-Restri
tions on 
on
epts of languagematerial entities.4 The experimental settingTo enable an intersubje
tive s
rutiny, the (un-known) results of an abstra
t system's (well known)a
quisition pro
ess is 
ompared against the (wellknown) traditional interpretations of the (unknown)pro
esses of natural language meaning 
onstitution6.To a
hieve this, it had t be guaranteed� that the three main 
omponents of the experimen-tal setting, the system, the environment, and thedis
ourse are spe
i�ed by sets of 
onditioning prop-erties. These de�ne the SCIP system by way of aset of pro
edural entities like orientation, mobil-ity, per
eption, pro
essing (Tab. 2), the SCIP-environment is de�ned as a set of formal entitieslike plane, obje
ts, grid, dire
tion, lo
ation (Tab.3), and the SCIP-dis
ourse material mediating be-tween system and environment is stru
tured �rst6The 
on
ept of knowledge underlying this use here may beunderstood to refer to known as having well established (s
ien-ti�
, however 
ontroversial, but at least inter-subje
tive)modelsto deal with, whereas unknown refers to the la
k of su
h models.135



by a number of part-whole related entities likeword, senten
e, text, 
orpus (Tab. 4) of whi
h sen-ten
e and text require further formal restri
tionsto be spe
i�ed by a formal syntax (Tab. 5) and areferential semanti
s (Tab. 6).� that the system's environmental data 
onsists ina 
orpus of (natural language) texts of 
orre
texpressions of true propositions denoting system-obje
t-relations des
ribed a

ording to the for-mally spe
i�ed syntax and semanti
s (representingthe exo-view or des
ribed situations), and� that the system's internal pi
ture of its surroundigs(representing the endo-view or dis
ourse situa-tions) is to be derived from this textual languageenvironment other than by way of propositional re-
onstru
tion, i.e. without synta
ti
 parsing andsemanti
 interpretation of senten
e and text stru
-tures.T(ext) := fSi j Si �! Si+1 : B ^ fKP1;KP2g 2 Si^fKP1;KP2g 2 Si+1^8KPj 2 Si[Si+1; j = 1; 2; i = 1; : : : ; IgB := fk(0; 1); k(1; 1); k(1; 0); k(1;�1);k(0;�1); k(�1;�1); k(�1; 0);k(�1; 1) : k = 1gSi�!NP VPNP�!NVP�!V PPPP�!HP KPN�!A h triangle j square j 
ir
le iV�!liesHP�!h extremely j very j rather ih near by j far away iKP�!h on the left j on the right ij h in front j behind iTable 5: Syntax of textgrammar for the generationof strings of 
orre
t des
riptions of possible system-position and obje
t-lo
ation relations.4.1 Positions and lo
ationsThe experimental setting 
onsists of a two dimen-sional environment with some obje
ts at 
ertain pla
es(Fig. 2) that a SCIP-system will have to identify onthe grounds of natural language des
riptions ofsystem-position and obje
t-lo
ation relations it is ex-posed to. Although the system's per
eption is limitedto its (formal) language pro
essing and as its abil-ity to a
t (and rea
t) is restri
ted to pa
ewise linearmovement, what makes it semioti
 is that|whateverthe system might gather from its environment|it willnot apply any 
oded knowledge available prior to thatpro
ess, but will instead only be 
on�ned to the sys-

Core-predi
ates (KP)in relations of system-positions x; y and obje
t-lo
ations n;m (with 0-
oordinates down left) for allorientations N, O, S, W of the systemNorth x; y in front behindon the left >m, <n >m, >non the right <m, <n >m, <nEast x; y in front behindon the left <m, <n >m, <non the right <m, >n >m, >nSouth x; y in front behindon the left <m, >n <m, <non the right >m, >n <m, >nWest x; y in front behindon the left >m, >n <m, >non the right >m, <n <m, <nHedge-predi
ates (HP)as distan
es of sytem-position/obje
t-lo
ation (
risp-and fuzzy- interpretation): in numbers of grid-pointsj x� n j and j y �m j)Crisp 1.0 1 2 3 4 5 6 7 8 9 10extremely nearby 1 1 0 0 0 0 0 0 0 0very nearby 0 0 1 1 0 0 0 0 0 0rather nearby 0 0 0 0 1 0 0 0 0 0rather faraway 0 0 0 0 0 1 0 0 0 0very faraway 0 0 0 0 0 0 1 1 0 0extremely faraway 0 0 0 0 0 0 0 0 1 1Fuzzy 1.1 1 2 3 4 5 6 7 8 9 10extremely nearby 1 1 .7 .2 0 0 0 0 0 0very nearby .2 .7 1 1 .7 .2 0 0 0 0rather nearby 0 0 .2 .7 1 .7 .2 0 0 0rather faraway 0 0 0 .2 .7 1 .7 .2 0 0very faraway 0 0 0 0 .2 .7 1 1 .7 .2extremely faraway 0 0 0 0 0 0 .2 .7 1 1Table 6: Semanti
s to identify true 
ore- andhedge-predi
ates (under 
risp and fuzzy) interpreta-tion) in 
orre
t senten
es being generated for �xed(un
hanged) obje
t-lo
ations and varying (
hanged)system-positions.tem's own (
o- and 
ontextually restri
ted) sus
epti-bility and pro
essing 
apabilities to (re-)organize theenvironmental data a n d to (re-)present the re-sults in some dynami
 stru
ture whi
h determines thesystem's knowledge (sus
eptibility), learning (
hange)136
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t lo
ationsfrom system position (oriented south 5) by sums ofgrid point marks re
eived a

ording to pairs of (
risplyinterpreted) hedged 
ore predi
ate adja
en
ies.N O R T H226 240 251 232 213 194 164 141 118 95240 260 274 257 240 223 192 168 144 120251 274 295 284 271 258 226 201 176 151W 237 262 289 285 277 269 238 216 194 172 EE 223 250 280 280 276 272 242 223 204 185 AS 209 238 271 275 275 275 246 230 214 198 ST 191 222 258 269 276 283 258 243 228 213 T173 206 245 263 277 291 270 256 242 228144 176 214 236 254 272 256 244 232 220119 150 187 212 233 254 242 232 222 212S O U T HTable 8: Endo2m;n showing regions of obje
t lo
ationlikelyhood 
omputed for ea
h gridpoint m,n by super-imposing lo
ality patterns from Endo1i;j value.and understanding (representation). It is based on theassumption that some deeper representational level or
ore stru
ture might be identi�ed as a 
ommon basefor di�erent notions of meaning developped sofar intheories of referential and situational semanti
s as wellas some stru
tural or stereotype semanti
s.For the purpose of testing semioti
 pro
esses, theirsituational 
omplexity has to be redu
ed by abstra
t-ing away irrelevant 
onstituents, hopefully without

oversimplifying the issue and trivializing the problem.Therefore, the propositional form of natural languagepredi
ation, will be used here only to 
ontrol the for-mat of the natural language training material, not,however, to determine the way it is pro
essed to modelunderstanding .4.2 Pro
ess and resultThe stri
t separation between the pro
ess and itsresult on the system's side now 
orresponds to thesharp distin
tion between the formal spe
i�
ation to
ontrol the propositional generation of referentially de-s
riptive language material and its non-propositionalpro
essing within the experimental SCIP setting.AA��
Figure 2: Referen
e plane with lo
ation of obje
ts ( 4and 2 ) propositionally des
ribed by texts in the train-ing 
orpus.Illustrating an example situation, the referen
eplane (Fig. 2) shows two obje
t-lo
ations. These have(automati
ally) been des
ribed in a 
orpus of languageexpressions 
omprising some 12 432 word tokens of 26word types in 2 483 senten
es and 684 texts generateda

ording to the formal syntax and semanti
s spe
i�edfor all possible system-positions and orientations. Thetraining set of language material was then exposed tothe SCIP system whi
h per
eived it as environmentaldata to be pro
essed a

ording to its system fa
ultiesas spe
i�ed. It is worthwhile noting here again, thatthis pro
essing is neither based on, nor does it involveany knowledge of syntax or semanti
s on the system'sside.In the 
ourse of pro
essing, the two-level 
onse
u-tive mappings (Tab. 1, Fig. 1) result in the seman-ti
 hyper spa
e (SHS) whose intrinsi
 stru
ture revealsome properties whi
h 
an be made visible in a threestage pro
ess:� �rst, applying methods of Kohonen-maps (Ko-honen 1989) [2℄ or|with 
omparable results|average linkage 
luster analysis [8℄ allows to iden-tify stru
turally adja
ent word-types (like obje
t137



Figure 3: External 2-dim-image of the SCIP system'sendo-view showing regions of potential obje
t lo
a-tions under 
risp hedge interpretation.label and predi
ate label 
andidates) [12℄,� se
ond, their numeri
al hedge interpretation yieldsthe distan
e values, and their dire
tional 
ore in-terpretations determines the regions of obje
t lo-
ations relative to a 
entrally positioned system(Tab. 7), produ
ing an intermediate representa-tion of the system's own oriented view whi
h 
anbe transformed to� third, a mapping that images an orientation inde-pedent representation of the system's endo-view ofits environment (Tab. 8). It 
an be visualized inanother format as� fourth, a holisti
 representation of the referen
ialplane stru
tured by a pattern of polygons whi
h
onne
t regions of denotational likelihood or isoref-erentials (Fig. 3).The Endo1i;j data (Tab. 7) serves as base for thefollowing third step of a line- and 
olumn-wise trans-form whi
h results in a new mapping Endo2m;n (Tab.8) a

ording to the summation equationEndo2m;n = m+10Xi=m n+10Xj=n Endo1i;j (8)The matrix Endo2m;n (Tab. 8) 
ontains the data foran external observer's image of the system's endo-viewas 
omputed from the des
ribed obje
t lo
ations rela-tive to system positions. The (two-dimensional) s
at-tergram of Endo2 (Fig. 3) gives an overall pi
ture ofeven referential likelihood by isoreferentials denotingpotential obje
t lo
ations quite 
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