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Abstract

Arguing for the semiotic modeling of natural language
understanding by machine is to follow a procedural
stance of approach focusing on processes of meaning
constitution. These can be typified in pragmatic sit-
uations of performative language games which may be
analyzed empirically, described formally, and simulated
computationally. In doing so, graph theoretical tools
have been employed and new tree structures developed
which allow both, to restrict the relational manifold in
high-dimensional vector space structures computed as
fuzzy word meaning representations, and to visualize
semantically motivated relevancies emerging from such
restrictions as reflexive, non-symmetric, and (weakly)
transitive dependency relations among them. As a
basal, context-sensitive form of reorganizing distribu-
tionally represented fuzzy entities, the tree like dispo-
sitional dependency structures (DDS) serve as a non-
propositional format for conceptual associations and se-
mantic inferencing by machine, as opposed to proposi-
tional reasoning based on truth-functional constraints.
After a short introduction into semiotic cognitive infor-
mation processing (SCIP) and the text analyzing and
meaning representational formalisms employed, DDS
tree generation will be discussed, and some examples be
given to illustrate the algorithms’ semantic inferencing
potential as computed from and performed on a sample
of German newspaper texts.

1 Introduction
In view of semiotic processes like understanding natu-
ral language sign structures the modeling enterprise is
aggravated by the lore of thinking in traditional terms
of (modern) linguistics, cognitive psychology, and ar-
tificial intelligence approaches. These tend to repli-
cate computationally what is believed to be known
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about (fragments of) human processing instead of de-
veloping computational models which might (or might
not) correspond to some of that knowledge, but whose
functional results are equivalent (perhaps inferior, or
even superior) to very obvious human processing ca-
pabilities1. Arguing for computational models in this
sense is to ask for a genuinely procedural extension
to cognition and cognitive modeling, trying to avoid
rather than employ traditional conceptualizations for
a chance to find possible solutions to problems dif-
ferently posed. In other words, sentence parsing and
generation, knowledge based interpretation, rule based
inferencing—to name only the most salient—can be
viewed as very particular abstractions (and models de-
rived) of humans’ general capabilities to employ signs
and to constitute meanings that can be understood. It
may be argued that these abstractions—however sem-
inal in many respects—have impeded rather than ad-
vanced adequate computational modeling of e.g. dis-
course understanding, language and knowledge acqui-
sition, adaptive learning and knowledge modification,
dynamic reasoning with fuzzy, associative, and uncer-
tain concepts, etc. that human beings normally are able
to perform with ease.
Due to the centrality of semiosis, and its pivotal role in
natural language understanding, the concept of Semi-
otic Cognitive Information Processing systems (SCIPS)
was developed [18] to simulate the process of sign
and/or meaning constitution by machine without (nec-
essarily) replicating these processes as enacted by hu-
mans. The modeling of processes of meaning constitu-
tion as typified in pragmatic situations [1] of perfor-
mative language games [22] basically follows an ecolog-
ical systems theoretical approach [5], placing an infor-
mation processing system into an environment whose
structural coupling [4] is mutually achieved by pro-
cesses of (material, energetic, informational) mediation
between them. The generality of this concept lends it-

1To illustrate the point by an example taken from engineering:
the phenomenon of flying—observed in nature as airborne loco-
motion which (most) birds are capable of—has not been modeled
by replicating nature’s solution (flapping wings), but simulated
by technologically quite different means (propeller, jet engine) in
aircrafts which surpass birds’ capacities in many respects.



self easily to accommodate hierarchically structured re-
strictions on recursive modes of processing [20]. Thus,
� data processing is defined as manipulation of data ac-

cording to predefined rules, and may be distinguished
from

� information processing which comprises the interpre-
tation of data according to given and pre-established
codes;

� cognitive information processing will be called any
information processing whose interpretations are not
codified but have to be derived from sets of princi-
pled structures and according to certain mechanisms
either internal or external to the processing system
and described as its knowledge; and finally

� semiotic cognitive information processing will be re-
stricted to such cognitive or knowledge based infor-
mation processing whose knowledge—internal or ex-
ternal to the system—is not just made available but
is instead acquired, structured, represented, and/or
modified by the system’s own processing according
to its capabilities and intrinsic principles.

Semiotic cognitive information processing (SCIP) capa-
bilities appear to serve a double purpose, as a means of
structuring an environment as perceived by an (artifi-
cial or natural) information processing system, a n d as
a means of representing this structure in order to com-
municate it to other systems. In allowing not only for
an (internally) representational processing whose states
may provide stimuli for further action, but also for the
(externalized) representations of the course or states of
such processing in forms of agglomerated sign struc-
tures, this is roughly what understanding natural lan-
guage translates to in a semiotic system-environment
situation.

2 Modeling Language Understanding
The dramatic increase of computational power and
symbol manipulation means has changed the funda-
mentals of many scientific disciplines, creating even
new ones. Apparently, it has left linguistically ori-
ented disciplines, even new ones, adhere to seemingly
well grounded and traditionally dignified concepts (like
phrase and sentence, predicate and proposition, gram-
matical correctness and formal truth, etc.) in describ-
ing natural language structures. Considering our as yet
very limited understanding of natural language under-
standing, it may well be suspected that some of the
problems encountered are due to inadequate concep-
tions and corresponding representational formats em-
ployed in depicting and manipulating linguistic entities
(elements, structures, processes, and procedures) con-
sidered to be of interest or even essential to the under-
standing of the communicative use of natural languages
by humans.
2.1 Different Approaches
An earlier attempt [21] to classify model constructions
as produced in cognitive science had distinguished three
types of modeling approaches: the cognitive, the asso-

ciative, and the enactive. Whereas the first two ap-
proaches draw on the traditional rationalistic paradigm
of mind-matter-duality—static and unable to adapt the
former, dynamic and able to learn the latter—by as-
suming the existence of external world structures and
an internal representations of it, the third type does
not. Instead of assuming an external world and the
systems’ internal representations of it, some unity of
mutual relatedness (structural coupling) is considered
to be fundamental of—and the (only) condition for—
any abstracted or acquired duality in concepts of the
external and internal, object and subject, reality and
any experience of it which might evolve. Consider-
ing the importance that the notions of formatting and
representation (both internal and external to an infor-
mation processing system) have gained in tracing pro-
cesses on the grounds of their observable or resulting
structures, it appears to be justified to add a fourth
type, the semiotic [19]. It is focused on the concept
of semiosis and may be characterized by the process
of enactment too, complemented, however, by the rep-
resentational impact. This is considered fundamental
to the distinction of e.g. cognitive processes from their
structural results which—only due to some traces these
processes leave behind—may emerge in forms of knowl-
edge. Its different representational modes comply with
different forms of activation that allow for the distinc-
tion of internal or tacit knowledge (i.e. memory) on
the one hand, and of external or declarative knowledge
(i.e. symbolic representations like language structures)
on the other.
According to the above types of cognitive modeling,
computational semiotics can be characterized as aim-
ing at the dynamics of meaning constitution by simu-
lating processes of multi-resolutional representation [6]
within the frame of an ecological information process-
ing paradigm [18]. When we take human beings to
be systems whose knowledge based processing of rep-
resented information makes them cognitive, and whose
sign and symbol generation, manipulation, and under-
standing capabilities render them semiotic, we may do
so due to our own daily experience of these systems’
outstanding ability for representing results of cognitive
processes, organizing these representations, and modi-
fying them according to changing conditions and states
of system-environment adaptedness.
2.2 Computational Processing
Computational systems for natural language process-
ing are based upon relevant findings in computational
linguistics (CL) and artificial intelligence (AI) research.
Operational systems for natural language analysis and
generation by machine require correct structural de-
scriptions of input strings and their semantic inter-
pretations. By and large, this is provided—for differ-
ent languages differently—by rule based representations
of (syntactic and lexical) linguistic knowledge and of
(referential and situative) segments of domain specific
world knowledge which grammar formalisms and de-
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ductive inferential mechanisms can operate on. This
kind of cognitive (or knowledge-based) language pro-
cessing (using monotone logics, symbolic representa-
tions, rule-based operations, sequential processing, etc.)
and the statics of its representational structures were
challenged—although for differing reasons—by connec-
tionist and empirical approaches. These were particu-
larly successful in simulating dynamic properties of cog-
nitive natural language processing (based on the theory
of dynamic systems, sub-symbolic or distributed repre-
sentation, numerically continuous operations, parallel
processing, etc.). New insights were gained into the
wealth of structural patterns and functional relations as
observed in very large language corpora2 of communica-
tive natural language performance as specified by mod-
els of quantitative and statistical analyses (based on
probability and possibility theory, stochastic and fuzzy
modeling, numerical mathematics and non-monotone
logics, strict hypothesizing and rigorous testing, etc.).
Language regularities and structures which are empiri-
cally traceable but may not easily be identified within
the categorial framework of established linguistic con-
cepts3, were discovered by the empirical study of per-
formative language phenomena providing valuable new
insights and explanations because of a broader coverage
of language material, and due to the new methods com-
plementary to those of competence centered linguistics.
Moreover, empirical approaches allow for quantitative-
statistical as well as fuzzy-theoretical model construc-
tions which promote a more semiotic understanding of
the functioning of language signs as used by interlocu-
tors in communicative interaction.

2.3 Information Systems View
Following a systems theoretical paradigm of informa-
tion processing and accepting the cognitive point-of-
view (implying that information processing is knowl-
edge based), human beings appear to be not just natu-
ral information processing systems with wider cognitive
abilities. Instead, they have to be considered very par-
ticular cognitive systems whose outstanding plasticity
and capability to adapt to changing environmental con-
ditions is essentially tied to their use and understand-
ing of natural languages in communicative discourse.

2The Trier dpa-VLLC comprises the complete textual mate-
rial, i.e. 720.000 documents of approx. 180 millions (18 · 107)
running words (tokens) from the basic news real service of 1990–
1993 which the Deutsche Presseagentur (dpa), Hamburg, deserves
thanks to have left the author with for research purposes. It is
this corpus which provides the performative data of written lan-
guage use for the current (and planned) fuzzy-linguistic projects
at our department.

3Phenomena like linear short-distance/long-distance orderings
(Nah- and Fern-Ordnung) of performative language entities (e.g.
co-occurences) easily represented and processed as numerical ex-
pressions of correlation values with any precision, are cases in
point here. Although observable results of structuring principles,
they have continuously been overlooked by rule based approaches
whose representational means comply more adequately with ag-
glomerative orderings (constituent- and phrase-structure) as rep-
resented and processed by familiar grammar formalisms.

It seems that language faculty expands their learning
potential well beyond experimental real-world experi-
ence into realms of experiencing hypothetical reality in
virtual environments (Gedankenexperimente) for bet-
ter real-world adaptation. The basic idea of model
construction in terms of such an ecological theory of
information [18] is that the processing structure of an
information system is conceived as a correlate of those
structures which such a system has to be able to pro-
cess in order to survive. For cognitive models of nat-
ural language processing the system theoretical view
suggests to accept natural language discourse as analyz-
able and empirically accessible evidence for tracing such
processes, and to hypothesize about their procedural
modeling. Thus, natural language discourse might re-
veal essential parts of the particularly structured, multi-
layered information representation and processing po-
tential to a system analyzer and model constructor in
rather the same way as this potential is accessed in
order to be constrained by an information processing
system in the course of understanding.

3 SKIP Systems
Other than value attributing procedures that reorga-
nize input data computationally according to prede-
fined symbolic structures of intermediate representa-
tions (as hypothesized by competence theoretical lin-
guistics and realized in cognitive CL models) semi-
otic cognitive information processing (SCIP) systems
[17] will have to, and can in fact, be distinguished
sharply as sets of procedures whose computations will
transform structured input data according to its im-
manent regularities to yield new, structural representa-
tions emerging from that computation (as hypothesized
byperformative linguistics and realized in procedural
models of computational semiotics [16]).

3.1 Constraint Exploration
Structural linguists have given substantial hints on how
language items come about to be employed in com-
municative discourse the way they are. They have
identified the fundamental and apparently universal
constraints4 that control the multi-level combinability
and formation of language entities by distinguishing
the restrictions on linear aggregation of elements (syn-
tagmatics) from restrictions on their selective replace-
ment (paradigmatics). This distinction allows within
any sufficiently large set of strings of natural language
discourse to ascertain syntagmatic regularities of ele-
ment aggregations on level n whose characteristic dis-

4The distinction of langue–parole (de Saussure) and
competence–performance / I-language–E-language (Chomsky) in
modern linguistics is grounded in the possibility to abstract (for-
mally representable) linguistic entities from (empirically observ-
able) language phenomena. The discovery of principles of com-
binatorial constraints responsible for regular string formation in
natural languages gave rise not only to segment strings of lan-
guage discourse and to categorize classes of types of linguistic
entities, but also to distinguish and construct different levels of
language description and linguistic analysis.
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of computational semiotic coverage of procedures (Rieger) for the analysis and representation of (abstracted and
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tributional patterns or paradigms gain functional sta-
tus on level n + 1 for higher aggregation. The dis-
tinction of these representational levels and their iden-
tification with functional results introduced elsewhere
[2] [19] is tantamount to the categorial constraints ap-
plied when identifying regularities with rules. Fully de-
terministic if-then rules will result in a rather coarse
three-level hierarchy of categorial description (Fig. 1)
whereas probabilistic or possibilistic dependencies pro-
duce a continuous, multi-level covering of distributional
representations (Fig. 2). These model hierarchies dis-
tinguish cognitive linguistic from semiotic procedures
whose computations transform structured input data
according to its immanent regularities. Their output
yields new structural representations emerging from
computational processes. The elements they produce
are value distributions or vectors of input entities whose
structural properties are depicted by adjacencies of the
new elements (and their structural relatedness) con-
stituting multi-dimensional (metric) space structures
(semiotic spaces). Their elements may also be inter-
preted as fuzzy sets allowing set theoretical operations
being exercised on these representations which exhibit
granular properties [23] and do no longer require catego-
rial type (crisp) definitions of concept formation. Com-
putation of letter (morphic) vectors in word space, de-
rived from n-grams of letters (graphemes) [19] as well
as of word (semic) vectors in semantic space [8], [9]
derived from word-type correlations of their tokens in
discourse have illustrated the operational flexibility and
fine granularity of vector notations [15] to identify reg-
ularities of semiotic meaning constitution in language
performance which traditional linguistic categories fail
to represent.

3.2 Visualizing Vector Representations
Returning to the ecological systems theoretical view
applied to information processing, we will focus on
the problem of visualizing results of computational
procedures developed to model and simulate semi-
otic processes whose numerical representations—by
definition—do not have an immediate interpretation.
We may concentrate on the level of semantic mean-
ing constitution as various techniques formerly applied
to analyze, scrutinize, and visualize the structuredness
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Figure 3: Morphisms of fuzzy mapping relations α̃ and
δ̃ from structured sets of vocabulary items xn ∈ V ,
via corpus points yn ∈ C, to labeled meaning points
zn ∈ S.

of vectoral representations [10] [11] [12] [13] [14] have
been able to demonstrate the definite non-contingency
of meaning points z in semantic space S, ζ. Therefore,
a short introduction to illustrate its conception as based
upon the measurement of differences of usage regulari-
ties in VLLC of situated or pragmatically homogeneous
texts will suffice.
For a vocabulary V = {xn}, n = 1, . . . , i.j. . . . , N of lex-
ical items, their meanings zn ∈ 〈S, ζ〉 are re-constructed
as a composite function δ̃ | yn ◦ α̃ | xn of the difference
distributions

δ̃ |yn : C → S; {zn} =: S (1)

and the grounding usage regularity distributions

α̃ |xn : V → C; {yn} =: C (2)

The empirical measures employed to specify intensi-
ties of co-occurring lexical items are centered around a
modified correlational coefficient

α(xi, xj) =

∑T

t=1
(hit − eit)(hjt − ejt)(∑T

t=1
(hit − eit)2

∑T

t=1
(hjt − ejt)2

) 1
2

; (3)

−1 ≤ α(xi, xj) ≤ +1

where eit = Hi

L lt and ejt = Hj

L lt, computed over a
text corpus K = {kt}; t = 1, . . . , T having an over-
all length L =

∑T
t=1 lt; 1 ≤ lt ≤ L measured by the

number of word-tokens per text form the vocabulary
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Figure 4: Fragment of DDS-tree of Alpen/Alps (root)
as generated from semantic space data (V = 345,Hi ≥
10) of a German newspaper sample (Die Welt, 1964
Berlin edition).

xn ∈ V of word-types whose frequencies are denoted
by Hi =

∑T
t=1 hit; 0 ≤ hit ≤ Hi and a measure of sim-

ilarity (or rather, dissimilarity) to specify the α-value
distributions’ differences

δ(yi, yj) =

(
N∑

n=1

(α(xi, xn) − α(xj , xn))2

) 1
2

; (4)

0 ≤ δ(yi, yj) ≤ 2
√

n

The consecutive application of (Eqn. 2) on input texts
and (Eqn. 1) on its output data allows to model the
meanings of words as a two-level function of differences
(δ̃ | yj paradigmatic selection) of usage regularities (α̃ |
xi syntagmatic aggregation), schematized as semiotic
morphisms in Fig. 3.

4 Dispositional Dependency Structures
Following a semiotic understanding of meaning more as
a constitutional process rather than as a static entity
of invariable constancy and representation, the present
semantic space may be considered part of a word mean-
ing/world knowledge representation system which sepa-
rates the format of basic (stereotyped) meaning compo-
nents (meaning points) from their latent (dependency)
relational organization as meaning potential (semantic
dispositions). Whereas here the former is represented
as a static, topologically organized multi-dimensional
memory structure, the latter can be characterized as a
dynamic and flexible structuring process which reorga-
nizes and thereby transforms the basic relatedness of
the elements it operates on.
4.1 Tree Generation
This is achieved by a recursively defined procedure
that produces a hierarchical ordering of the semantic
space’s meaning points which can be represented as
a tree structure organized under a given aspect (root
node) according to and in dependence of neighbors
(descendant nodes) in cotextual relevancy to it.
Taking up ideas from cognitive theories of semantic
memory, priming , and spreading activation [3], the
DDS-algorithm was devised to operate on the semantic
space data and to generate dispositional depen-
dency structures (DDS) in the format of n-ary trees.

Given one meaning point’s position, the algorithm will
1. take that meaning point’s label as a start,
2. stack list labels of all its neighboring points by their

decreasing distances,
3. initialize DDS-tree with starting point’s label as

primed head or root node. Then it will
4. take label on top of stack as new daughter node,
4.1 list all labels of new daughter’s neighbors,
4.2 intersect it with nodes in tree,
4.3 determine from intersection the least distant

one as current mother node,
5. link new daughter to identified mother node
6. and repeat 4. either
6.1 until 2. is empty
6.2 or other stop condition (given number of nodes,

maximum distance, etc.) is reached
7. to end.

The tree structured graphs5 may serve as a visualiza-
tion of the dependencies that any labeled meaning point
zi ∈ 〈S, ζ〉 chosen as root node will produce according
to the adjacencies of other points in the semantic space
(Fig. 4). Their semantic relatedness as represented by
their topology—being determined by and reconstructed
operationally as a function of the differences (Eqn. 1)
of usage regularities (Eqn. 2) of word distributions in
the texts analyzed—will thus allow for a directed, non-
symmetric relation (dependency) being established be-
tween them, induced by the start area, i.e. the meaning
point’s position chosen as the tree’s root node. Thus,
it is this node’s neighborhood which will control the
topologically motivated dependencies between related
meanings in a way that is highly sensitive to the se-
mantic context of the meaning points’ representations
concerned. This type of algorithmically generated tree
structure has been named dispositional because of the
structured assembly of possible meaning relations and
dependencies it offers as something like a potential for
restricted choices to be made.
In order to illustrate the contextual sensitivity which
distinguishes the DDS-algorithm from e.g. minimal
spanning trees (MST) [7], the latter (Fig. 5) has been
generated from the same data with the same start-
ing node. Note, that the subtrees of Bahn (track,
course, trail) found to be identical in both, the MST-
and the DDS-tree, are positioned on extremely differ-
ent levels (comparing 23 to 3)6. Although the DDS-
algorithm which consumes all meaning points zn ∈
〈S, ζ〉, can roughly be characterized as an encapsulated
MST-procedure, this encapsulation apparently serves
to catch an essential property of semiotic meaning con-
stitution and representation tied to its contextuality.
Where the MST is searching for shortest possible dis-

5The figures present subtrees of a semantic space as com-
puted from a sample of texts from the German daily newspaper
(Die Welt, 1964, Berlin edition). Nodes marked �+ hide sub-
trees whose expansions have been conflated for lack of space; the
numerical values stated are direct ζ-distances to the root node.

6The numerical MST values given are direct ζ-distances be-
tween nodes (mother-daughter pairs).
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Figure 5: Fragment of MST-graph of Alpen (root) as generated from the same semantic space data.

Figure 6: Dependency path of lesen/to read =⇒
schreiben/to write as traced in DDS-tree of les.

tance relations between points qualifying for tree node
relatedness, the DDS is looking for highest meaning
similarities, i.e. for shortest possible distance relations
between points which are interpretable as semiotically
derived representations. It is this holistic property of
〈S, ζ〉 that allows the algorithm’s search space to be se-
mantically constrained on the starting point’s or root
node’s topological environment (capsule), rendering it
aspect-dependent and structurally context sensitive.
4.2 Some Properties
There are a number of consequences of which the fol-
lowing seem interesting enough to be illustrated and
shortly commented on:

Figure 7: Dependency path of schreiben/to write =⇒
lesen/to read as traced in DDS-tree of schreib.

� The procedural (semiotic) approach replaces the stor-
age of fixed and ready set relations of (semantic) net-
works in AI by source- or aspect-oriented induction
of relations among meaning points by means of the
DDS procedure;

� DDSs dependencies may be identified with an algo-
rithmically induced relevance relation which is re-
flexive, non-symmetric, and (weakly) transitive as il-
lustrated by the dependency paths’ listings of node
transitions les/to read =⇒ schreib/to write and
its (partial) inverse schreib/ =⇒ les (Figs. 6 and
7);

� the relevance relation gives rise to the notion of crite-
riality which allows estimates to what degree a mean-
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Figure 9: DDS-based semantic inference from Ausschuss/committee, Genf/Geneva, and Programm/program
(premises) to nahe/near (conclusion) as computed from the semantic space data.

Figure 8: Fragment of DDS-tree of Wort/word ∨
Satz/sentence (root) as generated from OR-adjunction
(max.) of these two meaning points in semantic space.

ing component (daughter node) contributes to the
meaning potential a root node’s DDS produces. It
will render the DDS a weighted tree and may numer-
ically be specified as a function of any node’s level
and ζ-distance by

Cri(d)κ+1 = Cri(m)κ · e− ζ(d,i)
λ+ζ(d,m) (5)

with i,m, d for root, mother, and daughter nodes
respectively, and the counters κ for (left to right)
nodes, and λ for (top down) levels in the tree;

� as the criteriality values are decreasing monotonously
from 1.0 (root) they may be interpreted as member-
ship values which reflect the relevance related soft
structure of components (nodes) in the DDS as a
fuzzy meaning potential. Fuzzy set theoretical ex-
tensions of logical operators (and, or, non, etc.) open
up new possibilities to generate composite meaning
points (Wort/word ∨ Satz/sentence in Fig. 8) with-
out assuming a propositional structure, a n d to get
these new composites’meanings represented as deter-

mined by their DDSs computable from the semantic
space data;

� our experiments employing DDSs for semantic infer-
encing (SI) have turned out to be very promising. SI
appears to be feasible without the need of having to
state the premises in a predicative or propositional
form prior to the concluding process. The DDS algo-
rithm lends itself easily to the modeling of analogi-
cal reasoning processes by parallel processing of DDS
trees.

As illustrated in Fig. 9, the semantic inference pro-
cess will start from two (or more) root nodes as se-
mantic premises (here the three: Ausschu/committee,
Genf/Geneva and Programm/program), then it will run
the two (or more) DDS processes concerned each of
which—in selecting its daughter nodes—will tag the re-
spective meaning points in the semantic space. Stop
condition for this mutual processing—which proceeds
(least distance or highest criteriality) breadth first
through the respective DDSs—is defined by the first
meaning point found to be tagged previously by one
(or more) of the other processes active. This point
(nahe/near) will be considered the (first) candidate in-
ferred or concluded from the premises (with the option
to extend the number of candidates under different stop
conditions). The dependencies activated (bottom line
of Fig. 9) are three paths: 1st committee → July →
Hamburg → April → Tuesday → near, 2nd Geneva
→ calm → power → soviet → ride → center → near,
and 3rd program → Tuesday → near) which translate
to the premises’ inference paths resulting in the con-
cluded meaning (near) whose connotative embedding
is provided by the subtrees shown according to its se-
mantic relatedness mediated by the newspaper texts
analyzed.

5 Conclusion
Devising representational structures which result from
semiotic processing of natural language discourse as
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modeled by SCIP systems is to explore syntagmatic
and paradigmatic constraints on different levels of item
combinability in pragmatically homogeneous texts. Al-
though tentative still, it is hoped to come up one day
with a new understanding of how entities and structures
are constituted that may indeed be called semiotic, i.e.
do not only have an objective (material) extension in
space-time, but can above that be understood as having
interpretable meaning, too. In order to be able to inter-
pret, (natural as well as artificial) semiotic cognitive in-
formation processing systems need structuredness. We
are about to experience that the linguistically identi-
fied structures available so far do not serve the pur-
poses too well when we have to deal with problems of a
kind which we are unable to describe or represent, let
alone analyze or even solve under these circumstances.
Procedural models and their computational realizations
might appear to be good candidates for some progress.
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