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Abstract
Signs, which are the domain of inquiry in semiotics, have a complex ontology. Apart
from being used—adequate knowledge provided—by communicators, and recognized as
being decomposable into smaller elements and aggregatable to larger structures, they
are also meant to be understood. This is a consequence of their manifold identity as
compound physical objects with real world extensions in space-time-locations a n d as
activators for complex mental processes which tend to be identified with some mind
and/or brain activities responsible for their understanding . In the cognitive sciences
all processes of perception, identification, and interpretation of (external) structures
are considered information processing which (natural or artificial) systems—due to
their own (internal) structuredness or knowledge—are able (or unable) to perform.
Combining the semiotic with the cognitive paradigm in computational linguistics, the
processes believed to constitute natural language sign structures and their understand-
ing is modeled by way of procedural, i.e. computational (re-)constructions of such
processes that produce structures comparable to those that the understanding of (very
large) samples of situated natural language discourse would imply. Thus, computa-
tional semiotic models in cognitive linguistics aim at simulating the constitution of
meanings and the interpretation of signs without their predicative and propositional
representations which dominate traditional research formats in syntax and semantics so
far. This is achieved by analyzing the linear or syntagmatic and selective or paradig-
matic constraints which natural languages impose recursively on the formation and
structure of (strings of) linguistic entities on different levels of systemic distinction. It
will be argued (and illustrated) that fuzzy modeling allows to derive more adequate
representational means whose (numerical) specificity and (procedural) definiteness may
complement formats of categorial type precision (which would appear phenomenolog-
ically incompatible) and processual determinateness (which would seem cognitively
inadequate). Several examples from fuzzy linguistic research will be given to illustrate
these points.
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Although we plainly can say nothing about matters

that lie beyond our current understanding, it is diffi-

cult to say why one should retain the faith that tra-

ditional conceptions will somehow be applicable there,

even though we find them generally useless to the ex-

tent that we come to understand some aspects of the

nature of organisms, in particular, the mental life of

humans.1

1 Introduction

Anything we know or believe about the world can—more or less precisely—be
communicated verbally. We do so by language means, employing words, form-
ing sentences, producing texts whose meanings are understood to convey, stand
for, designate, refer to or deal with topics and subjects, entities and domains,
structures and processes in the real world. Natural language texts (still) are
the most flexible and as that highly efficient means to represent knowledge for
and convey learning to others. What appears to be conditional for this kind
of text understanding is humans’ language faculty, i.e. the (performative) abil-
ity to identify, recognize, produce, and structure some fragments of real world
stimuli according to some internal—though externally conditioned—principles
(competence). Traditional approaches in linguistics proper (LP), computational
linguistics (CL) and artificial intelligence research (AI) have developed structural
and procedural conceptions for (parts of) the process of language understanding.
Their notational systems employed allow for the distinction of linguistic knowl-
edge formally represented in rule based formats, and of world knowledge whose
structuredness is mediated by symbol representational formats which are com-
bined to model language processing by machine. However, important features
characteristic of natural language understanding processes, like e.g. vagueness,
robustness, adaptivity, dynamism, etc. had to be overlooked or intentionally
put aside because of the representational formats chosen and their processing
possible.

Computational Semiotics (CS) neither depends on rule-based or symbolic
formats for (linguistic) knowledge representations, nor does it subscribe to the
notion of (world) knowledge as some static structures that may be abstracted
from and represented independently of the way they are processed. Instead,
knowledge structures and the processes operating on them are modeled as pro-
cedures that can be implemented as algorithms. Semiotic Cognitive Information
Processing (SCIP) systems are defined as collections of cognitive information
processing devices whose semiotics consists in their multi-level representational
performance of (working) structures emerging from and being modified by such

1Chomsky: The Managua Lectures, 1986, p. 48
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processing. The emergence of sign structures as a self-organizing process may in
particular be studied on the basis of combinatorial and selective constraints uni-
versal to all natural languages. Both, (linguistic) entity formation and (semiotic)
function acquisition may thus be reconstructed from syntagmatic constraints
observed in linear agglomeration, and paradigmatic constraints on selectional
choice of elements of natural language sign structures in discourse. Their reg-
ularities are exploited by text analyzing algorithms operating on and defining
levels of morpho-phonemic, lexico-semantic, phraseo-syntactic and situational
or pragma-semantic representation. Initially, the algorithms accept natural lan-
guage discourse as input and produce vector space structures as output. These
may be interpreted as intermediate (internal) representations on different levels
of a semiotic system’s states of adaptation to the (external) structures of its
environment as signaled and mediated by the natural language discourse pro-
cessed.

2 Modeling Cognition

The alliance of logics and linguistics, mediated mainly by (language) philosophy
in the past and by (discrete) mathematics since the first half of this century,
has long been (and partly still is) dominating the way in what terms natu-
ral languages expressions should be explicated and how their processing could
be modeled. It is ironic that the dramatic increase of computational power and
symbol manipulation means has changed the fundamentals of many scientific dis-
ciplines, creating even new ones, but has left linguistically oriented disciplines,
even new ones, adhere to the lore of seemingly well grounded and traditionally
dignified concepts (like phrase and sentence, predicate and proposition, gram-
matical correctness and formal truth, etc.) in describing natural language struc-
tures and their processing. Considering our as yet very limited understanding
of natural language understanding which explicatory cognitive models as well as
implemented operational systems of computational natural language processing
demonstrate, it may well be suspected that some of the problems encountered
by these model constructions are due to the representational formats they em-
ploy in depicting and manipulating entities (elements, structures, processes, and
procedures) considered to be of interest or even essential to the understanding
of the communicative use of natural languages by humans.

2.1 Information Systems View

Following a systems theoretical paradigm of information processing and ac-
cepting the cognitive point-of-view according to which information processing
is knowledge based, humans appear to be far from being just another species
of natural information processing systems with some higher cognitive abilities.

95



Instead, they have to be considered very particular cognitive systems whose
outstanding plasticity and capability to adapt their behavior more rapidly to
changing environmental conditions than others, is essentially tied to their use
and understanding of natural languages in communicative discourse. It seems
that the language faculty expands their learning potential well beyond experi-
mental experience into realms of virtual reality (Gedankenexperimente) which
allows for the recognition of consequences inferred from potentially real instead
of factually existing conditions for survival2. The basic idea of model construc-
tion in terms of such an ecological theory of information systems [39] is that the
processing structure of an information system is a correlate of those structures
which that system is able to process in order to survive. For cognitive models of
natural language processing the systems theoretical view suggests to accept nat-
ural language discourse in situations of communicative interaction as analyzable
and empirically accessible evidence for tracing such processes. Thus, situated
natural language communication might reveal essential parts of the particularly
structured, multi-layered information representation and processing potential to
a system analyzer and model constructor in rather the same way as this potential
is accessible to an information processing system. The difference here, however,
between the system and its analyzer is that they are active in and part of dif-
ferent information processing situations of which only the former—and not the
latter—can be said to be properly attuned. It is this lack of attunement to the
semiotics underlying situational natural language understanding which prompts
cognitive linguists as system analyzers to fall back on their attunement to sit-
uations of language understanding [2]. But whereas in language understanding
one can, and even has to take the semiotic dimension of sign and meaning con-
stitution for granted (and beyond questioning) in order to let any particular sign
or meaning be understood, the purpose of modeling that very process must not
in aiming at the conditions for the possibility of such processes of understand-
ing. Hence, a system analyzer and model constructor in semiotics should not
rely (solely) on linguistic categories in describing and modeling semiotic enti-
ties. She/he has to make any provision that her/his ideas about the modeling of
both, the representation a n d the processing are not unduly pre-defined by long
established, but possibly inadequate concepts and related formats. Rule-based
models of syntactic processing as well as truth-functional models of (sentence)
meaning appear to be as inadequate as predicative and propositional formats of
semiotic entity representation and processing.

2This expansion—however genotypically advantageous—has phenotypical drawbacks for
individual semiotic systems whose virtual realities may become vicious to the extend they
might replace instead of complement the systems’ factual situatedness. Illustrating the case is
a tendency to blur the distinction of reality from fiction due to the (semiotic) media’s increasing
degree of experiential (situational) density: print literature < theatre < film < television <
VR environments.
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2.2 Semiotic Attunement

In a systems theoretic approach, attunement obviously replaces the notion of
static knowledge structures as realized in cognitive information processing mod-
els so far, by a dynamic conception of structuredness which defines knowledge as
an open, modifiable, and adaptive system whose organization can be conceived as
a function of the system’s own processing results (knowledge acquisition). This,
however, can only be achieved by allowing semiotic entities to have their own3

(perhaps yet unknown) ontology which is not (or not fully) accounted for by
predicative and propositional representations or rule-based and truth-functional
formats which tacitly make believe that semiotic entities can be characterized
and their functions be modeled exclusively by these categorial structures and
associated processing of symbol manipulation. Instead, semiotic modeling is to
find and employ representational formats and processing algorithms which do
not prematurely decide and delimit the range of semiotically relevant entities,
their representational formats and procedural modes of processing. One of the
advantages of semiotic models would be that the entities considered relevant
would not need to be defined prior to model construction but should emerge
from the very processing which the model simulates or is able to enact. It ap-
pears that—if any—this property of models does account for the intrinsic (co-
and contextual) constraining of the meaning potential characteristic of natu-
ral language discourse which renders them semiotic in a (meaning or function)
constituting sense which is the core of understanding. Representing a system’s
environment (or fragments thereof) in a way, that such representations not only
take part in that system’s direct (immediate) environment (via language texts)
but may moreover be understood as virtual in the sense that new (mediate)
environments (via textual meanings) can also be processed, has been explicitly
introduced elsewhere [41] [37] [38]. It is again dependent on a system’s attune-
ment to these kinds of discourse situations.

2.3 Discourse Situations

These situations (comprising system, environment, and processing) are consid-
ered cognitive inasmuch as the system’s internal (formal and procedural) knowl-
edge has to be applied to identify and to recognize structures external to the
system (allowing meaning interpretation). These situations become semiotic
whenever the internal knowledge applied to identify and interpret environmen-
tal structures is derived from former processes of structure identification and
interpretation as the result of self-organizing feedback through different levels of
(inter-)mediate representation and organization. This process (of meaning con-
stitution or structure understanding) has its procedural analogue in the mul-

3i.e. with reference to intrinsic interdependencies within the system-environment-processing
situation (see Peirce’s tri-relative influence below).
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tiple enactment of the threefold relation which is called—following Peirce—
semiosis4. The triadic relation allows for the different ontological abstractions
of language
� as a component (sign) in a system’s external environment, i.e. material dis-

course as a physical space-time location;
� as a constituent of virtuality which systems properly attuned experience as

their environment (object), i.e. structured text as an interpretable potential
of meanings, and

� as a process of actualization (interpretant) in a particular system-environment
situation, i.e. understanding as the constitution of meaning.

Under these preliminary abstractions, the distinction between (the formats of)
the representation and (the properties of) the represented is not a prerequisite
but an outcome of semiosis, i.e. the semiotic process of sign constitution and
understanding. Hence, it should not be a presupposition or input to, but a
result or output of the processes which are to be modeled procedurally and
called semiotic.

2.4 Cognitive Models

An earlier attempt [46] to classify model constructions as forwarded in the cog-
nitive sciences had distinguished three types of modeling approaches:
� the cognitive approach presupposes the existence of the external world, struc-

tured by given objects and properties, and the existence of representations of
(fragments of) that world internal to the system, so that the cognitive systems’
(observable) behavior of action and reaction may be modeled by processes op-
erating on these structures;

� the associative approach is described as a dynamic structuring based on the
model concept of self-organization which cognitive systems constantly apply
to adapt to changing environmental conditions and to modify their internal
representations of them;

� the enactive approach may be characterized as being based upon the notion of
structural coupling. Instead of assuming an external world and the systems’
internal representations of it, some unity of structural relatedness is consid-
ered to be fundamental of—and the (only) condition for—any abstracted or
acquired duality in notions of the external and the internal, object and subject,
reality and its experience.

Whereas the first two approaches apparently draw on the traditional rationalistic
paradigm of mind-matter-duality—static the former, dynamic the latter—by
assuming the existence of external world structures and internal representations
of them, the third type does not. Considering the importance that the notions

4By semiosis I mean [. . . ] an action, or influence, which is, or involves, a coöperation of
three subjects, such as sign, its object, and its interpretant, this tri-relative influence not being
in any way resolvable into actions between pairs. ([21], p.282)
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of formatting and representation (both internal and external to an information
processing system) have gained in tracing processes on the grounds of their
observable or resulting structures, it appears to be justified to add the fourth
type: [40]:
� the semiotic approaches focus on the notion of semiosis and may be char-

acterized by the process of enactment too, complemented, however, by the
representational impact. It is considered fundamental to the distinction of
e.g. cognitive processes from their structural results which—due to the traces
these processes leave behind—may emerge in some form of knowledge whose
different representational modes comply with the distinction of internal or
tacit knowledge (i.e. memory) on the one hand and of external or declarative
knowledge (i.e. language expressions) on the other.
According to these types of cognitive modeling, computational semiotics can

be characterized as aiming at the dynamics of meaning constitution by simu-
lating processes of multi-resolutional representation [19] within the frame of an
ecological information processing paradigm [39]. When we take human beings to
be systems whose knowledge based processing of represented information makes
them cognitive, and whose sign and symbol generation, manipulation, and un-
derstanding capabilities render them semiotic, we will do so due to our own
daily experience of these systems’ outstanding ability for representing results of
cognitive processes, organize these representations, and modify them according
to changing conditions and states of system-environment adaptedness.

3 Natural Language Processing

Computational systems for natural language processing which are based upon
relevant CL and AI research are presently undergoing some fundamental scrutiny.
It may broadly be characterized by challenges concerning some of the founding
assumptions and basal hypotheses implied in the research goals (Erkenntnisinter-
esse), the critical evaluation of methodological standards and their possible com-
pletion by new research methods (Untersuchungsmethoden), and a re-definition
of the linguistic domain of language research objects in general (Forschungsge-
genstände).

3.1 Challenging Representational Formats

As is well known, computational systems for natural language analysis and gen-
eration are based upon correct structural descriptions of input strings and their
semantic interpretations. This is made possible by rule based representations
of (syntactic and lexical) knowledge of a language and of (referential and sit-
uative) world knowledge concerned in formats which grammar formalisms and
deductive inferential mechanisms can operate on. Notwithstanding the consid-
erable advances in the development and theoretical testing of increasingly more

99



complex systems, this kind of cognitive (or knowledge-based) language process-
ing (based on monotone logics, symbolic representations, rule-based operations,
serial processing, etc.) and the essential statics of their representational struc-
tures were challenged—although for differing reasons—by connectionistic and
empirical approaches. These were particularly successful in simulating dynamic
properties of processes of cognitive natural language processing (based on the
theory of dynamic systems, sub-symbolic or distributed representation, numeri-
cally continuous operations, parallel processing, etc.) in ANN models [20], [22],
[7]. And there were new insights gained into the wealth of structural patterns
and functional relations which could be observed in large corpora of commu-
nicative natural language performance and specified by results from models of
quantitative and statistical analyses (based on probability and possibility the-
ory, stochastic and fuzzy modeling, numerical mathematics and non-monotone
logics, strict hypothesizing and rigorous testing, etc.) [1] [17].

3.2 Common Grounds

Discussing connectionistic vs. rule-based approaches and models of natural lan-
guage processing [44] [13] [45] [42], differences have in the majority of contri-
butions been characterized from an epistemological position common for both
directions in cognitive linguistics. Proponents of both sides seem to accept that
the study of language competence, its principles, components, and their organi-
zation is the primary concern and basal objective for computational linguistics
proper. Following the discussion so far, there is a predominant interest in the
theoretical aspects of what the different, even hybrid model constructions would
claim and may justifiably be said to explain [22] [6] [16] although the empirical
and quantitative approaches in language research have hardly been involved yet.
The reasons are manifold as the availability of masses of performative language
data not only require the methodological mastery of a whole spectrum of tools
and methods, new to most linguists, but also tend to imply some compensating
shift from language competence towards language performance studies corre-
sponding to a wider domain of research objects for linguistics proper [12] which
many computational linguists would refrain from. However, in view of the for-
mal complexity and applicational limitations which rule based cognitive models
show on the one hand, and considering the surprisingly efficient practicability
of stochastic parsers [10] [3] and statistical machine translation systems [5] [4]
on the other, there is good reason to expect some revision of assumptions and
basal hypotheses defining cognitive linguistics.

3.3 Language Reality

According to Chomsky [8] the cognitive study of natural language phenomena
has to be concerned primarily with the principles underlying observable language
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phenomena, i.e. the structure and the organization of the human language
faculty (competence) which may (theoretically) be analyzed and (formally) be
characterized well w i t h o u t empirical exploration of observable language data
as produced in situations of communicative interaction by real speakers/hearers
(performance). Nowadays [9] the speaker’s language knowledge or competence is
named internalized (or I-) language whose set of entities (lexicon) aggregatable
according to a set of rules (computational system) constitutes the proper domain
(mental grammar) of linguistic inquiry; accordingly, the speakers’ performative
language use named externalized (or E-) language may be considered cognitively
uninteresting. One of the results which the ongoing discussion may produce is
the understanding [43] that the grounding of cognitive linguistic research so far
might turn out to be based on a too principled abstraction of language reality
as experienced in communicative interaction.

Taking into account some language regularities and structures which are
empirically traceable but may not be identified within the categorial frame-
work of established linguistic concepts5, and in view also of tendencies in cog-
nitive linguistics, computational linguistics, and AI research to come up with
increasingly complex systems and/or narrowing scopes dealing with natural lan-
guage structures and functions [24], the empirical study of performative language
phenomena may provide valuable insights and explanations because of the do-
main’s new research objects and methods complementary to those of competence
centered linguistics. Moreover, it appears that empirical approaches allow for
quantitative-statistical as well as fuzzy-theoretical model constructions which
may allow for a more semiotic understanding of the functioning of language
signs as used by interlocutors in communicative interaction.

3.4 Research Situation

The availability (and still increasing number) of very large text corpora6, will
facilitate to investigate a type of natural language properties whose categorial

5Phenomena like linear short-distance orderings (Nah-Ordnung) of performative language
entities (e.g. co-occurences) whose regularities are deprived of rule-based notations but can
easily be represented and processed as numerical expressions of correlation values with any pre-
cision, are an example in point here, as they appear to be the observable results of structuring
principles which have been overlooked by competence theoretical investigations only because
they do not comply with linear long-distance orderings (Fern-Ordnung) that are constitutive
of linguistic categories as represented and processed by familiar grammar formalisms[14], [11],
[15].

6The Trier dpa-Corpus comprises the complete textual material from the basic news real
service of 1990–1993 (720.000 documents) which the Deutschen Presseagentur (dpa), Hamburg,
deserves thanks to have the author provided with for research purposes. After cleaning of
editing commands the dpa-Corpus consists of approx. 180 million (18 · 107) running words
(tokens) for which an automatic tagging and lemmatizing tool is under development. It is
this corpus which provides the performative data of written language use for the current (and
planned) fuzzy-linguistic projects at our department.
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vagueness (uncertain, under-determined, fuzzily delimited, etc.) or whose lim-
ited to dubious observability (sparse data, uncertain information, etc.) had left
them inaccessible and hence irrelevant to language research.

As the processing of very large language corpora (VLLC) has shown, catego-
rial type concepts common in traditional linguistics have to be considered highly
problematic when applied to classify finer grained structures which quantitative-
numerical computations will easily identify operationally. Categorial type, sym-
bol processing encounters increasing numbers of borderline cases, variations, and
ambiguities which cannot be dealt with consistently. Such problems ought to—
and can infact—be avoided from the very start as they emerge from mappings
of structurally related data sets to inadequate categories. Therefore, classical
categorial conceptions in linguistics have begun to be scrutinized and may pos-
sibly be substituted by soft categories [38] [27] before there is substantial hope
to improve chances to understand and to explain knowledge as some form of
(world) and/or language) structures emerging from rather than fed into infor-
mation processing models that can truly be called semiotic.

3.5 SCIP Systems

Other than value attributing procedures that reorganize input data computa-
tionally according to predefined structures of intermediate representations (as
hypothesized by competence theoretical linguistics and realized in cognitive CL
models) semiotic cognitive information processing (SCIP) systems [37] may have
to, and will indeed, be distinguished sharply as sets of procedures whose com-
putations will transform structured input data according to its immanent regu-
larities to yield new, structural representations emerging from that computation
(as hypothesized by performative linguistics and realized in procedural models of
computational semiotics). The elements of these new structures are value distri-
butions or vectors of input entities that depict properties of their structural re-
latedness in a granular and multi-layered fashion, constituting multi-dimensional
(metric) space structures (semiotic spaces). Their elements may also be inter-
preted as fuzzy sets allowing set theoretical operations be executed on these
representations that do not require categorial type (crisp) definitions of symbol
or concept formation. Computation of letter (morphic) vectors in word space,
derived from n-grams of letters graphemes, as well as of word (semic) vectors in
semantic space, derived from correlations of words [29], [25], [36] will serve to
illustrate the operational flexibility and varying granularity of vector representa-
tions to identify regularities of language performance which traditional linguistic
categories fail to represent.
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Schemata of model hierarchy of cognitive linguistic strata of mechanisms (Bier-
wisch) as compared to model tiling of computational semiotic coverage of pro-
cedures (Rieger) for the analysis and representation of (abstracted and observ-
able) language phenomena.

3.6 Visualizing Vector Representations

Returning to the ecological systems theoretical view applied to information pro-
cessing, we will focus on the problem of visualizing results of computational
procedures developed to model and simulate semiotic processes whose numer-
ical representations—by definition—do not have an immediate interpretation.
Various techniques have been applied to analyze, scrutinize, and visualize the
structuredness of vectoral representations and their results reported elsewhere
[30] [31] [32] [33] [34]. As these have been able to demonstrate the definite non-
contingency of meaning points z in the semantic space, a short introduction to
its conception will suffice here. We will concentrate on the level of semantic
meaning constitution as based upon the measurement of differences of usage
regularities in VLLC of situated or pragmatically homogeneous texts.

For a vocabulary V = {xn}, n = 1, . . . , i.j. . . . , N of lexical items, their mean-
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ings zn ∈ 〈S, ζ〉 are re-constructed as a composite function δ̃ | yn ◦ α̃ | xn of the
difference distributions

δ̃ | yn : C → S; {zn} =: S (1)

and the grounding usage regularity distributions

α̃ | xn : V → C; {yn} =: C (2)

The empirical measures employed to specify intensities of co-occurring lexical
items are centered around a modified correlational coefficient

α(xi, xj) =
∑T

t=1(hit − eit)(hjt − ejt)(∑T
t=1(hit − eit)2

∑T
t=1(hjt − ejt)2

) 1
2
; (3)

−1 ≤ α(xi, xj) ≤ +1

where eit = Hi

L lt and ejt = Hj

L lt denote (theoretical) estimate values, computed
over a corpus K = {kt}; t = 1, . . . , T of texts whose lengths summed up will
define the overall length of the corpus L =

∑T
t=1 lt; 1 ≤ lt ≤ L The length lt of

each text t in the corpus K is measured by the number of occurring word-tokens
which form the basis of the vocabulary V of word-types whose frequencies are
denoted by Hi =

∑T
t=1 hit; 0 ≤ hit ≤ Hi.

A second measure of similarity (or rather, dissimilarity) is applied to specify the
α-value distributions’ differences

δ(yi, yj) =

(
N∑

n=1

(α(xi, xn) − α(xj , xn))2
) 1

2

; (4)

0 ≤ δ(yi, yj) ≤ 2
√

n

The consecutive application of (Eqns. 2) on input texts and (Eqns. 1) on
its output data allows to derive for each word-type xn ∈ V an entity zn ∈
S which denotes a structural representation of differences of usage regularities
detected and numerically specified by these coefficients. They allow to model the
meanings of words as a two-level function of δ-values of paradigmatic selections
(measured as differences of usage regularities) and of α-values of syntagmatic
aggregations (computed as correlations of word-type pairs in texts of the corpus),
as schematized in Tab. 1.

As a result of this two-stage consecutive mapping any meaning point’s po-
sition in the semantic space 〈S, ζ〉 is determined by all the differences (δ- or
distance-values) of all regularities of usage (α- or correlation-values) each lexi-
cal item shows against all others in the discourse analyzed. Without recurring
to any investigator’s or his test-persons’ word or world knowledge (semantic
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α = V × V δ = C × C ζ = S × S

α̃ x1 . . . xN

x1 α11 . . . α1N

...
...

. . .
...

xN αN1. . .αNN

α-abstraction
⇓

α̃ | xi−→

⇑

δ̃ y1 . . . yN

y1 δ11 . . . δ1N

...
...

. . .
...

yN δN1. . .δNN

δ-abstraction
⇓

δ̃ | yj−→

⇑

ζ z1 . . . zN

z1 ζ11 . . . ζ1N

...
...

. . .
...

zN ζN1. . .ζNN

Syntagmatic Paradigmatic
C o n s t r a i n t s

Table 1: Formalizing (syntagmatic/paradigmatic) constraints by consecutive (α
and δ) abstractions over usage regularities of items xi, yj respectively.

δ̃ |yn ◦ α̃ |xn

α̃ |xi δ̃ |yj

V
�
� ��α̃

S
�

� �
�

ζ

C

��
��� δ̃

�
�

�
�

�
�

��� �
�

�
�

�
���

Figure 3: Fuzzy mapping relations α̃ and δ̃ between the structured sets of vo-
cabulary items xn ∈ V , of corpus points yn ∈ C, and of meaning points zn ∈ S.

competence), but solely on the basis of usage regularities of lexical items in dis-
course (communicative performance), some natural language understanding is
modeled procedurally by computational processes which construct and identify
emergent topological positions of any meaning point zi ∈ 〈S, ζ〉 corresponding
to the vocabulary item’s xi ∈ V meaning representation.

Thus, the application of Eqns. 2 and Eqns. 1 is tantamount to a double (α-
and δ-) abstraction of identical elements in the ordered pairs as computed by
the α-coefficient Eqn. 3 and the δ-coefficient Eqn. 4 respectively. This mapping
may be considered a semiotic one due to the different ontological status which
the α- and δ-representations of identical labels xn acquire via this mapping
process. Therefore, this semiotic mapping can formally also be stated as a fuzzy
set theoretical composition of two restricted (fuzzy) relations δ̃ | y and α̃ | x, or
as a category of semiotic morphisms as in Fig. 3.
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Figure 4: Reference plane with location of objects ( 	 and � ) propositionally
described by texts in the training corpus and 2-dim-image of SCIP system’s
endo-view showing regions of potential object locations (isoreferentials) under
crisp hedge interpretation.

3.7 Reconstructing Reference

The semantic space structure 〈S, ζ〉 may be viewed as the information process-
ing system’s internal representation (IR) of its external reality (ER). To be more
precise: as an IR it depicts some of those ER structures which (firstly) are pre-
sented in the natural language discourse as its meaning a n d which (secondly)
the system is able to detect according to its own structuredness and processing
capabilities, constituting this meaning without knowing the isemantics under-
lying it. In order to let the internal (endo) picture which the system computes
from discourse and represents in the form of the semantic space be evaluated
against the external (exo) reality, this reality has to be mediated to the sys-
tem as its environment in an intersubjectively controlled way a n d via those
very propositional language structures whose non-propositional understanding
by the system is to be tested. To facilitate this, the system is placed in an
experimental environment which both are heavily restricted compared to our
real world. The immediate environment consist solely of a text corpus of situ-
ated natural language discourse—aggregated from correct sentence expressions
of true propositions—describing as mediate environment fixed object locations
in a plane from changing system positions. The sentences were generated accord-
ing to a (very simple) phrase structure grammar and a formal fuzzy referential
semantics both unknown to the system. These formalisms (grammar and seman-
tics) allowed to specify and interpret composite predicates of cores (like: on the
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left, on the right — in front, behind) and hedges (like: extremely, very, rather
— nearby, faraway) in a consistent way as employed in sentences automatically
generated to describe the object location and system position relations as the sys-
tem’s/environment’s structural coupling in an intersubjectively controlled way.
Submitted to the system’s non-propositional, non-symbolic, numerical language
processing capabilities, the generated corpus would reveal hidden structural in-
formational constraints which the system’s own structuredness (attunement) and
internal processing or meaning constitution (understanding) would have to re-
flect in its representational structure (knowledge). The experimental setting and
implemented tests which where reported in detail elsewhere [37] [38] [39] allowed
to compare the external (exo) reality (Fig. 4 left)—as described by the texts
and formally specified by the underlying syntax and semantics—with its two-
dimensional transform of the system’s internal multi-dimensional (endo) view
of its discourse environment, demonstrating quite convincingly the computed
structure’s (at least partial) adequacy (Fig. 4 right).

Considering the structural properties, locational preferences, and adjacency
relations of objects in the system’s environment, the tests have produced under
varying fuzzy interpretations of hedges very promising results which illustrate
the SCIP system’s miniature (cognitive) language understanding and meaning
acquisition capacity w i t h o u t having any syntactic and/or semantic knowl-
edge in whatever format made available to it prior to processing [39]. This is a
case in point showing that the formats of syntax and semantics as employed in
traditional linguistic and logic analysis and representation of natural language
expressions is clearly one [but not the only) façon de parler or rather, way of
submitting language structure to a representational framework which models
prevailing constituents and dependencies.

3.8 Dispositional Dependencies

Following the semiotic understanding of meaning more as a constitutional pro-
cess rather than an entity of invariable constancy or static representation, the
present semantic space may be considered part of a word meaning/world knowl-
edge representation system of a new kind. It is characterized by its two-stage
representational process which separates the format of basic (stereotyped) mean-
ing components (meaning points) from their latent (dependency) relational or-
ganization as meaning potential (semantic dispositions). Whereas the former is
a static, topologically organized multi-dimensional memory structure, the latter
can be characterized as a dynamic and flexible structuring process which reor-
ganizes and thereby transforms the basic relatedness of the elements it operates
on.

This is achieved by a recursively defined procedure that produces hierarchies
of meaning points, reorganized under given aspects according to and in depen-
dence of their co- and contextual relevancy. Taking up ideas from cognitive
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Figure 5: Fragment of DDS-tree of Alpen (root) as generated from semantic
space data (V = 345 types, Hi ≥ 10) of a German newspaper sample (Die
Welt, 1964 Berlin edition).

theories of semantic memory, priming , and spreading activation [18], the DDS-
algorithm was devised to operate on the semantic space data and to generate
dispositional dependency structures (DDS) in the format of n-ary trees. Given
one meaning point’s position, the algorithm will
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Figure 6: Fragment of MST-graph of Alpen (root) as generated from the same
semantic space data.

1. take that meaning point’s label as a start,
2. stack labels of all its neighboring points by decreasing distances,
3. open DDS-tree with starting point’s label as primed head or root

node. Then it will
4. take label on top of stack as daughter node,
4.1 list labels of all its neighbors,
4.2 intersect it with nodes in tree,
4.3 determine from intersection the least distant one as mother node,
5. link it as daughter to identified mother node
6. and repeat 4. either
6.1 until 2. is empty
6.2 or other stop condition (given number of nodes, maximum dis-

tance, etc.) is reached
7. to end.

The tree structured graphs7 may serve as a visualization of the dependencies
that any labeled meaning point zn ∈ 〈S, ζ〉 chosen as root node will produce ac-

7The figures present subtrees of a semantic space which was computed from a sample of
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Figure 7: Dependency path of lesen/to read =⇒ schreiben/to write as traced
in DDS-tree of les.

cording to the adjacencies of other points in the semantic space (Fig. 5). Their
positions—being determined by and reconstructed operationally from the differ-
ences of usage regularities of word distributions in the texts analyzed—will thus
guarantee that semantically related meanings will also be related in that tree
structure, and that the direction of that relation (dependency) will vary contex-
tually according to the semantic aspect (or starting node chosen) under which
the system of structurally derived meaning representations is algorithmically re-
organized. The tree has been named dispositional because of the potentiality of
possible meaning relations and dependencies which it represents.

In order to illustrate the contextual sensitivity which distinguishes the DDS-
algorithm from e.g. minimal spanning trees (MST) [23], the latter (Fig. 6) has
been generated from the same data with the same starting node. Note, that
the Bahn-node (track, course, trail) with identical subtrees is to be found on

texts from the German daily newspaper (Die Welt, 1964, Berlin edition); ⊕ marked nodes
hide subtrees not expanded; the numerical values stated are direct ζ-distances from the root
node.
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Figure 8: Dependency path of schreiben/to write =⇒ lesen/to read as traced
in DDS-tree of schreib.

extremely different levels comparing DDS (level 3) and MST (level 23)8.
Apparently, although the DDS-algorithm can simply be characterized as an

encapsulated MST-procedure, this encapsulation serves a meaning constituting
purpose. Where the MST is searching for shortest possible distance relations be-
tween points qualifying for tree node relatedness, the DDS is looking for highest
meaning similarities, i.e. for shortest possible distance relations between points
which are interpretable as semiotically derived representations. It is this prop-
erty that allows the algorithm’s search space to be semantically constrained as
the starting point’s or root node’s topological environment (capsule), rendering
it aspect-dependent and structurally context sensitive.

This has a number of consequences of which the following seem interesting
enough to be listed:
� The procedural (semiotic) approach replaces the storage of fixed and ready set

relations of (semantic) networks in AI by source- or aspect-oriented induction
of relations among meaning points by the DDS algorithm;

� DDSs dependencies may be identified with an algorithmically induced rele-

8The numerical MST values given are direct ζ-distances between (mother and daughter)
nodes.

111



Figure 9: Fragment of DDS of Wort/word ∨ Satz/sentence (with criteriality-
values) as generated from the new meaning point derived by the fuzzy OR oper-
ation.

vance relation which is reflexive, non-symmetric, and (weakly) transitive as
illustrated by the dependency paths’ listings of node transitions
les (to read) =⇒ schreib (to write) and its (partial) inverse schreib =⇒ les
(Figs. 7 and 8);

� the relevance relation gives rise to the notion of criteriality which allows to
specify to what degree a meaning compound contributes to the meaning po-
tential a root node’s DDS is to represent. It may numerically be specified as
a function of any node’s level and ζ-distance by

Cri(d)κ+1 = Cri(m)κ · e− ζ(d,i)
λ+ζ(d,m) (5)

with i,m, d for root, mother, and daughter nodes respectively, and the counters
κ for (left to right) nodes, and λ for (top down) levels in the tree;

� as the criteriality values are decreasing monotonously from 1.0 (root) they
may be interpreted as membership values which reflect the relevance related
soft structure of components (nodes) in the DDS as fuzzy meaning poten-
tial. Applying the fuzzy set theoretical extensions for logical operators (and,
or, non, etc.) opens new possibilities to generate composite meaning points
(Wort/word ∧ Satz/sentence) and Wort/word ∨ Satz/sentence)) without as-
suming a propositional structure a n d to get these composites’ structural
meanings determined by their DDSs as computed from the semantic space
data (Figs. 9 and 10)9;
9The numerical values given here are Cr-criterialities of daughter nodes as defined by Eqn.
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Figure 10: Fragment of DDS of Wort/word ∧ Satz/sentence (with criteriality-
values) as generated from the new meaning point derived by the fuzzy AND
operation.

� experiments are underway to employ DDSs as structural frame for semantic
inferencing without the need to have the premises be stated in a predicative or
propositional form prior to the concluding process. The DDS algorithm lends
itself easily to the modeling of analogical reasoning processes by a procedure
which takes two (or more) root nodes (as semantic premises), initiates two
(or more) DDS processes each of which—in selecting their respective daughter
nodes—will tag the corresponding meaning points in the semantic space. Stop
condition for this process which may proceed highest criteriality breadth first
through the respective DDSs could be the first meaning point found to be
tagged when met by either (or any) of the processes active. This point would
be considered the (first) candidate to be semantically inferred or concluded
from the premises (with the option to extend the number candidates).

4 Conclusion

It is hoped that devising representational structures which result from proce-
dures of systematic exploration of syntagmatic and paradigmatic constraints on
different levels of natural language discourse will allow to come up some day
with a new understanding of how entities and structures are formed which are

5.
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semiotic, i.e. do not only emerge from processes as their results which have
an objective (material) extension in space-time, but can above that and due to
their (recursively defined) co- and context dependency be understood as having
interpretable meaning.

In order to be able to interpret, we need to have structures, but we are
about to experience that the model structures available so far do not serve the
purpose we are looking for. When we have to deal with problems which might
result from the lack of concepts, of structures, and of formats to describe or
represent them adequately, we should not be too surprised to find these problems
unsolvable. Procedural models and their computational enactment generating
structures sensitive to situational embeddings appear to be good candidates for
progress.
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