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Abstract:1

A generalized proximal point method for solving variational inequalities with maximal

monotone operators is developed. It admits a successive approximation of the feasible

set and of a symmetric component of the operator as well as an inexact solving of

the regularized problems. The conditions on the approximation are coordinated with

the properties of finite element methods for solving problems in mathematical physics.

The choice of the regularizing functional exploits a possible ”reserve of monotonicity”

of the operator in the variational inequality.

For the minimal surface problem and related variational inequalities as well as for the

convection-diffusion problem the studied method extends the principle of elliptic regu-

larization. A special convergence analysis shows a more qualitative convergence of the

method applied to these problems than it follows from the general theory of proximal

point methods. Also applications to some variational inequalities from the elasticity

theory are investigated.
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1 Introduction

Let (V, ‖ · ‖) be a Hilbert space with the topological dual V ′, and 〈·, ·〉 denotes
the duality pairing between V and V ′.

We consider the variational inequality

V I(Q, ϕ,K) find u ∈ K and p ∈ ∂ϕ(u) :
〈Q(u) + p, v − u〉 ≥ 0, ∀ v ∈ K,

where
K is a convex, closed subset of V ;
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Q : V → V ′ is a single-valued monotone operator, its domain D(Q) contains
K and Q is hemicontinuous on K;

ϕ : V → R̄ := R∪ {+∞} is a convex, proper and lower semicontinuous (lsc)
functional, ∂ϕ denotes the subdifferential of ϕ and D(∂ϕ) ⊃ K.

The proximal point method, originally introduced by Martinet [26] to solve
convex variational problems and later on investigated in a more general setting
by Rockafellar [34], has initiated a lot of new algorithms for solving various
classes of variational inequalities and related problems. Main directions in the
development of these methods were viewed, for instance, in [15].

In the present paper a general algorithmic framework for solving V I(Q, ϕ,K),
called generalized proximal point method (GPP-method), is developed. It joins
the proximal regularization and the data approximation in a manner of a diag-
onal process, i.e. approximation of K and ∂ϕ is improved after each proximal
iteration. If the operator Q possesses a certain reserve of monotonicity as de-
scribed by the assumptions (1-ii) and (2-ii) below, conditions on the choice of
the regularizing functional admit the application of weak proximal regularization
as well as of regularization on a subspace (see [11], [12] for these approaches).

The paper is mainly focused upon the applications of proximal-like methods
for solving variational inequalities with degenerate or singularly perturbed el-
liptic operators. The conditions on the data approximation in the GPP-method
(cf. assumptions (2-iii)-(2-v)) are weaker that those arising from the theory of
variational convergence for ill-posed problems, and at the same time they are
well-coordinated with the estimates of finite element interpolation in Sobolev
spaces (see the analysis of these conditions in Section 4 below).

For variational inequalities related to the minimal surface problems and for
the convection-diffusion problem, which are considered in Section 4, the stud-
ied general framework covers a new (proximal based) elliptic regularization2

method, in which a successive approximation of the set K is performed by
means of the finite element method on a sequence of triangulations.

Applying the proximal elliptic regularization, one can choose the regulariza-
tion parameter separated from 0, and then one obtains a sequence of uniformly
elliptic auxiliary problems with a common constant of ellipticity. On this way
the singularly perturbed convection-diffusion problem is approximated by a se-
quence of unperturbed elliptic problems. This property of the family of regu-
larized operators provides a good stability of the auxiliary problems in case a
successive approximation of K is performed by means of standard finite element
techniques.

Noteworthy is that for the minimal surface problems (with and without ob-
stacles) considered in the space H1(Ω), the special analysis based on Theorem
2 establishes a new result on the convergence of the proximal elliptic regulariza-

2The idea of elliptic regularization, proposed by J.-L. Lions [23] and O.A. Olejnik [30],
consists in an approximation of a degenerate elliptic problem (parabolic problems are treated
as a special case) by a sequence of non-degenerate elliptic problems. In the classical scheme it
is carried out by adding the term εθ (θ an appropriately chosen operator) to the operator of
the original problem and by considering the sequence of solutions of the regularized problems
for ε → 0. Elliptic regularization is an efficient tool for the theoretical analysis of degenerate
problems (cf. [18], [23], [24]) and serves as a basis for some numerical methods (see [6] and
references therein). However, the necessity to drive the parameter ε to 0 enforces hard re-
quirements on the exactness of the discretization and causes ill-conditioning of the discretized
problems.
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tion method in the space W 1,1(Ω) (see Theorem 3), whereas the general theory
of proximal point methods guarantees weak convergence in H1(Ω) only.

The proved strong convergence for the convection-diffusion problem is not so
surprising, because the operator of the problem is strongly monotone although
singularly perturbed, too. However, in this case the regularization permits to
obtain ”well-behaved” discretized problems.

The paper is organized as follows: In Section 2 we describe the mentioned
algorithmic framework and discuss the assumptions concerning the variational
inequality V I(Q, ϕ,K) and its data approximation. The convergence analysis
is carried out in Section 3, and in Section 4 applications of the GPP-method to
several problems in mathematical physics are studied. In the final Section 5 we
summarize the main peculiarities of the approach developed.

2 Generalized proximal point method

In the sequel the following assumption concerning V I(Q, ϕ,K) will be used.

Assumption 1

(1-i) K ∩ intD(∂ϕ) 6= ∅;

(1-ii) for a given linear continuous and monotone operator B : V → V ′ with
symmetry property 〈Bu, v〉 = 〈Bv, u〉, the inequality

〈Q(u)−Q(v), u− v〉 ≥ 〈B(u− v), u− v〉, ∀ u, v ∈ D(Q)

is valid;

(1-iii) V I(Q, ϕ,K) is solvable.

We denote the solution set of V I(Q, ϕ,K) by SOL(Q, ϕ,K) and write V I(Q,K)
and SOL(Q,K) in case ϕ ≡ 0.

With the normality operator

NK : u 7→
{
{z ∈ V ′ : 〈z, u− v〉 ≥ 0 ∀ v ∈ K} if u ∈ K,
∅ otherwise,

the maximal monotonicity of Q+NK follows from Theorem 1 in [33], and then
(1-i) provides that the operator Q + NK + ∂ϕ is maximal monotone, too (see
[33], Theorem 3).

The algorithmic framework studied includes a successive approximation of
the set K and of the functional ϕ by a sequence {Kk}, Kk ⊂ K, of convex
closed sets and by a sequence {ϕk}, ϕk : V → R̄, of convex functionals, respec-
tively. Moreover, we suppose that ϕk is Gâteaux-differentiable on K and ∇ϕk

is hemicontinuous on K.
Let r : V → R be a convex Gâteaux-differentiable functional such that

v 7→ r(v) + 〈Bv, v〉

is strongly convex on D(Q), where B satisfies (1-ii). For an appropriate operator
B see, for instance, Subsection 4.3 below.



4 A. KAPLAN and R. TICHATSCHKE

We make also use of the controlling sequences {δk} and {χk} such that

δk ≥ 0, lim
k→∞

δk = 0, 0 < χk ≤ χ̄ <∞. (1)

The choice of {Kk}, {ϕk}, r as well as the sequences {δk} and {χk} will be
specified in Assumption 2.

GPP-Method:

Given u1 ∈ K, with uk from the (k − 1)−th step (u1 if k = 1),
at the k − th step we define uk+1 by solving the problem

find uk+1 ∈ Kk :
(Pk) 〈Q(uk+1) +∇ϕk(uk+1) + χk(∇r(uk+1)−∇r(uk)), v − uk+1〉

≥ −δk‖v − uk+1‖, ∀ v ∈ Kk.

Assumption 2

(2-i) r : V → R is a convex functional and the mapping ∇r is Lipschitz contin-
uous on D(Q);

(2-ii) with given constants χ̃ ≥ 0, m > 0 and the operator B satisfying (1-ii),
the inequality

χ̃

2
〈B(u− v), u− v〉+ r(u)− r(v)− 〈∇r(v), u− v〉 ≥ m‖u− v‖2

holds for all u, v ∈ D(Q), and the choice of χ̄ in (1) provides 2χ̄χ̃ < 1;

(2-iii) for each w ∈ K, there exists a sequence {wk}, wk ∈ Kk, such that

wk ⇀ w, Q(wk) → Q(w), lim
k→∞

ϕk(wk) = ϕ(w),

(symbols ”⇀” and ”→” indicate weak- and strong convergence, respec-
tively);

(2-iv) ϕk(v) ≥ ϕ(v), ∀ v ∈ K, ∀ k;

(2-v) with given nonnegative constants c1, c2, c and sequences {hk}, {σk} satis-
fying

∞∑
k=1

hk

χk
<∞,

∞∑
k=1

σk

χk
<∞, (2)

for some u∗ ∈ SOL(Q, ϕ,K) there exists a sequence {wk}, wk ∈ Kk, such
that

‖wk − u∗‖ ≤ c1hk,

‖Q(wk)−Q(u∗)‖V ′ ≤ c2σk, (3)
ϕk(wk)− ϕ(u∗) ≤ cσk.
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Remark 1 In Subsection 4.1 we meet a situation when the assumption Kk ⊂
K can be rather restrictive, especially if the sets Kk are constructed by means of
standard finite element techniques. In the problems considered there, however,
we have ϕ ≡ 0 and the operatorQ possesses good additional properties like strict
monotonicity and Lipschitz continuity on the whole space V . This permits one
to replace the assumption Kk ⊂ K by a weaker one:

(a) with a given c3 > 0 and {hk} as in (2), for any sequence {vk}, vk ∈ Kk,
there exists a sequence {zk} ⊂ K such that

‖zk − vk‖ ≤ c3(‖vk − u∗‖2 + 1)hk, ∀ k,

or

(b) with a given c3 > 0 and {hk}, {vk} as in (a), there exists a sequence
{zk} ⊂ K such that

〈Q(u∗), zk − vk〉 ≤ c3(‖vk − u∗‖2 + 1)hk, ∀k;

moreover, each weak limit point of {vk} belongs to K.

All statements of Section 3 (except for Theorem 2 if the weaker assumption (b)
is used) remain true, the technical modifications in the proofs can be carried
out on the base of the convergence analysis in [15]. �

Remark 2 If the assumptions (1-ii), (2-i) and (2-ii) are valid, then for each
k, the operator

v 7→ Q(v) +∇ϕk(v) + χk(∇r(v)−∇r(vk)) +NKk(v)

is maximal monotone ([33], Theorem 3). Hence, the exact problem (P k) (with
δk = 0) has a unique solution, and the solvability of the inexact problem (with
δk > 0) is guaranteed. �

3 Convergence analysis of the GPP-method

In the sequel we need the following modification of Minty’s lemma [27].

Lemma 1 Let assumption (1-i) be valid, and for some u ∈ K and any v ∈ K
there exists p(v) ∈ ∂ϕ(v) such that

〈Q(v) + p(v), v − u〉 ≥ 0. (4)

Then, with some p ∈ ∂ϕ(u) the inequality

〈Q(u) + p, v − u〉 ≥ 0 (5)

holds for all v ∈ K.

Proof. Denote
G : v 7→ Q(v) + ∂ϕ(v) + I(v − u),
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where I : V → V ′ is the canonical isometry operator. The operator Ḡ := G+NK

is maximal monotone and strongly monotone. Therefore, there exists w ∈ K,
such that 0 ∈ Ḡ(w), and using the definition of NK , we infer from here that

〈g(w), v − w〉 ≥ 0, ∀ v ∈ K (6)

holds with some g(w) ∈ G(w). In view of the convexity of the functional ϕ, the
last inequality implies

〈Q(w) + I(w − u), v − w〉+ ϕ(v)− ϕ(w) ≥ 0, ∀ v ∈ K. (7)

If w = u, then of course g(w) ∈ Q(w) + ∂ϕ(w) and the conclusion of the lemma
is obvious.

Suppose now that w 6= u. We make use of the relation

〈g̃(v), v − u〉 ≥ 0, ∀ v ∈ K, (8)

which follows from (4) for g̃(v) := g(v) + I(v − u) with an appropriate g(v) ∈
Q(v) + ∂ϕ(v). Take wλ = u + λ(w − u) for λ ∈ [0, 1). Obviously, wλ ∈ K, and
according to (8), for each λ there exists g̃(wλ) ∈ G(wλ) satisfying

〈g̃(wλ), w − u〉 ≥ 0. (9)

Using again the convexity of ϕ, one can immediately conclude from (9) that

〈Q(wλ) + I(wλ − u), w − u〉+
1

1− λ
[ϕ(w)− ϕ(u+ λ(w − u))] ≥ 0. (10)

Passing to the limit in (10) for λ ↓ 0 and observing that the operator Q is
hemicontinuous on K and the functional ϕ is lsc, we get

〈Q(u), w − u〉+ ϕ(w)− ϕ(u) ≥ 0. (11)

Inequality (7) (given with v = u) together with (11) leads to

〈Q(u)−Q(w), u− w〉+ 〈I(u− w), u− w〉 ≤ 0,

but this contradicts to the monotonicity of Q. �

Remark 3

(a) The reverse conclusion that (5) implies (4) (with any p(v) ∈ ∂ϕ(v)) follows
immediately from the monotonicity of the operator Q+∂ϕ. Using this fact
and Lemma 1, one can easily show that SOL(Q, ϕ,K) is a convex closed
set.

(b) Under assumption (1-i) the following statements are equivalent:

(b1) u ∈ K and 〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ 0, ∀ v ∈ K;
(b2) u ∈ K and ∃ p ∈ ∂ϕ(u): 〈Q(u) + p, v − u〉 ≥ 0, ∀ v ∈ K.

Indeed, the implication (b2) ⇒ (b1) is evident. But if (b1) is fulfilled, then
the monotonicity of Q and convexity of ϕ yield

〈Q(v), v − u〉+ 〈p(v), v − u〉 ≥ 0, ∀ v ∈ K, ∀ p(v) ∈ ∂ϕ(v),

and Lemma 1 provides the validity of (b2).
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�

Now, with χ̃ from (2-ii) we introduce the function

Γ : (u, v) 7→ χ̃〈B(v − u), v − u〉+ r(u)− r(v)− 〈∇r(v), u− v〉. (12)

For u∗ chosen as in (2-v), Γ(u∗, ·) plays the role of a Lyapunov function in
the convergence analysis.

Lemma 2 Let the assumptions (1-ii), (1-iii), (2-i), (2-ii), (2-iv) and (2-v) be
satisfied and

∑∞
k=1

δk

χk
<∞. Then it holds

(a) the sequence {uk} generated by the GPP-method is bounded;

(b) limk→∞ Γ(uk+1, uk) = 0;

(c) limk→∞ ‖uk+1 − uk‖ = 0;

(d) sequence {Γ(u∗, uk)} converges.

Sketch of the proof. Let {wk} be chosen as in assumption (2-v). Taking into
account (2-iv), (2-v) and the convexity of ϕk, we obtain

〈∇ϕk(uk+1), wk − uk+1〉 ≤ ϕk(wk)− ϕk(uk+1)
=

[
ϕk(wk)− ϕ(u∗)

]
+
[
ϕ(u∗)− ϕk(uk+1)

]
(13)

≤ cσk + ϕ(u∗)− ϕ(uk+1).

Because u∗ ∈ SOL(Q, ϕ,K) and uk+1 ∈ Kk ⊂ K, the inequality

〈Q(u∗), uk+1 − u∗〉+ ϕ(uk+1)− ϕ(u∗) ≥ 0 (14)

is valid.
Applying (13) and (14) for the estimation of

〈∇r(uk)−∇r(uk+1), wk − uk+1〉,

the rest of the proof is analogous to those of Lemma 2 in [15]. �

Lemma 3 Let the assumptions (1-i), (2-i), (2-iii) and (2-iv) be fulfilled. More-
over, suppose that the sequence {uk} generated by the GPP-method is bounded
and

lim
k→∞

‖uk+1 − uk‖ = 0.

Then each weak limit point of {uk} is a solution of V I(Q, ϕ,K).

Proof. Let {uk}k∈K converge weakly to ū. Because Kk ⊂ K ∀ k and K is a
closed convex set, one gets ū ∈ K, whereas limk→∞ ‖uk+1 − uk‖ = 0 implies
uk+1 ⇀ ū if k ∈ K, k →∞.

According to (2-iii), for each v ∈ K, one can choose a sequence {vk}, vk ∈
Kk, such that vk ⇀ v for k →∞ and

lim
k→∞

‖Q(vk)−Q(v)‖V ′ = 0, lim
k→∞

ϕk(vk) = ϕ(v). (15)
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By the definition of {uk} (see (P k)) and the inclusion vk ∈ Kk, the inequality

〈Q(uk+1) + ∇ϕk(uk+1) + χk

(
∇r(uk+1)−∇r(uk)

)
, vk − uk+1〉

≥ −δk‖vk − uk+1‖

holds for all k. Due to the monotonicity of Q, the convexity of ϕk and (2-iv),
this leads to

〈Q(vk) + χk

(
∇r(uk+1)−∇r(uk)

)
, vk − uk+1〉+ ϕk(vk)− ϕ(uk+1)

≥ −δk‖vk − uk+1‖.

Now, passing to the limit in the latter inequality for k ∈ K, k →∞, we obtain
from (1), (15), (2-i), lim

k→∞
‖uk+1 − uk‖ = 0, vk ⇀ v, uk+1 ⇀ ū and the lower

semicontinuity of ϕ that

〈Q(v), v − ū〉+ ϕ(v)− ϕ(ū) ≥ 0, ∀ v ∈ K.

Finally, Lemma 1 and Remark 3(b) enable us to conclude that ū ∈ SOL(Q, ϕ,K).
�

Theorem 1 Let the Assumptions 1 and 2 be fulfilled and
∑∞

k=1
δk

χk
<∞. Then

it holds

(i) Problem (P k) is solvable for each k, the sequence {uk} generated by the
GPP-method is bounded and each weak limit point of {uk} is a solution
of V I(Q, ϕ,K).

(ii) If, in addition, assumption (2-v) holds for each u ∈ SOL(Q, ϕ,K) (the
constants c1, c2, c may depend on u) and

vk ⇀ v in V, vk ∈ Kk implies ∇r(vk) ⇀ ∇r(v) in V ′, (16)

then the whole sequence {uk} converges weakly to u∗ ∈ SOL(Q, ϕ,K).

(iii) If, moreover, there exists a linear compact operator B̂ : V → V ′ such
that B + B̂ is strongly monotone, then {uk} converges strongly to u∗ ∈
SOL(Q, ϕ,K).

Proof. Conclusion (i) follows immediately from Remark 2 and the Lemmata 2
and 3.
The proof of conclusion (ii) is the same as in [15], Theorem 1.
Thus, it remains to prove (iii) only. Let u∗ be the weak limit of {uk}. Choosing
{wk} according to (2-v) we obtain from (1-ii)

〈B(uk+1 − u∗), uk+1 − u∗〉
= 〈B(uk+1 − wk), uk+1 − wk〉 − 〈B(u∗ − wk), uk+1 − u∗〉

− 〈B(uk+1 − wk), u∗ − wk〉
≤ 〈Q(uk+1)−Q(wk), uk+1 − wk〉 − 〈B(uk+1 − u∗), u∗ − wk〉 (17)

− 〈B(uk+1 − wk), u∗ − wk〉.
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Now, we estimate the term 〈Q(uk+1), uk+1 − wk〉 by setting v = wk+1 in (P k),
and then insert this estimate in (17). Together with (2-iv) this yields

〈B(uk+1 − u∗), uk+1 − u∗〉
≤ 〈Q(wk), wk − uk+1〉+ 〈∇ϕk(uk+1), wk − uk+1〉

+ χk〈∇r(uk+1)−∇r(uk), wk − uk+1〉+ δk‖wk − uk+1‖
+ 〈Bu∗ + Bwk − 2Buk+1, u∗ − wk〉

≤ 〈Q(wk)−Q(u∗), wk − uk+1〉+ 〈Q(u∗), wk − u∗〉+ 〈Q(u∗), u∗ − uk+1〉
+ χk〈∇r(uk+1)−∇r(uk), wk − uk+1〉+ δk‖wk − uk+1‖
+ 〈Bu∗ + Bwk − 2Buk+1, u∗ − wk〉+

[
ϕk(wk)− ϕ(uk+1)

]
. (18)

Taking into account that the sequences {wk} and {uk+1} are bounded, one can
conclude that all terms in the right hand side of (18) tend to zero for k → ∞.
Indeed, it vanishes

the first, second and sixth term in view of (2-v);

the third term because uk ⇀ u∗;

the fourth term due to ‖uk+1 − uk‖ → 0 and (2-i);

the fifth term owing to δk → 0;

the last term in view of (2-v), uk+1 ⇀ u∗ and the lower semicontinuity of
ϕ.

Thus, (18) implies
lim

k→∞
〈B(uk − u∗), uk − u∗〉 = 0. (19)

At the same time
lim

k→∞
〈B̂(uk − u∗), uk − u∗〉 = 0 (20)

follows from uk ⇀ u∗ and the compactness of B̂. Adding (19), (20) and obeying
the strong monotonicity of B+ B̂ we conclude finally that {uk} converges to u∗

strongly in V . �

Remark 4 From the compactness of the canonical injection I : H1(Ω) →
L2(Ω) (Ω is here an open domain in R2 with a Lipschitz continuous bound-
ary) and the second Korn inequality, the existence of an operator B̂ satisfying
condition (iii) of Theorem 1 can be shown, in particular, for ill-posed elliptic
variational inequalities, which describe the problem of linear elasticity with given
friction and the two-body contact problem (see [31] for the mathematical formu-
lations and [12] for the proximal method with weak regularization). We deal
with these problems in Subsection 4.3.

For the problem of linear elasticity, for example, the operator B̂ defined by

〈B̂u, v〉 =
∫

Ω

(u1v1 + u2v2)dx, ∀ u, v ∈ V := [H1(Ω)]2

is appropriate. �
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The following assumption serves to establish a more qualitative convergence
of the GPP-method in those situations when the conditions (ii) and (iii) of
Theorem 1 are not guaranteed.

Let Y ⊃ V be a Banach space with the norm ‖ · ‖Y , and

distY (y,A) := inf
z∈A

‖y − z‖Y .

According to Lemma 2, there exists ρ > 0 such that {uk} ⊂ IBρ and IBρ ∩
SOL(Q, ϕ,K) 6= ∅, where IBρ := {v ∈ V : ‖v‖ ≤ ρ}.

Denote S∗ = SOL(Q, ϕ,K) ∩ IBρ.

Assumption 3 There exists a continuous function τ : [0,∞) → [0,∞), τ(0) =
0, τ(s) > 0 ∀ s > 0, such that

〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ τ (distY (v, S∗)) , ∀ u ∈ S∗,∀ v ∈ K ∩ IBρ.

For a fixed u ∈ K ∩ IBρ, the function

ξ(·, u) : v → 〈Qv, v − u〉+ ϕ(v)− ϕ(u)

possesses the properties

ξ(v, u) ≥ 0 ∀ v ∈ K ⇔ u ∈ S∗,
ξ(v, u) = 0 if v ∈ SOL(Q, ϕ,K), u ∈ S∗,

and Assumption 3 describes a growth condition for the function infu∈S∗ ξ(·, u)
on the set (K ∩ IBρ) \ S∗.

In case Q = 0,K = V, Y = V and τ(s) = cs2, Assumption 3 is closely related
to the growth condition used by Kort and Bertsekas [19] for the quadratic
method of multipliers in convex programming, which in fact is the proximal
point method applied to the dual program.

The result below will be applied in Subsection 4.1 to show W 1,1-convergence
of the iterates of the GPP-method for the minimal surface problem and related
variational inequalities considered in the H1-space.

Theorem 2 Let the conditions of Lemma 2 and Assumption 3 be fulfilled.
Moreover, suppose that (2-v) is valid for each u∗ ∈ S∗ and the operator Q is
bounded on K∩IBρ. Then, for the sequence {uk} generated by the GPP-method
it holds

lim
k→∞

distY (uk, S∗) = 0. (21)

Proof. With u∗ ∈ S∗ and {wk} chosen as in (2-v), one gets

Γ(u∗, uk+1)− Γ(u∗, uk)
= −Γ(uk+1, uk) + 〈∇r(uk)−∇r(uk+1), u∗ − wk + wk − uk+1〉
+ 2χ̃〈B(uk − uk+1), u∗ − uk+1〉,
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and applying (P k) to estimate the term 〈∇r(uk) − ∇r(uk+1), wk − uk+1〉 we
obtain

Γ(u∗, uk+1)− Γ(u∗, uk)
≤ 2χ̃〈B(uk − uk+1), u∗ − uk+1〉

+ 〈∇r(uk)−∇r(uk+1), u∗ − wk〉+
δk
χk
‖wk − uk+1‖

+
1
χk
〈Q(uk+1), wk − uk+1〉+

1
χk
〈∇ϕk(uk+1), wk − uk+1〉. (22)

Now, taking into account the convexity of ϕk and (2-iv), inequality (22) yields

Γ(u∗, uk+1)− Γ(u∗, uk)
≤ 2χ̃〈B(uk − uk+1), u∗ − uk+1〉

+ 〈∇r(uk)−∇r(uk+1), u∗ − wk〉+
δk
χk
‖wk − uk+1‖

+
1
χk
〈Q(uk+1), wk − u∗〉+

1
χk

(
ϕk(wk)− ϕ(u∗)

)
+

1
χk

[
〈Q(uk+1), u∗ − uk+1〉+ ϕ(u∗)− ϕ(wk)

]
.

In view of Assumption 3 and χk ≤ χ̄, the last term can be replaced by

− 1
χ̄
τ
(
distY (uk+1, S∗)

)
.

Finally, passing to the limit in the so modified inequality, and owing to Lemma
2, the assumptions (2-i), (2-v), the boundedness of the operator Q on K ∩ IBρ,
and

∑∞
k=1

δk

χk
<∞, we immediately obtain

lim
τ→∞

τ(distY (uk+1, S∗)) = 0.

Now the properties of τ imply the validity of (21). �

We conclude this section with a statement which can be useful for checking
Assumption 3 in case Y = V . It allows us to analyze a growth property of the
function

v 7→ inf
u∈S∗

{〈Q(v), v − u〉+ ϕ(v)− ϕ(u)}

in a neighborhood of S∗ only. By the way, a growth condition like (23) with
τ(s) = cs2 and τ(s) = cs was introduced in [11] to investigate the rate of
convergence of multi-step proximal regularization methods.
With ρ as above and a given δ ∈ (0, ρ), we consider the set

Kδ = {v ∈ K ∩ IBρ : distV (v, S∗) ≤ δ}.

Denote u∗(v) = arg minw∈S∗ ‖v − w‖.

Lemma 4 Suppose that τ : [0,∞) → [0,∞) is a nondecreasing function such
that

〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ τ(‖v − u∗(v)‖) (23)
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is valid for any v ∈ Kδ, u ∈ S∗. Then the inequality

inf
u∈S∗

[〈Q(v), v − u〉+ ϕ(v)− ϕ(u)] ≥ τ

(
δ

2ρ
‖v − u∗(v)‖

)
(24)

holds for any v ∈ K ∩ IBρ.

Proof. Obviously, we need to check (23) for v ∈ (K ∩ IBρ) \Kδ only. Take an
arbitrary u ∈ S∗. Due to the convexity of K ∩ IBρ, the set {λv + (1− λ)u : 0 <
λ < 1} belongs to K ∩ intIBρ. Thus, there exists λ̄ = λ(v, u) ∈ (0, 1) such that

v̄ = λ̄v + (1− λ̄)u ∈ bdKδ.

Using

v̄ − u = λ̄(v − u),
1− λ̄

λ̄
(v̄ − u) = v − v̄,

from the monotonicity of Q and the convexity of ϕ we obtain

1− λ̄

λ̄
〈Q(v)−Q(v̄), v̄ − u〉 = 〈Q(v)−Q(v̄), v − v̄〉 ≥ 0

and

ϕ(v)− ϕ(u) ≥ 1
λ̄

(ϕ(v̄)− ϕ(u)).

Therefore,

〈Q(v), v − u〉 =
1
λ̄
〈Q(v), v̄ − u〉 ≥ 1

λ̄
〈Q(v̄), v̄ − u〉

and

〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ 1
λ̄

[〈Q(v̄), v̄ − u〉+ ϕ(v̄)− ϕ(u)]

hold, and inequality (23) yields

〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ 1
λ̄
τ(‖v̄ − u∗(v̄)‖)

≥ τ(‖v̄ − u∗(v̄)‖).

But, ‖v̄ − u∗(v̄)‖ = δ and ‖v − u∗(v)‖ ≤ 2ρ, hence

‖v̄ − u∗(v̄)‖ ≥ δ

2ρ
‖v − u∗(v)‖,

and taking into account the nondecreasing of τ , we conclude that

〈Q(v), v − u〉+ ϕ(v)− ϕ(u) ≥ τ

(
δ

2ρ
‖v − u∗(v)‖

)
.

Because u ∈ S∗ is arbitrarily chosen, this leads to (24). �
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4 Applications

In Subsections 4.1 and 4.2 below we deal with elliptic variational problems in the
space V = H1(Ω), where Ω is an open domain in R2 with a Lipschitz continuous
boundary Γ. In this context the convex closed set K is defined as

K = {v ∈ V : v = g on Γ1} (25)

or
K = {v ∈ V : v = g on Γ, v ≥ ψ a.e. on Ω}, (26)

where Γ1 ⊆ Γ, mes Γ1 > 0; g and ψ are sufficiently smooth functions on
Ω̄ := Ω ∪ Γ and ψ ≤ g on Γ.

Applying the GPP-method to these problems, a successive approximation of
K by means of the finite element method on a sequence of triangulations {Tk}
is performed.

When we check the conditions on approximation, formulated in Assumption
2, we will suppose that

Ω is a polygonal domain;

the solution of the problem is sufficiently smooth;

a standard finite element method with piece-wise linear basis functions
on the regular sequence of triangulations {Tk} of Ω is applied (see [2] for
notions and terminology of finite element methods).

By hk the characteristic triangulation parameter of Tk is denoted, i.e. the length
of the largest edge of the triangles in Tk; Σk indicates the set of vertices of all
triangles in Tk; Σk(Γ1), Σk(Γ) are the sets of all vertices lying on Γ1 and Γ,
respectively; P1 denotes the space of polynomials in two variables of degree
≤ 1.

Then, on the functional space

V k := {v ∈ C(Ω̄) : v|T ∈ P1(T ) ∀ T ∈ Tk} (27)

the sets (25) and (26) are approximated by

Kk := {v ∈ V k : v(ai) = g(ai) ∀ ai ∈ Σk(Γ1)} (28)

and

Kk := {v ∈ V k : v(ai) = g(ai) ∀ ai ∈ Σk(Γ),
v(ai) ≥ ψ(ai) ∀ ai ∈ Σk}, (29)

respectively.

4.1 Non-parametric minimal surface problem
and related variational inequalities

Formulations and properties of the problem
The classical (non-parametric) minimal surface problem, considered here in

the space V := H1(Ω), can be formulated as follows:

min{J(u) : u ∈ g +H1
0 (Ω)}, J(u) :=

∫
Ω

√
1 + |∇u|2dx (30)
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(g ∈ V is given), i.e. among all functions u ∈ H1(Ω), u = g on Γ, we are looking
for a function, which defines a surface z = u(x1, x2) with the smallest area.

Introducing the operator Q : V → V ′ defined by3

〈Q(u), v〉 =
∫

Ω

∇u · ∇v√
1 + |∇u|2

dx ∀ u, v ∈ V (31)

and the affine set
K := {v ∈ V : v − g ∈ H1

0 (Ω)}, (32)

problem (30) can be rewritten as variational equality

find u ∈ K : 〈Q(u), v〉 = 0 ∀ v ∈ H1
0 (Ω),

which in turn represents a weak formulation of the boundary value problem

−div
∇u√

1 + |∇u|2
= 0 on Ω, (33)

u = g on Γ.

Equation (33) is nothing else but the Euler equation for the classical minimal
surface problem.

The non-homogeneous problem

− div
∇u√

1 + |∇u|2
= p on Ω,

u = g on Γ

is known as the Dirichlet problem for the equation of prescribed mean curvature.
For the long history and a survey of numerous investigations connected with
these two problems we refer to the monographs [29] and [7].

The variational inequality V I(Q,K) with K given by (26) corresponds to
the minimal surface problem with an obstacle. Problems of such type were
mainly investigated in non-reflexive Banach spaces, where the functional J(u) =∫
Ω

√
1 + |∇u|2dx possesses better coercivity properties (see [18], Chapt. 3.4).

The problems considered here are not uniformly elliptic (see [20], Chapt. VI
for the corresponding definition). Indeed, using the identity

2∑
i,j=1

∂2f(t)
∂ti∂tj

ξiξj =
|ξ|2 + (t2ξ1 − t1ξ2)2

(1 + |t|2) 3
2

for f(t) =
√

1 + t21 + t22, we obtain

β(u)|ξ|2 ≤
2∑

i,j

∂2f(t)
∂ti∂tj

∣∣
t=∇u

ξiξj ≤
1√

1 + |∇u|2
|ξ|2, ∀ ξ ∈ R2,

where β(u) > 0, for instance β(u) = (1+ |∇u|2)− 3
2 is appropriate. But the right

inequality shows that β(u) cannot be separated from 0 uniformly in u.
The violation of the uniform ellipticity causes serious difficulties in the the-

oretical and numerical analysis of these problems, including the investigation of
their solvability.

3Symbols a · b and |a| stand for the inner product and the Euclidean norm of vectors in
R

2, respectively.
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Remark 5 The following facts point implicitly to the nature of these difficul-
ties:

◦ For the minimal surface problem with

Ω := {x ∈ R2 : 1 < ‖x‖ < 2}, g =
{

0 if ‖x‖ = 2
γ if ‖x‖ = 1

there exists γ∗ such that the problem is solvable for γ ∈ [0, γ∗] and has
no solution if γ > γ∗ (for this well-known example see, for instance, [4],
Chapt. V);

◦ A necessary condition for the solvability of the Dirichlet problem for the
equation of prescribed mean curvature is that∣∣∣∣∫

ω

p(x)dx
∣∣∣∣ < mes ∂ω

holds for all proper subsets ω ⊂ Ω (with Lipschitz continuous boundaries,
mes ∂ω denotes the perimeter of ω), cf. [7]. �

The existence of a classical solution of problem (33) with continuous data was
proved by T. Radó [32] in the case that Ω is a convex set. Conditions ensuring
that the solution of (33) belongs to C2,1(Ω̄) can be found in [20], Theorem
IV.10.9.

For the minimal surface problem with an obstacle, but in the space V =
H1,∞

0 (Ω), Lewy and Stampacchia [22] have shown that the solution is in
W 2,s(Ω)∩C1(Ω̄), 1 ≤ s <∞, if ψ ∈ C2(Ω̄) and Ω is a convex set with a smooth
boundary.

The uniqueness of a solution (if it exists) in case K is given by (32) or (26)
is a rather evident corollary of the strict convexity of the functional

J(u) =
∫

Ω

√
1 + |∇u|2dx on K.

In turn, the strict convexity of J on K can be concluded by integration (over
Ω) of the left inequality in (35) below given with a = |∇u|, b = |∇v|, where
u, v ∈ K (hence, u− v ∈ H1

0 (Ω)).

Proposition 1 The operator Q in (31) is Lipschitz continuous on V .

Proof. For any u, v, w ∈ V one gets∣∣∣∣∣
∫

Ω

(
1√

1 + |∇u|2
− 1√

1 + |∇v|2

)
∇u · ∇wdx

∣∣∣∣∣
≤
∫

Ω

∣∣∣∣∣∣ (∇u−∇v) · (∇u+∇v)√
1 + |∇u|2

√
1 + |∇v|2

(√
1 + |∇u|2 +

√
1 + |∇v|2

)
∣∣∣∣∣∣ |∇u · ∇w|dx

≤
∫

Ω

|∇u−∇v||∇w|dx ≤ ‖u− v‖‖w‖,
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whereas the Cauchy-Schwartz inequality implies∣∣∣∣∣
∫

Ω

∇u−∇v√
1 + |∇v|2

· ∇wdx

∣∣∣∣∣ ≤
(∫

Ω

|∇u−∇v|2

1 + |∇v|2
dx

)1/2

‖w‖ ≤ ‖u− v‖‖w‖.

Thus, we have

|〈Q(u)−Q(v), w〉| ≤ 2‖u− v‖‖w‖, ∀ w ∈ V,

hence
‖Q(u)−Q(v)‖V ′ ≤ 2‖u− v‖.

�

Proposition 2 Suppose that a solution u of V I(Q,K), with Q in (31) and K
in (32) or (26), belongs to W 1,∞(Ω). Then Assumption 3 is valid with Y =
W 1,1(Ω), arbitrary ρ > ‖u‖ and τ(s) := c(ρ)s2.

Proof. Let us recall that u is the unique solution of V I(Q,K), hence S∗ = {u}.
The convexity of J implies

J(v)− J(u) ≤ 〈Q(v), v − u〉, ∀ v ∈ V

and because 〈Q(u), v − u〉 ≥ 0 holds true for v ∈ K, we have for all v ∈ K

〈Q(v), v − u〉 ≥ J(v)− J(u)− 〈Q(u), v − u〉

=
∫

Ω

[√
1 + |∇v|2 −

√
1 + |∇u|2 − ∇u · (∇v −∇u)√

1 + |∇u|2

]
dx.(34)

With a ∈ R2, b ∈ R2 the identity√
1 + |a|2 −

√
1 + |b|2 − b · (a− b)√

1 + |b|2

=
|a− b|2√

1 + |b|2
(√

1 + |a|2
√

1 + |b|2 + 1 + b · a
) .

is evident, and using the inequality√
1 + |a|2

√
1 + |b|2 ≥ 1 + b · a,

this yields√
1 + |a|2 −

√
1 + |b|2 − b · (a− b)√

1 + |b|2
≥ |a− b|2

2 (1 + |b|2)
√

1 + |a|2

≥ 1
2(1 + |b|2)

|a− b|2

1 + |a|2
. (35)

From (35), given with a := ∇v, b := ∇u, and (34) we conclude that

〈Q(v), v − u〉 ≥ 1
2(1 +M2)

∫
Ω

|∇v −∇u|2

1 + |∇v|2
dx, ∀ v ∈ K, (36)
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where M := ‖u‖W 1,∞(Ω). But the Cauchy-Schwarz inequality∣∣∣∣∫
Ω

zwdx

∣∣∣∣ ≤ (∫
Ω

z2dx

)1/2(∫
Ω

w2dx

)1/2

,

applied with z := |∇u−∇v|√
1+|∇v|2

, w :=
√

1 + |∇v|2, implies

(∫
Ω

|∇u−∇v|dx
)2

≤
∫

Ω

|∇u−∇v|2

1 + |∇v|2
dx ·

∫
Ω

(1 + |∇v|2)dx.

Together with (36), the latter inequality leads to

〈Q(v), v − u〉 ≥ 1
2(1 +M2)

·
(∫

Ω
|∇u−∇v|dx

)2∫
Ω
(1 + |∇v|2)dx

, ∀ v ∈ K. (37)

For v ∈ K, ‖v‖ ≤ ρ, inequality (37) gives

〈Q(v), v − u〉 ≥ 1
2(1 +M2)(mes Ω + ρ2)

(∫
Ω

|∇u−∇v|dx
)2

. (38)

Now, we use the fact that the standard norm and seminorm of the spaceW 1,1(Ω)
are equivalent on the subspace W 1,1

0 (Ω). Because (u − v)|Γ = 0 holds for any
v ∈ K, this implies

∃ c > 0 :
∫

Ω

|∇u−∇v|dx ≥ c‖u− v‖W 1,1(Ω), ∀ v ∈ K, (39)

and the conclusion of Proposition 2 follows from (38) and (39) with

c(ρ) =
c2

2(1 +M2)(mes Ω + ρ2)
.

�
It should be noticed that the embedding H1 ⊂W 1,1 is not compact.

Application of GPP-method to minimal surface problems
Considering the application of the GPP-method to V I(Q,K) (with Q in (31)

and K in (32) or (26)), we suppose, as already mentioned, that Ω is a convex
polygonal domain, V I(Q,K) is solvable and its solution u∗ belongs to H2(Ω).

As regularizing functional r : v 7→ ‖v‖2 is used (in case Kk ⊂ K ∀ k, the
choice r(v) = ‖v‖2

H1
0 (Ω)

may be preferable). Obviously, these functionals possess
the property (16).

One can easily show that the operators

v 7→ Q(v) + χk(∇r(v)−∇r(uk))

in the subproblems (P k) of GPP-method, in distinction to the operator Q, are
uniformly elliptic. This is the reason to speak about an elliptic regularization.
Moreover, choosing a positive sequence {χk} separated from 0 (this is allowed
by the conditions on the regularization parameter), the uniform ellipticity of
these operators with a common constant of ellipticity is guaranteed. This is
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an important advantage in comparison with the classical elliptic regularization
approach.

Applying the finite element method as described at the beginning of Section
4, we deal here with sets Kk given by (28) (but with Γ1 = Γ) or (29). The
inclusion Kk ⊂ K is not very realistic in this case, therefore we have to check
Assumption 2 modified as described in Remark 1.

The validity of (2-i) and (2-ii) (with B = 0, χ̃ = 0) is obvious. To show (2-iii)
for an arbitrary w ∈ K, if K is given by (26), one can rewrite K in the form

K = g + {v ∈ H1
0 (Ω) : v ≥ ψ − g}

and then follow the proof of Theorem 3.2 in [10], Sect. 1.2. This provides

∃ wk ∈ Kk : lim
k→∞

‖wk − w‖ = 0. (40)

If K is given by (32), the relation (40) is well-known. The application of Propo-
sition 1 and (40) yields

lim
k→∞

‖Q(wk)−Q(w)‖V ′ = 0.

Now we check the fulfillment of condition (a) in Remark 1 in the case that
the set K is given by (32).

Denote φIk
the linear interpolant of a function φ on the triangulation Tk. For

an arbitrary vk ∈ Kk take zk(vk) = vk + g − gk, where gk := gIk
. Obviously,

zk(vk) ∈ K. From Theorem 3.2.1 in [2], already for g ∈ H2(Ω), the estimate

‖g − gk‖ ≤ c̄‖g‖H2(Ω)hk

holds with c̄ independent of g, hk and Tk. Hence,

‖zk(vk)− vk‖ ≤ c̄‖g‖H2(Ω)hk,

i.e. condition (a) is guaranteed with c3 = c̄‖g‖H2(Ω).
However, if the set K is given by (26), we are able to prove only the weaker

condition (b) in Remark 1. In this case, for an arbitrary vk ∈ Kk, take

zk(vk) = max{vk + g − gIk
, ψ}.

Then zk(vk) ∈ K, and with gk = gIk
, ψk = ψIk

the relation

g − gk ≤ zk(vk)− vk ≤ max{g − gk, ψ − ψk} (41)

holds on Ω̄.
Green’s formula yields

〈Q(u∗), zk(vk)− vk〉 = −
∫

Ω

div
∇u∗√

1 + |∇u∗|2
(zk(vk)− vk)dx

+
∫

Γ

∂

∂n

∇u∗√
1 + |∇u∗|2

(zk(vk)− vk)dΓ, (42)

where ∂
∂n denotes the normal derivative on Γ.

Assuming that g ∈ C2(Ω̄), ψ ∈ C2(Ω̄), Theorem 3.1 in [38] provides the esti-
mates

‖g − gk‖C(Ω̄) ≤ c(g)h2
k, ‖ψ − ψk‖C(Ω̄) ≤ c(ψ)h2

k. (43)
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From (41)-(43) we conclude the fulfillment of the first part of condition (b) in
Remark 1. The second part follows from the proof of Theorem II.2.3 in [8].

Now, we are ready to apply the convergence results from Section 3. Let us
recall that Ω is a convex polygonal domain, the sets Kk are described by (28)
(with Γ1 = Γ) or (29), the functions g, ψ are sufficiently smooth and for the
optimal solution u∗ it is supposed that u∗ ∈ H2(Ω).

The following statement is an immediate corollary of the Theorems 1 and 2.

Theorem 3

(i) The problems {(P k)}, corresponding to V I(Q,K) (with Q defined by (31)
and K by (32) or (26)) are solvable.

(ii) Let the controlling sequences of GPP-method satisfy the conditions (1),
(2) and

∑∞
k=1

δk

χk
<∞.

a) If u∗ belongs to H2(Ω), then uk ⇀ u∗ in V .

b) If u∗ belongs to H2(Ω)∩W 1,∞(Ω), then limk→∞ ‖uk−u∗‖W 1,1(Ω) = 0.

Remark 6 A quite similar analysis can be performed for GPP-method applied
to the variational formulation of the Dirichlet problem for the equation of pre-
scribed mean curvature. Here the operator Q is defined by

〈Q(u, v)〉 =
∫

Ω

(
∇u · ∇v√
1 + |∇u|2

− pv

)
dx, ∀ u, v ∈ V

(cf. with (31)). Under the assumption that u∗ ∈ H2(Ω) ∩ W 1,∞(Ω), we also
obtain

lim
k→∞

‖uk − u∗‖W 1,1(Ω) = 0.

�

4.2 Convection- diffusion problem

Formulations and properties of the problem
This problem arises in many areas such as the transport and diffusion of pol-

lutants, simulation of oil extraction from underground reservoirs, heat transport
problems in the convection-dominated case, etc.

Again, let Ω be an open domain in R2 with a Lipschitz continuous boundary
Γ, which now is divided into disjoint connected pieces Γ1 and Γ2, mes Γ1 > 0
(Γ2 = ∅ is not excluded). We consider the convection-diffusion equation

−ε∆u+ b · ∇u+ cu = f on Ω (44)

with boundary conditions

u = g1 on Γ1,
∂u

∂n
= g2 on Γ2. (45)

The functions b = (b1, b2), c and f are supposed to be sufficiently smooth on Ω,
g1, g2 ∈ H2(Ω); c ≥ 0 holds on Ω and ε is a small positive constant such that

0 < ε << ‖b‖[L∞(Ω)]2 . (46)
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The unknown function umay represent the concentration of a pollutant being
transported along a stream moving at velocity b and also subject to diffusive
effects. Alternatively, u may represent the temperature of a fluid moving along
a heated wall. The relation (46) corresponds to the situation that the diffusion
is a less significant physical effect than the convection. For instance, on a windy
day a pollutant moves fast in the direction of the wind, whereas a spreading due
to molecular diffusion remains small.

The relation (46) causes a so-called boundary layer: a fast variation of the
gradient of the solution near a part of the boundary. Such problems are called
singularly perturbed. This peculiarity is illustrated in the following slightly mod-
ified example from [5].

Example 1 The equation

−ε∆u+
∂u

∂x2
= 0 on Ω := (0, 1)× (−1, 1)

is considered subject to Dirichlet boundary conditions

u(x1,−1) = x1, u(x1, 1) = 0

u(0, x2) = 0, u(1, x2) =
1− exp((x2 − 1)/ε)

1− exp(−2/ε)
(i.e. u(1, x2) ∈ [0, 1] ∀ x2 ∈ (−1, 1)).

The unique solution of this problem is (cf. Figure)

u(x1, x2) = x1
1− exp((x2 − 1)/ε)

1− exp(−2/ε)
.
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One can easily see that, for small ε, this solution is very close to the function
x1 except near the boundary part x2 = 1. But,

∂u(x)
∂x2

= −x1
exp((x2 − 1)/ε)
1− exp(−2/ε)

ε−1,

and for any x1 > 0, d > 0

lim
∂u(x)
∂x2

= −∞ if x2 = 1− dε, ε→ 0.

�

In general, in the most part of the domain the solution of problem (44), (45)
is close to the solution of the reduced (hyperbolic) equation

b · ∇u+ cu = f (47)

with appropriate boundary conditions. If Γ− ⊂ Γ1, where Γ− = {x ∈ Γ : b · n <
0} is a so-called inflow boundary (n denotes the outward-pointed unit vector
normal to Γ), then this boundary condition is

u = g on Γ−. (48)

Boundary layers arise near an outflow boundary Γ+ = {x ∈ Γ : b · n > 0} and
a characteristic boundary Γ0 = {x ∈ Γ : b · n = 0}, where the solutions of the
problems (44), (45) and (47), (48) can differ significantly, and the boundary
layer functions (x1 exp((x2 − 1)/ε) in our example) characterize approximately
the difference between these solutions.

The presence of boundary layers causes serious difficulties for the applica-
tions of discretization techniques (finite-difference- and finite element methods)
to convection-diffusion problems. There are numerous publications dealing with
special discretization procedures and special algorithms for solving discretized
convection-diffusion problems ( see [5], [35] and references therein).

Introducing the space V = {v ∈ H1(Ω) : u|Γ1 = 0} with the norm ‖v‖ :=
‖∇v‖[L2(Ω)]2 (see [2], Theorem 1.2.1 concerning the equivalence of this norm
and the standard norm of H1(Ω) in case mes Γ1 > 0), one can describe a weak
formulation of problem (44), (45) as follows:

find u ∈ V such that

ε

∫
Ω

∇u · ∇vdx+
∫

Ω

[(b · ∇u)v + cuv]dx =
∫

Ω

f̄vdx+ ε

∫
Γ2

ḡvdΓ, ∀ v ∈ V, (49)

where f̄ = f + ε∆g1 − b · ∇g1 − cg1, ḡ = g2 − ∂g1
∂n .

Applying the trace inequality

‖v‖L2(Γ) ≤ c1‖v‖, ∀ v ∈ H1(Ω) (50)

(see, for instance, [2], Section 1.2) to estimate the term ε
∫
Γ2
ḡvdΓ, the continuity

of the functional
v 7→

∫
Ω

f̄vdx+ ε

∫
Γ2

ḡvdΓ
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in the space V can be easily concluded, hence

∃ l ∈ V ′ : 〈l, v〉 =
∫

Ω

f̄vdx+ ε

∫
Γ2

ḡvdΓ, ∀ v ∈ V. (51)

The estimate ∣∣∣∣∫
Ω

(b · ∇u)vdx
∣∣∣∣ ≤ d sup

x∈Ω
|b(x)|‖u‖‖v‖

(with d : ‖v‖L2(Ω) ≤ d‖v‖ ∀ v ∈ V )
is proved by using twice the Cauchy-Schwarz inequality. Now the continuity of
the bilinear form in (49) follows in a standard way. Thus, according to the Riesz
representation theorem, there exists an operator A ⊂ L(V, V ′) such that

〈Au, v〉 = ε

∫
Ω

∇u · ∇vdx+
∫

Ω

(b · ∇u)vdx+
∫

Ω

cuvdx. (52)

Its strong monotonicity can be shown under the additional assumption that

c− 1
2
div b ≥ 0 on Ω, and Γ2 ⊂ Γ+

which is supposed in the sequel.
Indeed, applying Green’s formula to

α(u, v) :=
∫

Ω

(b · ∇u)vdx

we obtain

α(u, v) = −
∫

Ω

udiv(vb)dx+
∫

Γ2

uv(b · n)dΓ

= −
∫

Ω

uvdivbdx−
∫

Ω

(b · ∇v)udx+
∫

Γ2

uv(b · n)dΓ

= −
∫

Ω

uvdivbdx− α(v, u) +
∫

Γ2

uv(b · n)dΓ.

Thus
α(u, u) = −1

2

∫
Ω

u2divbdx+
1
2

∫
Γ2

u2(b · n)dΓ,

and b · n > 0 in Γ2 holds because of Γ2 ⊂ Γ+. Now

α(u, u) +
∫

Ω

cu2dx ≥
∫

Ω

(c− 1
2
divb)u2dx ≥ 0,

and according to (52)

〈Au, u〉 ≥ ε‖u‖2, ∀ u ∈ V. (53)

From the monotonicity and continuity of the operator A it follows that A is
maximal monotone, and together with (53) this guarantees the existence of a
unique u∗ ∈ V such that

〈Au∗ − l, v〉 = 0, ∀ v ∈ V.
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Because α(u, v) 6= α(v, u), the operator is not symmetric, hence problem (44),
(45) cannot be transformed - at least not in a natural way - into an optimization
problem.

Conditions on the data of problem (44), (45), which provide u∗ ∈ H2(Ω),
can be found in [9], [20]. In particular, u∗ ∈ H2(Ω) holds in the case that Ω is
a convex polygonal domain, Γ1 = Γ, functions b, c, g1 are sufficiently smooth,
and f ∈ L2(Ω) (see [20], Theorem III.9.1 and Remark III.9.4).

Application of GPP-method to convection-diffusion problems
Applying the GPP-method with r : v 7→ ‖v‖2 and an appropriate parameter

sequence {χk}, we approximate the singularly perturbed elliptic problem (44),
(45) by a sequence of problems with unperturbed elliptic operators. Remind that
this is not attainable by means of the classical approach of elliptic regularization.
On this way, the boundary layers (also inner layers if exist; see [35] for this
notion) will be accumulated gradually, because of the term −χk∇r(uk) in the
operator of problem (P k).

In particular, for problem (44), (45) with Γ1 = Γ, g1 ≡ 0, the exact problem
(P k) (with δk = 0) consists in the finding of a weak solution of the equation

−(ε+ 2χk)∆u+ b · ∇u+ cu = f + 2χk∆uk, in H1
0 (Ω).

The gradual accumulation of boundary- and inner layers allows us a more suc-
cessful application of standard finite element methods, and with ε+2χk in place
of ε, we obtain a better stability and conditioning of the discretized problems.

Remark 7 In [35], authors analyze situations where boundary- and inner layer
functions can be defined a priori - sometimes in explicit form - by using a
standard technique from the singular perturbation theory. If such functions are
known (exact or approximately), they can be used to choose a starting point in
the GPP-method or to correct an approximate solution after certain number of
iterations. �

Now, we examine the application of the convergence results from Section 3
to the GPP-method for solving the convection-diffusion problem in the form
(49). As in the previous case, it is supposed that Ω is a convex polygonal set
and that the solution u∗ belongs to H2(Ω). So, we deal with auxiliary problems
(P k) in the space V = {v ∈ H1(Ω) : u|Γ1 = 0}, in which

Q : v 7→ Av − l, ϕk ≡ 0, r : v 7→ ‖v‖2

and Kk are given by (28).
Obviously, in this caseKk ⊂ K := V , (2-i) and (16) are satisfied. Assumption

(1-ii) is valid with the operator B = −ε∆, and in (2-ii) one can take χ̃ = 0.
The relation

∀ w ∈ K, ∀ k, ∃wk ∈ Kk : lim
k→∞

‖w − wk‖ = 0

follows immediately from the proof of Theorem 3.3 in [10], Section 1.1., and
therefore, the continuity of the operator A implies the validity of (2-iii).

Next, because u∗ ∈ H2(Ω), the estimate

‖u∗ − u∗Ik
‖ ≤ c‖u∗‖H2(Ω)hk, ∀ k
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is known, and taking into account that u∗Ik
∈ Kk and

‖Q(u∗)−Q(u∗Ik
)‖ ≤ ‖A‖V ′‖u∗ − u∗Ik

‖,

assumption (2-v) is valid with σk := hk if
∑∞

k=1
hk

χk
<∞.

Finally, since the operator B = −ε∆ is strongly monotone on V , condition
(iii) in Theorem 1 holds with B̂ = 0.

Therefore, choosing the controlling parameters according to (1), (2) and∑∞
k=1

δk

χk
< ∞, one can use Theorem 1, which guarantees that the iterates

uk of the GPP-method converge to u∗ strongly in V .

4.3 Problems in linear elasticity theory

Now we consider briefly some other applications of the GPP-method.
In [11], [12] the proximal point method was developed for solving variational

inequalities in elasticity theory: two-body contact problems without friction and
static problems of linear elasticity with given friction have been investigated.

In distinction to the GPP-method described here, in [11], [12] a so-called
multi-step proximal point method has been studied, where at each discretiza-
tion level proximal iterations are repeated within a special efficiency criterion.
This allows one to obtain better approximate solutions at each discretization
level. However, a certain unconventional information about the variational in-
equality V I(Q, ϕ,K) is needed, in particular, an upper bound d for the norm
of some solution and bounds for the image of the operator Q + ∂ϕ on the set
K ∩ IBd (see also [14], [13]).

The static problem of linear elasticity with given friction
At first we check the application of the GPP-method to the static problem

of linear elasticity with given friction. For its mechanical interpretation and
theoretical analysis see [3], Chapt. 3.

Let Ω ⊂ R2 be as in previous subsections, Γc be a connected part of the
boundary Γ, S ∈ [L∞(Γc)]2 be a given vector-function; the elasticity coeffi-
cients aklmp (k, l,m, p = 1, 2) are assumed to be measurable and bounded on Ω.
Moreover, the symmetry

aklmp = alkmp = amp,kl

is supposed as well as the existence of a positive constant α0 such that

aklmp(x)σklσmp ≥ α0σklσkl (54)

holds for all symmetric matrices (σkl)k,l=1,2 and almost every x ∈ Ω. In this
description, summation over repeated indices is always assumed.

Applying the notation

V = [H1(Ω)]2, Sn = S · n, ut = u− (u · n)n
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(n - outward unit normal to Γc),

εkl(u) =
1
2

(
∂uk

∂xl
+
∂ul

∂xk

)
, k, l = 1, 2,

〈Au, v〉 =
∫

Ω

aklmpεkl(u)εmp(v)dΩ, ∀ u, v ∈ V,

Q(v) = Av − l, (l ∈ V ′ is given),

ϕ(u) =
∫

Γc

µ|Sn| |ut|dΓ, (µ > 0 a given constant),

the problem is formulated as the variational equality

find u ∈ V, p ∈ ∂ϕ(u) : 〈Q(u) + p, v〉 = 0, ∀ v ∈ V. (55)

The kernel ker(A) of the operator A on the space V has the structure

ker(A) : {z = (z1, z2) : z1 = a1 − bx2, z2 = a2 + bx1}

with arbitrary a1, a2, b ∈ R.
About the solvability of problem (55) the following result is known.

Proposition 3 (cf. [3])

(i) The condition
|〈l, v〉| ≤ ϕ(v), ∀ v ∈ ker(A)

is necessary for the solvability of problem (55).

(ii) A solution exists if

|〈l, v〉| < ϕ(v), ∀ v ∈ ker(A), v 6= 0.

(iii) If u∗ and u∗∗ are two solutions of (55), then u∗ − u∗∗ ∈ ker(A).

Applying the GPP-method to problem (55), we approximate the convex func-
tional ϕ by a sequence of convex continuously differentiable functionals

ϕk : v 7→
∫

Γc

µ|Sn|
√
|vt|2 + h2

kdΓ.

With the use of the trace inequality (50), one can conclude that for all u, v ∈ V

|ϕ(u)− ϕ(v)| ≤
∫

Γc

µ|Sn| |ut − vt|dΓ ≤
∫

Γc

µ|Sn| |u− v|dΓ

≤
(∫

Γc

(µ|Sn|)2dΓ
)1/2

‖u− v‖[L2(Γc)]2 ≤ c0‖u− v‖, (56)

i.e., the functional ϕ is Lipschitz continuous on V .
Assumption (2-iv) and the estimate

ϕk(v)− ϕ(v) ≤ hk

∫
Γc

µ|Sn|dΓ (57)



26 A. KAPLAN and R. TICHATSCHKE

are obviously valid.
A successive approximation of V by a sequence of subspaces {V k} can be

performed as above, by using the finite element method on a sequence of trian-
gulations Tk with parameter hk; namely,

V k := {v ∈ [C(Ω̄)]2 : v|T ∈ [P1(T )]2, ∀ T ∈ Tk}

and Kk := V k.
For the following estimates we keep the assumption that Ω is a polygonal set

and refer to [10], Chapt. 2 for approximations on non-polygonal domains. We
also suppose that some solution u∗ of problem (55) belongs to [H2(Ω)]2. Then,
according to Proposition 3, u ∈ [H2(Ω)]2 holds for any solution of (55).

The inclusion Kk ⊂ K := V is evident. Moreover, the relations

w ∈ K ⇒ wIk
∈ Kk ∀ k, lim

k→∞
‖w − wIk

‖ = 0, (58)

and
v ∈ [H2(Ω)]2 ⊂ K ⇒ ‖v − vIk

‖ ≤ c̄‖v‖[H2(Ω)]2hk, ∀ k (59)

hold true. Now using (56)-(59) together with

‖Q(v)−Q(u)‖ ≤ ‖A‖V ′‖u− v‖, ∀ u, v ∈ V,

we immediately conclude the fulfillment of the assumptions (2-v) (for any solu-
tion of (55) and with σk = hk in (3)) and (2-iii).

Taking into account relation (54), the operator

B : 〈Bu, v〉 = α0

∫
Ω

εkl(u)εkl(v)dx, ∀ u, v ∈ V

satisfies (1-ii), and the second Korn inequality (see, for instance, [31], Chapt. 1)
allows one to guarantee the validity of assumption (2-ii) with the regularizing
functional

r : u 7→ ‖u‖2[L2(Ω)]2 , (60)

which meets also assumption (2-i). Of course, r : u 7→ ‖u‖2 is also a possible
choice, but (60) is more preferable from the numerical point of view.

Remark 8 Using the regularizing functional (60) we recover here the proximal
method with weak regularization (cf. [11], [17]).Some applications and numerical
results showing a significant acceleration of the convergence compared with the
standard proximal regularization can be found in [36], [37]. �

Thus, we have established the fulfillment of Assumptions 1 and 2. In order
to apply Theorem 1, let us mention that (16) is evident and the condition on
the operator B̂ in Theorem 1 is valid for

B̂ : 〈B̂u, v〉 =
∫

Ω

uvdΩ, ∀ u, v ∈ V.

On this way we obtain the following result.

Theorem 4



Proximal point method and elliptic regularization 27

(i) The problems (P k), corresponding to the variational equation (55), are
solvable.

(ii) If the controlling sequences {χk}, {hk}, {δk} of the GPP-method satisfy
(1), (2) and

∑∞
k=1

δk

χk
< ∞ and a solution of (55) belongs to [H2(Ω)]2,

then the iterates of this method converge strongly in V to some solution of
(55).

The two-body contact problem
The two-body contact problem in the form of a variational inequality V I(Q,K)

was studied in [12] under the following assumptions:

◦ Ω′,Ω′′ ⊂ R2 are bounded polyhedral domains, Ω′∩Ω′′ = ∅, with a common
boundary part Γc = ∂Ω′ ∩ ∂Ω′′, mes Γc > 0;

◦ V := {(v′, v′′) ∈ [H1(Ω′)]2 × [H1(Ω′′)]2 : v′ = 0 on Γu}, where Γu ∈ ∂Ω′,
Γu ∩ Γc = ∅ and mes Γu > 0;

◦ K := {v ∈ V : v′ · n− v′′ · n ≤ 0 on Γc}, n denotes the unit normal to Γc

pointed outward Ω′;

◦ Q : v 7→ Av − l, where l ∈ V ′ and A : V → V ′ is a linear continuous
and monotone operator with a finite dimensional kernel on [H1(Ω′)]2 ×
[H1(Ω′′)]2 such that

∃ m0 > 0 : 〈Av, v〉+ ‖v′′‖[L2(Ω′′)]2 ≥ m0‖v‖2, ∀ v ∈ V

(in [12], V I(Q,K) is considered with a certain linear elasticity operator
Q possessing these properties).

The use of the finite element method, like described in Subsection 4.2 of the men-
tioned paper, provides the inclusion Kk ⊂ K ∀ k. If some solution of V I(Q,K)
belongs to [H1(Ω′)]2 × [H1(Ω′′)]2, then choosing the regularization functional

r : (v′, v′′) 7→ ‖v′′‖2[L2(Ω)]2

and following the analysis of the previous problem, one can satisfy all conditions
of Theorem 1. This guaranties the strong convergence in V for the iterates of
the GPP-method to some solution of the two-body contact problem.

5 Conclusion

Typically, standard discretization methods in mathematical physics are not
efficient when applied to degenerate and singularly perturbed elliptic variational
inequalities, and there are numerous investigations addressed to the creation
of special discretization procedures, for instance finite element methods with
upwinding, streamline diffusion finite element methods, etc. [5], [35]. Also special
algorithms for solving the arising discretized problems are needed.

In this paper, we develop a quite different idea, which may be presented as
follows: Using the proximal regularization, the original variational inequality is
approximated by a sequence of uniformly elliptic problems, which can be treated
with standard finite element techniques and standard solvers. Moreover, only a
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single discretization is used for each regularized problem, with a mild rule for
decreasing of the triangulation parameter in the outer process.

In various schemes of proximal point methods the conditions on data ap-
proximation are of Mosco’s type with order α > 0 (see [28] for the definition
as well as [21], [1]), or outer approximations of the set K are used [16]. These
conditions are certainly not suitable if we deal with problems in mathematical
physics and use finite element or finite-difference methods. Indeed, in this case
Kk 6⊃ K, and for an arbitrary element u ∈ K at best the relation

lim
k→∞

min
v∈Kk

‖u− v‖ = 0

can be concluded (without any estimate for the rate of convergence), i.e., the
Mosco convergence with order α > 0 cannot be guaranteed.

Abstract assumptions admitting the described peculiarity were introduced
first in [14]. Here we use a weaker form of these assumptions.

Growth conditions used so far to obtain a more qualitative convergence of
proximal point methods (see for instance [34], [25], [15]) are not fulfilled in the
case of the operator Q in the minimal surface problem. Therefore, the known
convergence results provide only weak convergence in H1(Ω) of the proximal
point methods when applied to this problem or related variational inequalities
studied in Subsection 4.1. Theorem 2 of the present paper, based on a new
growth condition (Assumption 3), allows to establish a convergence of the iter-
ates of the GPP-method for these problems in the norm of the space W 1,1(Ω),
see also Theorem 3 for the exact result.

We conclude with the remark that an application of the elliptic proximal
regularization method (without discretization) for solving parabolic variational
inequalities was studied in [15].
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Physique. Dunod, Paris, 1972.

[4] Ekeland, I., and Temam, R. Convex Analysis and Variational Problems.
North-Holland, Amsterdam, 1976.

[5] Elman, H., Silvester, D., and Wathen, A. Finite Elements and Fast
Iterative Solvers. Oxford University Press, N. Y., 2005.

[6] Fabes, E., Luskin, M., and Sell, G. Construction of inertial manifolds
by elliptic regularization. J. of Diff. Equatioons 89 (1991), 355–387.

[7] Giusti, E. Minimal Surfaces and Functions of Bounded Variations. Mono-
graphs in Mathem., v. 80, Birkhäuser, 1984.
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