
Exact Algorithms for Maximum Acyclic

Subgraph on a Superclass of Cubic Graphs

Henning Fernau & Daniel Raible

Univ.Trier, FB 4—Abteilung Informatik, 54286 Trier, Germany
{fernau,raible}@uni-trier.de

Abstract. Finding a maximum acyclic subgraph is on the list of prob-
lems that seem to be hard to tackle from a parameterized perspective.
We develop two quite efficient algorithms (one is exact, the other param-
eterized) for (1, n)-graphs, a class containing cubic graphs. The running
times are O∗(1.1871m) and O∗(1.212k), respectively, determined by an
amortized analysis via a non-standard measure.

1 Introduction and Definitions

Our problem. The Feedback Arcset Problem FAS, is on the list of 21
problems that was presented by R.M. Karp [10] in 1972 exhibiting the first
NP-complete problems. It has numerous applications [7], ranging from program
verification, VLSI and other network applications to graph drawing, where in
particular the re-orientation of arcs in the first phase of the Sugiyama approach
to hierarchical layered graph drawing is equivalent to FAS, see [2,16]. More for-
mally, we consider the dual of FAS, namely the following problem:

Maximum Acyclic Subgraph MAS
Given a directed graph G(V, A), and the parameter k.
We ask: Is there a subset A′ ⊆ A, with |A′| ≥ k, which is acyclic?

In this paper, we deal with finding exact and parameterized algorithms for MAS.
Mostly, we focus on a class of graphs that, to our knowledge, has not been pre-
viously described in the literature. Let us call a directed graph G = (V, E)
(1, n)-graph if, for each vertex v ∈ V , its indegree d+(v) obeys d+(v) ≤ 1 or
its outdegree d−(v) satisfies d−(v) ≤ 1 (i.e, ∀v ∈ V : min{d+(v), d−(v)} ≤ 1.).
In particular, graphs of maximum degree three are (1, n)-graphs. Notice that
MAS, restricted to cubic graphs, is still NP-complete. For some applications
from graph drawing (e.g., laying out “binary decision diagrams” where vertices
correspond to yes/no decisions) even the latter restriction is not so severe at all.
Having a closer look at the famous paper of I. Nassi and B. Shneiderman [12]
where they introduce structograms to aid structured programming (and restrict-
ing the use of GOTOs), it can be seen that the resulting class of flowchart graphs
is that of (1, n)-graphs.
Cubic graphs also have been discussed in relation to approximation algorithms:
A. Newman [13] showed a factor 12

11 -approximation. This largely improves on

2 H. Fernau and D. Raible

the general situation, where only a factor of 2 is known [2]. We point out that
finding a minimum feedback arc set (in general graphs) is known to possess a
factor log n log log n-approximation, see [7], and hence shows an approximability
behavior much worse than MAS.

Our framework: Parameterized Complexity. A parameterized problem P
is a subset of Σ∗ × N, where Σ is a fixed alphabet and N is the set of all non-
negative integers. Therefore, each instance of the parameterized problem P is a
pair (I, k), where the second component k is called the parameter. The language
L(P) is the set of all YES-instances of P . We say that the parameterized problem
P is fixed-parameter tractable [5] if there is an algorithm that decides whether
an input (I, k) is a member of L(P) in time f(k)|I|c, where c is a fixed constant
and f(k) is a function independent of the overall input length |I|. We will also
write O∗(f(k)) for this run-time bound. Equivalently, one can define the class of
fixed-parameter tractable problems as follows: strive to find a polynomial-time
transformation that, given an instance (I, k), produces another instance (I ′, k′)
of the same problem, where |I ′| and k′ are bounded by some function g(k); in
this case, (I ′, k′) is also called a (problem) kernel.

Discussion of related results. MAS on general directed graphs can be solved
in time O∗(2k) and O∗(2n), shown by V. Raman and S. Saurabh in [14], with n
the number of vertices. Recently, J. Chen, I. Razgon et al. [4] showed that FAS
∈ FPT . In contrast to MAS, it still admits a fairly vast run time of O∗(8kk!).
Likewise, I. Razgon [15] provided an exact (non-parameterized) O∗(1.9977n)-
algorithm for Feedback Vertex Set (FVS), which translates to a FAS-
algorithm with the same base, but measured in m.
The complexity picture changes when one considers undirected graphs. The task
of removing a minimum number of edges to obtain an acyclic graph can be ac-
complished in polynomial time, basically by finding a spanning forest. The task
of removing a minimum number of vertices to obtain an acyclic graph is (again)
NP-complete, but can be approximated to a factor of two, see V. Bafna et al. [1],
and is known to be solvable in O∗(5k) with J. Chen et al. [3] being the currently
leading party in a run time race. Also, exact algorithms have been derived for
this problem by F. V. Fomin et al. [8].

Our contributions. Our main technical contribution is to derive a parame-
terized O∗(1.212k)-algorithm for MAS on (1, n)-graphs. On cubic graphs the
run time reduces to O∗(1.1960k) via a novel combinatorial observation. We also
derive an exact algorithm for MAS on (1, n)-graphs and as by-products two
other for Directed Feedback Vertex Set on cubic and planar graphs with
running times O∗(1.1871m), O∗(1.282n) and O∗(1.986n), respectively. Besides
being a nice combinatorial problem on its own right, we think that our contri-
bution is also interesting from the more general perspective of a development
of tools for constructing efficient parameterized algorithms. Namely, the algo-
rithm we present is of a quite simple overall structure, similar in simplicity as,
e.g., the recently presented algorithms for Hitting Set [6]. But the analysis is
quite intricate and seems to offer a novel way of amortized search tree analysis
that might be applicable in other situations in parameterized algorithmics, as

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 3

well. It is also one of the fairly rare applications of the “measure & conquer”
paradigm [9] in parameterized algorithmics.

Fixing terminology. We consider directed multigraphs G(V, A) in the course
of our algorithm, where V is the vertex set and A the arc set. From A to V
we have two kinds of mappings: For a ∈ A, init(a) denotes the vertex at the
tip of the arc a and ter(a) the end. We distinguish between two kinds of arc-
neighborhoods of a vertex v which are E+(v) := {a ∈ A | ter(a) = v} and
E−(v) := {a ∈ A | init(a) = v}. We have an in- and outdegree of a vertex, that
is d+(v) := |E+(v)| and d−(v) := |E−(v)|. We set E(v) := E+(v) ∪ E−(v) and
d(v) := |E(v)| called the degree of v. We also define a neighborhood for arcs a
NA(a) := {a1, a2 ∈ A | ter(a1) = init(a), ter(a) = init(a2)} and for A′ ⊆ A we
set NA(A′) :=

⋃

a′∈A′ NA(a′). For V ′ ⊆ V we set A(V ′) := {a ∈ A | ∃u, v ∈
V ′, init(a) = u, ter(a) = v}. We call an arc (u, v) a fork if d−(v) ≥ 2 (but
d+(v) = 1) and a join if d+(u) ≥ 2 (but d−(u) = 1). With MAS , we refer to a
set of arcs, which is acyclic and is a partial solution. An undirected cycle is an
acyclic arc set, which is a cycle in the underlying undirected graph.

2 Reference Search Trees

We will introduce a new kind of search scheme for combinatorial optimization
problems. These problems can usually be modeled as follows. We are given a
Triple (U ,S, c) such that U = {u1, . . . , un} is called the universe, S ⊆ P(U) is
the solution space and c : P(U) → N is the value function. Generally we are
looking for a S ∈ S such that c(S) is minimum or maximum. We then speak of a
combinatorial minimization (maximization, resp.) problem. The general search
space is P(U).
The set vector (svQ) of a set Q ∈ P(U) is a 0/1-vector indexed by the elements
of U such that: svQ[i] = 1 ⇐⇒ ui ∈ Q. We write svQ ∈ S when we mean Q ∈ S
A solvec is a 0/1/⋆-vector. We define the following partial order � on solvecs
s1, s2 of length n:

s1 � s2 ⇐⇒ ∀1 ≤ i ≤ n : (s1[i] = ⋆⇒ s2[i] = ⋆)

∧(s1[i] = d (d ∈ {0, 1})⇒ s2[i] ∈ {d, ⋆}).

A branching is a directed tree D(V, T) with root r ∈ V such that all arcs are
directed from the father-vertex to the child-vertex. For a vertex u ∈ V the term
Bu refers to the sub-tree rooted at u.

Definition 1. A reference search tree (rst) for a combinatorial minimization
(maximization, resp.) problem (U ,S, c) is a directed graph D(V, T ∪R) together
with a injective function label : V → {(z1, . . . , zn) | zi ∈ {0, 1, ⋆}} with the
following properties:

1. D(V, T) is a branching.
2. D(V, T ∪R) is acyclic.
3. If u is a child of v in D(V, T) then label(u) � label(v).

4 H. Fernau and D. Raible

4. For any set vector svQ of a set Q ∈ P(U) with Q ∈ S and a vertex v ∈ V
such that svQ � label(v) we have either one of the following properties:
(a) There exists a leaf z ∈ V (Bv) such that c(label(z)) ≤ c(svQ) (c(label(z)) ≥

c(svQ), resp.) and label(z) ∈ S.
(b) There exists a vertex x ∈ V (Bv) such that there is exactly one arc

(x, y) ∈ R and we have that there is a 0/1-vector h with h � label(y)
and c(h) ≤ c(svQ) (c(h) ≥ c(svQ), resp.) and h ∈ S.

How can a rst be exploited algorithmically? It is important to see that in a rst
all the information for finding an optimal solution is included. Ordinary search
trees can be defined by skipping item (b) of Definition 1. In a search tree we
skip a solution s with s � u for a sub-tree Bu if we can find a solution in Bu

which is no worse. In a rst we also have the possibility to make a reference to
another subtree Bf where such a solution could be found. In Bf it might also
be the case that we have to follow a reference once more. So, the only obstacle
seems to be that if we follow reference after reference we end up in a cycle. But
this is prevented by item 2. of Definition 1. An algorithm building up an rst can
eventually benefit by cutting of branches and introducing references instead.

3 The Algorithm

3.1 Preprocessing

Firstly, we can assume that our instance G(V, A) forms a strongly connected
component. Every arc not in such a component can be taken into a solution,
and two solutions of two such components can be simply joined.

In [7,13] a set of preprocessing rules is already mentioned:

Pre-1: For every v ∈ V with d+(v) = 0 or d−(v) = 0, delete v and E(v), take
E(v) intoMAS and decrement k by |E(v)|.

Pre-2: For every v ∈ V with E(v) = {(i, v), (v, o)}, v 6= i and v 6= o, delete v
and E(v) and introduce a new arc (i, o). Decrease k by one.

Pre-3: Remove any loop.

Any preprocessing rule, which applies, will be carried out exhaustively. After-
wards the resulting graph has no vertices of degree less than three.

Definition 2. An arc g is an α-arc if it is a fork and a join.

We need the next lemma, which is a sharpened version of [13, Lemma 2.1]
and follows the same lines of reasoning.

Lemma 1. Any two non-arc-disjoint cycles in a (1, n)-graph with minimum de-
gree at least 3 share an α-arc.

Proof. Suppose cycles C1 and C2 share a path P = u1 . . . uℓ. We show that
at least one arc of P must be an α-arc. Suppose that any arc (ui, ui+1) with
1 ≤ i ≤ ℓ − 1 is not an α-arc. By induction on i ,1 ≤ i ≤ ℓ − 1 we show that

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 5

any (ui, ui+1) is a join. For i = 1 this is clear as C1 and C2 both enter P at
u1. This means that two arcs point towards u1 and by the (1, n)-property we
have that (u1, u2) is a join. Now suppose the claim holds for any (uj.uj+1) with
j ≤ i. Consider the vertex ui+1. Because we have d(ui+1) ≥ 3 there must be
another arc a incident to ui+1 with a 6∈ A(P). As (ui, ui+1) is a join but not an
α-arc it follows a = (v, ui+1) for some v ∈ V \ {u1, . . . , uℓ}. Hence, (ui+1, ui+2)
is a join. Especially (uℓ−1, uℓ) is a join. But on the other hand it must also be a
fork. This is due to the two arcs a1, a2 leaving uℓ (init(a1) = init(a2) = uℓ) such
that a1 ∈ A(C1 \ C2) and a2 ∈ A(C2 \ C1). Thus, (uℓ−1, uℓ) is an α-arc which
contradicts our first assumption. ⊓⊔

We partition A in Aα containing all α-arcs and Aᾱ := A \Aα. By Lemma 1,
the cycles in G[Aᾱ] must be arc-disjoint. This justifies the next preprocessing
rule.

Pre-4 In G delete the arc set of every cycle C contained in G[Aᾱ]. For an
arbitrary a ∈ C adjoin C \ {a} toMAS and decrease k by |C| − 1.

After exhaustively applying Preprocess() (shown in Figure 1), every cycle has
an α-arc.

A Simple Algorithm For v ∈ V with E+(v) = {a1, . . . , as} (E+(v) = {c},
resp.) and E−(v) = {c} (E−(v) = {a1, . . . , as}), it is always better to delete
c than one of a1, . . . , as. Therefore, we adjoin a1, . . . , as to MAS, adjusting k
accordingly. Having applied this rule on every vertex, we adjoined Aᾱ toMAS,
and the remaining arcs are exactly Aα.
So, the next task is to find S ⊆ Aα with |MAS ∪ S| ≥ k so that G[MAS ∪ S]
is acyclic. We have to branch on the α-arcs, deciding whether we take them
intoMAS or if we delete them. The preprocessing rules gives us another simple
brute-force algorithm for MAS: Within the graph with m arcs, there could be
at most m/3 arcs that are α-arcs. It is obviously sufficient to test all possible
2m/3 ≤ 1.26n many possibilities of choosing α-arcs into the (potential) feedback
arc set.

Procedure:

Preprocess(MAS ,G(V, A),k):

1: repeat

2: cont ← false

3: apply Pre-1 - Pre-3 exhaus-
tively.

4: if Pre-4 applies then

5: cont ← true

6: until cont=false

7: return (MAS,G(V, A),k,1)

Procedure:

Reduce(MAS,G(V, A)),k,k′,wk,wk′):

1: repeat

2: cont ← false

3: for i=1 to 6 do

4: apply RR-i exhaustively.
5: if RR-i applied then

6: cont ← true

7: until cont=false

8: return (MAS,G(V, A),k,k′,wk,wk′)

Fig. 1. The procedures Preprocess() and Reduce().

6 H. Fernau and D. Raible

3.2 Reduction Rules.

The Overall Strategy There is a set of reduction rules from [13] for cubic
graphs which also work for (1, n)-graphs. We want to use the power of this re-
duction rules also in our algorithm. For the purpose of measuring the complexity
of the algorithm, we will deal with two parameters k and k′, where k measures
the size of the partial solution and k′ will be used for purposes of run-time
estimation: We do not account the arcs in Aᾱ immediately into k′. For every
branching on an α-arc, we count only a portion of them into k′.
More precisely, upon first seeing an arc b ∈ Aᾱ within the neighborhood NA(g)
of an α-arc g we branch on, we will count b only by an amount of ω, where
0 < ω < 0.5 will be determined later. So, we will have two weighting functions
wk and wk′ for k and k′ with wk(a) ∈ {0, 1} and wk′ (a) ∈ {0, (1 − ω), 1} for
a ∈ A, indicating each how much of the arc has not been counted into k, or
k′ respectively, yet. In the very beginning, we have wk(a) = wk′ (a) = 1 for all
a ∈ A and in the course of the algorithm wk(a) ≤ wk′(a). For a set A′ ⊆ A,
we define wk′ (A′) :=

∑

a′∈A′ wk′ (a′) and wk(A′) accordingly. Observe that for
a ∈ A we have a ∈MAS iff wk(a) = 0.
α-arcs which we take intoMAS will be called red.

Reduction Rules for Weighted Arcs The set of reduction rules from [13]
now will be adapted and modified to deal with weighted arcs. Also, we define a
(linear time checkable) predicate contractible for all a ∈ A.

contractible(a) =

{

0 : wk(a) = 1, ∃ cycle C with a ∈ C and wk(C \ {a}) = 0
1 : else

The meaning of this predicate is the following: if contractible(a) = 0, then a is
the only remaining arc of some cycle, which is not already determined to be put
intoMAS. Thus, a has to be deleted.
In the following, RR-(i-1) is always carried out exhaustively before RR-i.

RR-1 For v ∈ V with d+(v) = 0 or d−(v) = 0, take E(v) into MAS, delete v
and E(v) and decrease k by wk(E(v)) and k′ by wk′(E(v)).

RR-2 For v ∈ V with E(v) = {a, b} let z = argmax{wk′(a), wk′ (b)} and y ∈
E(v) \ {z}. If contractible(y) = 1, then contract y, decrement k by wk(y),
k′ by wk′ (y). If y was red, then z becomes red.

RR-3 If for g ∈ A, we have contractible(g) = 0, then delete g.

We point out that due to RR-2 also non-α-arcs can become red. But it is still
true for a α-arc a that a ∈ MAS iff a is red. Let AU

α := {a ∈ Aα | a is non-red}.
We classify the arcs of AU

α in thin α-arcs, which are contained in exactly one
cycle, and thick α-arcs, which are contained in at least two cycles. Because G
is strongly connected, there are no other α-arcs. We can distinguish them as
follows: For every α-arc g, find the smallest cycle Cg which contains g via BFS.
If g is contained in a second cycle C′

g, then there is an arc a ∈ Cg with a 6∈ C′
g.

So for all a ∈ Cg, remove a and restart BFS, possibly finding a second cycle.

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 7

RR-4 If g ∈ AU
α is thin and contractible(g) = 1, then take g into MAS and

decrease k by wk(g), k′ by wk′ (g) and set wk(g)← 0, wk′ (g)← 0.
RR-5 If a, b ∈ A form an undirected 2-cycle then let z = arg min{wk′(a),

wk′ (b)}, decrease k by wk(z), k′ by wk′ (z), take z into MAS and delete z.
RR-6 Having (u, v), (v, w), (u, w) ∈ A (an undirected 3-cycle), decrease k by

wk((u, w)), k′ by wk′((u, w)), take (u, w) into MAS and delete (u, w).

In section 4.1 we will show the correctness of the reduction rules. This is due to
RR-2 being dependent on the branching strategy.

3.3 The Concrete Algorithm

We now are putting together the preprocessing rules, the reduction rules and
the branching strategy. The obtained algorithm is Algorithm 1.

Algorithm 1 A parameterized algorithm for Maximum Acyclic Subgraph
on (1, n)-graphs

1: (MAS,G(V, A),k,wk)← Preprocess(∅,G(V, A),k).
2: MAS← Aᾱ∪MAS,k′ ← k, k← k −wk(Aᾱ), wk(Aᾱ)← 0
3: Sol3MAS(MAS,G(V, A),k,k′,wk′ ,wk)

Procedure: Sol3MAS(MAS,G(V, A),k,k′,wk,wk′):

1: (MAS,G(V, A),k,k′,wk,wk′)← Reduce(MAS,G(V, A),k,k′,wk,wk′)
2: if k ≤ 0 then

3: return YES

4: else if there is a component C with at most 9 arcs then

5: Test all possible solutions for C.
6: else if there is a α-arc g ∈ AU

α then

7: if not Sol3MAS(MAS ,G[A \ {g}],k,k′,wk,wk′) then

8: k ← k−1, k′ ← k′−wk′(g), wk(g)← wk′(g)← 0,MAS←MAS ∪NA(g)∪{g}.
9: for all a ∈ NA(g) do

10: Adjust wk′ , see Figure 2.
11: return Sol3MAS(MAS,G(V, A),k,k′,wk,wk′)
12: else

13: return YES

14: else

15: return NO

4 The Analysis

In this section we want to show that Algorithm 1 builds up a reference search
tree. Algorithm 1 first applies Preprocess(G). We call the emerging graph G′.
Then Algorithm 1 simply branches on α-arcs g of G′. Either it deletes g or it is
taken intoMAS . In the second case g will be called red. Also we can rely that
every time we meet a red α-arc that there has been a branch on it. After the

8 H. Fernau and D. Raible

Adjust wk′ :

1: if wk′(a) = 1 then

2: if ∃b ∈ (NA(a) \ (NA(g) ∪ {g})) with
wk′(b) = 0 then

3: k′ ← k′ − 1, wk′(a)← 0,
k← k −wk(a), wk(a)← 0 (case a.)

4: else

5: k′ ← k′ − ω, wk′(a)← (1− ω),
k← k −wk(a), wk(a)← 0 (case b.)

6: else

7: k′ ← k′ − (1− ω), wk′(a)← 0. (case c.)

Fig. 2. In case a. we set
wk′(a) = 0, because there will
not be any other neighboring
non-red α-arc of a. In case b.,
this might not be the case, so
we count only a portion of ω.
In case c., we will prove that
wk′(a) = (1− ω) and that there
will be no other non-red neigh-
boring α-arc of a, see Theorem
1.5.

branching the reduction rules will be carried out exhaustively in the subsequent
recursive call.
maximum Acyclic Subgraph can be modelled as a combinatorial minimiza-
tion problem. First, the universe U is the set Aα which comprises all α-arcs in
G′. Let D(V, T) be the ordinary search tree build up by Algorithm 1. The label-
function is induced by the current partial solution in some u ∈ V . That is any
u ∈ V will be mapped to a solvec svu. The vector svu has length |Aα|. If for
g ∈ Aα we have svu(g) = 1 then g ∈ MAS (i.e., g is red), if svu[g] = 0 then g 6∈
MAS (i.e., g has been deleted) and if svu[g] = ⋆ there had been no branching
on g yet. The value function will be c(q) = |{i | qi = 1}| (i.e. the number of ones
in q). The solution space are all subsets S ⊆ Aα which leave G′[A \ S] acyclic.

4.1 Analyzing the Reduction Rules

Lemma 2. 1. The reduction rules are sound.
2. After the application of Reduce(), see Figure 1, we are left with a (1, n)-graph

with only thick α-arcs, no directed or undirected 2- or 3-cycle and no v ∈ V
with d(v) = 2 or min{d+(v), d−(v)} = 0.

Proof. 1. Basically we show the soundness of the reduction rules that they
guarantee item 4(a) of Definition 1. We will not go in to detail in each case
as this will follows implicitly from our arguing. An exception will be RR-2.
This reduction rule will also make use of item 4(b) of the definition. It is the
only reduction rule who actually will insert references into the search tree.

RR-1 A vertex v ∈ V with d+(v) = 0 or d−(v) = 0 cannot be entered and left
by a cycle, so the incident arcs are not part of any cycle.

RR-2 For a vertex v with E(v) = {a, b}, we have to delete at most one arc from
{a, b} in order to cut a cycle. So we can take one intoMAS and contract
it. But additionally we must check if the arc we want to contract is not
the last remaining arc on a cycle, which is not in MAS. This check is
done by contractible(). If so, we have to delete it.
Also RR-2 differs from the one in [13] by the fact that red arcs are

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 9

dominant. It is possible that we create an new α-arc (w, v) by this rule,
(w, v) being red. This is justified by the following claim:

Claim. If an α-arc (w, v) was created by merging a red arc (w, t) and a
non-red arc (t, v), then w.l.o.g. (w, v) ∈ MAS (i.e. (w, v) is red).

Proof. To proof the claim we now are going to proof that Algorithm 1
builds up a reference search tree where the references are inserted by
RR-2. As the universe U we choose Aα, the solution space consists of
the subsets L ⊆ Aα such that G′[L ∪Aᾱ] is acylic and the value of c(L)
is simply |L|. Also we assume that the names of the α-arcs are dominant
concerning RR-2.
This type of application of RR-2 to an arc (t, v) and a red arc (w, t)
is only possible, because at the time when (w, t) became red, there was,
w.l.o.g., a directed path P = w, t, u1, . . . , uj , t

′, v, and during the algo-
rithm we deleted again and again those arcs incident to the ui’s which
are not on P , see Figure 3. Due to this u1 . . . uj disappeared by RR-2
applications in arbitrary order.

v w t z

Fig. 3.

In the present search node N1 of the search tree, just before the merging
of (t, v) and (w, t), we have label(N1) = (e1, . . . , ey, ⋆, . . . , ⋆). W.l.o.g it
is of the form where ei ∈ {0, 1} for 1 ≤ i ≤ y. We assume that e1 corre-
sponds to (w, t) and ey+1 to (t, v). At the point when we want to merge
(w, t) and (t, v), think of unwrapping P . If (w, v) is not an α-arc in G′

then we do not have to branch. Thus (w, v) is such a α-arc.
To destroy any cycle passing through P , we have to delete at most one
arc of P . So, deleting (t, v) would be equivalent to deleting (w, t), i.e.
(e1, . . . , ey, 0, ⋆, . . . , ⋆) and (ē1, . . . , ey, 1, ⋆, . . . , ⋆) are equivalent in the
sense that any solution (e1, . . . , ey, 0, ey+2, . . . , eℓ) can be replaced by
(ē1, . . . , ey, 1, ey+2, . . . , eℓ) and vice versa.
Now, if we follow the path from the present node N1 of the search tree
to its root, we find the node N ′ in which we did a branching with
respect to (w, t) (as it is red). Let N2 be the immediately following
node of N ′ which considers the deletion of (w, t). We have label(N2) =
(ē1, e2, . . . , ex, ⋆, . . . , ⋆) where x ≤ y. Thus, we have
(ē1, . . . , ey, 1, ⋆, . . . , ⋆) � label(N2).
Summarizing, we have that if there is some
ϕ1 := (e1, . . . , ey, 0, ey+2, . . . , eℓ) ∈ S then it follows that

10 H. Fernau and D. Raible

ϕ2 := (ē1, . . . , ey, 1, ey+2, . . . , eℓ) ∈ S, too. Also c(ϕ1) = c(ϕ2) holds.
Consequently as label(ϕ) � label(N2) we do not have to consider the
possibility (e1, . . . , ey, 0, ⋆, . . . , ⋆). The reference which was inserted this
way into D is (N1, N2).

Up to here we have shown items 1, 3, and 4. We now proof that D(V, T ∪
R) is acyclic. We do is in a graphical way. Draw D(V, T) in the plane
with x- and y-coordinates. If u is a point in the plane then posx(u) de-
notes its x- and posy(u) its y-coordinate. It is possible to draw D(V, T)
such that we have two properties.
– First, if v ∈ V (D) is a father of u then posy(v) > posy(u).
– Second, any vertex v ∈ V (D) has two children uv0 , uv1 . uv0 corre-

sponds to the branch where we deleted some α-arc g, in uv1 we de-
cided g ∈ MAS. We want D to be drawn such that for all z ∈ Buv0

we have posx(v) < posx(z) and for all z ∈ Buv1
we have posx(z) <

posx(v).
Hence, we have posx(N1) < posx(N ′) and posx(N ′) < posx(N2). There-
fore the arc (N1, N2) is pointing from the left to the right in the drawing.
This is true for any reference as they are only inserted by RR-2. Be-
cause D(V, T) is also a branching it must be the case that D(V, T ∪ R)
is acyclic as otherwise there should be a reference pointing form right to
left. ⊓⊔

The proof of the claim was quite lengthy but is needed to analyze the
interactions between the reduction rules and the branching strategy later
on. It surely also applies in the case when we merge a red arc (t, v) with
a non-red arc (w, t) such that (w, v) becomes an α-arc.

RR-3 If an α-arc is not contractible, it must be deleted because it is the only
arc not inMAS for some cycle, so RR-3 is correct.

RR-4 If g ∈ AU
α is thin, it can cut only one cycle C. Because it is contractible

(RR-3 was carried out before), there must be another α-arc g′ which
is able to cut C (possibly also some other cycle). We take g into MAS
because it is no worse to delete g′ than to delete g.

RR-5 Let u, v ∈ V be the endpoints of an undirected 2-cycle. W.l.o.g., there
are arcs a1, a2 with init(a1) = init(a2) = u and ter(a1) = ter(a2) = v.
Because having no vertices of degree less than three, the (1, n)-property
and RR-1, there are distinct arcs (c, u) and (v, b). Clearly, it is better
to delete one of these arcs than to delete a1 and a2 (we have to delete
both because they form an undirected 2-cycle). So by deleting, w.l.o.g.,
a1, we trigger RR-2 possibly on a2. If, w.l.o.g, (c, u) will be contracted
and a2 deleted in a later step, we also should exchange these properties
in a post-processing step, i.e., we delete (c, u) and take a2 intoMAS.

RR-6 If we have (u, v), (v, w), (u, w) ∈ A, there must be also (a, u), (w, b) ∈ A
and w.l.o.g., (c, v) ∈ A, because of the absence of vertices of degree less
than three. It is always better to delete (w, b) or (a, u) than to delete
(u, v), (v, w), (u, w). Also, any cycle C passing through (u, w) passes
also through (u, v), (v, w). If take care only of cycles passing through

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 11

(u, v), (v, w) we also cover those passing through (u, w). This justifies
the deletion of (u, w). By deleting (u, w), RR-2 possibly will be applied
to v or w. Again, if eventually (v, w) will be deleted and (w, b) taken into
MAS, we should exchange these properties in a post-processing step.
The same is true for (u, v) and (a, u).

2. Due to RR-1 theres is no v ∈ V with min{d+(u), d−(v)} = 0. By RR-2 we
have d(u) ≥ 3. Note that after the application of preprocess any cycle has
at least one α-arc. Also observe that any directed 2- or 3- cycle has at most
one α-arc. Then by RR-3 these α-arcs will be deleted. This happens also to
any thin α-arc which is the only α-arc of some cycle. Any other thin α-arc
will be taken into MAS due to RR-4. After the exhaustive application of
RR-5 and RR-6 there are no undirected 2- or 3-cycles, respectively, left.
Since deleting arcs preserves the (1, n)-property the only critical reduction
rules is RR-2. Here we contract an arc a = (u, v) with d+(u) = 1 or d−(u) =
1. Both cases do not violate the (1, n)-property.

⊓⊔

4.2 Analyzing the Algorithm

We are ready now to state our main Algorithm 1; observe that the handling of
the second parameter k′ is only needed for the run-time analysis and could be
avoided when implementing the algorithm. Therefore, the branching structure
of the algorithm is quite simple, as expressed in the following:

Lemma 3. Branching in Alg. 1 either puts a selected α-arc g into MAS, or
it deletes g. Only if arcs are deleted, reduction rules will be triggered in the
subsequent recursive call. This can can be also due to triggering RR-3 after
putting g into MAS.

Proof. If there is a cycle C with wk(C \ q) = 1 then there must be another arc
b ∈ C \g with wk(b) = 1. By taking g intoMAS we trigger RR-3, which deletes
b. If such a cycle C does not occur we never trigger any reduction rule by taking
g into MAS. In the case where g is deleted we immediately trigger RR-2 as
we always have graph with minimum degree 3 in any node of the search tree.
Subsequently, other reduction rules might be triggered. ⊓⊔

Combinatorial Observations. While running the algorithm, k ≤ k′. Now,
substitute in line 2 of Sol3MAS of Algorithm 1 k by k′. If we run the algorithm,
it will create a search tree Tk′ . The search tree Tk of the original algorithm must
be contained in Tk′ , because k ≤ k′. If |Tk′ | ≤ ck′

, then it follows that also
|Tk| ≤ ck′

= ck, because in the very beginning, k = k′. So in the following, we
will state the different recurrences derived from Algorithm 1 in terms of k′. For
a good estimate, we have to calculate an optimal value for ω.

Theorem 1. In every node of the search tree, after applying Reduce(), we have

1. For all a = (u, v) ∈ Aᾱ with wk′ (a) = (1− ω), there exists a red fork (u′, u)
or a red join (v, v′).

12 H. Fernau and D. Raible

2. For all non-red a = (u, v) ∈ Aᾱ with wk′ (a) = 0, we find a red fork (u′, u)
and a red join (v, v′). We will also say that a is protected (by the red arcs).

3. For all red arcs d = (u, v) with wk′ (d) = 0, if we have only non-red arcs in
E(u) \ {d} (E(v) \ {d}, resp.), then d is a join (d is a fork, resp.).

4. For each red arc d = (u, v) with wk′(d) = 0 that is not a join (fork, resp.), if
there is at least one red arc in E(u) \ {d} (in E(v) \ {d}, resp.), then there
is a red fork (red join, resp.) in G[E(u)] (G[E(v)], resp.).

5. For all g ∈ AU
α and for all a ∈ NA(g), we have: wk′ (a) > 0.

6. For all g ∈ AU
α we have wk′(g) = 1.

Proof. We use induction on the depth of the search tree. Clearly, all claims are
trivially true for the original graph instance, i.e., the root node.

As induction hypothesis, we assume that the claim is true for all search tree
nodes up to depth n. Let us discuss a certain search tree node s at depth n + 1.
Let G = (V, A) be the graph instance associated with s. Let k and k′ be the
parameter values at node s. Let s̄ be the immediate predecessor node of s in the
search tree. We will refer with Ḡ = (V̄ , Ā), k̄, k̄′ to the corresponding instance
and parameter values. Notice that each claim has the form ∀a ∈ A : X(a) =⇒
Y (a). Here, X and Y express local situations affecting a. Therefore, we have to
analyze how X(a) could have been created by branching. According to Lemma 3,
we have to discuss what happens (1) if a certain α-arc had been put intoMAS
and (2) if reduction rules were triggered. As a third point, we must consider the
possibility that X(a) is true both in the currently observed search tree node s
and in its predecessor, but that Y (a) was possibly affected upon entering s.

Exemplarily, we will give a very detailed proof of the very first assertion. The
other parts can be similarly shown, so that we only indicate the basic steps of a
complete formal proof.

1. Consider an arc a = (u, v) ∈ Agr with wk′ (a) = (1−ω). This situation could
have been due to three reasons:
(A) In node s̄, we branched at an arc d̄ ∈ NA(ā) with wk̄′ (ā) = 1, see
Figure 4 (where d = (w, u)). We consider here the case that d̄ is turned red.
Namely, according to case b. of the procedure “Adjust”, wk′ (a) = (1 − ω).
Since we only branch at α-arcs, d̄ is even both a fork and a join. As detailed
in (B), ā could give rise to a ∈ V by a sequence of RR-2-applications
in possible combination with other rule applications, such that wk′ (a) =
(1 − ω). As described in (C), d̄ will yield, as a red neighbor of ā, again by
a (possibly empty) sequence of reduction rule applications, in particular of
RR-2-applications, a fork or join that is neighbor of a in G as required.
(B) In node s̄, we branched at some arc c. We consider here the case that
(possibly due to an application of RR-3) some arc b is deleted (possibly
b = c). This triggers some reduction rules. How could the situation have been
created by reduction rule applications ? The only possibility is to (eventually)
use RR-2. In that case, there would have been two neighbored arcs a′, a′′ in
Ḡ with max{wk̄′(a′), wk̄′ (a′′)} = (1−ω). Hence, at least one of these arcs, say
a′, actually carried the weight (1−ω). Moreover, since a ∈ Agr, a′, a′′ ∈ Āgr .

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 13

In actual fact, there could have been a whole cascade of RR-2- applications
along a path P in Ḡ (P consists of a sequence of subsequently neighbored
arcs from Āgr), eventually leading to a, but by an easy inductive argument
one can see that there must have been some ā ∈ Āgr within this cascade to
which the induction hypothesis applies, so that we conclude that, in Ḡ, ā
has a neighboring arc d̄ that is a fork or a join. Since d̄ is red, d̄ is not on the
path P . Since d is a fork or a join, it cannot be neighbor to two subsequent
arcs from the path P . Therefore, w.l.o.g., ā is the first arc on P (without
predecessors on P), and d̄ is a fork. After the sequence of RR-2-applications
on P (possibly interrupted by reduction rules not affecting P), a has been
created with d̄ as a neighboring red fork. We will show in (C) that the fork
d̄ will eventually lead to a fork d that is neighbor of a in G.

(C) We consider the scenario that already in node s̄, wk̄′ (a) = (1 − ω). By
induction hypothesis, assume that (w.l.o.g.) a = (u, v) has a neighbored red
fork d̄ = (u′, u). If d̄ is deleted by using reduction rules, then u would have
(intermediately) in-degree zero, so that RR-1 triggers on a, contradicting
our very scenario in G that we are discussing. Therefore, the local situation
could only change by applications of RR-2 involving d̄. If those mergers
refer to neighbors of d̄ via the tip of d̄, then either a is directly deleted or
merged with d̄. Both possibilities would destroy the scenario we discuss, since
a would disappear. Therefore, such mergers could be only via the tail of d̄.
Since d̄ is red, a merger with d̄ will be red, as well. Moreover, this merger
would be also a fork. Again by an easy induction, one can conclude that
the neighbor d of a in G that results from a sequence of mergers using rule
RR-2 on a path ending at d̄ in Ḡ would be a red fork as required.

u

v

w

y

Fig. 4.

2. We will actually prove points 2. through 4. by a parallel induction. To im-
prove readability of our main argument, we refrain from giving all possible
details how the employment of RR-2 may affect (but not drastically change)
the situation in particular. How can a = (u, v) ∈ Aᾱ with wk′ (a) = 0 have
been created ? Firstly, it could be due to a RR2-contraction with a non-red
arc t with wk′ (t) = 0. But then a was not protected, which is a contradiction
to the induction hypothesis. Secondly, it could be due to branching on a
neighboring α-arc b, say b = (v, w) with b a join, in two different ways:
(1) either we branched at b at a point of time when wk′ (a) = (1−ω) (case c.
of Procedure “Adjust”), or (2) we branched at b when wk′(a) = 1 (case a.)

In case (1), there must have been another red arc e incident to a by item 1

14 H. Fernau and D. Raible

e

y

b

w

a

u v

(a)

u’

h b

w

a

u v
u’’

(b)

u’

h

c

a

u v

b

w
u’’

(c)

u’

h a

u v

b

w
u’’

(d)

u’

h a

u v

b

w
u’’

(e)
b

wu’

h a

u v

(f)

u vw

(g)

u vw

(h)

Fig. 5. Dotted lines indicate red arcs.

of our property list, see Figure 5(a). e is not incident to v, since it is a fork.
Hence, e = (y, u). This displays the two required red arcs (namely b and e)
in this case. In case (2), a was created by case a. of Procedure “Adjust.”
Obviously, b is red after branching. Since we have branched according to
case a., there is another arc h incident with a (but not with b) such that
wk′ (h) = 0. There are four subcases to be considered:
(a) h = (u, u′) is not red, see Figure 5(b). By induction (item 2.), there must
be a red fork arc (u′′, u). Hence, a is protected.
(b) h = (u, u′) is red, see Figure 5(c). Consider all other arcs incident to u.
Since we are dealing with reduced instances and by the (1, n)-property, there
must be exactly one of the form c = (u′′, u), since otherwise u would be a
sink. Suppose h is the only red arc in E(u). Then this contradicts item 3.
Now, suppose c is not red. Then there is a red arc (u, ū). By item 4. c must
be also red, a contradiction, Therefore, c is the red fork, which protects a.
(c) h = (u′, u) is not red. All other arcs incident to u could be of the form
(u′′, u), see Figure 5(d). Since h must be protected, by induction, a should
be red, contradicting our assumption on a. Thus, all these arcs are of the
form (u, u′′), see Figure 5(e). This contradicts item 2., since there is no red
join protecting h.
(d) h = (u′, u) is red, see Figure 5(f). Suppose h is not a fork. Then all other
arcs beside a and h are of the form (ũ, u). If none of them is red we have a
contradiction concerning item 3. If one of them is red then by item 4. a is
red, which contradicts our assumptions. Hence, a will be protected.

3. How could d have been created ? If it had been created by branching, then
there are two cases: (1) d was put into MAS; (2) d was neighbor of an arc
b which we put into MAS.
In case (1), the claim is obviously true. In case (2), let, w.l.o.g., u be the
common neighbor of b and d. After putting b into MAS, there will be a
red arc (namely b), incident to u, so that there could be only non-red arcs
incident with v that have the claimed property by induction. If d has been
created by reduction rules, it must have been through RR-2. So, there have
been (w.l.o.g.) two arcs (u, w) and (w, v) with wk′ -weights zero. One of them
must be red. W.l.o.g., assume that (u, w) is red. If (w, v) is red, see Figure

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 15

5(g), then the claim holds by induction. If (w, v) is not red, see Figure 5(h),
then (w, v) must be protected due to item 2. Hence, the premise is falsified
for vertex v.

4. We again discuss the possibilities that may create a red d with wk′ (d) = 0.
If d was created by taking it into MAS during branching, then d would be
both fork and join in contrast to our assumptions.
If we branch in the neighborhood of d, then the claim could be easily verified
directly. Finally, d could be obtained from merging two arcs e = (u, w), f =
(w, v) with wk′ (e) = wk′ (f) = 0. If both e and f are red, the claim follows
by induction. If only f is red and e is non-red, then there is a red fork, which
protects e by item 2. Again, by induction the claim follows. The case where
only e is red is symmetric.

5. Assume the contrary. Discuss a neighbor arc a of g with wk′(a) = 0.
If a is not red, then g must be red due to item 2., contradicting g ∈ AU

α . If a
is red, then discuss another arc b that is incident to the common endpoint of
a and g. If there is no red b, then the situation contradicts item 3. So, there
is a red b. This picture contradicts item 4.

6. Here we must consider α-arcs which are created by RR-2. As a matter of
principle this situation has the following property: We have two arcs (u, t)
and (t, v) such that u is a join and v is a fork. This RR-2 application be-
came possible because an arc a incident to t had been deleted in a previous
reduction step. Now a must be either of the form (r, t) or (t, r). Thus, either
(u, t) or (t, v) was an α-arc before a’s deletion. W.l.o.g. we assume (u, t) was
this α-arc.
We now make the number n of RR-2 applications involving an α-arc. Clearly,
for n = 0 the claim holds. Suppose now it is also true for some n. Now
(u, t) is an α-arc. If (u, t) is not red then by induction hypothesis we have
wk′ ((u, t)) = 1. Hence, after the RR-2 application we have wk′ ((u, v)) = 1.
If (u, t) was red then the emerging α-arc (u, v) is also red and hence the
premise does not apply. We would like to point out that at this point the
dominance of the red arcs is crucial. As otherwise it would be possible the
generate α-arcs by RR-2 such that their wk′ -weight is smaller than one.

⊓⊔

Estimating the Running Time for Max-Degree-3 Graphs. For an arc
a ∈ Na(g) where g is an α-arc let Necl(a) := NA(a)\(NA(g)∪{g}). In Algorithm
1, depending in which case of Figure 2 we end up, we decrement k′ by a different
amount for each arc a ∈ NA(g) in the case that we put g intoMAS. We can be
sure that we may decrement k′ by at least (1− ω) for each neighbor a ∈ NA(g)
due to item 5. of Theorem 1.
If we do not put g intoMAS, we delete g and NA(g) immediately afterwards by
RR-1, decrementing k′ accordingly (by wk′ (NA(g))). Moreover, if case b. applies
to a ∈ NA(g), we know that the two arcs d, e ∈ Necl(a) obey wk′ (d)wk′ (e) > 0
(observe that we do not have triangles). By deleting a, no matter whether RR-1
or RR-2 applies to d and e (this depends on the direction of the arcs) we can
decrement k′ by an extra amount of at least (1 − ω), cf. the handling of k′ by

16 H. Fernau and D. Raible

these reduction rules. This is true even if V (d), V (e) ⊂ V (NA(g)) as we will
argue in the following claim.

Proposition 1. Let a ∈ NA(g) for some g ∈ AU
α which matches case b. Then

we get a reduction of at least 2− ω with respect to a in case of deleting g.

Proof. Note that if for all a ∈ NA(g) we have that V (Necl(a)) ⊆ V (NA(g)),
then A(V (NA(g))) is a component of 9 arcs, see Figure 6(a), which are handled
separately.
We now examine the case where there are a1, a2 ∈ NA(g) with Necl(a1) ∩
Necl(a2) 6= ∅ and to both applies case b.. Let a1, . . . , aℓ (with 2 ≤ ℓ ≤ 4) be
a maximal sequence of arcs from NA(g) such that Necl(ai) ∩ Necl(ai+1) 6= ∅
(1 ≤ i ≤ ℓ− 1). The arcs in ∪ℓ

i=1Necl(ai) form an directed or undirected path P
as indicated in Figure 6 (for ℓ = 2 see Figure 6(b), for ℓ = 3 see Figure 6(c) and
for ℓ = 4 see Figure 6(d)).
Let s0, s1, . . . , sℓ, sℓ+1 be the vertices of P . Observe that we must have s0 6= sℓ+1

for any ℓ ∈ {2, 3, 4}. In case ℓ ∈ {2, 3} s0 = sℓ+1 would imply a directed or
undirected 2- or 3-cycle which contradicts item 2. of Lemma 2. If ℓ = 4 then
A(V (NA(g))) is a component which was already excluded. Summarizing P is a
path of ℓ + 1 arcs having each wk′ -weight at least (1− ω).
Suppose there is a vertex of P which is a source or a sink after deleting NA(g)∪
{g}. Then is rather obvious that RR-1 will delete all arcs of P . This yields a
reduction of (ℓ + 1) · (1− ω) with respect to P . Thus, we can say that we get a
reduction of at least 2− ω for each ai.
If no vertex of P is a source or a sink after the deletion of NA(g) ∪ {g}. Then
RR-2 yields a reduction of ℓ(1−ω) for P . This finally proofs the proposition. ⊓⊔

u

v

(a)

u

v

(b)

u

v

(c)

u

v

(d)

Fig. 6. Dotted lines indicate arcs which can be directed in both ways.

Let i denote the number of arcs a ∈ NA(g) for which case a. applies. In the
analogous sense j stands for the case b. and q for c. For every positive integer so-
lution of i+j+q = 4, we can state a total of 15 recursions T1, . . . , T15 according to
Table 1 depending on ω (ignoring the last column for the moment). For every Ti

and for a fixed ω, we can calculate a constant ci(ω) such that Ti[k] ∈ O∗(ci(ω)k).
We want to find a ω with subject to minimize max{c1(ω), . . . , c15(ω)}. We nu-
merically obtained ω = 0.1687 so that max{c1(ω), . . . , c15(ω)} evaluates to 1.201.

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 17

α-arc g a. b. c. b′.

MAS 1 ω (1− ω) ω

Deletion 1 (2− ω) (1− ω) 1

Table 1. Summarizes by which amount k′ can
be decreased for a ∈ NA(g), subject to if we take
g intoMAS or delete g and to the case applying
to a.

The dominating cases are when i = 0, j = 0, q = 4 (T5) and i = 0, j = 4, q = 0
(T15). We conclude that MAS on graphs G with ∆(G) ≤ 3 can be solved in
O∗(1.201k). Measuring the run time in terms of m := |A| the same way is also
possible. Observe that if we delete an α-arc, we can decrement m by one more.
By adjusting T1, . . . , T15 according to this and by choosing ω = 0.2016, we derive
an upper bound of O∗(1.1798m).

Theorem 2. MAS can be solved in O∗(1.1798m) on (1, n)-graphs.

A Speed-Up for the Max-Degree-3 Case We will obtain a better bound
for the search tree by a precedence rule, aiming to improve recurrence T5. If we
branch on an α-arc g according to this recurrence, for all a ∈ NA(g) we have
wk′ (a) ≥ (1− ω). Such α-arcs will be called α5-arcs. We add the following rule:
branch on α5-arcs with least priority. Let l := |AU

α |.

Lemma 4. Branching on an α5-arc, we can assume:
⌊

1
5−4ω k′

⌋

≤ l <
⌈

1
4−4ω k′

⌉

.

Proof. If l ≥
⌈

1
4(1−ω)k

′
⌉

then by deleting AU
α , we decrement k′ by at least

l · 4(1 − ω) ≥ k′, returning YES. If l <
⌊

1
1+4(1−ω)k

′
⌋

then by taking AU
α into

MAS we decrement k′ by at most l · (1 + 4(1− ω)) < k′, returning NO. ⊓⊔

Employing this lemma, we can find a good combinatorial estimate for a brute-
force search at the end of the algorithm. This allows us to conclude:

Theorem 3. MAS is solvable in time O∗(1.1960k) on maximum-degree-3-graphs
.

Proof. So using Lemma 4, in general we can find b ≥ 1 such that l =
⌈

1
4(1−ω)k

′ − b
⌉

.

Again, if we decided to delete AU
α we decrement k′ by at least l ·4(1−ω), so that

afterwards k′ ≤ b4(1−ω). If k′ ≥ k > 0, we have to step back and take some arcs
of AU

α into MAS. For any such arc we can decrement k′ by one more than by
deleting it. Finally, we have to find at most ⌈b4(1− ω)⌉ arcs from AU

α , which we

can take in toMAS without causing any cyclicity. For this we have
(

l
⌈b4(1−ω)⌉

)

choices, which is biggest for l = 2 ⌈b4(1− ω)⌉. So for b = 1
4(1−ω)(9−8ω)k

′ this can

be upper bounded asymptotically by

O∗

((

2
4(1−ω)(9−8ω)k

′

1
4(1−ω)(9−8ω)k

′

))

⊆ O∗
(

4
1

4(1−ω)(9−8ω)
k′
)

.

18 H. Fernau and D. Raible

We mention that we have to take care of the case where k′ = l. In this case we
have to check whether G[MAS∪AU

α] is acyclic and give the appropriate answer.
Then the above mentioned run time for recurrence T5 can be assumed. For
ω = 0.2012 we get an improved run time of O∗(1.1960k), where recurrences T4

and T15 are dominating. Further note that we can not make use of Lemma 4
when we measure the running time in terms of m. ⊓⊔

Corollary 1. Feedback Vertex Set on cubic graphs is solvable in O∗(1.282n).

Proof. We argue that MAS and FAS are equivalent for graphs of degree at most
three as follows. Namely, if A is a feedback arc set, then we can remove instead
the set S of vertices the arcs in A are pointing to in order to obtain a directed
feedback vertex set with |S| ≤ |A|. Conversely, if S is a directed feedback vertex
set, then we can assume that each vertex v ∈ S has one ingoing and two outgoing
arcs or two ingoing and one outgoing arc; in the first case, let av be the ingoing
arc, and in the second case, let av be the outgoing arc. Then, A = {av | v ∈ S}
is a feedback arc set with |A| ≤ |S|. With m ≤ 3

2n the claim follows. ⊓⊔

Estimating the running time for (1, n)-graphs. There is a difference to
maximum degree 3 graphs, namely the entry for case b. in case of deletion in
Table 1. For a ∈ NA(g) it might be the case that |NA(a) \ (NA(g) ∪ {g})| ≥
3, so that when we delete g and afterwards a by RR-1 that whether RR-1
nor RR-2 applies (due to the lack of sources, sinks or degree two vertices).
We call this case b′. Remember, case b. refers to the same setting but with
|NA(a) \ (NA(g) ∪ {g})| = 2. Thus the mentioned entry should be 1 for b′. As
long as |NA(g)| ≥ 6 the reduction in k′ is great enough for the modified table,
but for the other cases we must argue more detailed. We introduce two more
reduction rules, the first already mentioned in [13].

RR-7 Contract and adjoin to MAS any (u, v) ∈ A with d+(u) = d+(v) = 1
(d−(u) = d−(v) = 1, resp.). If (u, v) was red the unique arc a := (x, u)
((v, y), resp.) will be red. Decrease k′ by min{wk′ ((u, v)), wk′ (a)} and set
wk′ (a)← max{wk′((u, v)), wk′ (a)}. Proceed similarly with (v, y).

RR-8 For a red g′ ∈ Aα with wk′ (g′) > 0, set k′ ← k′−wk′(g′) and wk′ (g′)← 0.

We also add the next lines to Algorithm 1.

a) After Reduce(), first apply RR-7 and then RR-8 exhaustively.
b) Prefer α-arcs g such that |NA(g)| is maximal for branching.
c) Forced to branch on g ∈ AU

α with |NA(g)| = 5, choose an α-arc with the
least occurrences of case b′.

Lemma 5. RR-7 and RR-8 are sound and do not violate Theorem 1.

Proof. It should be rather obvious that applying RR-8 is sound and does not
interfere with Theorem 1.
Let us discuss the following scenario: Assume arcs (u, v) and (v, w) such that v
and w have indegree one. Hence, RR-7 could apply. Before applying RR-7, we
find: (u, v) is a fork. (v, w) is not a join. (v, w) is a fork.

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 19

Hence, after applying RR-7, (u, v) is a fork. It will be an α-arc iff (u, v) was
an α-arc before applying RR-7.

The soundness of the rule follows by induction. As well as the fact that the
assertions of Theorem 1 will also hold after applying RR-7. Namely, if some arc
(that is not removed by rule RR-7) was neighbor of some fork or of some join
or of some red arc before applying RR-7, this will be true after applying RR-7.
Moreover, observe that through applying RR-7 or RR-8, no other reduction
rule (numbered up to 6) could be triggered. ⊓⊔

Lemma 6. We can omit branching on arcs g ∈ AU
α with

1. |NA(g)| = 5 and 5 occurrences of case b′ or
2. |NA(g)| = 4 with an occurrence of case b′.

Proof. Let g = (u, v).

1. Suppose the contrary holds. W.l.o.g. d−(v) = 2. For the arc (v, a) case b′

must match, see Figure 7. This means that d−(a) = 1 and d+(a) ≥ 3 or
otherwise RR-1 or RR-2 could be applied to a after the deletion of (v, a).
For the distinct arc r = (a, y) we must have d−(y) > 1 or otherwise RR-7
could be applied. Thus r must be an non-red α-arc (otherwise RR-8 could
be applied due to having case b′ and therefore wk′ (r) > 0.). Also we must
have |NA(r)| = 5 and with (v, a) due to Theorem 1.5) at least one case b.
occurrence. This contradicts the choice of the α-arc g, because we would
have preferred r.

2. Suppose the contrary holds. W.l.o.g. take an arc (v, a). As in item 1. we can
deduce that d−(a) = 1 and d+(v) ≥ 3 and that there is a distinct non-red
α-arc (a, y) with |NA((a, y))| ≥ 5. This is a contradiction to the choice of g.

⊓⊔

a

vu

y

Fig. 7. The contradicting situation in the proof of Lemma 6.1)

Let x, y, z denote the occurrences of cases a., b′ and c. To upperbound the branch-
ings according to α-arcs g with |NA(g)| ≥ 6, we put up all recurrences resulting
from integer solutions of x+y+z = 6. Note that we also use the right column of
Table 1. To upperbound branchings with |NA(g)| = 5 we put up all recurrences
obtained from integer solutions of x + y + z = 5, except when x = z = 0 and
y = 5 due to Lemma 6.1). Additionally we have to cover the case where we have
4 occurrences of case b′ and one of case b. (T [k] ≤ T [k− (1+5ω)]+T [k− (6−ω)]
and T [m] ≤ T [m− (1 + 5ω)] + T [m− (7 − ω)], resp.). To upperbound the case

20 H. Fernau and D. Raible

where |NA(g)| = 4 the recurrences derived from Table 1 for the integer solutions
of x + y + z = 4 suffice due to Lemma 6.2).

Theorem 4. On (1, n)-graphs with m arcs, MAS is solvable in time
O∗(1.1871m) (ω = 0.2392) and O∗(1.212k) (ω = 0.21689), respectively.

Corollary 2. We solve Feedback Vertex Set on planar graphs in O∗(1.986n).

Proof. Given a directed planar graph G(V, A), use the well-known transforma-
tion form Feedback Vertex Set to Feedback Arc Set to obtain an in-
stance G′(V ′, A′). That is every v ∈ V will be substituted by v1.v2. Arcs a with
ter(a) = v now point towards v1, those with tail(v) start at v2. Also add an arc
(v1, v2). Hence, every v ∈ V has a corresponding arc av ∈ A′. Note that G′ has
the (1, n)-property and |A′| ≤ 4n. By running Algorithm 1 on G′ we can solve
Feedback Vertex Set in O∗(1.18714n). ⊓⊔

5 Reparameterization

M. Mahajan, V. Raman and S. Sidkar [11] have discussed a rather general setup
for re-parameterization of problems according to a “guaranteed value.” In order
to use their framework, we only need to exhibit a family of example graphs where
Newman’s approximation bound for MAS is sharp. Consider Gr(Vr , Ar), r ≥ 2,
with Vr = {(i, j) | 0 ≤ i < r, 0 ≤ j ≤ 7}, and Ar contains two types of arcs:
1. ((i, j), (i, (j + 1) mod 8) for 0 ≤ i ≤ r and 0 ≤ j ≤ 7.

2a. ((i, j), ((i + 1) mod r, (1− j) mod 8)
for 0 ≤ i < r and j = 1, 2.
2b. (((i + 1) mod r, (1− j) mod 8, (i, j))
for 0 ≤ i < r and j = 3, 4.
For r = 2 we find an example to the
right. Gr is cubic with |Vr| = 8r and
|Ar| = 12r. Its α-arcs are ((i, 0), (i, 1))
and ((i, 4), (i, 5)) for 0 ≤ i < r.

(1,0)
(1,1)

(1,2)

(1,3)

(1,4)
(1,5)

(1,7)

(1,6)

(0,0)
(0,1)

(0,2)

(0,3)

(0,4)
(0,5)

(0,7)

(0,6)

Since we have to destroy all ‘rings’ as described by the arcs from 1., any feasible
solution to these instances require r arcs to go into the feedback arc set. Also
r arcs suffice, namely ((0, 4), (0, 5)) and ((i, 0), (i, 1)) for 0 < i < r, giving the
‘tight example’ as required in [11] to conclude:

Corollary 3. For any ǫ > 0, the following question is not fixed-parameter
tractable unless P = NP: Given a cubic directed graph G(V, E) and a parameter
k, does G possess an acyclic subgraph with at least

(

11
12 + ǫ

)

|E|+ k many arcs ?

6 Conclusion

We presented a simple algorithm for solving Maximum Acyclic Subgraph on
(1, n)-graphs, which is a superclass of cubic graphs. In contrast to the algorithm

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 21

the analysis concerning correctness and run time is rather involved. Nevertheless,
the analysis was accomplished in an amortized fashion showing a quite better
run time than analyzed naively. This kind of analysis is also applied in terms of
’parameterized’ run time. This is one of the few occasion where this is possible.
We think that at least for problems on special graph classes (e.g., cubic graphs)
one can find further examples.
We introduce the concept of a reference search tree which generealizes ordinary
search trees. Using this concept we showed the correctness of a reduction rule
(RR-2) which is crucial for the run time improvement. We like to point out
that the validity of this rule depends on the algorithm. It is not valid on its own.
We are looking forward solve more problems using this concept. It seems that
especially problems are suited where we cannot simply delete a vertex once the
decision has been made whether to take it into the solution or not. For example
problems where the solution must be connected (e.g., Max Internal Spanning
Tree or Connected Dominating Set) or (directed) feedback problems on
general graphs.

References

1. V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM Journal of Discrete Mathematics,
12:289–297, 1999.

2. B. Berger and P. W. Shor. Approximation algorithms for the maximum acyclic
subgraph problem. In SODA, pages 236–243, 1990.

3. J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for
the feedback vertex set problems. In WADS, pages 422–433, 2007.

4. J. Chen, Y. Liu, S. Lu., B. O’Sullivan and I. Razgon. A fixed-parameter algorithm
for the directed feedback vertex set problem In STOC, pages 177–186, 2008

5. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

6. H. Fernau. Parameterized algorithms for hitting set: the weighted case. In CIAC,
volume 3998 of LNCS, pages 332–343. Springer, 2006.

7. P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In
Handbook of Combinatorial Optimization, volume Supplement Volume A, pages
209–258. Kluwer Academic Publishers, 1999.

8. F. V. Fomin, S. Gaspers, and A. V. Pyatkin. Finding a minimum feedback set
in time O(1.7548n). In IWPEC, volume 4169 of LNCS, pages 184–191. Springer,
2006.

9. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination – a
case study. In ICALP, volume 3580 of LNCS, pages 191–203. Springer, 2005.

10. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Com-

puter Computations. Plenum Press, 1972.

11. M. Mahajan, V. Raman, and S. Sikdar Parameterizing MAXNP problems above
guaranteed values. In IWPEC, volume 4169 of LNCS, pages 38–49. Springer, 2006.

12. I. Nassi and B. Shneiderman. Flowchart techniques for structured programming.
ACM SIGPLAN Notices, 12, 1973.

13. A. Newman. The maximum acyclic subgraph problem and degree-3 graphs. In
RANDOM-APPROX, volume 2129 of LNCS, pages 147–158. Springer, 2001.

22 H. Fernau and D. Raible

14. V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for two
edge problems: MAXCUT and MAXDAG. Inf. Process. Lett., 104(2):65–72, 2007.

15. I. Razgon. Computing minimum directed feedback vertex set in O(1.9977n). In
ICTCS, 2007. to appear.

16. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–
125, 1981.

A Recursions and running times

A.1 The maximum degree three case

In Table 2(a) we state the 15 recurrences necessary for solving the parameterized
version of MAS on maximum degree 3 graphs, which we needed to estimate the
run time in Theorem 3. They are derived from the positive integer solutions
of i + j + q = 4. Similarly, Table 2(b) displays the recurrences for the exact,
non-parameterized case (measured in m).

A.2 The (1, n)-case

We state Tables 3(a) which covers all recursions derived from integer solutions
of x + y + z = 4 where x, y and z are the number of occurrences of cases a,b
and c in Table 1. Tables 3(b) and 3(c) cover all recursions derived from integer
solutions of x + y + z = 5 and x + y + z = 6, respectively. Here x, y and z are
the number of occurrences of cases a,b′ and c in Table 1. Both tables refer to the
parameterized version of MAS on (1, n)-graphs. To derive the corresponding
tables when we measure in m, simply transform any T [k] ≤ T [k − a] + T [k − b]
to T [m] ≤ T [m− (a + 1)] + T [m− b]. The corresponding are tables are given in
Table 4(a), 4(b) and 4(c).
We also mention that we have to consider the recursion T [k] ≤ T [k− (1+5ω)]+
T [k − (6− ω)] when measuring in k and T [m] ≤ T [m− (1 + 5ω)] + T [m− (7−
ω)] when measuring in m. Both refer to the situation where an we have four
occurences of case b′ and one case b occurence.

Notice again that these tables are correct upper bounds in particular because
we have shown in point 5. of Theorem 1 that we will always find some non-null
value still attached to neighbors of arcs we branch on.

Exact Algorithms for Maximum Acyclic Subgraph on (1, n)-Graphs 23

Table 2. Recursions for the max-degree 3 case. In 2(a) the measure is k, in 2(b)
it is m.

(a)

No. j q i Derived recursion Upper bound

1 0 0 4 T [k] ≤ T [k − 4] + T [k − 5] O∗(1.1674k)

2 0 1 3 T [k] ≤ T [k − (4− ω)] + T [k − (5− ω)] O∗(1.1745k)

3 0 2 2 T [k] ≤ T [k − (4− 2ω)] + T [k − (5− 2ω)] O∗(1.1822k)

4 0 3 1 T [k] ≤ T [k − (4− 3ω)] + T [k − (5− 3ω)] O∗(1.191k)

5 0 4 0 T [k] ≤ T [k − (4− 4ω)] + T [k − (5− 4ω)] O∗(1.2k)

6 1 0 3 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.167k)

7 1 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.174k)

8 1 2 1 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.1817k)

9 1 3 0 T [k] ≤ T [k − (5− 4ω)] + T [k − (4− 2ω)] O∗(1.191k)

10 2 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.171k)

11 2 1 1 T [k] ≤ T [k − (6− 3ω)] + T [k − (3 + ω)] O∗(1.179k)

12 2 2 0 T [k] ≤ T [k − (6− 4ω)] + T [k − 3] O∗(1.187k)

13 3 0 1 T [k] ≤ T [k − (7− 3ω)] + T [k − (2 + 3ω)] O∗(1.181k)

14 3 1 0 T [k] ≤ T [k − (7− 4ω)] + T [k − (2 + 2ω)] O∗(1.19k)

15 4 0 0 T [k] ≤ T [k − (8− 4ω)] + T [k − (1 + 4ω)] O∗(1.2k)

(b)

No. j q i Derived recursion Upper Bound

1 0 0 4 T [m] ≤ T [m− 5] + T [m− 5] O∗(1.1487m)

2 0 1 3 T [m] ≤ T [m− (5− ω)] + T [m− (5− ω)] O∗(1.156m)

3 0 2 2 T [m] ≤ T [m− (5− 2ω)] + T [m− (5− 2ω)] O∗(1.168m)

4 0 3 1 T [m] ≤ T [m− (5− 3ω)] + T [m− (5− 3ω)] O∗(1.1709m)

5 0 4 0 T [m] ≤ T [m− (5− 4ω)] + T [m− (5− 4ω)] O∗(1.1798m)

6 1 0 3 T [m] ≤ T [m− (6− ω)] + T [m− (4 + ω)] O∗(1.151m)

7 1 1 2 T [m] ≤ T [m− (6− 2ω)] + T [m− 4] O∗(1.158m)

8 1 2 1 T [m] ≤ T [m− (6− 3ω)] + T [m− (4− ω)] O∗(1.165m)

9 1 3 0 T [m] ≤ T [m− (6− 4ω)] + T [m− (4− 2ω)] O∗(1.173m)

10 2 0 2 T [m] ≤ T [m− (7− 2ω)] + T [m− (3 + 2ω)] O∗(1.155m)

11 2 1 1 T [m] ≤ T [m− (7− 3ω)] + T [m− (3 + ω)] O∗(1.163m)

12 2 2 0 T [m] ≤ T [m− (7− 4ω)] + T [m− 3] O∗(1.171m)

13 3 0 1 T [m] ≤ T [m− (8− 3ω)] + T [m− (2 + 3ω)] O∗(1.164m)

14 3 1 0 T [m] ≤ T [m− (8− 4ω)] + T [m− (2 + 2ω)] O∗(1.173m)

15 4 0 0 T [m] ≤ T [m− (9− 4ω)] + T [m− (1 + 4ω)] O∗(1.1798m)

2
4

H
.
F
er

n
a
u

a
n
d

D
.
R

a
ib

le

Table 3. Recurrences for (1, n)-graphs where the run time is measured in terms of k.
(a)

No. z y x Derived recursion Upper bound

1 0 0 4 T [k] ≤ T [k − 4] + T [k − 5] O∗(1.1674k)

2 0 1 3 T [k] ≤ T [k − (4− ω)] + T [k − (5− ω)] O∗(1.1766k)

3 0 2 2 T [k] ≤ T [k − (4− 2ω)] + T [k − (5− 2ω)] O∗(1.187k)

4 0 3 1 T [k] ≤ T [k − (4− 3ω)] + T [k − (5− 3ω)] O∗(1.1986k)

5 0 4 0 T [k] ≤ T [k − (4− 4ω)] + T [k − (5− 4ω)] O∗(1.2118k)

6 1 0 3 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.167k)

7 1 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.176k)

8 1 2 1 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.1862k)

9 1 3 0 T [k] ≤ T [k − (5− 4ω)] + T [k − (4− 2ω)] O∗(1.1978k)

10 2 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.171k)

11 2 1 1 T [k] ≤ T [k − (6− 3ω)] + T [k − (3 + ω)] O∗(1.18k)

12 2 2 0 T [k] ≤ T [k − (6− 4ω)] + T [k − 3] O∗(1.191k)

13 3 0 1 T [k] ≤ T [k − (7− 3ω)] + T [k − (2 + 3ω)] O∗(1.1179k)

14 3 1 0 T [k] ≤ T [k − (7− 4ω)] + T [k − (2 + 2ω)] O∗(1.19k)

15 4 0 0 T [k] ≤ T [k − (8− 4ω)] + T [k − (1 + 4ω)] O∗(1.195k)

(b)

No. x y z Derived recursion Upper bound

1 5 0 0 T [k] ≤ T [k − 5] + T [k − 6] O∗(1.135k)

2 4 1 0 T [k] ≤ T [k − 5] + T [k − (5 + ω)] O∗(1.146k)

3 4 0 1 T [k] ≤ T [k − (5− ω)] + T [k − (6− ω)] O∗(1.141k)

4 3 2 0 T [k] ≤ T [k − 5] + T [k − (4 + 2ω)] O∗(1.159k)

5 3 1 1 T [k] ≤ T [k − (5− ω)] + T [k − 5] O∗(1.153k)

6 3 0 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (6− 2ω)] O∗(1.148k)

7 2 3 0 T [k] ≤ T [k − 5] + T [k − (3 + 3ω)] O∗(1.176k)

8 2 2 1 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.167k)

9 2 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (5− ω)] O∗(1.16k)

10 2 0 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (6− 3ω)] O∗(1.155k)

11 1 4 0 T [k] ≤ T [k − 5] + T [k − (2 + 4ω)] O∗(1.199k)

12 1 3 1 T [k] ≤ T [k − (5− ω)] + T [k − (3 + 2ω)] O∗(1.186k)

13 1 2 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.176k)

14 1 1 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (5− 2ω)] O∗(1.169k)

15 1 0 4 T [k] ≤ T [k − (5− 4ω)] + T [k − (6− 4ω)] O∗(1.163k)

16 0 5 0 T [k] ≤ T [k − 5] + T [k − (1 + 5ω)] O∗(1.232k)

17 0 4 1 T [k] ≤ T [k − (5− ω)] + T [k − (2 + 3ω)] O∗(1.2118k)

18 0 3 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (3 + ω)] O∗(1.198k)

19 0 2 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.187k)

20 0 1 4 T [k] ≤ T [k − (5− 4ω)] + T [k − (5− 3ω)] O∗(1.178k)

21 0 0 5 T [k] ≤ T [k − (5− 5ω)] + T [k − (6− 5ω)] O∗(1.171k)

(c)

No. x y z Derived recursion Upper bound

1 6 0 0 T [k] ≤ T [k − 6] + T [k − 7] O∗(1.1128k)

2 5 1 0 T [k] ≤ T [k − 6] + T [k − (6 + ω)] O∗(1.1202k)

3 5 0 1 T [k] ≤ T [k − (6− ω)] + T [k − (7− ω)] O∗(1.117k)

4 4 2 0 T [k] ≤ T [k − 6] + T [k − (5 + ω)] O∗(1.1291k)

5 4 1 1 T [k] ≤ T [k − (6− ω)] + T [k − 6] O∗(1.125k)

6 4 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (7− 2ω)] O∗(1.1214k)

7 3 3 0 T [k] ≤ T [k − 6] + T [k − (4 + 3ω)] O∗(1.14k)

8 3 2 1 T [k] ≤ T [k − (6− ω)] + T [k − (5 + ω)] O∗(1.135k)

9 3 1 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (6− ω)] O∗(1.13k)

10 3 0 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (7− 3ω)] O∗(1.127k)

11 2 4 0 T [k] ≤ T [k − (6)] + T [k − (3 + 4ω)] O∗(1.154k)

12 2 3 1 T [k] ≤ T [k − (6− ω)] + T [k − (4 + 2ω)] O∗(1.145k)

13 2 2 2 T [k] ≤ T [k − (6− 2ω)] + T [k − 5] O∗(1.141k)

14 2 1 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (6− 2ω)] O∗(1.136k)

15 2 0 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (7− 4ω)] O∗(1.132k)

16 1 5 0 T [k] ≤ T [k − 6] + T [k − (2 + 5ω)] O∗(1.172k)

17 1 4 1 T [k] ≤ T [k − (6− ω)] + T [k − (3 + 3ω)] O∗(1.162k)

18 1 3 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (4 + ω)] O∗(1.154k)

19 1 2 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (5− ω)] O∗(1.147k)

20 1 1 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (6− 3ω)] O∗(1.142k)

21 1 0 5 T [k] ≤ T [k − (6− 5ω)] + T [k − (7− 5ω)] O∗(1.137k)

22 0 6 0 T [k] ≤ T [k − 6] + T [k − (1 + 6ω)] O∗(1.198k)

23 0 5 1 T [k] ≤ T [k − (6− ω)] + T [k − (2 + 4ω)] O∗(1.182k)

24 0 4 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.171k)

25 0 3 3 T [k] ≤ T [k − (6− 3ω)] + T [k − 4] O∗(1.162k)

26 0 2 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (5− 2ω)] O∗(1.154k)

27 0 1 5 T [k] ≤ T [k − (6− 5ω)] + T [k − (6− 4ω)] O∗(1.148k)

28 0 0 6 T [k] ≤ T [k − (6− 6ω)] + T [k − (7− 6ω)] O∗(1.144k)

E
x
a
ct

A
lg

o
rith

m
s

fo
r

M
a
x
im

u
m

A
cy

clic
S
u
b
g
ra

p
h

o
n

(1
,n

)-G
ra

p
h
s

2
5

Table 4. Recurrences for (1, n)-graphs where the run time is measured in terms of m.
(a)

No. z y x Derived recursion Upper bound

1 0 0 4 T [k] ≤ T [k − 4] + T [k − 5] O∗(1.149m)

2 0 1 3 T [k] ≤ T [k − (4− ω)] + T [k − (5− ω)] O∗(1.157m)

3 0 2 2 T [k] ≤ T [k − (4− 2ω)] + T [k − (5− 2ω)] O∗(1.166m)

4 0 3 1 T [k] ≤ T [k − (4− 3ω)] + T [k − (5− 3ω)] O∗(1.1176m)

5 0 4 0 T [k] ≤ T [k − (4− 4ω)] + T [k − (5− 4ω)] O∗(1.1.1871m)

6 1 0 3 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.15m)

7 1 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.159m)

8 1 2 1 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.168m)

9 1 3 0 T [k] ≤ T [k − (5− 4ω)] + T [k − (4− 2ω)] O∗(1.178m)

10 2 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.155m)

11 2 1 1 T [k] ≤ T [k − (6− 3ω)] + T [k − (3 + ω)] O∗(1.164m)

12 2 2 0 T [k] ≤ T [k − (6− 4ω)] + T [k − 3] O∗(1.174m)

13 3 0 1 T [k] ≤ T [k − (7− 3ω)] + T [k − (2 + 3ω)] O∗(1.163m)

14 3 1 0 T [k] ≤ T [k − (7− 4ω)] + T [k − (2 + 2ω)] O∗(1.173m)

15 4 0 0 T [k] ≤ T [k − (8− 4ω)] + T [k − (1 + 4ω)] O∗(1.176m)

(b)

No. x y z Derived recursion Upper bound

1 5 0 0 T [k] ≤ T [k − 5] + T [k − 6] O∗(1.123m)

2 4 1 0 T [k] ≤ T [k − 5] + T [k − (5 + ω)] O∗(1.132m)

3 4 0 1 T [k] ≤ T [k − (5− ω)] + T [k − (6− ω)] O∗(1.128m)

4 3 2 0 T [k] ≤ T [k − 5] + T [k − (4 + 2ω)] O∗(1.143m)

5 3 1 1 T [k] ≤ T [k − (5− ω)] + T [k − 5] O∗(1.138m)

6 3 0 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (6− 2ω)] O∗(1.134m)

7 2 3 0 T [k] ≤ T [k − 5] + T [k − (3 + 3ω)] O∗(1.157m)

8 2 2 1 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.15m)

9 2 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (5− ω)] O∗(1.145m)

10 2 0 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (6− 3ω)] O∗(1.141m)

11 1 4 0 T [k] ≤ T [k − 5] + T [k − (2 + 4ω)] O∗(1.176m)

12 1 3 1 T [k] ≤ T [k − (5− ω)] + T [k − (3 + 2ω)] O∗(1.166m)

13 1 2 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.159m)

14 1 1 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (5− 2ω)] O∗(1.153m)

15 1 0 4 T [k] ≤ T [k − (5− 4ω)] + T [k − (6− 4ω)] O∗(1.148m)

16 0 5 0 T [k] ≤ T [k − 5] + T [k − (1 + 5ω)]

17 0 4 1 T [k] ≤ T [k − (5− ω)] + T [k − (2 + 3ω)] O∗(1.1871m)

18 0 3 2 T [k] ≤ T [k − (5− 2ω)] + T [k − (3 + ω)] O∗(1.177m)

19 0 2 3 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.168m)

20 0 1 4 T [k] ≤ T [k − (5− 4ω)] + T [k − (5− 3ω)] O∗(1.161m)

21 0 0 5 T [k] ≤ T [k − (5− 5ω)] + T [k − (6− 5ω)] O∗(1.156m)

(c)

No. x y z Derived recursion Upper bound

1 6 0 0 T [k] ≤ T [k − 6] + T [k − 7] O∗(1.105m)

2 5 1 0 T [k] ≤ T [k − 6] + T [k − (6 + ω)] O∗(1.12m)

3 5 0 1 T [k] ≤ T [k − (6− ω)] + T [k − (7− ω)] O∗(1.11m)

4 4 2 0 T [k] ≤ T [k − 6] + T [k − (5 + ω)] O∗(1.12m)

5 4 1 1 T [k] ≤ T [k − (6− ω)] + T [k − 6] O∗(1.12m)

6 4 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (7− 2ω)] O∗(1.12m)

7 3 3 0 T [k] ≤ T [k − 6] + T [k − (4 + 3ω)] O∗(1.128m)

8 3 2 1 T [k] ≤ T [k − (6− ω)] + T [k − (5 + ω)] O∗(1.124m)

9 3 1 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (6− ω)] O∗(1.12m)

10 3 0 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (7− 3ω)] O∗(1.12m)

11 2 4 0 T [k] ≤ T [k − (6)] + T [k − (3 + 4ω)] O∗(1.14m)

12 2 3 1 T [k] ≤ T [k − (6− ω)] + T [k − (4 + 2ω)] O∗(1.14m)

13 2 2 2 T [k] ≤ T [k − (6− 2ω)] + T [k − 5] O∗(1.129m)

14 2 1 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (6− 2ω)] O∗(1.125m)

15 2 0 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (7− 4ω)] O∗(1.122m)

16 1 5 0 T [k] ≤ T [k − 6] + T [k − (2 + 5ω)] O∗(1.16m)

17 1 4 1 T [k] ≤ T [k − (6− ω)] + T [k − (3 + 3ω)] O∗(1.15m)

18 1 3 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (4 + ω)] O∗(1.14m)

19 1 2 3 T [k] ≤ T [k − (6− 3ω)] + T [k − (5− ω)] O∗(1.14m)

20 1 1 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (6− 3ω)] O∗(1.14m)

21 1 0 5 T [k] ≤ T [k − (6− 5ω)] + T [k − (7− 5ω)] O∗(1.13m)

22 0 6 0 T [k] ≤ T [k − 6] + T [k − (1 + 6ω)] O∗(1.175m)

23 0 5 1 T [k] ≤ T [k − (6− ω)] + T [k − (2 + 4ω)] O∗(1.164m)

24 0 4 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.155m)

25 0 3 3 T [k] ≤ T [k − (6− 3ω)] + T [k − 4] O∗(1.15m)

26 0 2 4 T [k] ≤ T [k − (6− 4ω)] + T [k − (5− 2ω)] O∗(1.15m)

27 0 1 5 T [k] ≤ T [k − (6− 5ω)] + T [k − (6− 4ω)] O∗(1.14m)

28 0 0 6 T [k] ≤ T [k − (6− 6ω)] + T [k − (7− 6ω)] O∗(1.144m)

	Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs
	 Henning Fernau & Daniel Raible

