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Abstract. Recently, optimization has become an integral part of the aerody-
namic design process chain. Besides standard optimization routines which require
some multitude of the computational effort necessary for the simulation only, also
fast optimization methods based on one-shot ideas are available, which are only
4 to 10 times as costly as one forward flow simulation computation. However,
the full potential of mathematical optimization can only be exploited, if optimal
designs can be computed, which are robust with respect to small (or even large)
perturbations of the optimization setpoint conditions. That means, the optimal de-
signs computed should still be good designs, even if the input parameters for the
optimization problem formulation are changed by a non-negligible amount. Thus
even more experimental or numerical effort can be saved. In this paper, we aim at
an improvement of existing simulation and optimization technology, developed in
the German collaborative effort MEGADESIGN, so that numerical uncertainties
are identified, quantized and included in the overall optimization procedure, thus
making robust design in this sense possible. These investigations are part of the
current German research program MUNA.

1 Introduction

Uncertainties pose problems for the reliability of numerical computations and their
results in all technical contexts one can think of. They have the potential to render
worthless even highly sophisticated numerical approaches, since their conclusions
do not realize in practice due to unavoidable variations in problem data. The proper
treatment of these uncertainties within a numerical context is a very important chal-
lenge. This paper is devoted to the enhancement of highly efficient optimal design
techniques developed in the framework of MEGADESIGN by a robustness com-
ponent, which tries to make the optimal design generated a still good design, if the
setting of a specific design point is varied. The investigations presented here are
part of the research effort MUNA, which has recently started.
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Robust aerodynamic design is a rather recent area of research, which up to now
received attention only in very few publications (cf. [10]). Most of the techniques
developed so far pertain to problems with a low degree of nonlinearity [9, 11].
Here, we try to give some insight into the sources of uncertainties, their range and
compare approaches for their proper treatment.

2 The nature of uncertainties in aerodynamic design

For most of what follows it will be enough to consider a rather abstract but generic
form of an aerodynamic shape optimization problem

min
y,p

f (y, p) (1)

s.t. c(y, p) = 0 (2)

h(y, p) ≥ 0 (3)

We think of the equation (2) as the discretized outer flow equation around, e.g., an
airfoil described by geometry parameter p ∈ Rn p . The vector y is the state vector
(velocities, pressure,...) of the flow model (2) and we assume that (2) can be solved
uniquely for y for all reasonable geometries p. The objective in (1) f : (y, p) 7→
f (y, p) ∈ R typically is the drag to be minimized. The restriction (3) typically
denotes lift or pitching moment requirements. To make the discussion here simpler,
we assume a scalar valued restriction, i.e., h(y, p) ∈ R. The generalization of the
discussions below to more than one restriction is straight forward.

Uncertainties arise in all aspects of aerodynamic design. However, we want to
limit the discussion here to uncertainties which cannot be avoided at all before con-
structing a plane. We distinguish two types of uncertainties: uncertainties with re-
spect to the flight conditions and geometry uncertainties. The main characteristics
of the macroscopic flight conditions are angle of incidence and the velocity (Mach
number) of the plane. One generally knows the rough values for these characteris-
tics but nevertheless, there will be unavoidable deviations from the nominal flight
condition. In the numerical discussion below, we focus on the Mach number as
an uncertain parameter within limits. We assume (mainly due to lack of statistical
data) a truncated normal distribution of the perturbations with the nominal Mach
number as expected value. The resulting robust problem formulations discussed
below require more computational effort but can be reformulated as deterministic
problems similar to (1-3).

Geometry uncertainties on the other hand require to change the optimal design
problem dramatically. With geometry uncertainties, we mean the case that the real
geometry deviates from the planned geometry characterized typically by splines
parameterized by p. The parameters p span a space of possible geometries of
dimension n p. The sources for deviations from the planned geometry may lie in
manufacturing, usage and wearing of the aircraft or wheather conditions (e.g., ice
crusts). The only sure information about these deviations is that they will not lie
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within the geometry space spanned by the spline parameters p. Here, one rather has
to work in the shape space, which is in general a function space that requires at least
the usage of a free node parameterization. The ultimate goal of these investigations
is the robust design under moderate shape fluctuations from a function space still
to be determined. We leave these discussions to subsequent publications.

3 Robust formulations of aerodynamic design problems

The general deterministic problem formulation (1-3) is influenced by stochastic
perturbations. We assume that there are uncertain disturbances s ∈ S ⊂ Rn in-
volved in the form of random variables associated with a probability measure P
with Lebesgue density ϕ : S → R+0 such that the expected value of s can be
written as

E(s) =
∫

S
sdP(s) =

∫

S
sϕ(s)ds

and the expected value of any function g : S→ R is written as

E(g) =
∫

S
g(s)dP(s) =

∫

S
g(s)ϕ(s)ds

The dependence can arise in all aspects, i.e., a naive stochastic variant might
be rewritten as

min
y,p

f (y, p, s) (4)

s.t. c(y, p, s) = 0 (5)

h(y, p, s) ≥ 0 (6)

This formulation still treats the uncertain parameter as an additional fixed param-
eter. The optimal solution should be stable with respect to stochastic variations in
s. The literature can be classified in the following ideal classes: min-max formula-
tion, semi-infinite formulation and chance constraints.

3.1 Min-max formulations

The min-max formulation aims at the worst-case scenario.

min
ys ,p

max
s∈S

f (ys, p, s) (7)

s.t. c(ys, p, s) = 0 , ∀s ∈ S (8)

h(ys, p, s) ≥ 0 , ∀s ∈ S (9)

Since the state vector y depends on the uncertain parameter s, there is a different
yS for each s. The min-max formulation is obviously independent of the stochastic
measure P and thus needs only the perturbation set S as input. Thus, it ignores
problem specific information which is usually at hand. We do not treat this formu-
lation furthermore in this paper.
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3.2 Semi-infinite formulations

The semi-infinite reformulation aims at optimizing the average objective function
but maintaining the feasibility with respect to the constraints everywhere. Thus, it
aims at an average optimal and always feasible robust solution. The ideal formula-
tion is of the form

min
ys ,p

∫

S

f (ys, p, s)dP(s) (10)

s.t. c(ys, p, s) = 0 , ∀s ∈ S (11)

h(ys, p, s) ≥ 0 , ∀s ∈ S (12)

Semi-infinite optimization problems have been treated directly so far only for rather
small and weakly nonlinear problems, e.g. [4]. For the numerical treatment of com-
plicated design tasks, one has to approximate the integral in the objective (10). If
one assumes that the random variable confers to a multivariate truncated normal
distribution, i.e. s ∼ 1

const N (µ,C) · 1S with expected value vector µ the integral in
(10) be efficiently evaluated by a Gaussian quadrature, where the quadrature points
{si }Ni=1 are the roots of a polynomial belonging to a class of orthogonal polynomi-
als. In the case of a lift constraint in (12) to be satisfied overall within a set of Mach
numbers, we can take advantage of the fact that the lift is monotonically increas-
ing with the Mach number. Therefore, it is enough to keep a lift constraint for the
smallest Mach number under consideration. Therefore, we can reformulate prob-
lem (10-12) in an approximate fashion in the form of a multiple set-point problem
for the set-points {si }Ni=1:

min
yi ,p

N∑

i=1

f (yi , p, si )ωi (13)

s.t. c(yi , p, si ) = 0 , ∀i ∈ {1, . . . , N } (14)

h(yi , p, smin) ≥ 0 . (15)

where ωi denote the quadrature weights. We will investigate this formulation later
on. As an example, we look at the Mach number as being the uncertainty s, which
is scalar valued, i.e. s ∼ 1

const N (µ, σ 2) · 1S and we choose just 4 Gaussian points.
The following figure shows a particular choice for the density function of the Mach
number with expected value s0 = 0.73 and the computed Gaussian points.
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Figure 1: Gaussian points and the density function

3.3 Chance constraint formulations

Chance constraints leave some flexibility with respect to the inequality restrictions.
The inequality restrictions are only required to hold with a certain probability P0

min
ys ,p

∫

S

f (ys, p, s)dP(s) (16)

s.t. c(ys, p, s) = 0 , ∀s ∈ S (17)

P({s | h(ys, p, s) ≥ 0}) ≥ P0 (18)

So far, chance constraints are used mainly for weakly nonlinear optimization
problems [9, 8]. In the context of structural optimization (which is typically a bili-
nar problem), this formulation is also called reliability-based design optimization.
For more complex problems, we need again some simplification. In [10] this is per-
formed by applying a Taylor series expansion about a nominal set-point s0 := µ,
which is at the same time the expected value of the random variable s. Suppressing
further arguments (y, p) for the moment, the Taylor approximation of 2nd order of
f in (16) gives

f̂ (s) := f (s0)+ ∂ f (s0)

∂s
(s − s0)+ 1

2
(s − s0)>

∂2 f (s0)

∂s2
(s − s0)

5



Integrating this, we observe

∫

S

f̂ (s)ds = f (s0)+ 1
2

k∑

i=1

∂2 f (s0)

∂s2
i

V ar(si )

where V ar(si ) is the variance of the i-th component of s. Obviously, a first order
Taylor series approximation would not give any influence of the stochastic infor-
mation, which is the reason, why we use an approximation of second order for the
objective. In order to deal with the probabilistic chance constraint (18), we have
to approximate its probability distribution by something simple, e.g., again a trun-
cated normal distribution. Therefore, we use a first order Taylor approximation
there, since we know that this is again a truncated Normal distribution (unlike the
second oder approximation).

ĥ(s) := h(s0)+ ∂h(s0)

∂s
(s − s0) ∼ 1

const
N
(
h(s0), σ 2

h

) · 1Sh

where we assume for simplicity that h is scalar valued.
Now we can put the Taylor approximations together and achieve a deterministic
single set-point optimization problem. Since the flow model (17) depends also on
the uncertainties s, we should be aware that the derivaties with respect to s mean
total derivaties. We express this by reducing the problem in writing y = y(p, s)
via (17).

min
p

f (y(p, s0), s0)+ 1
2

k∑

i=1

∂2 f (y(p, s0), s0)

∂s2
i

V ar(si ) (19)

s.t. P({s | ĥ(y(p, s), s) ≥ 0}) ≥ P0 (20)

For the computation of the total derivatives we can introduce a sensitivity equations
as in [12].
As an example, again we look at the case that s is scalar valued, i.e.

s ∼ 1
consts

N (µ, σ 2)·1[l,u], where consts =
u∫
l

1√
2πσ 2 exp

(
− (x−µ)2

2σ 2

)
dx is the scaling

factor to normalize the density function. Hence, we obtain the distribution of the
probabilistic constraint

ĥ(s) ∼ 1
constĥ

N
(

h(s0), (
∂h(s0)

∂s
)2σ 2

)
· 1[ ∂h(s0)

∂s l+h(s0), ∂h(s0)
∂s u+h(s0)

]

where constĥ = 1√
2π( ∂h(s0)

∂s )2σ 2

∂h(s0)
∂s u+h(s0)∫

∂h(s0)
∂s l+h(s0)

exp
(
− (x−h(s0))2

2( ∂h(s0)
∂s )2σ 2

)
dx .

Finally, the following equivalent representations of the chance constraint

P({s | ĥ(y(p, s), s) ≥ 0}) ≥ P0 ⇐⇒ P({s | ĥ(y(p, s), s) ≤ 0}) ≤ 1− P0
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lead to the deterministic optimization problem

min
p

f (y(p, s0), s0)+ 1
2

k∑

i=1

∂2 f (y(p, s0), s0)

∂s2
i

V ar(si ) (21)

s.t.
1

constĥ

√
2π( ∂h(s0)

∂s )2σ 2

0∫

∂h(s0)
∂s l+h(s0)

exp

(
−(x − h(s0))2

2( ∂h(s0)
∂s )2σ 2

)
dx ≤ 1− P0

(22)

The propagation of the input data uncertainties is estimated by the combination of a
First Order Second Moment (FOSM) method and a Second Order Second Moment
(SOSM) method, presented for example in [10].

Since there is no closed form solution for the integral, the chance constraint is
evaluated by a numerical quadrature formula. Below, we will compare this formu-
lation with one, where the objective in (21) omits a Taylor expansion.

4 One-shot aerodynamic shape optimization and its cou-
pling to robust design

Novel one-shot aerodynamic shape optimization in the form (1-3) have been intro-
duced in [7, 6]. They have the potential of fast convergence in only a small multiple
of cpu-time compared to on flow simulation. These methods are based on approx-
imate reduced SQP iterations in order to generate a stationary point satisfying the
first oder KKT optimality conditions.

In this context, a full SQP-approach reads as



Lyy Lyp h>x c>x
Lpy Lpp h>p c>p
hx h p 0 0
cx cp 0 0







1y
1p
1µ

1λ


 =




−L>y
−L>p
−h
−c


 ,




yk+1

pk+1

µk+1

λk+1


 =




yk

pk

µk

λk


+τ ·




1y
1p
1µ

1λ


 (23)

The symbolL denotes the Lagrangian function. We assume that the lift constraint h
is active at the solution, which is the reason that we formulate is rather as an equal-
ity condition in the single setpoint case. The approach (23) is not implementable
in general, because one usually starts out with a flow solver for c(y, p) = 0 and
seeks a modular coupling with an optimization approach, which does not neces-
sitate to change the whole code structure, as would be the case with formulation
(23). A modular but nevertheless efficient alternative is an approximate reduced
SQP approach as justified in [5].



0 0 0 A>

0 B γ c>p
0 γ> 0 0
A cp 0 0







1y
1p
1µ

1λ


 =




−L>y
−L>p
−h
−c


 ,




yk+1

pk+1

µk+1

λk+1


 =




yk

pk

µk

λk


+ τ ·




1y
1p
1µ

1λ


 (24)
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where
γ = h>p + c>p α , such that A>α = −h>x

The matrix A denotes an appropriate approximation of the system matrix cx , which
is used in the iterative forward solver. An algorithmic version of this modular
formulation is given by the following steps

(1) generate λk by performing N iterations of an adjoint solver with right hand
side f >y (y

k, pk) starting in λk

(2) generate αk by performing N iterations of an adjoint solver with right hand
side h>y (y

k, pk) starting in αk

(3) compute approximate reduced gradients

g = f >p + c>p λ
k+1 , γ = h>p + c>p α

k+1

(4) generate Bk+1 as an approximation of the (consistent) reduced Hessian

(5) solve the QP [
B γ

γ> 0

](
1p
µk+1

)
=
(−g
−h

)

(6) update pk+1 = pk +1p

(7) compute the corresponding shep geometry and adjust the computational mesh

(8) generate yk+1 by performing N iterations of the forward state solver starting
from an interpolation of yk at the new mesh.

This highly modular algorithmic approach is not an exact transcription of equation
(24), but is shown in [5] to be asymptotically equivalent and to converge to the
same solution. The overall algorithmic effort for this algorithm is typically in the
range of factor 7 to 10 compared to a forward stationary simulation.

Now we generalize this algorithmic framework to the semi-infinite problem
formulation (10-12). Numerical approaches to this problem class have been pro-
posed already in [3, 2])..

For the sake of simplicity, we restricted the formulation to a problem with
two set-points coupled via the objective, which is a weighted sum of all set-point
objectives (weights: ω1, ω2), and via the free optimization variables p, which are
the same for all set-points. The generalization to more setpoints (i.e., 4 below) is
then obvious. Furthermore, in the case of the restriction h being the lift, we know
that it is monotonic in the Mach number. Therefore, it is enough to formulate
the constraint for the smallest value smin. The corresponding Lagrangian in our
example is

L(y1, y2, p, λ1, λ2) =
2∑

i=1

ωi fi (yi , p, si )+
2∑

i=1

λ>i ci (yi , p, si )+ µh(ymin, p, smin)

(25)
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The approximate reduced SQP method above applied to this case can be written
in the following form




0 0 0 0 A>1 0
0 0 0 0 0 A>2
0 0 B γ1 c>1,p c>2,p
0 0 γ1 0 0 0
A1 0 c1,p 0 0 0
0 A2 c2,p 0 0 0







1y1

1y2

1p
1µ

1λ1

1λ2



=




−L>y1

−L>y2

−L>p
−h
−c1

−c2




(26)

We notice that the linear sub-problems involving matrices A>i are to be solved
independently, and therefore trivially in parallel. The information from all these
parallel adjoint problems is collected in the reduced gradient

g =
2∑

i=1

ωi f >p +
2∑

i=1

c>p λi

Next, the solution of optimization step
[

B γ1

γ>1 0

](
1p
µk+1

)
=
(−g
−h

)

is distributed to all approximate linearized forward problems

Ai1yi + ci,p1p = −ci ,

which can then again be performed in parallel.

5 Numerical results

We investigate the problem discussed in [7], i.e. the shape optimization of a tran-
sonic RAE2822 profile, by the use of the code Flower within a one-shot framwork.
In this section, we perform numerical comparisons between a single set-point prob-
lem formulation at the setpoint s0 = 0.73Mach with the robust formulations in
sections 3.2 and 3.3. In particular, we compare four formulations: (1) non-robust
optimization at the Mach number 0.73 (fixed Mach number 0.73), (2) semi-infinite
formulation of equations (13-15), (3) chance constraint formulation of equations
(21, 22) without higher order terms in the objective and (4) with higher order terms
in the objective.

The following figures show evaluations of the objective (drag) in these cases as
well as the constraint (lift).

We state the following observations: first, the higher oder terms in the objective
of the chance constraint formulation (21, 22) seem to make no difference, which
means that they can be safely omitted. Second, the semi-infinite robust formulation
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Figure 2: Comparison of drag
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Figure 3: Comparison of lift constraint

has a better lift to drag ratio than the chance constraint formulation, in particular in
the region above the set-point 0.73.

Furthermore, we consider the angle of attack as an additional uncertain pa-
rameter. The following figure shows the drag performance of the solution of the
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semi-infinite optimization problem.

Figure 4: Drag performance of optimized airfoil

As required, the solution of the semi-infinite formulation is always feasible.

Figure 5: Lift performace of optimized airfoil

The different optimized shapes are shown in Fig.6. The semi-infinite formu-
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lation differs the most from the single set point case due to the requirement of
feasibility over the whole range of uncertainties.

Figure 6: Comparison of optimized shapes

6 Conclusions

Robust design is an important task to make aerodynamic shape optimization rel-
evant for practical use. It is also highly challenging because the resulting opti-
mization tasks become much more complex than in the usual single set-point case.
Essentially two robust optimization formulations are compared in this paper. The
discretized semi-infinite formulation seems to be of advantage in a numerical test
case close to a real configuration.
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