
JMLR: Workshop and Conference Proceedings 1–30

Polynomial inference of universal automata
from membership and equivalence queries

Johanna Björklund johanna@cs.umu.se
Universitet Ume̊a, Department of Computing Science, S-90750 Ume̊a, Sweden

Henning Fernau and Anna Kasprzik fernau,kasprzik@informatik.uni-trier.de

Universität Trier, FB IV—Abteilung Informatik, D-54286 Trier, Germany

Abstract

We present a MAT learning algorithm that infers the universal automaton for a regular
target language using a polynomial number of queries with respect to that automaton.
The universal automaton is one of the numerous canonical characterizations for regular
languages. Our learner is based on the concept of an observation table, and we adapt the
necessary notions and definitions from the literature to the case of universal automata.

1. Introduction

Grammatical Inference

The area of Grammatical Inference (GI) is concerned with algorithms that extrapolate from
limited information to infer a formal description of an unknown language. An important
concept in this context is the convergence to a certain partition of the target language, which
is obtained by splitting and merging sets (or, from the automaton perspective: states). In
this paper, we present an algorithm with the objective of inferring the universal automaton
(UA) for the language in question, and in doing so we restrict our attention to automata in
which states are non-mergible by definition; see Grunsky et al. (2006). We may therefore
adopt a general strategy of iteratively dividing states until the conditions for the desired
type of description are met. Our tool of choice shall be the observation table, which in
its most general interpretation fits the characteristics of universal automata more closely
than those of any other kind of finite-state automaton. This also means that our way of
obtaining an automaton from an observation table is distinctively different from any earlier
approach such as Angluin (1987); Bollig et al. (2009).

Learning Models

When formalizing a learning task, the information source is of key importance. This can for
instance be a finite set of positive examples, also known as a text (the limits of this source
are discussed in Angluin (1987)), or a potentially infinite sequence of positive and negative
examples, known as an enumeration (Gold, 1967). A substantial amount of work has also
been devoted to algorithms that learn by querying an oracle. Angluin (1987) introduced
the notion of a minimal adequate teacher (MAT) to allow for polynomial-time learning of
regular languages. This is an oracle capable of answering two types of queries, membership

c© J. Björklund, H. Fernau & A. Kasprzik.

Björklund Fernau Kasprzik

and equivalence queries. Let L be the target language. An equivalence query (EQ) is of the
form “Is A a correct description of L?”, and is answered by the oracle either with a simple
‘yes’, or with a counterexample in the symmetric difference of A and L (that is, with an
element in c ∈ (L \ L(A)) ∪ (L(A) \ L)). Membership queries (MQs), on the other hand,
are of the type “Is w an element of L?” and are answered with ‘yes’ or ‘no’. In the present
article, we adopt the MAT model and require the learner to return the target universal
automaton after a finite number of queries.

Learning Objects

While Angluin (1987) focused on learning regular languages by presenting state-minimal
deterministic finite-state automata (DFA) as hypotheses to the teacher, our learner builds
universal automata (UA), which constitute another kind of canonical description for regular
languages. A survey of the theory of UA has been provided by Lombardy and Sakarovitch
(2008). A third kind of FA besides DFA also providing a canonical description for regular
languages, namely residual finite-state automata (RFSA; see Denis et al. (2001)), have
already been considered in the MAT model by (Bollig et al., 2009). Interestingly, the
hypotheses presented by the RFSA learner in Bollig et al. (2009) are not always ensured to
be state-minimal RFSA but can seemingly be arbitrary non-deterministic automata (NFA);
only the final, correct hypothesis is guaranteed to be the canonical RFSA of the target
language.

Motivation and Results

We first consider two important facts on the descriptional complexity of UA in contrast to
state-minimal DFA, comparing the number of states.

• There are regular languages whose state-minimal DFA is exponentially more succinct
than the corresponding universal automaton.

• There are regular languages whose universal automaton is exponentially more succinct
than the corresponding state-minimal DFA.

The first fact is explicitly shown in Lombardy and Sakarovitch (2008). The second fact is
our first result in this paper, and also provides a solid motivation for studying these devices
in the context of GI. As our main contribution, we will present a learning algorithm for
universal automata that needs at most a cubic number of equivalence queries, measured
in terms of the number of states of the universal automaton of the target language. This
result contrasts those by Yokomori (1994); Denis et al. (2001); Bollig et al. (2009) which
all refer to the state-minimal deterministic automaton when indicating the (polynomial)
complexity of their respective learners for various kinds of special NFA. Our learnability
result is based on the fact that a universal automaton consistent with the data seen so
far can be easily computed from any observation table. In particular, the closedness and
consistency conditions known from and necessary for other approaches can be relaxed here.
In this mathematical sense, universal automata fit to observation tables better than any
other canonical model of regular languages.

2

Learning universal automata

2. Preliminaries

Before we continue, it is useful to revise some of the notions and notations related to MAT
learning, and to introduce a number of technical devices that will serve as our toolbox in
the upcoming discussions.

2.1. Finite-State Automata

A finite-state automaton (FA) is a tuple A = 〈Σ, Q, I, F, δ〉 where

• Σ is a finite set of alphabet symbols,

• Q is the finite set of states,

• I ⊆ Q is the set of start or initial states,

• F ⊆ Q is the set of accepting states, and

• δ ⊆ Q× Σ×Q is the transition relation.

From the transition relation δ, we derive the functions δ+ : Q×Σ∗ −→ 2Q and δ∗ : Σ∗ −→
2Q. Intuitively, δ+(q, w) is the set of all states that can be reached from q on input w ∈ Σ∗,
and δ∗(w) is the set of all states that can be reached from an initial state on w. More
formally, δ+ is given by δ+(q, ε) = {q} and, for every w = w′a ∈ Σ+,

δ+(q, w) = {q′′ ∈ Q | ∃q′ ∈ δ+(q, w), q′′ ∈ Q : 〈q′, a, q′′〉 ∈ δ} .

We can now define δ∗ : Σ∗ −→ 2Q as

δ∗(w) =
⋃
q∈I

δ+(q, w) .

With every state q, we shall associate two sets of strings, Pq and Fq. Intuitively, Pq is
the set of all strings that can end up in q (the past of q), and Fq is the set of all strings
that can lead from q into an accepting state (the future of q). Again, more formally, for
every state q ∈ Q, let Pq := {s ∈ Σ∗ | q ∈ δ∗(s)} and Fq := {e ∈ Σ∗ | δ+(q, e) ∩ F 6= ∅}.
A state q is reachable if Pq 6= ∅ and co-reachable if Fq 6= ∅. An automaton is trim if all
of its states are reachable and co-reachable. By keeping only the states that are reachable
and co-reachable we obtain the trimmed version of an automaton; this can be easily done
in polynomial time and does not change the accepted language.

Note that unlike the classical definition of FA, the above definition of an automaton
allows for multiple start states. This is motivated by the fact every state will be identified
with a pair 〈X,Y 〉 of strings, intuitively corresponding to the past and future of that state.
A state 〈X,Y 〉 will be classified as a start state whenever ε ∈ X, which can be true for
more than one such pair.

It will sometimes be useful to identify the automaton A with the membership predicate
for the language that it recognizes. Given w ∈ Σ∗, we thus write

• A(s) = 1 if δ∗(s) ∩ F 6= ∅,

3

Björklund Fernau Kasprzik

• A(s) = 0 if δ∗(s) ∩Q 6= ∅ but δ∗(s) ∩ F = ∅, and

• A(s) = ∗ if δ∗(s) = ∅.

The language accepted by A is L(A) := {s ∈ Σ∗ | A(s) = 1}. A string language is regular
if it is accepted by an FA.

An FA A is total if, for every a ∈ Σ and q ∈ Q, there is a transition 〈q, a, q′〉 ∈ δ.
Furthermore, A is a deterministic FA (abbreviated DFA) if 〈q, a, q′〉, 〈q, a, q′′〉 ∈ δ implies
q′ = q′′, otherwise non-deterministic (an NFA). For DFA, we may abbreviate δ∗(s) = {q}
to δ∗(s) = q, and δ+(s, e) = {q} to δ+(s, e) = q without risk of confusion.

We also write L(w) = 1 if w ∈ L for w ∈ Σ∗ and L ⊆ Σ∗, and L(w) = 0 if w /∈ L.

2.2. Factors of a Language and Universal Automata

Let Σ be an alphabet and L ⊆ Σ∗ be a language. A pair 〈X,Y 〉 with X,Y ⊆ Σ∗ is a
subfactor of L if XY ⊆ L. A subfactor 〈X,Y 〉 is a factor of L if it is maximal with respect
to inclusion, in other words, if for every X ⊆ X ′ and Y ⊆ Y ′, X ′Y ′ ⊆ L implies X ′ = X
and Y ′ = Y . Henceforth, we denote by fac(L) the set of all factors of L.

As shown by Lombardy and Sakarovitch (2008), a language L is regular if fac(L) is
finite. Moreover, we can view Q = fac(L) as the state set of an FA UL = 〈Σ, Q, I, F, δ〉 with

• I = {〈X,Y 〉 ∈ fac(L) | ε ∈ X},

• F = {〈X,Y 〉 ∈ fac(L) | ε ∈ Y },

• 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ if and only if XaY ′ ⊆ L.

This (unique!) automaton is the called the universal automaton of L. Note that for 〈X,Y 〉 ∈
fac(L), the set X determines the set Y and vice versa via, for example, Y =

⋂
x∈X x−1L.

The bijection has several interesting implications (Lombardy and Sakarovitch, 2008), e.g.:

〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ ⇐⇒ Xa ⊆ X ′ ⇐⇒ aY ′ ⊆ Y .

We now turn to Theorem 1, which is our first main result and which provides ample
mathematical justification for our interest in inference algorithms for universal automata:

Theorem 1 There are regular languages whose universal automaton is exponentially more
succinct than the corresponding state-minimal DFA.

Proof We support Theorem 1 on the language family Lk = {a, b}∗{a}{a, b}k. For every
natural number k, the state-minimal DFA for Lk has Ω(2k) states – see for instance Hopcroft
et al. (2001, Sec. 2.3.6) (although the example seems to be first mentioned in Meyer and
Fischer (1971), where they attribute it to Peterson).

The state-minimal NFA of Lk has the following states, where i is the initial state and
qk the final state:

i with (Pi,Fi) = ({a, b}∗, {a, b}∗{a}{a, b}k)
qj with (Pqj ,Fqj) = ({a, b}∗{a}{a, b}j , {a, b}k−j) for 0 ≤ j ≤ k

4

Learning universal automata

Its transitions are 〈i, c, i〉, 〈i, a, q0〉, and, for every x ∈ {a, b} and 0 ≤ j < k, 〈qj , x, qj+1〉.
The universal automaton for Lk is similar to the above NFA for Lk, having the same state
set but additional transitions 〈qj , a, q0〉 and 〈qj , x, i〉 for every x ∈ {a, b} and 0 ≤ j ≤ k.
The past and future languages of the states are now found by adding (∅, {a, b}+{a}{a, b}k)
to every qj , so

(Pqj ,Fqj) = ({a, b}∗{a}{a, b}j , {a, b}k−j ∪ {a, b}+{a}{a, b}k) for 0 ≤ j ≤ k .

Since for every 0 ≤ j ≤ k, we have {a, b}∗{a}{a, b}j{a, b}+{a}{a, b}k ⊆ Lk, the new transi-
tions do not alter the recognized language.

2.3. Observation tables

We will now introduce the central data structure of our learning algorithm. Let L ⊆ Σ∗ be
the target language. A triple T = 〈S,E, obs〉 consisting of two finite sets S,E ⊆ Σ∗ and a
function obs : S × E −→ {0, 1} is an observation table for L if

• S is prefix-closed,

• E is suffix-closed,

• ε ∈ S and ε ∈ E, and

• obs is a total function with

obs(s, e) =

{
1 if se ∈ L is confirmed,
0 if se /∈ L is confirmed.

3. Tables of subsets

The following thoughts, which only require some basic set theory, are fundamental for our
approach. We could have stated them in more concrete terms, but this abstract approach
is better to convey the basic ideas. Similar notions have been developed in Clark (2010d);
Courcelle et al. (1991).

We consider a universe U ×V and a target T ⊆ U ×V . By letting U = 2U and V = 2V ,
we create a frame U×V. An element (X,Y) ∈ U×V is a subfactor of T if X × Y ⊆ T . A
subfactor (X,Y) of T is a factor if, for every subfactor (X ′, Y ′) of T , X ′ ⊇ X and Y ′ ⊇ Y
imply that X = X ′ and Y = Y ′.

A set C ⊆ U × V is a cover with respect to T if, for every (x, y) ∈ T , there is some
(X,Y) ∈ C with x ∈ X and y ∈ Y . A cover C ⊆ U × V is a subfactor cover (or a factor
cover) if each (X,Y) ∈ C is a subfactor (or a factor, respectively).1

The reasoning behind these definitions is as follows: Consider an alphabet Σ, take
U = Σ∗, V = Σ∗, and let L be the target language of some learning process. The language

1. Courcelle et al. (1991) would have termed a subfactor cover with respect to T a rectangular decomposition
of the relation T for obvious geometric reasons; we did not use that terminology because “decomposition”
hints at some non-overlapping set system, which would point to the wrong direction.

5

Björklund Fernau Kasprzik

L then defines an infinite target table TL given by (u, v) ∈ TL iff uv ∈ L. The condition
X×Y ⊆ TL is now clearly equivalent to X ·Y ⊆ L (where · denotes concatenation, lifted to
sets in the usual way). In the formal language terminology introduced in Section 2, 〈X,Y 〉
is a (sub)factor of L iff (X,Y) is a (sub)factor of TL, while a (sub)factor cover corresponds
to a set of (sub)factors {〈Xi, Yi〉 | i ∈ J} of L with

⋃
i∈J Xi · Yi = L.

By repeatedly appealing to the axiom of choice, the following assertion is easily seen:

Lemma 2 Let C ⊆ U×V and let T ⊂ T ′ ⊆ U ×V be two targets. If C is a cover (subfactor
cover) with respect to T then there is some cover (subfactor cover) C′ ⊆ U×V extending C

in the sense that C ⊆ C′.

It is tempting to claim the same for factor covers, but unfortunately it does not hold.
This is witnessed by U = {1}, V = {a, b}, T = {(1, a)}, and T ′ = T ∪ {(1, b)}. Here,
{U×{a}} is a factor cover of T , but U×{a} is not a factor of T ′, so no cover of T ′ can both
contain U ×{a} and be a factor cover of T ′. As we shall see, it is possible to obtain a result
corresponding to Lemma 2 also for factor covers, but this requires additional notation.

To this end, let us fix a sub-universe S×E of U ×V such that S ⊆ U and E ⊆ V . This
restriction induces a sub-frame S × E, with S ⊆ U and E ⊆ V. Again, let T ⊆ U × V be
our target, and assume that C ⊆ U×V is a cover with respect to T . The cover and target
induced by S × E is then

C|S×E = {(X ∩ S, Y ∩ E) | (X,Y) ∈ C},

and T |S×E = T ∩(S×E), respectively. The names are justified by the elementary Lemma 3.

Lemma 3 Let C be a cover with respect to T . Then C|S×E is a cover with respect to T |S×E.
Moreover, if C is a subfactor cover then C|S×E is a subfactor cover, as well.

Proof Assume that C|S×E is not a cover with respect to T |S×E . Then there is an element
(x, y) ∈ S × E not covered by C|S×E . However, as C is a cover, there is some (X,Y) ∈ C

with (x, y) ∈ X × Y . Clearly, (x, y) ∈ (X ∩ S)× (Y ∩E), i.e., we have found some element
from C|S×E , namely (X ∩ S, Y ∩E), that covers (x, y), contradicting our assumption. The
“moreover-part” is trivial.

Still, even if C is a factor cover then this does not necessarily imply that C|S×E is a
factor cover as well. We again support our claim on an example.

Example 1 Let U × V with U = {1, 2, 3, 4} and V = {a, b, c} be a universe and

T = {(1, a), (1, b), (1, c), (2, a), (2, b), (3, b), (4, a)}

our target. Furthermore, let S × E be a sub-universe with S = {1, 2} and E = {a, b}.
Then, the target induced by S × E is T |S×E = {(1, a), (1, b), (2, a), (2, b)}. It is easy to see
that the only factor cover with respect to T |S×E is {S × E}. If we look at the factor cover
C = {{1}×V, {1, 2, 4}×{a}, {1, 2, 3}×{c}} of T then its restriction C|S×E = {{1}×E,S×
{a}, S×{b}} is clearly not a factor cover of T |S×E. However, by Lemma 3, it is a subfactor
cover of T |S×E.

6

Learning universal automata

For the reverse direction, where we enlarge rather than restrict the domain, it is possible
to embed smaller factor covers into larger ones. We introduce a further notion that becomes
important in this context. Let T be a target with the universe U × V .

• For X ⊆ U , (X,V [X]) denotes the right-maximal subfactor induced by X, i.e., V [X]
is the largest subset of V such that (X,V [X]) is a subfactor of T , i.e., X ×V [X] ⊆ T .

• For Y ⊆ V , (U [Y], Y) analogously denotes the left-maximal subfactor induced by Y .

Lemma 4

• For X ⊆ U , (X,V [X]) is a subfactor with V [X] = {v ∈ V | ∀x ∈ X : (x, v) ∈ T}.

• For Y ⊆ V , (U [Y], Y) is a subfactor with U [Y] = {u ∈ U | ∀y ∈ Y : (u, y) ∈ T}.

• For X ⊆ U , (U [V [X]], V [X]) is a factor, called the factor induced by X.

• For Y ⊆ V , (U [Y], V [U [Y]]) is a factor, called the factor induced by Y .

Let C ⊆ U×V be a factor cover with respect to the target T .

Lemma 5 If C is a factor cover with respect to T |S×E then there is a factor cover C′ with
respect to T such that C ⊆ C′|S×E. This fact is testified by the embedding f : C → C′,
(X,Y) 7→ (U [Y], V [U [Y]]) which satisfies X ⊆ U [Y] and Y ⊆ V [U [Y]].

Proof For (X,Y) ∈ C, by definition U [Y] is the maximal subset of U with U [Y]× Y ⊆ T .
Similarly, V [U [Y]] is the maximal subset of V for which U [Y] × V [U [Y]] ⊆ T . Since C is
a factor cover with respect to T |S×E , we conclude that X ⊆ U [Y] and Y ⊆ V [U [Y]]. The
existence of a factor cover C′ extending f(C) now follows along the lines of Lemma 2.

Remark 6 Let us comment on the previous proof: It is worth noticing here that the defi-
nition of f using U [Y] and V [U [Y]] is not completely symmetric. We could have chosen to
define f ′ : C→ C′, (X,Y) 7→ (U [V [X]], V [X]); this would work out equally well, with minor
adjustments to the upcoming proofs. However, the mapping f ′ would look different compared
to f in concrete examples. For instance, let U = V = {1, 2} and T = {(1, 1), (1, 2), (2, 1)}
with S = E = {1}. Then, {{(1, 1)}} is a factor cover of T |S×E = {(1, 1)}. The maximal
subset of U for which U [Y] × Y ⊆ T is U [Y] = {1, 2}. Then, V [U [Y]] would equal {1}.
Hence, f is defined by {(1, 1)} 7→ {(1, 1), (2, 1)}. The factor cover C′ extending f(C) would
be {{((1, 1), (2, 1)}, {(1, 1), (1, 2)}}. If we would have chosen to use f ′, this would yield
{(1, 1)} 7→ {(1, 1), (1, 2)} instead. Also note that it would be simply wrong to try a symmet-
ric definition like: “Consider (X,Y) 7→ (XY , YX), where XY is the maximal subset of U
for which XY × Y ⊆ T and YX is the maximal subset of U for which X × YX ⊆ T”; in our
example, we would have XY = U and YX = V , which would give the set XY × YX = U × V
which is not even a subfactor.

With Lemma 5 fresh in mind, let us return to our running example:

7

Björklund Fernau Kasprzik

Example 2 (cont’d) Starting from the factor cover C′ = {S × E} of T |S×E, we can use the
embedding f in the proof of Lemma 5, which has a fixed-point on S × E, to find the cover
K = C] C′ = {{1} × V, {1, 2, 4} × {a}, {1, 2, 3} × {c}, S × E} of T . Note that both K and
C are factor covers of T , even though one is a proper subset of the other. This shows that
factor covers are not necessarily unique, and that they need not contain the same number
of elements. Also, the claimed (rather trivial) inclusion C′ ⊆ K|S×E may be strict.

If we increase T slightly, setting T ′ = T∪{(2, c)} and using the same restricting set S×E
we would then get K = {{1, 2, 4}×{a}, {1, 2, 3}×{c}, S × V }. Moreover, f(S×E) = S×V .

Lemma 7 will play an important role in the later analysis of our learning algorithm.

Lemma 7 The embedding f : C→ C′, (X,Y) 7→ (U [Y], V [U [Y]]) from Lemma 5 is injective
and satisfies X = U [Y] ∩ S and Y = V [U [Y]] ∩ E.

Proof Assume the contrary, i.e., there are (X,Y) and (X ′, Y ′) such that (U [Y], V [U [Y]]) =
(U [Y ′], V [U [Y ′]]). In a sense, the mapping f is defined in two steps, first computing the
first component from Y and then computing the second component from U [Y]. Let us treat
the first of these steps. By Lemma 5, X is extended towards U [Y] satisfying U [Y]×Y ⊆ T .
Observe that, since (X,Y) was a factor of T |S×E , (U [Y] \ X) ∩ S = ∅ (†). Analogously,
(U [Y ′]\X ′)∩S = ∅. Clearly, (U [Y], V [U [Y]]) = (U [Y ′], V [U [Y ′]]) implies that U [Y] = U [Y ′]
and hence that U [Y]∩S = U [Y ′]∩S, which implies X = X ′ due to (†). A similar argument
applies for the second step, yielding Y = Y ′. This proves the claim.

A related result is the following one.

Lemma 8 If (Xi, Yi), i ∈ {1, . . . , r}, are factors of a target T over a universe U × V
then so are (

⋂r
i=1Xi, V [

⋂r
i=1Xi]) with

⋃r
i=1 Yi ⊆ V [

⋂r
i=1Xi] and (U [

⋂r
i=1 Yi],

⋂r
i=1 Yi) with⋃r

i=1Xi ⊆ U [
⋂r

i=1 Yi], provided that the intersections are not empty.

Here, Z[·] is the induced-operator that we have introduced above. It is natural to think
that

⋃r
i=1 Yi = V [

⋂r
i=1Xi] but the following example proves that this is not always the

case.

Example 3 Let U = {ε, a, aa, b} and V = {ε, a, b, bb} be finite languages over Σ = {a, b}.
Let

T = {(a, ε), (aa, ε), (ε, a), (a, a), (aa, a), (b, a), (b, b), (ε, bb), (aa, b)}.

The factors of this target are: F1 = ({ε, a, aa, b}, {a}), F2 = ({a, aa}, {ε, a}), F3 = ({aa},
{ε, a, bb}), F4 = ({ε, aa}, {a, bb}), F5 = ({b}, {a, b}). Let Fi = (Xi, Yi). Note that, since
the Fi are factors, U [Yi] = Xi and V [Xi] = Yi. Consider more concretely F2 = (X2, Y2)
and F4 = (X4, Y4). Then, X2 ∩X4 = {aa} = X3. Hence, V [X3] = Y3 = Y2 ∪ Y4. On the
other hand, Y2 ∩ Y4 = {a} = Y1, while V [Y1] = X1 = {ε, a, aa, b} is a proper superset of
X2 ∪X4 = {ε, a, aa}.

In the following sections, T will be alternatively interpreted as the (learning) target and
as the observation table of a learning process. In the latter context, it is also interesting

8

Learning universal automata

to note that the sets U and V of the previous example are prefix-closed and suffix-closed,
respectively.
Proof (of Lemma 8) We will prove the assertion for the case r = 2; for r > 2, an easy
induction argument shows the claim. By symmetry, it is sufficient to show that (X1 ∩
X2, V [X1 ∩X2]) is a factor, provided that X1 ∩X2 6= ∅.

• Due to Lemma 4, (X1 ∩X2, V [X1 ∩X2]) is a subfactor.

• Consider some arbitrary y ∈ Y1∪Y2, i.e., y ∈ Y1 or y ∈ Y2. Without loss of generality,
assume that y ∈ Y1. As (X1, Y1) is a subfactor, for each x ∈ X1, (x, y) ∈ T . Hence,
y ∈ V [X1 ∩X2]. So, Y1 ∪ Y2 ⊆ V [X1 ∩X2] follows.

• By definition of V [X1∩X2] again, there is no y /∈ V [X1∩X2] satisfying ∀x ∈ X1∩X2 :
(x, y) ∈ T .

• Assume that there is some x /∈ X1 ∩ X2 with ∀y ∈ V [X1 ∩ X2] : (x, y) ∈ T . As
x /∈ X1∩X2, x /∈ X1 or x /∈ X2. Without loss of generality, consider the first case. We
know that, for all y ∈ V [X1∩X2], (x, y) ∈ T . As Y1 ⊆ V [X1∩X2] by the second item,
for all y ∈ Y1, (x, y) ∈ T . This implies x ∈ X1, as (X1, Y1) is a factor, contradicting
our assumption.

Remark 9 Notice that the set of factors fac(T) of a target T has a natural partial order
(or lattice) structure imposed on it by letting (X;Y) ≤ (X ′, Y ′) if X = X ∩ X ′. This is
equivalent to the condition Y ′ = Y ∩ Y ′. The reader can verify this with Example 3, where
we find F3 ≤ F2 ≤ F1, F2 ≤ F4 and F5 ≤ F1.

4. Properties of hypotheses

In this section, we establish the connection between observation tables and universal auto-
mata. We begin by defining the factors of an observation table, to be contrasted with the
previously defined factors of a language.

Definition 10 (Factors (of a table)) Let T = 〈S,E, obs〉 be an observation table. A
subfactor of T is a pair 〈X,Y 〉 with X ⊆ S and Y ⊆ E such that for all s ∈ X and all
e ∈ Y we have obs(s, e) = 1. Analogously, a factor of T is a subfactor 〈X,Y 〉 of T such
that for every subfactor 〈X ′, Y ′〉 of T with X ⊆ X ′ and X ⊆ X ′, we have 〈X,Y 〉 = 〈X ′, Y ′〉.
The set of all factors of T is denoted by fac(T).

Note that in contrast to the classical representation of observation tables introduced
above, there is a more general interpretation – clearly, any observation table corresponds
to some subset T ⊆ S × E, and the reader can easily verify that the according notions of
(sub)factors as discussed in Section 3 coincide. For instance, the target T from Example 3
can be viewed as belonging to the following observation table:

9

Björklund Fernau Kasprzik

ε a b bb

ε 0 1 0 1
a 1 1 0 0
aa 1 1 0 1
b 0 1 1 0

More generally, any T ⊆ S × E corresponds to an observation table, provided that S is a
prefix-closed finite language over some alphabet Σ, E is some suffix-closed finite language
over Σ, and that the table entries are consistent with concatenation, i.e., whenever xy = x′y′

for some words x, x′ ∈ S and y, y′ ∈ E, then (x, y) ∈ T if and only if (x′, y′) ∈ T .
To differentiate between the notion of factors based on Cartesian products discussed in

Section 3 and the one based on the catenation product, we use parentheses (,) in the first
case and pointed brackets 〈, 〉 in the second one.

Remark 11 Observe that if L 6= ∅, then 〈X,Y 〉 ∈ fac(L) implies X 6= ∅ and Y 6= ∅.
An analogous statement is true for observation tables that contain a non-zero entry. As
observation tables containing only zero entries would lead to the empty language as a hy-
pothesis, and as this will be checked in the very first step in the learning algorithm that we
will present, we can henceforth assume that X 6= ∅ and Y 6= ∅ for all 〈X,Y 〉 ∈ fac(T).

Definition 12 (Automaton associated to a table) Let T be an observation table for a
language L. The associated automaton derived from T is AT = 〈Σ, QT , IT , FT , δT 〉 with

• QT = fac(T),

• IT = {〈X,Y 〉 ∈ QT | ε ∈ X},

• FT = {〈X,Y 〉 ∈ QT | ε ∈ Y }, and

• for every a ∈ Σ and 〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT , we have 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT if and
only if X · {a} · Y ′ ⊆ L.

From AT , we obtain the associated hypothesis HT = 〈Σ, QT , IT , FT , δT 〉 as the trimmed
version of AT .

In the following, HT will be the hypothesis that our learner presents to the teacher,
while the condition X · {a} · Y ′ ⊆ L in the construction of AT is checked via membership
queries to the teacher. Since we allow such queries during the synthetization process, we
are guaranteed to find AT for any observation table T . This sets our algorithm apart from
previous MAT learners which require additional properties in their observation tables such
as consistency and closedness before synthesizing an automaton. We provide an example of
an observation table T where AT 6= HT in Appendix 7.3.

Remark 13 For a ∈ Σ we define T ◦ a := 〈S,E, obsa〉 such that

obsa(s, e) =

{
1 if sae ∈ L is confirmed,
0 if sae /∈ L is confirmed.

10

Learning universal automata

The definition of AT forces us to compute these auxiliary tables, and an efficient imple-
mentation should save the information thus gathered so as to economize with membership
queries. This motivation is purely from a complexity point of view because whether we save
or re-compute these entries has no bearing on the correctness of the learning algorithm.

Definition 14 AT is strongly reachable if, for all a ∈ Σ and 〈X ′, Y ′〉 ∈ QT and all
xa ∈ X ′, there is some 〈X,Y 〉 ∈ QT such that x ∈ X and 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT .
Analogously, we can define strong co-reachability.

Lemma 15 If AT is strongly reachable then it is trim, i.e., AT = HT .

Proof We only prove that every state of AT is reachable, as co-reachability can be seen by
a similar argument. The proof is by induction on the length of the shortest words w(q) ∈ X
of state q = 〈X,Y 〉. If |w(q)| = 0, then ε ∈ X, i.e., q is an initial state and hence reachable.
Assume that the claim is true for all q with |w(q)| ≤ n. Consider some state q = 〈X,Y 〉
with |w(q)| = n + 1. Hence, w(q) = xa. As AT is strongly reachable, there is some state
p = 〈W,Z〉 with x ∈W and 〈p, a, q〉 ∈ δT . Hence, q is reachable.

We will need an even slightly stronger notion in what follows.

Definition 16 An observation table T = 〈S,E, obs〉 for a language L ⊆ Σ∗ is stable if

1. for every s, s′ ∈ S such that there is ae ∈ ΣE with L(sae) > L(s′ae), there is e′ ∈ E
such that L(se′) > L(s′e′); and

2. for every e, e′ ∈ E such that there is sa ∈ SΣ with L(sae) > L(sae′), there is s′ ∈ S
such that L(s′e) > L(s′e′).

Note that this is similar to Angluin’s consistency condition in her LSTAR algorithm.

Lemma 17 If T is stable then AT is strongly reachable.

Proof To show that AT is strongly reachable, we proceed as follows. Let 〈X ′, Y ′〉 be a
factor of T such that there is a string xa ∈ X ′. Let 〈X,Y 〉 be a factor of T such that x ∈ X
and X is of minimal size. Since S is prefix-closed, this factor exists.

If (〈X,Y 〉, a, 〈X ′, Y ′〉) ∈ δT then we are done. Otherwise, there is z ∈ X and y′ ∈ Y ′
such that L(zay′) = 0. Since L(xay′) = 1, there is y′′ ∈ E such that L(xy′′) > L(zy′′), so
by adding y′′ to Y we reduce the size of X while keeping x ∈ X, thus contradicting the
minimality assumption.

We propose the procedure MakeStable(T): Look for s, s′ ∈ S such that there is ae ∈ ΣE
with L(sae) > L(s′ae) but there is no e′ ∈ E such that L(se′) > L(s′e′). Add ae to E and
fill up the table with MQs. Symmetrically, strings can be added to S.

Lemma 18 Every time we add an element from S ·Σ to S, or from Σ ·E to E in order to
make T stable, the number of factors in T increases.

11

Björklund Fernau Kasprzik

Proof Sketch. Suppose we add e′ to E due to Condition 1 in Definition 16. Every factor
〈X,Y 〉 of T with s ∈ X also had s′ ∈ X since no element in Y can prevent it from being so.
By adding e′ to E, 〈X,Y 〉 splits into 〈X,Y 〉 and 〈X ′, S[X ′]〉 with X ′ := {s ∈ X | se′ ∈ L}.
A similar argument holds when we enlarge S instead.

As we will make sure that any hypothesis automaton our learner conjectures is from a
stable observation table T , we assume stability for all tables in the remainder of this section.
This also implies that fac(T) is the state set of any automaton AT we consider.

The next lemma looks obvious but needs a not completely trivial induction argument.

Lemma 19 Let 〈X,Y 〉 ∈ QT . Then X = P〈X,Y 〉 ∩ S and Y = F〈X,Y 〉 ∩ E.

Proof We only prove X = P〈X,Y 〉 ∩ S since the part for the future set of 〈X,Y 〉 follows
from a symmetrical argument.

Let 〈X,Y 〉 ∈ QT . We have to prove the following two assertions:

1. If w ∈ X then w ∈ P〈X,Y 〉 ∩ S, and

2. If w ∈ P〈X,Y 〉 ∩ S then w ∈ X.

The proof is by induction on the length of w. As the induction base, consider w = ε.

1. Since ε ∈ X implies 〈X,Y 〉 ∈ IT we have ε ∈ P〈X,Y 〉 by definition of the set P〈X,Y 〉.

2. If ε ∈ P〈X,Y 〉 ∩ S then 〈X,Y 〉 must be an initial state of AT , as our automata do not
have transitions on the empty word. By definition, this means that ε ∈ X.

Now, assume the claim to hold for all states and for all words w of length up to n.
Consider some w with |w| = n + 1. Hence, w = ua ∈ S for some u ∈ Σn and a ∈ Σ. The
remainder of the proof differs for the respective parts:

1. Consider w = ua ∈ X. As AT is strongly reachable (Lemma 17), there is a table factor
〈X ′, Y ′〉 with u ∈ X ′ and 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By the induction hypothesis,
u ∈ P〈X′,Y ′〉∩S since S is prefix-closed. As 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT , w ∈ P〈X,Y 〉∩S.

2. Assume w ∈ P〈X,Y 〉 ∩ S. Let 〈X ′, Y ′〉 be a state that can be passed when leading
w = ua into 〈X,Y 〉, with 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By the choice of 〈X ′, Y ′〉, u ∈
P〈X′,Y ′〉 ∩ S since S is prefix-closed. By the induction hypothesis, u ∈ X ′. By the
definition of δT , in particular for all y ∈ Y , we find that obsa(u, y) = 1. Since w = ua,
obs(w, y) = 1 for all y ∈ Y . As 〈X,Y 〉 is a table factor, we conclude that w ∈ X.

We now turn our attention to a notion of consistency well-known in Learning Theory
but less frequently addressed explicitly in Grammatical Inference:

Definition 20 A is T -consistent if A(se) = obs(s, e) for every 〈s, e〉 ∈ S × E.

12

Learning universal automata

Lemma 21 The automaton AT is T -consistent.

Proof Let 〈s, e〉 ∈ S×E with obs(s, e) = 1. There is a factor 〈X,Y 〉 = 〈S[{e}], E[S[{e}]]〉
such that s ∈ X and e ∈ Y . Assuming that T is stable, by Lemma 19, X = P〈X,Y 〉 ∩ S and
Y = F〈X,Y 〉 ∩ E, so 〈X,Y 〉 ∈ δ∗T (s) and δ+T (〈X,Y 〉, s) ⊆ FT , and consequently AT (se) = 1.

For the opposite direction, assume that there is an accepting run of AT on se. After
having read all of s, AT must be in some state 〈X,Y 〉 from which it can continue to an
accepting state. We thus know that s ∈ P〈X,Y 〉∩S and that e ∈ F〈X,Y 〉∩E. By Lemma 19,
s ∈ X and e ∈ Y but since 〈X,Y 〉 is a factor, this yields obs(s, e) = 1.

So, in the following we can assume that AT is T -consistent. This will be an important
property when we prove the correctness of our inference algorithm. Moreover, we can
establish the following lemma.

Lemma 22 If the states 〈X,Y 〉, 〈X1, Y1〉, . . . , 〈Xr, Yr〉 ∈ QT are such that the language
F〈X,Y 〉 fulfils F〈X,Y 〉 ⊆

⋃r
i=1F〈Xi,Yi〉 then we have Y ⊆

⋃r
i=1 Yi.

Proof If the claim were wrong then there would be some w ∈ Y ⊆ E not contained in any
of the Yi. However, since Lemma 19 tells us that Y ⊆ F〈X,Y 〉, there must be some F〈Xi,Yi〉
containing w. Pick some arbitrary v ∈ Xi. As vw ∈ XiF〈Xi,Yi〉, we have vw ∈ L(AT) due
to Lemma 19 which proves that Xi ⊆ P〈Xi,Yi〉. By T -consistency, obs(v, w) = 1. As v was
arbitrary, this shows that obs(v, w) = 1 for all v ∈ Xi. Hence, 〈Xi, Y

′
i 〉 ∈ fac(T) for some

Yi ∪ {w} ⊆ Y ′i , contradicting our assumption of 〈Xi, Yi〉 ∈ QT .

Another important property of observation tables is closedness. In our framework,
this corresponds to the notion of saturation. Although this property is not automatically
satisfied, we will argue that this does not matter for our learning algorithm.

Definition 23 An observation table T for the language L is saturated if for every pair of
table factors 〈X,Y 〉, 〈X ′, Y ′〉 with XaY ′ ⊆ L, there is some x ∈ X such that xa ∈ X ′ and
there is some y ∈ Y ′ such that ay ∈ Y .

Lemma 24 Let T be a saturated observation table. For every natural number r and choice
of r table factors 〈Xi, Yi〉, i ∈ {1, . . . , r}, it holds that

r⋂
i=1

P〈Xi,Yi〉 6= ∅ if and only if
r⋂

i=1

Xi 6= ∅ .

Proof The “if” direction is immediate from Lemma 22.
Therefore, let x be a string of minimal length that is witness to the falsity of the opposite

direction of the lemma (so the lemma holds for every proper prefix of x). We note that x
cannot be the empty string because a state 〈X,Y 〉 is in δ∗T (x) if and only if it is an initial
state, which it is if and only if ε ∈ X.

Therefore, let x = ua for some string u ∈ Σ∗ and symbol a ∈ Σ, and let {〈Xi, Yi〉 | i ∈
{1, . . . , r}} = δ∗T (x). Moreover, let 〈Wi, Zi〉 with i ∈ {1, . . . , r} be a selection of factors in
δ∗T (u) such that {〈〈Wi, Zi〉, a, 〈Xi, Yi〉〉 | i ∈ {1, . . . , r}} ⊆ δT .

13

Björklund Fernau Kasprzik

By Lemma 8 and the minimality of x, the factor 〈W,Z〉 = 〈
⋂r

i=1Wi, E[
⋂r

i=1Wi]〉 ex-
ists and since W is a subset of every Wi the set {〈〈W,Z〉, a, 〈Xi, Yi〉〉 | i ∈ {1, . . . , r}} is
contained in δT . Property 23 now lets us pick an arbitrary w ∈ W such that wa ∈ Xj for
some j ∈ {1, . . . , r}, and because of WaYi ⊆ L for every Yi, the maximality of the factors
and the containment of wa ∈ Xj ⊆ S, we have that wa ∈ Xi for every i ∈ {1, . . . , r}. This
obviously contradicts our assumption concerning x.

We propose the following procedure: MakeSaturated(T) looks for two factors p = 〈X,Y 〉
and q = 〈X ′, Y ′〉 such that XaY ′ ⊆ L and xa /∈ X ′ for all x ∈ X. Pick the shortest t ∈ X.

1. If |t| ≤ |QT | then add ta to S.

2. If |t| > |QT | then consider a decomposition t = uvw with |uw| ≤ |QT |.
Add uwa and all prefixes of uw to S.

Then update the observation table by membership queries. Analogously, the case of y ∈ Y ′
but ay /∈ Y is treated, thereby extending the set E. For an example, see Appendix 7.4.

Note that the second case remains by pigeon hole, similar to the standard proof of the
pumping lemma for regular languages.

Lemma 25 Let T = 〈S,E, obs〉 be an observation table for L and let T ′ = 〈S′, E′, obs ′〉 be
the observation table resulting from MakeSaturated(T). Provided that the procedure always
terminates, T ′ is a saturated observation table for L.

Proof Consider two factors p = 〈X,Y 〉 and q = 〈X ′, Y ′〉 of T ′ with XaY ′ ⊆ L. Our pro-
cedure MakeSaturated(T) guarantees that among the shortest strings in X, there is some
x with xa ∈ X ′. A symmetric argument applies for the enlargements of E.

We will ensure termination when presenting our learner but will assume it for now.
We are now going to state the main result of this section.

Theorem 26 AT is the universal automaton for L(AT).

We prove this by two lemmata. The first, Lemma 27, shows that the states of AT satisfy
the defining property of universal automata. This is sufficient for the claim, as the second,
Lemma 28, shows that the states correspond to factors of the language recognized by AT .

Lemma 27 Let 〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT and a ∈ Σ. We have 〈〈X,Y 〉, a, 〈X ′, Y ′〉 ∈ δT if and
only if P〈X,Y 〉 · {a} · F〈X′,Y ′〉 ⊆ L(AT).

Proof The “only if” direction follows from the definition of δT , and of the past and future
languages of a state.

The “if” direction is shown as follows. Due to Lemma 19, X ⊆ P〈X,Y 〉 and Y ′ ⊆ F〈X′,Y ′〉.
Hence, X · {a} · Y ′ ⊆ L(AT). Due to the T -consistency of AT , for all s ∈ X and all e ∈ Y ′
we have obsa(s, e) = 1, meaning that sae ∈ L. Hence, 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT .

14

Learning universal automata

Lemma 28 For all q ∈ QT , the pair 〈Pq,Fq〉 is a factor of L(AT).

Proof To prove the claim, we can assume T = 〈S,E, obs〉 to be saturated by Lemma 25.
In the following, let q = 〈X,Y 〉. Clearly, 〈Pq,Fq〉 is a subfactor of L(AT). To violate
maximality, there is some s /∈ Pq with {s}·Fq ⊆ L(AT) or some e /∈ Fq with Pq{e} ⊆ L(AT).
By symmetry, it is sufficient to discuss the first of these cases. So, we will prove by induction
on the length of s that whenever we have {s} · Fq ⊆ L(AT) we also have s ∈ Pq.

Assume then that {s} ·Fq ⊆ L(AT), from which we obtain {s} ·Y ⊆ L(AT) by applying
Lemma 19. If s = ε then Fq ⊆ L, and hence q is an initial state and ε is trivially in Pq.
This proves the base case of the induction.

For the inductive step, assume the claim to be true for all s of length up to n and
consider some s = ua of length n+ 1. Let δ∗T (s) = {〈Xi, Yi〉 | 1 ≤ i ≤ r} for some r ∈ N.

As {s}·Fq ⊆ L(AT), we have δT (s) 6= ∅ and moreover Fq ⊆
⋃r

i=1F〈Xi,Yi〉. By Lemma 22
this yields

Y ⊆
r⋃

i=1

Yi .

Let us consider certain factors of T in sequence:

• For every i ∈ {1, . . . , r}, let 〈Zi,Wi〉 ∈ δ∗T (u) and 〈〈Zi,Wi〉, a, 〈Xi, Yi〉〉 ∈ δT .

• For every i ∈ {1, . . . , r}, let X ′i = S[Yi ∩ Y] ⊇ X ′i ∪X and Y ′i = Yi ∩ Y . Since Yi and
Y overlap, this factor exists, and as Yi ∩ Y ⊆ Yi, we have 〈〈Zi,Wi〉, a, 〈X ′i, Y ′i 〉〉 ∈ δT .

• Let 〈Z,W 〉 fulfil Z =
⋂r

i=1 Zi andW = E[
⋂r

i=1 Zi] ⊆
⋃r

i=1Wi. Since u ∈
⋂r

i=1 P〈Zi,Wi〉,
the intersection of Z =

⋂r
i=1 Zi is not empty, as T is saturated and due to Lemma 24.

Moreover, these are factors by Lemma 8. Furthermore, 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT as we
have zay ∈ L for every z ∈ Z and y ∈ Y .

Now, {u} · F〈Z,W 〉 ⊆ L(AT), and thus u ∈ P〈Z,W 〉 by the induction hypothesis. In combina-
tion with 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT , we obtain s ∈ P〈X,Y 〉.

This concludes the proof of Theorem 26. This theorem constitutes the backbone of our
learning algorithm, which we are going to present in the following section.

5. Inference algorithm

We propose the following learning algorithm for the inference of universal automata within
the MAT model. We assume that the target alphabet Σ is given to the learner in advance.

Initialization Our learner starts out with an initial table T0 = 〈S0, E0, obs0〉, defined by
S0 = E0 = {ε}. A single membership query (MQ) thus suffices to complete the table.
The learner synthesizes the automaton AT0 from T0 and asks an equivalence query
(EQ) with argument AT0 .

Loop If the teacher accepts ATi as the universal automaton for the target language L
then the algorithm terminates successfully. Otherwise, the learner recieves a counter-
example wi. On the receipt of wi, the learner adds all prefixes of wi to Si and all

15

Björklund Fernau Kasprzik

suffixes to Ei, yielding the sets Si+1 and Ei+1. The table Ti+1 is then completed
using MQs, and made stable and saturated using MakeStable and MakeSaturated,
and ATi+1 becomes the next conjecture submitted to the teacher.

We give two example runs of our learner in Appendix 7.1.
This algorithm satisfies a number of properties which we state in a sequence of lemmata.

First of all, recall that due to Lemma 21 the learner’s hypothesis automaton AT is always
T -consistent. Furthermore, we have:

Lemma 29 Either L(AT0) = ∅ or there is some subset A ⊆ Σ such that L(AT0) = A∗.

Proof When constructing T0, the algorithm checks if ε ∈ L via an MQ. If ε /∈ L then the
automaton AT0 will have an empty state set Q0 and no transitions. If ε ∈ L then AT0 will
have a singleton state set Q0. In that case we also have I0 = F0 = Q0. Upon building
the transitions of AT0 , the algorithm first checks if any a ∈ Σ is in the target language L
(via MQs) and adds loop transitions to the only state accordingly. If L ∩ Σ = ∅, no loop
transitions are added, which is reflected by the case A = ∅ in the formulation of the claim.

The languages mentioned in Lemma 29 are exactly those that can be accepted by any
universal automaton with at most one state, which shows that our algorithm would need
only one equivalence query for the corresponding target automata.

Lemma 30 For each i ≥ 0, if ATi+1 is presented as a hypothesis, then there is an injective
embedding fi : Qi → Qi+1 with the property that whenever 〈X,Y 〉 7→ 〈X ′, Y ′〉 then X =
X ′∩Si and Y = Y ′∩Ei. A similar statement is true for the intermediate automata obtained
before calling MakeStable or MakeSaturated.

Proof We use notations introduced in Sec. 3. First, observe that Ti = Ti+1|Si×Ei . Clearly,
Qi = fac(Ti) is a factor cover of Ti. Hence, Lemmas 5 and 7 provide an injective embedding
into some factor cover of Ti+1 which is clearly contained in Qi+1 = fac(Ti+1). The claimed
properties X = X ′ ∩ Si and Y = Y ′ ∩ Ei translate from Lemma 7.

Lemma 31 For each i ≥ 0, if the automaton ATi+1 is presented as a hypothesis and if the
embedding fi : Qi → Qi+1 is bijective then f−1

i : Qi+1 → Qi is an automaton morphism.
Moreover, the induced mapping di : δTi+1 → δTi is injective.

Proof To avoid a special case, observe that since our algorithm always makes progress in
the sense of changing its hypothesis between two rounds, no set of states and no set of trans-
itions considered in this lemma can be empty, as the only possibility to obtain the empty
language or the language {ε} as a hypothesis would be with AT0 ; we refer to Lemma 29.
It remains to show that, whenever there is an a-transition from q to p in ATi+1 then there
is an a-transition between the corresponding states f−1

i (q) and f−1
i (p). More concretely,

we know that q, p ∈ fac(Ti+1), i.e., q = 〈Xq, Yq〉 and p = 〈Xp, Yp〉. Moreover, Lemma 7
explains that f−1

i (q) = q′ = 〈X ′q, Y ′q 〉 with X ′q = Xq ∩ Si and f−1
i (p) = p′ = 〈X ′p, Y ′p〉 with

16

Learning universal automata

X ′p = Xp∩Ei. By definition, 〈q, a, p〉 ∈ δTi+1 if xay ∈ L for all x ∈ Xq and all y ∈ Yp. Hence,
we have xay ∈ L for all x ∈ X ′q and y ∈ Y ′p , so that 〈q, a, p〉 ∈ δTi+1 implies 〈q′, a, p′〉 ∈ δTi

as claimed. Clearly, di : 〈q, a, p〉 7→ 〈q′, a, p′〉 ∈ δTi is injective since fi is a bijection.

Let UL be the universal automaton for the target language L with state set Q = fac(L).
The following assertion can be seen by the same arguments as in the proof of Lemma 30.

Lemma 32 For each i ≥ 0, if ATi+1 is presented as a hypothesis then there exists an
injective embedding fi : Qi → Q with the property that whenever 〈X,Y 〉 7→ 〈X ′, Y ′〉 then
X = X ′ ∩ Si and Y = Y ′ ∩ Ei.

Theorem 33 Our proposed learning algorithm converges to the target automaton UL after
at most max{1, |Σ|n3} many equivalence queries, where n is the number of states of UL.

Proof Due to Lemma 32, any hypothesis automaton has at most as many states as UL.
Moreover, Lemma 30 shows that ni ≤ ni+1, where nj = |Qj | is the number of states of
the jth hypothesis. This together with Theorem 26 and the fact that universal automata
are unique up to renaming of states shows that the learning algorithm will finally yield the
target automaton UL. In the following reasoning, let mj denote the number of transitions
of the jth hypothesis. Clearly, mj ≤ |Σ|n2

j . Since we always have ATj 6= ATj+1 due to the
received counterexamples, we can observe two types of progress:

1. Either, nj < nj+1.
Since we always have nj+1 ≤ n, this type of progress can happen at most n times.

2. Or, nj = nj+1 but mj > mj+1.
This case is due to Lemma 31. Since we constantly have mj ≤ |Σ|n2

j ≤ |Σ|n2, this
type of progress can happen at most |Σ|n2 times.

These two observations together show the claimed upper bound on convergence speed.

This implies that, for instance, the language Lk defined in the proof of Theorem 1 can
be derived in O(k3) EQs, while a classical LSTAR learner as introduced by Angluin (1987)
would need Ω(2k) many EQs. This shows that learning universal automata could be (at
least occasionally) much faster than learning DFA.

Remark 34 An argument similar to the proof of Theorem 33, based on Lemma 30, shows
that the procedures MakeStable and MakeSaturated terminate, as they will always either
increase the number of states or add only a small number of table entries a fixed number of
times. More precisely, if we have a smart teacher that never provides us with unnessarily
long counterexamples, then the length of any counterexample is bounded by the number n of
states of the target automaton. So, each update necessary after an equivalence query would
add at most n rows and n columns to the table. Due to Lemma 18, MakeStable allows a
similar estimate. MakeSaturated might add in the worst case n rows and n columns per
case (given by two factors p = 〈X,Y 〉 and q = 〈X ′, Y ′〉 such that XaY ′ ⊆ L and xa /∈ X ′
for all x ∈ X), and there could be at most a quadratic number of cases, as we would repair

17

Björklund Fernau Kasprzik

each case by selecting a smallest t ∈ X and adding ta to X ′. So, at most a cubic number of
rows and columns are added here. This dominates the worst case, so that we can conclude
that a cubic number of times, at most a cubic number of rows and columns are added to the
table. This shows that there are at most O(n6) rows and columns in the observation table at
the termination of the learning algorithm, so that the table contains at most O(n12) many
entries, which also upper-bounds the total number of membership queries ever made by the
algorithm. Of course, if the teacher is not so smart, bigger tables might occur.

6. Discussions, Conclusions and Future Research

We have presented a novel MAT learner for regular languages. In this section, we are going
to explain some connections and differences to alternative MAT learners and also point to
directions of future research.

6.1. Comparison With Other MAT Learners

To discuss similarities and differences to the famous LSTAR learner of Angluin (1987),
we introduce some more notations. Let T = 〈S,E, obs〉 be an observation table. For
s ∈ S, let row [s] = {e ∈ E | obs(s, e) = 1}. Slightly abusing the notation introduced in
Sec. 3, 〈{s}, row [s]〉 is the factor induced by {s}, as row [s] = E[{s}] is the right-maximal
subfactor of {s}. For row [s] 6= ∅, let 〈S[row [s]], row [s]〉 be the row factor of s. Likewise, let
col [e] = {s ∈ S | obs(s, e) = 1} and 〈col [e], E[col [e]]〉 be the column factor of e. Let R and
C collect all row and column factors, respectively.

Remark 35 If 〈X,Y 〉 is any factor, then (X,Y) ∈ R ∪ C. This also gives an algorithm
for computing fac(T): As long as there exists some yet uncovered (s, e) with obs(s, e) = 1,
compute the row and column factor of s resp. e and add them to the cover.

Remark 36 If LSTAR constructs a hypothesis from T , then the hypothesized automaton
has as state set R. By way of contrast, our algorithm’s hypothesis automaton AT has state
set fac(T) = R ∪ C.

Another difference lies in the definition of a transition function for LSTAR. Define
row [s]a = {e ∈ E | obsa(s, e) = 1} for a ∈ Σ. We obtain a transition 〈s, a, s′〉 for s, s′ ∈ S
and a ∈ Σ if row [s]a = row [s′]. If for all a ∈ Σ and all s ∈ S there is some s′ ∈ S
with row [s]a = row [s′] then we call T closed and all states in the resulting automaton are
reachable. If for all a ∈ Σ and all s, s′ ∈ S with row [s] = row [s′] we have row [s]a = row [s′]a
then we call T consistent and the resulting automaton is deterministic. Note that this way
of constructing an automaton from an observation table surely differs from our method.

We compare a run of LSTAR and of our learner in the appendix, assuming that the
teacher gives the same counterexample to both learners whenever possible. We observe that

• our learner needs one more EQ. This could be corrected by letting it start with a table
containing all strings of length 1 both in S and in E but then we would also have to
ask more MQs in order to fill in the additional cells.

18

Learning universal automata

• in this small example, apart from our learner’s additional EQ at the beginning the
sequence of hypotheses of both learners can be made to coincide if we require LSTAR
to eliminate a failure state before submitting its hypothesis to the teacher.
As a proposal for future work we ask: Is this true for any run of these two learners
in those cases where the universal automaton and the non-total state-minimal DFA
for the target language are identical (assuming that the teacher reacts with the same
counterexamples to the same hypotheses)?

Another MAT learner which we could compare to ours is the learner for residual finite-
state automata (RFSA) in Bollig et al. (2009). The canonical RFSA for a language L can
also be exponentially more succinct than the state-minimal DFA, and is as most as big. In
this case, the derivation of an automaton from a table is still based on the concept of rows
but the notion of identity between rows (equality between sets) is replaced by a covering
relation (subset relation). In case of successful learning, only equivalence classes of L that
are strict supersets of the union of all other classes they contain are admitted as states. So,
in a sense, this type of automata fit less well into our framework, discussing factors of tables
etc. However, it might be an idea to translate the mentioned covering relation to our more
general setting as a line of future research.

6.2. Upper Bounds on The Number of Equivalence Queries

We underline that while Yokomori (1994); Denis et al. (2001); Bollig et al. (2009) all refer
to the state-minimal deterministic automaton when indicating the (polynomial) complexity
of their respective learners for various kinds of special NFA, we give an algorithm with
polynomial runtime in terms of the non-deterministic target automaton, which can be ex-
ponentially more succinct. We conjecture that there is a close connection to the notion of
polynomial characterizability by de la Higuera (1997) – this property is fulfilled by DFA but
not by NFA in general (modulo the complexity-theoretic assumption that P 6= NP) de la
Higuera (1997), nor by residual finite-state automata Bollig et al. (2009) (also see Kasprzik
(2012) for more discussion). We surmise that for universal automata it is again fulfilled,
which would yield a further explanation for our advantageous result.

6.3. Comments on Distributional Learning

Also note that our way of deriving an automaton from an observation table differs from
those in Angluin (1987) or Bollig et al. (2009) for residual finite-state automata (RSFA)
inasmuch as we do not base it on rows alone (orginally formulated as sequences of 0s and
1s induced by the labeling sets) but on concrete subsets of the labeling sets, along with the
respective consequences. However, this approach is quite close to the notion of distributional
learning developed by Clark (2010b,c) for context-free grammars (a MAT learner for CFGs
can be found in Clark (2010d)).

Let us finally remark that also the framework developed by Clark in a series of papers,
e.g., Clark (2010a,b, 2011) fits into the framework developed in Sec. 3. In its basic setting,
Clark associates to each language L the set of subwords Sub(L) = {u ∈ Σ∗ | ∃l, r ∈ Σ∗ :
lur ∈ L} and the set of contexts C(L) = {(l, r) ∈ Σ∗ × Σ∗ | ∃u ∈ Σ∗ : lur ∈ L}. Let
U = Sub(Σ∗) and V = C(Σ∗). Then, L again yields a target T = {(u, (l, r)) | lur ∈ L}.

19

Björklund Fernau Kasprzik

The lattice structure mentioned in Remark 9 is central to Clark’s approach. To generalize
the learning strategies that we develop for universal automata towards such targets would
be a challenging question for future research.

6.4. Generalizing the Setting: Alternative Learning Scenarios and Objects

As indicated in the last sections of Lombardy and Sakarovitch (2008), we may find that
a generalization of our approach towards the learning of subsets of monoids, not only free
monoids, is possible. We are only aware of text learning results for algebraic structures, see
Stephan and Ventsov (2001). We also encourage to further our approach to learning other
structures such as trees, matrices of symbols, or tuples of strings.

Alternatively, we can look into other learning models, taking universal automata as our
target descriptions. For instance, see Garćıa et al. (2008) for an alternative universal auto-
mata learner from positive and negative examples relying on the state merging paradigm.

The presentation of LSTAR in terms of our approach resembles Courcelle et al. (1991).
In particular, LSTAR factor covers are described by the row set R and hence satisfy:

Each (s, e) ∈ S × E with se ∈ L is covered by exactly one (X,E[X]) ∈ C(Q),
where s uniquely determines X (equivalence class decomposition of S).

This coincides with what Courcelle et al. (1991, Def. 1.4) call a deterministic decomposition.
They observe that there are always canonical (minimal) such decompositions and they also
show that these naturally correspond to state-minimal DFAs, i.e., the hypothesis space of
the LSTAR algorithm, which provides an alternative explanation of some of the results of
Angluin (1987). These connections are interesting, all the more so as Courcelle et al. (1991)
also provide applications of their approach to certain kinds of top-down tree automata and
to regular ω-languages. From a formal-language point of view, this raises the question
if objects like universal automata exist in those contexts as well. From the viewpoint of
Grammatical Inference, developing MAT learning algorithms for such universal automata
would then be the challenge.

References

D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87–106, 1987.

B. Bollig, P. Habermehl, C. Kern, and M Leucker. Angluin-style learning of NFA. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAR,
pages 1004–1009, 2009.

A. Clark. Towards general algorithms for grammatical inference. In Algorithmic Learning
Theory, ALT, volume 6331 of LNAI, pages 11–30. Springer, 2010a.

A. Clark. Learning context-free grammars with the syntactic concept lattice. In Interna-
tional Colloquium on Grammatical Inference, ICGI, volume 6339 of LNCS, pages 38–51.
Springer, 2010b.

20

Learning universal automata

A. Clark. Efficient, correct, unsupervised learning of context-sensitive languages. In Four-
teenth Conference on Computational Natural Language Learning, CoNLL, pages 28–37,
2010c.

A. Clark. Distributional learning of some context-free languages with a minimally adequate
teacher. In International Colloquium on Grammatical Inference, ICGI, volume 6339 of
LNCS, pages 24–37. Springer, 2010d.

A. Clark. A learnable representation for syntax using residuated lattices. In P. de Groote,
M. Egg, and L. Kallmeyer, editors, Formal Grammar – 14th International Conference,FG
2009, volume 5591 of LNCS, pages 183–198. Springer, 2011.

B. Courcelle, D. Niwinski, and A. Podelski. A geometrical view of the determinization and
minimization of finite-state automata. Math. Systems Theory, 24(2):117–146, 1991.

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learn-
ing, 27:125–138, 1997.

F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSA. In Algorith-
mic Learning Theory, ALT, volume 2225 of LNCS, pages 348–363. Springer, 2001.

P. Garćıa, M. Vázquez de Parga, G. I. Álvarez, and J. Ruiz. Universal automata and NFA
learning. Theoretical Computer Science, 407(1-3):192–202, 2008.

E. M. Gold. Language identification in the limit. Inf. and Control, 10(5):447–474, 1967.

I. Grunsky, O. Kurganskyy, and I. Potapov. On a maximal NFA without mergible states.
In D. Grigoriev, J. Harrison, and E. A. Hirsch, editors, Computer Science — Theory and
Applications, First International Computer Science Symposium in Russia, CSR, volume
3967 of LNCS, pages 202–210. Springer, 2006.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Reading (MA): Addison-Wesley, 2nd edition, 2001.

A. Kasprzik. Formal Tree Languages and Their Algorithmic Learnability. PhD thesis,
Fachbereich IV, Universität Trier, Germany, 2012.

S. Lombardy and J. Sakarovitch. The universal automaton. In E. Grädel, J. Flum, and
W. Thomas, editors, Logic and Automata: History and Perspectives, pages 457–504.
Amsterdam University Press, 2008.

A. Meyer and M. Fischer. Economies of description by automata, grammars, and formal
systems. In Proceedings of the 12th Annual Symposium on Switching and Automata
Theory, SWAT, pages 188–191, 1971.

F. Stephan and Y. Ventsov. Learning algebraic structures from text. Theoretical Computer
Science, 268(2):221–273, 2001.

T. Yokomori. Learning non-deterministic finite automata from queries and counterexamples.
In Machine Intelligence 13, pages 169–189, 1994.

21

Björklund Fernau Kasprzik

7. Appendix

7.1. Two example runs

We give two example runs of our learner. The target language for the first is an instance
of Lk as introduced in the proof of Theorem 1 which implies that the target automaton is
exponentially more succinct than the corresponding state-minimal DFA.

Example 4 The target is L4 = {a, b}∗{a}{a, b}4 (“the last symbol but 4 is an ‘a’ ”).
The learner starts out with the observation table

ε

ε 0

and derives from it the automaton 〈Σ, ∅, ∅, ∅, ∅〉.
The teacher reacts by giving the positive counterexample aaaaa. This leads to the table

ε a a2 a3 a4 a5

ε 0 0 0 0 0 1
a 0 0 0 0 1 1
a2 0 0 0 1 1 1
a3 0 0 1 1 1 1
a4 0 1 1 1 1 1
a5 1 1 1 1 1 1

and to a corresponding state set

q0 = 〈{ε, a, a2, a3, a4, a5}, {a5}〉
q1 = 〈{a, a2, a3, a4, a5}, {a4, a5}〉
q2 = 〈{a2, a3, a4, a5}, {a3, a4, a5}〉
q3 = 〈{a3, a4, a5}, {a2, a3, a4, a5}〉
q4 = 〈{a4, a5}, {a, a2, a3, a4, a5}〉
q5 = 〈{a5}, {ε, a, a2, a3, a4, a5}〉

where q0 is the only start state and q5 is the only accepting state. The transitions of the
resulting automaton can be seen in Figure 1.
The teacher reacts by giving the positive counterexample abbbb. This leads to the table

ε a a2 a3 a4 a5 b b2 b3 b4 ab4

ε 0 0 0 0 0 1 0 0 0 0 1
a 0 0 0 0 1 1 0 0 0 1 1
a2 0 0 0 1 1 1 0 0 1 1 1
a3 0 0 1 1 1 1 0 1 1 1 1
a4 0 1 1 1 1 1 1 1 1 1 1
a5 1 1 1 1 1 1 1 1 1 1 1
ab 0 0 0 1 0 1 0 0 1 0 1
ab2 0 0 1 0 0 1 0 1 0 0 1
ab3 0 1 0 0 0 1 1 0 0 0 1
ab4 1 0 0 0 0 1 0 0 0 0 1

22

Learning universal automata

a

2

aa

0
a, b

a

a
1

a, b

a

a
a aa, b

a, b

a
5

a a

3

a a a a
4

a

a, b

Figure 1: Example 4, second hypothesis

and to a corresponding state set

p0 = 〈{ε, a, a2, a3, a4, a5, ab, ab2, ab3, ab4}, {a5, ab4}〉
p1 = 〈{a, a2, a3, a4, a5}, {a4, a5, b4, ab4}〉
p2 = 〈{a2, a3, a4, a5}, {a3, a5, b3, ab4}〉
p3 = 〈{a3, a4, a5}, {a2, a5, b2, ab4}〉
p4 = 〈{a4, a5}, {a, a5, b, ab4}〉
p5 = 〈{a5}, {ε, a5, ab4}〉

where p0 is the only start state and p5 is the only accepting state. Note that the number
of states has not changed with respect to the previous hypothesis. The transitions of the
resulting automaton can be seen in Figure 2. The past Lpi and the future Cpi corresponding
to the states in {p0, . . . , p5} are:

p0 : {a, b}∗ {a, b}∗{a}{a, b}4 = L4

p1 : {a, b}∗{a} {a, b}+{a}{a, b}4 ∪ {a, b}4
p2 : {a, b}∗{a}{a, b} {a, b}+{a}{a, b}4 ∪ {a, b}3
p3 : {a, b}∗{a}{a, b}2 {a, b}+{a}{a, b}4 ∪ {a, b}2
p4 : {a, b}∗{a}{a, b}3 {a, b}+{a}{a, b}4 ∪ {a, b}
p5 : {a, b}∗{a}{a, b}4 = L4 {a, b}L4 ∪ {ε}

These are exactly the factors of L4 and the hypothesis is the universal automaton for L4.

Example 5 Let the target language be L3, i.e, the complement of L3 = {a, b}∗{a}{a, b}3
(“the last symbol but 3 must not be an ‘a’ ”). The learner starts out with the table

ε

ε 1

23

Björklund Fernau Kasprzik

a, b

0 2

a, b

a
a, b

1

a

a, b

a

a, b

a

a, b

a

a, b
a, b

5 a 3

a, b
4 a, b

Figure 2: Example 4, final hypothesis

and derives from it the total all-accepting automaton with respect to Σ.
The teacher reacts by giving the negative counterexample aaaa. This leads to the table

ε a a2 a3 a4

ε 1 1 1 1 0
a 1 1 1 0 0
a2 1 1 0 0 0
a3 1 0 0 0 0
a4 0 0 0 0 0

and to a corresponding state set

q0 = 〈{ε}, {ε, a, a2, a3}〉
q1 = 〈{ε, a}, {ε, a, a2}〉
q2 = 〈{ε, a, a2}, {ε, a}〉
q3 = 〈{ε, a, a2, a3}, {ε}〉

where all states are accepting and start states. The transitions of the resulting automaton
can be seen in Figure 3.

24

Learning universal automata

b b

0
a, b

1

a, b a,
b

a, b

3
a, b

2

a, b

Figure 3: Example 5, second hypothesis

The teacher reacts by giving the positive counterexample abaaa. This leads to the table

ε a a2 a3 a4 ba3 aba3

ε 1 1 1 1 0 1 1
a 1 1 1 0 0 1 1
a2 1 1 0 0 0 1 1
a3 1 0 0 0 0 1 1
a4 0 0 0 0 0 1 1
ab 1 1 0 1 0 1 1
aba 1 0 1 0 0 1 1
aba2 0 1 0 0 0 1 1
aba3 1 0 0 0 0 1 1

and to a corresponding state set

p0 = 〈{ε}, {a, a2, a3, ba3, aba3}〉
p1 = 〈{ε, a, a2, a3, ab, aba3}, {ε, ba3, aba3}〉
p2 = 〈S, {ba3, aba3}〉
p3 = 〈{ε, a}, {ε, a, a2, ba3, aba3}〉
p4 = 〈{ε, a, a2, ab}, {ε, a, ba3, aba3}〉
p5 = 〈{ε, a, a2, ab, aba2}, {a, ba3, aba3}〉
p6 = 〈{ε, a, aba}, {a2, ba3, aba3}〉
p7 = 〈{ε, ab}, {a3, ba3, aba3}〉
p8 = 〈{ε, a, a2, ab, aba2}, {ba3, aba3}〉

where all states are start states and p0, p1, p3, p4 are accepting.
The transitions of the resulting automaton can be seen in Figure 4 where all non-labeled
edges are ‘a, b’-edges. The hypothesis is the universal automaton for L3.

25

Björklund Fernau Kasprzik

b

0

b

1

2

3

4

56

7

8

Figure 4: Example 5, final hypothesis (non-labeled edges are ‘a, b’-edges)

26

Learning universal automata

b a, b

x
a

y

Figure 5: First (non-empty) hypothesis of LSTAR and of our learner

7.2. A run of our learner and a run of LSTAR

We assume familiarity with Angluin’s learner LSTAR for DFA (Angluin, 1987).
Let the target language be L = {a}{a, b}∗. LSTAR starts out with a table

ε

ε 0
a 1
b 0

and then closes it to obtain
ε

ε 0
a 1
b 0
aa 1
ab 1

which yields its first hypothesis as shown in Figure 5 with states x = 〈0〉 and y = 〈1〉.
————————— (switch) —————————

Meanwhile, our learner starts out with a table

ε

ε 0

and derives from it the automaton 〈Σ, ∅, ∅, ∅, ∅〉. Let us say that the teacher reacts with the
(shortest possible) counterexample a. The learner builds a table

ε a

ε 0 1
a 1 1

and derives from it the automaton in Figure 5 with states x = 〈S, {a}〉 and y = 〈{a}, E〉.
Obviously, the hypotheses of both learners at this stage are now isomorphic.

Let the next given counterexample be ba.

27

Björklund Fernau Kasprzik

x

a, b

y

b

z

a, b

a

Figure 6: Second hypothesis of LSTAR

————————— (switch) —————————
LSTAR reacts to the counterexample ba by building a closed table

ε a ba

ε 0 1 0
a 1 1 1
b 0 0 0
aa 1 1 1
ab 1 1 1
ba 0 0 0
bb 0 0 0

and obtains the FA shown in Figure 6 with states x = 〈0, 1, 0〉, y = 〈1, 1, 1〉, and z = 〈0, 0, 0〉,
which is the state-minimal total DFA for L.

————————— (switch) —————————
Our learner reacts to the counterexample ba by building the table

ε a b ba

ε 0 1 0 0
a 1 1 1 1
b 0 0 0 0
ba 0 0 0 0

and obtains the automaton shown in Figure 7 with states x = 〈{ε, a}, {a}〉 and y = 〈{a}, E〉,
which is the universal automaton for L and also the non-total state-minimal DFA for L.

We observe that

• our learner needs one more EQ. This could be corrected by letting it start with a table
containing all strings of length 1 both in S and in E but then we would also have to
ask more MQs in order to fill in the additional cells.

• in this small example, apart from our learner’s little “hickup” at the beginning the
sequence of hypotheses of both learners can be made to coincide if we require LSTAR

28

Learning universal automata

x
a

a, b

y

Figure 7: Second (non-empty) hypothesis of our learner

a
q

r

a, b a

a, b

p

a, b

Figure 8: The (non-trim) automaton AT

to eliminate a failure state before submitting its hypothesis to the teacher. Is this
true for any run of these two learners in cases where the universal automaton and the
non-total state-minimal DFA for the target language are identical (assuming that the
teacher reacts with the same counterexamples to the same hypotheses)?

7.3. An example for AT 6= HT

The language L contains all strings except those that have a 0 in the following table TL.

ε a b bb

ε 0 1 0 1
a 1 1 0 0
aa 1 1 0 1
b 0 1 1 0

Let us consider a table T for L as follows:

ε a b

ε 0 1 0
a 1 1 0
b 0 1 1

We have factors q = 〈{ε, a, b}, {a}〉 and p = 〈{a}, {ε, a}〉 and r = 〈{b}, {a, b}〉. The automa-
ton AT is given in Figure 8. We find that the factor r is not reachable. As a consequence,
AT would not accept bb and is thus not T -consistent. However, we remark that in a run of

29

Björklund Fernau Kasprzik

our learner no intermediate stage would yield such a table. The learner starts out with T0:

ε

ε 0

then gets for example the (shortest) counterexample a and builds T1:

ε a

ε 0 1
a 1 1

The automaton AT1 is exactly the trimmed version of AT we have derived from the “prob-
lematic table” T . Mind that AT1 already contains b-transitions as the learner checks them
via MQs. However, bb is not yet in the table and can be given as a counterexample.

7.4. A table and its saturated version

We consider the language L defined in Appendix 7.3 right above. The table TL is not satu-
rated: For the pair 〈X,Y 〉, 〈X ′, Y ′〉 ∈ fac(TL) with 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{ε, a, aa, b}, {a}〉,
which fulfils X{a}Y ′ ⊆ L, there is no element aa ∈ Y = {a}. Saturating the table yields

ε a b bb

ε 0 1 0 1
a 1 1 0 0
aa 1 1 0 1
b 0 1 1 0
ba 1 1 1 1

and possibly some more rows or columns. However, from this small cutout alone we can
already see that by saturation we get at least one more factor due to the new last row.

30

	Introduction
	Preliminaries
	Finite-State Automata
	Factors of a Language and Universal Automata
	Observation tables

	Tables of subsets
	Properties of hypotheses
	Inference algorithm
	Discussions, Conclusions and Future Research
	Comparison With Other MAT Learners
	Upper Bounds on The Number of Equivalence Queries
	Comments on Distributional Learning
	Generalizing the Setting: Alternative Learning Scenarios and Objects

	Appendix
	Two example runs
	A run of our learner and a run of LSTAR
	An example for AT=HT
	A table and its saturated version

