
Learning Residual Finite-State Automata

Using Observation Tables

Anna Kasprzik
kasprzik@informatik.uni-trier.de

September 16, 2009

Keywords: Algorithmic learning theory, grammatical inference, observation
tables, residual languages, non-determinism, regular languages

Abstract

In the area of grammatical inference the problem of how to infer a de-
scription of a formal language (e.g., a grammar or an automaton) algo-
rithmically from given examples or other kinds of information sources is
considered. One of the best studied classes with respect to this conception
of learnability is the class of regular languages.

A significant part of the learning algorithms for regular languages of
which Angluin’s seminal algorithm (Angluin 1982) was one of the first use
the concept of an observation table. A table fulfilling certain conditions
represents a minimal deterministic finite-state automaton (DFA), and if
the given information entered into the table is sufficient the learning al-
gorithm succeeds and the derived automaton is the minimal DFA for the
language in question. There is a one-to-one correspondence between the
states of the minimal DFA and the equivalence classes of the language
under the Myhill-Nerode congruence relation.

Since the minimal DFA can have exponentially more states than a
minimal non-deterministic automaton (NFA) for the same language and
since for many applications a small number of states is a desirable feature
it seems worth considering if we cannot infer a NFA instead. Denis et
al. (2001) introduce a special case of NFA, so-called residual finite-state
automata (RFSAs), where each state represents a residual language of the
language recognized by the automaton. There is a unique minimal RFSA
for every regular language.

We define a two-step learning algorithm for RFSAs based on the con-
cept of observation tables by first using an existing algorithm for minimal
DFAs to build a table for the reversal of the language in question and then
showing that we can derive the minimal RFSA for the language itself from
this table after some simple modifications. We compare this algorithm to
two other table-based algorithms of which one is an Angluin-style algo-
rithm by Bollig et al. (2009) which infers a RFSA directly, and the other
is another two-step algorithm proposed by the author. The comparison

1

concentrates on the criterion of query complexity. We find as a result
that in theory the direct algorithm of Bollig et al. does not outperform
the combination of any of the known near-optimal algorithms inferring
the minimal DFA with the modifications we present, although it behaves
much better in practice.

1 Introduction

In the area of grammatical inference the problem of how to infer – or “learn” –
a description of a formal language (e.g., a grammar or an automaton) algorith-
mically from given examples or other kinds of information sources is considered.
A range of conceivable learning settings have been formulated and based on
those quite an amount of learning algorithms have been developed. One of the
best studied classes with respect to this conception of learnability is the class
of regular languages in the Chomsky Hierarchy.

A significant part of the algorithms that have been developed, of which An-
gluin’s seminal algorithm L∗ for regular string languages [1] was one of the first,
use the concept of an observation table. In an observation table the rows are
labeled by elements from some set that can be taken as prefixes, the columns are
labeled by elements from some set that can be taken as suffixes, and each cell
of the table contains a Boolean value indicating the membership status of the
concatenation of the two labeling elements with respect to the language L the
learner is trying to infer (provided that this status is known from the available
information). If the table fulfils certain conditions then we can immediately
derive a deterministic finite-state automaton (DFA) from it, and if the infor-
mation entered into the table is sufficient then this automaton is isomorphic to
the minimal DFA AL for L. There is a one-to-one correspondence between the
states of AL and the equivalence classes of L under the syntactic congruence
relation on which the Myhill-Nerode theorem (see for example [4]) is based. The
elements labeling the rows of the table from which AL is derived can be seen as
representatives for these equivalence classes, and the ones labeling the columns
as experiments by which it is possible to prove that two of those representa-
tives do indeed belong to different equivalence classes and should thus represent
different states of AL.

Unfortunately there is a price to pay for the uniqueness of the minimal DFA:
In the worst case it can have exponentially more states than a minimal non-
deterministic finite-state automaton (NFA) for the same language, and since
for many applications a small number of states is a desirable feature it seems
worthwile to consider the question if we cannot find a way to obtain such a non-
deterministic automaton instead. In [5], Denis et al. introduce a special case of
NFAs, so-called residual finite-state automata (RFSAs), where each state rep-
resents a residual language of the language that is recognized (for the definition
of a residual language see Section 2). These have the advantageous property
that there is a unique minimal RFSA RL for every regular language L. Denis
et al. [6, 7, 8] have also presented several learning algorithms for RFSAs, which,

2

however, all work by adding or deleting states in an automaton according to the
information contained in a given sample.

We demonstrate in Section 3 that we can easily define a two-step learning
algorithm for RFSAs based on the concept of an observation table by first using
an (almost arbitrary) existing algorithm for minimal DFAs to build a table with
certain properties for the reversal (see Section 2) of the language L in question
and then showing that it is possible to derive the minimal RFSA RL for L
itself from this table after some simple and cheap necessary modifications. In
Subsection 3.2 we compare this algorithm to two other observation table-based
algorithms of which one is an incremental Angluin-style algorithm by Bollig et
al. [9] which infers a RFSA directly, and the other is another two-step algorithm
proposed by the author of this paper. The comparison mainly focuses on the
criterion of query complexity. We find as a result that at least in theory the
direct algorithm of Bollig et al. [9] does not outperform the combination of
any of the known near-optimal algorithms inferring the minimal DFA with the
modifications presented in Subsection 3.1 (although Bollig et al. [9] can show
statistically that their algorithm behaves much better in practice).

We study two-step algorithms in the hope that their modularity will con-
tribute to an even clearer view of what is going on in algorithms that retrieve
the syntactic equivalence classes of a regular language using an observation ta-
ble. Furthermore, by exploiting and experimenting with the different forms of
duality between

• a language and its reversal,

• prefixes and suffixes,

• rows and columns, and

• equivalence classes and residual languages

and their interconnections we would like to underline the universal useability
of the concept of observation table as a means to execute and record such a
retrieval process at the same time without having to deal with the idiosyncrasies
of an underlying mechanism such as an automaton (for an extensive discussion
concerning observation tables and other kinds of suitable representations also
see [14]).

2 Basic notions and definitions

Definition 1 An observation table is a triple T = (S,E, obs) with S,E ⊆ Σ∗

finite, non-empty for some alphabet Σ and obs : S × E −→ {0, 1} a function
with

obs(s, e) =

{
1 if se ∈ L is confirmed,
0 if se /∈ L is confirmed.

For an observation table T = (S,E, obs), the row of an element s ∈ S is
row(s) := {(e, obs(s, e))|e ∈ E}, and the column of an element e ∈ E is

3

col(e) := {(s, obs(s, e))|s ∈ red}. Let row(S) denote the set {row(s)|s ∈ S}
and col(E) the set {row(e)|e ∈ E}.

S is partitioned into two sets red and blue where uv ∈ red⇒ u ∈ red for
u, v ∈ Σ∗ (prefix-closedness), and blue := {sa ∈ S \ red|s ∈ red, a ∈ Σ}, i.e.,
blue contains the one-symbol extensions of red elements that are not in red.

Definition 2 Two elements r, s ∈ S are obviously different (denoted by r <> s)
iff ∃e ∈ E such that obs(r, e) 6= obs(s, e).

Definition 3 Let T = (S,E, obs) with S = red∪blue be an observation table.

• T is closed iff ¬∃s ∈ blue : ∀r ∈ red : r <> s.

• T is consistent iff ∀s1, s2 ∈ red, s1a, s2a ∈ S, a ∈ Σ : row(s1) =
row(s2)⇒ row(s1a) = row(s2a).

Definition 4 A finite-state automaton is a tuple A = (Σ, Q,Q0, F, δ) with

• finite input alphabet Σ,

• finite non-empty state set Q,

• set of start states Q0 ⊆ Q,

• set of final accepting states F ⊆ Q, and

• a transition function δ : Q× Σ −→ 2Q.

If Q0 is a singleton and δ maps a set containing at most one state to any pair
in Q×Σ the automaton is deterministic (a DFA), otherwise non-deterministic (a
NFA). If δ maps a non-empty set of states to every pair in Q×Σ the automaton
is total, otherwise partial.

The transition function can always be extended to δ : Q×Σ∗ −→ 2Q defined
by δ(q, ε) = {q} and δ(q, wa) = δ(δ(q, w), a) for q ∈ Q, a ∈ Σ, and w ∈ Σ∗.

Let δ(Q′, w) denote the set
⋃
{δ(q, w)|q ∈ Q′} for Q′ ⊆ Q and w ∈ Σ∗. A

state q ∈ Q is reachable if there is a string w ∈ Σ∗ such that q ∈ δ(Q0, w). A
state q ∈ Q is useful if there are strings w1, w2 ∈ Σ∗ such that q ∈ δ(Q0, w1)
and δ(q, w2) ∩ F 6= ∅, otherwise useless.

The language accepted by A is L(A) = {w ∈ Σ∗|δ(Q0, w) ∩ F 6= ∅}. A
language that is accepted by a finite-state automaton is generally referred to as
recognizable or regular.

From any observation table T = (S,E, obs) with S = red∪blue and ε ∈ E
we can derive a finite-state automaton AT = (Σ, QT , QT0, FT , δT) defined by

• QT = row(red),

• QT0 = {row(ε)},

• FT = {row(s)|obs(s, ε) = 1, s ∈ red}, and

4

• δT (row(s), a) = {q ∈ QT |¬(q <> row(sa)), s ∈ red, a ∈ Σ, sa ∈ S}.

AT is deterministic iff T is consistent (this follows straight from the definition
of δT). The DFA for a regular language L derived from a closed and consistent
table has the minimal number of states (see [1], Theorem 1). This automaton is
also called the canonical DFA AL for L and is unique up to a bijective renaming
of states. However, if AL is required to be total it must contain a “failure state”
receiving all non-prefixes of L (if there are any).

The Myhill-Nerode equivalence relation ≡L is defined as follows:

r ≡L s iff re ∈ L⇔ se ∈ L for all r, s, e ∈ Σ∗.

The index of L is IL := |{[s0]L|s0 ∈ Σ∗}| where [s0]L is the equivalence class
containing s0.

Theorem 1 (Myhill-Nerode theorem – see for example [4])
IL is finite iff L is a regular language, i.e., iff it can be recognized by a finite-state
automaton.

The total canonical DFA AL has exactly IL states, and each state can be seen to
represent an equivalence class under ≡L. Observe the correspondence between
the table T = (S,E, obs) representing AL and the equivalence classes of L
under ≡L: S contains strings whose rows are candidates for states in AL, and
the elements of E – also called ‘contexts’ in the following – can be taken as
experiments which prove that two strings in S do indeed belong to different
equivalence classes and that thus their rows should represent two different states.

Definition 5 The reversal w of a string w ∈ Σ∗ is defined inductively by ε := ε
and aw := wa for a ∈ Σ, w ∈ Σ∗. The reversal of a set X ⊆ Σ∗ is defined as
X := {w|w ∈ X}. The reversal of an automaton A = (Σ, Q,Q0, F, δ) is defined
as A := (Σ, Q, F,Q0, δ) with δ(q′, w) = {q ∈ Q|q′ ∈ δ(q, w)} for q′ ∈ Q and
w ∈ Σ∗.

Obviously, L(A) = L(A). Note that due to the duality of left and right congru-
ence the reversal of a regular string language must be regular as well.

Definition 6 The residual language of a language L ⊆ Σ∗ with regard to a
string w ∈ Σ∗ is defined as w−1L := {v ∈ Σ∗|wv ∈ L}. A residual language
w−1L is called prime iff

⋃
{v−1L|v−1L (w−1L} (w−1L (i.e., if it does not

equal the union of other residual languages of L properly contained in it), oth-
erwise it is called composed.

The Myhill-Nerode theorem can be reinterpreted to show that the set of distinct
residual languages of a language L is finite iff L is regular. There is a natural
bijection between the residual languages of L and the states of the minimal DFA
AL = (Σ, QL, {qL}, FL, δL) defined by the mapping w−1L 7→ q′ for all w ∈ Σ∗

with δL(qL, w) = {q′}.
Let Lq := {w|δ(q, w) ∩ F 6= ∅} for some regular language L ⊆ Σ∗, some

automaton A = (Σ, Q,Q0, F, δ) recognizing L, and q ∈ Q.

5

Definition 7 A residual finite-state automaton (RFSA) is a NFA A = (Σ, Q,Q0, F, δ)
such that Lq is a residual language of L(A) for all states q ∈ Q.

Definition 8 The canonical RFSA RL = (Σ, QR, QR0, FR, δR) for L ⊆ Σ∗ is
defined by

• QR = {w−1L|w−1L is prime},

• QR0 = {w−1L ∈ QR|w−1L ⊆ L},

• FR = {w−1L|ε ∈ w−1L}, and

• δR(w−1L, a) = {v−1L ∈ QR|v−1L ⊆ (wa)−1L} for a ∈ Σ.

RL is minimal with respect to the number of states (see [5], Theorem 1). Note
that as empty residual languages correspond to failure states and prime residual
languages are non-empty by definition the canonical RFSA RL never contains
a failure state.

3 Inferring a RFSA using an observation table

3.1 A “parasitic” two-step algorithm

The algorithm we are going to present in this subsection infers the canonical
RFSA for some regular language L from a suitable combination of available in-
formation sources. An information source can be an oracle answering member-
ship queries (‘Is this string contained in the language?’) or equivalence queries
(‘Is A a correct automaton for L?’ – including the return of a counterexample
c ∈ (L\L(A))∪(L(A)\L) in case of a negative answer) or a positive or negative
sample of L fulfilling certain properties, and there are possibly other kinds of
sources that could be taken into consideration as well. Suitable combinations
known from the literature are for example an oracle answering membership and
equivalence queries (a so-called minimally adequate teacher, or MAT), an oracle
answering membership queries and positive data, or positive and negative data
(for references see below).

We proceed as follows: In a first step we use an existing algorithm in order
to build an observation table T ′ = (red′ ∪ blue′, E′, obs′) representing the
canonical DFA for the reversal L of L. Eligible algorithms for various learning
settings can be found for example in [1] (Angluin’s seminal algorithm L∗, for
MAT learning), [13] (ALTEX, an algorithm learning regular tree languages from
a membership oracle and positive data, which can be readapted to strings by
treating them as non-branching trees), or [17] (the meta-algorithm GENMODEL
covers MAT learning, learning from membership queries and positive data, and
learning from positive and negative data, and can be adapted to a range of
other combinations of information sources as well). All of these algorithms
are based on the principle of adding elements to the set labeling the rows of
the table (representing candidates for states in the canonical DFA) until it is

6

e e1 e2 e3 e4

s1 1 0 1 1 0
s2 1 1 0 1 1
s3 1 0 1 0 0
s4 0 0 0 0 1

Figure 1: An example for a coverable column (labeled by e)

closed, and/or separating contexts (i.e., suffixes by which it can be shown that
two states should be distinct in the derived automaton) to the set labeling the
columns of the table until it is consistent – additions of one kind potentially
resulting in the necessity of the other and vice versa – and, once the table is
both closed and consistent, deriving an automaton from it that is either the
canonical DFA in question or can be rejected by a counterexample obtained
from one of the available information sources, which is then evaluated and used
to start the cycle afresh. Obviously, since the sources only provide information
about L and not its reversal L, we must interfere with the process in a minimal
way by adapting data and queries accordingly: Strings and automata have to
be reversed (see Section 2) before submitting them to an oracle, as well as
given samples and counterexamples have to be reversed before using them in
the construction of the table T ′.

In the second step we submit T ′ to the following modifications:

. Only keep one representative for every distinct row occurring in the table
in red′ (but leave blue′ unchanged), and only keep one representative
for every distinct column in E′. The choice of which element to keep can
be simplified for example by always settling on the first element of the set
in length-lexical order.

. Eliminate all representatives of rows and columns containing only 0s.
Let the resulting table be T ′′ = (red′′ ∪ blue′′, E′′, obs′′).

♦ Eliminate all representatives of coverable columns, i.e., all e ∈ E′′ with

∃e1, . . . , en ∈ E′′ : ∀s ∈ red′′ :
[obs′′(s, e) = 0⇒ ∀i ∈ {1, . . . , n} : obs′′(s, ei) = 0] ∧
[obs′′(s, e) = 1⇒ ∃i ∈ {1, . . . , n} : obs′′(s, ei) = 1].

For example, the column labeled by e in Figure 1 would be eliminated
because its 1s are all “covered” by the columns labeled by e1, e2, and e3.

Note that the first two modifications mainly serve to trim down the table in order
to make the third modification less costly. In fact, most algorithms mentioned
above can easily be remodeled such that they build tables in which there are no
rows or columns consisting of 0s anyway (as rows consisting of 0s correspond to
the failure state and columns containing only 0s cannot make any distinction

7

between elements labeling the rows), and in which the elements labeling the
rows in the red part of the table are all pairwise obviously different already
such that no row is represented twice.

The table thus modified shall be denoted by T = (red ∪ blue, E, obs) and
the automaton derived from it by AT = (Σ, QT , QT0, FT , δT) with FT = FT ′

(this has to be stated explicitly for the case in which ε has been eliminated by
♦). Since we have kept a representative for every distinct row and since all pairs
of red′ elements that are distinguished by the contexts eliminated by ♦ must
be distinguished by at least one of the contexts covering those as well AT still
represents the canonical DFA for L (but without a failure state).

We use the new table T to define a NFA R = (Σ, QR, QR0, FR, δR) with

• QR = {q ⊆ red|∃e ∈ E : s ∈ q ⇔ obs(s, e) = 1},

• QR0 = {q ∈ QR|∀s ∈ q : obs′(s, ε) = 1}
(here we have to consult obs′ again in case ε has been eliminated by ♦),

• FR = {q ∈ QR|ε ∈ q}, and

• δR(q1, a) = {q2|q2 ⊆ δT (q1, a)} for q1, q2 ∈ QR and a ∈ Σ, and δT is the
transition function of the reversal of AT .

Observe that every state in QR corresponds to a column in T . Since every
element of red represents an equivalence class of L under the Myhill-Nerode
relation every state in QR also corresponds to a unique set of equivalence classes,
and the associated column can be seen to represent the characteristic function
of that set. The following theorem states the main result of the paper:

Theorem 2 R is (isomorphic to) the canonical RFSA for L.

The proof will make use of Theorem 3 from [5], repeated as Theorem 3 below.

Definition 9 Let A = (Σ, Q,Q0, F, δ) be a NFA, and define

Q� := {p ⊆ Q|∃w ∈ Σ∗ : δ(Q0, w) = p}.

A state q ∈ Q� is said to be coverable iff there exist q1, . . . , qn ∈ Q� \ {q} for
n ≥ 1 such that q =

⋃n
i=1 qi. Otherwise q is said to be non-coverable.

Theorem 3 Let L be a regular language and let B = (Σ, QB , QB0, FB , δB) be
a NFA such that B is a RFSA recognizing L whose states are all reachable. In
that case C(B) = (Σ, QC , QC0, FC , δC) with

• QC = {p ∈ Q�B |p is not coverable},

• QC0 = {p ∈ QC |p ⊆ QB0},

• FC = {p ∈ QC |p ∩ FB 6= ∅}, and

• δC(p, a) = {p′ ∈ QC |p′ ⊆ δB(p, a)} for p ∈ QC and a ∈ Σ

8

is the canonical RFSA recognizing L.

As a further important result it has also been shown in [5], Section 5, that in
a RFSA for some regular language L whose states are all reachable the non-
coverable states correspond exactly to the prime residual languages of L and
that consequently QC can be naturally identified with the set of states of the
canonical RFSA for L. Proof of Theorem 2: Observe that AT meets the
conditions for B in Theorem 3:

• All states of AT are reachable because AT contains no useless states,

• AT is a RFSA because every DFA without useless states is a RFSA ([5],
Section 3),

• and L(AT) = L.

Since AT contains no useless states AT and AT have the same number of states
and transitions, and therefore we can set B = AT = (Σ, QT , FT , QT0, δT).
Assuming for the present that there is a bijection between QR and QC it is
rather trivial to see that

• there is a bijection between QR0 = {q ∈ QR|∀x ∈ q : obs′(x, ε) = 1} and
QC0 = {p ∈ QC |p ⊆ FT } due to FT = {x ∈ red|obs′(x, ε) = 1},

• there is a bijection between FR = {q ∈ QR|ε ∈ q} and FC = {p ∈
QC |p ∩QT0 6= ∅} due to the fact that QT0 = {ε}, and that

• for every q ∈ QR, p ∈ QC , and a ∈ Σ such that q is the image of p under
the bijection between QR and QC , δR(q, a) = {q2 ∈ QR|q2 ⊆ δT (q, a)} is
the image of δC(p, a) = {p′ ∈ QC |p′ ⊆ δT (p, a)}.

It remains to show that there is indeed a bijection between QR and the
set of prime residual languages of L, represented by QC . First of all, consider
Proposition 1 from [5]:

Lemma 1 Let A = (Σ, Q,Q0, F, δ) be a RFSA. For every prime residual lan-
guage w−1L(A) there exists a state q ∈ δ(Q0, w) such that Lq = w−1L(A).

From the definition of QR it is clear that R is a RFSA: As noted above, every
state in QR corresponds to a column in T , labeled by a context e ∈ E, and
also to the set of equivalence classes [s]L such that se ∈ L for s ∈ red. As a
consequence the reversal of the union of this set of equivalence classes equals the
residual language e−1L, and therefore every state in QR corresponds to exactly
one residual language of L. According to Lemma 1, there is a state in QR for
each prime residual language of L, and hence every prime residual language of
L is represented by exactly one column occurring in the table.
By ♦ we have eliminated the columns that are covered by other columns in the
table. If a column is not coverable in the table the corresponding state in QR is
not coverable either: Consider a column in the table which can be covered by a
set of columns of which at least some do not occur in the table. Due to Lemma

9

1, these columns can only correspond to composed residual languages of L. If
we were to add representatives of these columns to the table they would have
to be eliminated again directly because of the restrictions imposed by ♦. This
means that if a column is coverable at all it can always be covered completely
by restricting oneself to columns that correspond to prime residual languages
of L as well, and these are all represented in the table. Therefore QR cannot
contain any coverable states.
Consequently, the correspondence between QR and the set of prime residual
languages of L is one-to-one, and we have shown that R is isomorphic to the
canonical RFSA for L. �

Corollary 1 Let L be a regular language. The number of prime residual lan-
guages of L equals the minimal number of contexts that is needed in order to
distinguish between the states of the canonical DFA for L.

A remark: If the algorithm generating the original table yields a partial
automaton (which is the general case for ALTEX and also for GENMODEL
in the settings of learning from membership queries and positive data, and
from positive and negative data) then of course the canonical RFSA cannot be
maximal with respect to the transitions either.

Also note that we can skip the relatively cumbersome third modification ♦
in the second part of our algorithm if we restrict the target to a subclass of the
regular languages:

Definition 10 A DFA is called bideterministic (also known as 0-reversible) iff
its reversal is deterministic as well. A language is bideterministic if there is a
biDFA recognizing it.

Theorem 4 All residual languages of a bideterministic language are disjoint.

(See [2]). This implies that a table for a bideterministic language cannot contain
coverable columns and that for every column the residual language represented
by it must be prime.

3.2 Comparison to other algorithms: Query complexity

An obvious advantage of the algorithm described above is the trivial fact that
it directly benefits from any past, present, and future research on algorithms
that infer minimal DFAs via observation tables, and at least until the present
moment there is a huge gap between the amount of research that has been
done on algorithms inferring DFAs and the amount of research on algorithms
inferring NFAs – or RFSAs, for that matter.

One point of interest in connection with the concepts presented here is the
study of further kinds of information sources that could be used as input and
in particular suitable combinations thereof (see [17] for a tentative discussion).

Another point of interest is complexity. Since the second part of the algo-
rithm consists of some very cheap comparisons of 0s and 1s only of which ♦

10

is the most complex1 the determining factor is of course the complexity of the
chosen underlying algorithm. One of the standard criteria for evaluating an al-
gorithm is its time complexity, but depending on the different learning settings
there are other measures that can be taken into consideration as well, one of
which we will briefly address in the following.

For algorithms that learn via queries a good criterion is the number of queries
needed, obviously. The prototype of all query learning algorithms, Angluin’s [1]
MAT learning algorithm L∗, which can be seen in a slightly adapted2 version
L∗col in Figure 2, needs IL equivalence queries and roughly O(|Σ| · |c0| · I2

L)
membership queries, where IL is the index of the regular language L ⊆ Σ∗ and
|c0| is the length of the longest given counterexample. By some modifications
the number of membership queries can be improved to O(|Σ|I2

L + ILlog|c0|)
which according to [14] is optimal up to constant factors. On the other hand, it
has been shown in [15] that it is possible to decrease the number of equivalence
queries to sublinearity at the price of increasing the number of membership
queries exponentially.

initialize T := (S,E, obs) with S = red ∪ blue and blue = red · Σ
by red := {ε} and E := {ε}

repeat until EQ = yes
while T is not closed and not consistent

if T is not closed
find s ∈ blue such that row(s) /∈ row(red)
red := red ∪ {s} (and update the table via MQs)

if T is not consistent
find s1, s2 ∈ red, a ∈ Σ, e ∈ E such that s1a, s2a ∈ S

and ¬(s1 <> s2) and obs(s1ae) 6= obs(s2ae)
E := E ∪ {ae} (and update the table via MQs)

perform equivalence test

if EQ = 0 get counterexample c ∈ (L \ L(AT)) ∪ (L(AT) \ L)
E := E ∪ Suff(c) (and update the table via MQs)

return AT

Figure 2: L∗col

Recently, Bollig et al. [9] have presented a MAT learning algorithm for RF-

1Algorithmically, ♦ could be handled as follows: For every e ∈ E′′ build the set
{e1, . . . , en} ⊆ E′′ such that ∀i ∈ {1, . . . , n} : ∀s ∈ red′′ : obs′′(s, e) = 0 ⇒ obs′′(s, ei) = 0.
Then check if for all s ∈ red′′ with obs′′(s, e) = 1 there is i ∈ {1, . . . , n} with obs′′(s, ei) = 1. If
the test is positive eliminate e from E′′. This can be done in polynomial time and is obviously
bounded by the number of rows and columns in the table. It has been shown experimentally
in [7] that for languages recognized by randomly generated DFAs the number of inclusion
relations between residual languages represented in that DFA is extremely small, which gives
rise to the hope that the full test does not have to be executed too often at all.

2The adaptation consists in the fact that instead of adding the counterexample and all its
prefixes to S it is added with all its suffixes to E. This idea is due to [16] and does not change
the result.

11

SAs using an observation table that keeps very close to the deterministic vari-
ant L∗col mentioned above. To this end, they introduce the notions of RFSA-
closedness and RFSA-consistency.

Definition 11 Let T = (S,E, obs) be an observation table. We say that a row
labeled by s ∈ S is coverable iff ∃s1, . . . , sn ∈ S (or is coverable by the rows of
s1, . . . , sn ∈ S iff)

∀e ∈ E : [obs(s, e) = 0⇒ ∀i ∈ {1, . . . , n} : obs(si, e) = 0] ∧
[obs(s, e) = 1⇒ ∃i ∈ {1, . . . , n} : obs(si, e) = 1].

Let ncov(S) ⊆ row(S) denote the set of non-coverable rows labeled by elements
from S.

Definition 12 Let T = (S,E, obs) be an observation table. Let us say that
a row r ∈ row(S) includes another row r′ ∈ row(S), denoted by r′ v r, iff
∀e ∈ E : obs(s′, e) = 1
⇒ obs(s, e) = 1 for all s, s′ ∈ S with row(s) = r and row(s′) = r′.

Definition 13 A table T = (red ∪ blue, E, obs) is RFSA-closed iff every row
r ∈ row(blue) is coverable by some rows r1, . . . , rn ∈ ncov(red).

Definition 14 A table T = (red∪blue, E, obs) is RFSA-consistent iff row(s1) v
row(s2) implies row(s1a) v row(s2a) for all s1, s2 ∈ S and all a ∈ Σ.

From a RFSA-closed and RFSA-consistent table T = (red ∪ blue, E, obs)
Bollig et al. derive a non-deterministic finite-state automaton R = (Σ, QR,
QR0, FR, δR) defined by

• QR = ncov(red),

• QR0 = {r ∈ QR|r v row(ε)},

• FR = {r ∈ QR|∀s ∈ red : row(s) = r ⇒ obs(s, ε) = 1}, and

• δR(row(u), a) = {r ∈ QR|r v row(sa)} with row(s) ∈ QR and a ∈ Σ.

Theorem 5 ([9]) Let T be a RFSA-closed and RFSA-consistent table and let
RT be the NFA derived from T . Then RT is a canonical RFSA.

The pseudo-code of the algorithm NL∗ by Bollig et al. is given in Figure 3.
See [9] for the proof of Theorem 5 and the proof that the automaton derived
from the table established by NL∗ is indeed the canonical RFSA for the regular
language L in question.

When comparing NL∗ and the corresponding concepts given above to the
algorithm described in the previous subsection one should not fail to observe
how establishing and exploiting a table for L itself instead of its reversal also
brings about an exchange of the roles of rows and columns as representatives of
states in the resulting RFSA.

12

initialize T := (S,E, obs) with S = red ∪ blue and blue = red · Σ
by red := {ε} and E := {ε}

repeat until EQ = yes
while T is not RFSA-closed and not RFSA-consistent

if T is not RFSA-closed
find s ∈ blue such that row(s) ∈ ncov(S) \ ncov(red)
red := red ∪ {s} (and update the table via MQs)

if T is not RFSA-consistent
find s ∈ S, a ∈ Σ, e ∈ E such that obs(sae) = 0 and

obs(s′ae) = 1 for some s′ ∈ S with row(s′) v row(s)
E := E ∪ {ae} (and update the table via MQs)

perform equivalence test

if EQ = 0 get counterexample c ∈ (L \ L(AT)) ∪ (L(AT) \ L)
E := E ∪ Suff(c) (and update the table via MQs)

return AT

Figure 3: NL∗, the NFA (RFSA) version of L∗col

The theoretical query complexity of NL∗ amounts to at most O(I2
L) equiva-

lence queries and O(|Σ|·|c0|·I3
L) membership queries. This exceeds the maximal

number of queries needed by L∗col in both cases which is due to the fact that with
NL∗ adding a context does not always directly lead to an increase of the number
of states in the automaton derived from the table. However, the authors of [9]
also show that their algorithm statistically outperforms L∗col in practice, which
is partly due to the fact that the canonical RFSA for a language is often signifi-
cantly smaller than its canonical DFA (see [5]). Nevertheless it is a noteworthy
fact that apparently inferring an automaton with potentially exponentially less
states than the minimal DFA for a language seems to be at least as complex or
even more so!

Inspired by Bollig et al. [9] we propose another parasitic two-step algorithm
that uses an existing algorithm with access to a membership oracle to establish a
table T ′ = (red′∪blue′, E′, obs′) representing the canonical DFA for a language
L and modifies it as follows:

.′ Eliminate all representatives of rows and columns containing only 0s.

♦′ For every s ∈ red′ and every final state qF ofAT ′ add an (arbitrary) string
e to E′ such that δT ′(row(s), e) = {qF }. Fill up the table via membership
queries.

Let T = (red∪blue, E, obs) be the resulting table. Note that since T ′ already
contains the maximal number of possible distinct rows T is still closed and
therefore RFSA-closed (this is easy to see from the definitions of closedness and
RFSA-closedness). T is RFSA-consistent as well: Recall that every element
s ∈ S represents a residual language s−1L of L (see Section 2). If T was not
RFSA-consistent we could find elements s1, s2 ∈ S, e ∈ E, and a ∈ Σ with

13

row(s1) v row(s2) but obs(s1a, e) = 1 ∧ obs(s2a, e) = 0. However, ae ∈ s−1
1 L

and row(s1) v row(s2) imply that ae ∈ s−1
2 L, and hence obs(s2a, e) = 0 cannot

be true.
From the table T we derive an automaton R = (Σ, QR, QR0, FR, δR) as in

[9] (see above). The NFA R is the canonical RFSA for L. This follows directly
from Theorem 5 and the fact that T contains a representative for every residual
language of L.

The algorithm outlined above needs IL · |FL| membership queries in addition
to the number of queries needed by the algorithm establishing the original table
but it does not require any more equivalence queries. As equivalence queries are
usually deemed very expensive (deciding the equivalence of two NFAs is even
PSPACE-complete, see for example [4]) this can be counted as an advantage.
Also note that if we restrict the target to bideterministic languages again the
table does not have to be modified and no additional queries have to be asked
at all which is due to the result that for bideterministic languages the canonical
DFA and the canonical RFSA coincide (see [11]).

4 Conclusion

Two-step algorithms have the advantage of modularity: Their components can
be exchanged and improved individually and therefore more easily adapted to
different settings and inputs as well whereas non-modular algorithms are gener-
ally stuck with their parameters. One may doubt the efficiency of the two-step
algorithms presented here by observing that the second step partly destroys the
work of the first, but as we have seen, as long as algorithms inferring the mini-
mal DFA are so much less complex than the ones inferring the minimal RFSA
the two-step version still outperforms the direct one.

Concerning future research: It should be relatively easy to adapt NL∗ to
other learning settings such as learning from positive data and a membership
oracle or from positive and negative data in order to establish a more universal
pattern for algorithms that infer a RFSA via an observation table similar to the
generalization for DFAs attempted in [17].
The definition of RFSA has been extended to trees in [10] where the authors
also announce the development of corresponding learning algorithms. For trees
the role of concatenation operation is taken by the replacement of a special node
in a tree context by another tree:

Definition 15 The set TΣ of trees over a ranked alphabet Σ is defined as the
smallest set with f ∈ TΣ for every f ∈ Σ0 and f [t1, . . . , tn] ∈ TΣ for every
f ∈ Σn and t1, . . . , tn ∈ TΣ. Let � be a special symbol of rank 0. A tree
c ∈ TΣ∪{�} in which � occurs exactly once is a context. For a context c and
s ∈ TΣ, c[[s]] is the tree obtained by substituting s for � in c.

Definitions 11 to 13 can be applied in the tree case directly.

Definition 16 A table T = (red∪blue, E, obs) is RFSA-consistent iff row(si) v

14

row(ti) ⇒ row(f [s1, . . . , si, . . . , sn]) v row(f [t1, . . . , ti, . . . , tn]) for all si, ti ∈
S, 1 ≤ i ≤ n, f ∈ Σn.

The notions of RFSA-closedness and RFSA-consistency once carried over the
adaptation of algorithms using this notions (like the ones described in Subsec-
tion 3.2) to ordinary two-dimensional trees and, as is made evident in [18] and
[19], even to trees over arbitrarily many dimensions (so-called multi-dimensional
trees) should be fairly straightforward as well. Unfortunately this is not the case
for our algorithm from Subsection 3.1 which is due to the fact that it seems
rather difficult to present a sensible definition of the reversal of a tree.

References

[1] Angluin, D.: Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2), 87–106 (1987)

[2] Angluin, D.: Inference of reversible languages. JACM, vol. 29(3), pp. 741–
765 (1982)

[3] Drewes, F., Högberg, J.: Learning a regular tree language from a teacher.
In: DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer (2003)

[4] Hopcroft, J. E. and Ullmann, J. D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Longman (1990)

[5] Denis, F., Lemay, A., and Terlutte, A.: Residual Finite State Automata. In:
STACS 2001. LNCS, vol. 2010, pp. 147–155. Springer (2001)

[6] Denis, F., Lemay, A., and Terlutte, A.: Learning regular languages using
non-deterministic finite automata. In: ICGI 2000. LNCS, vol. 1891, pp. 39–
50. Springer (2000)

[7] Denis, F., Lemay, A., and Terlutte, A.: Learning regular languages using
RFSA. In: ALT 2001. LNCS, vol. 2225, pp. 348–363. Springer (2001)

[8] Denis, F., Lemay, A., and Terlutte, A.: Some classes of regular languages
identifiable in the limit from positive data. In: Grammatical Inference – Al-
gorithms and Applications. LNCS, vol. 2484, pp. 269–273. Springer (2003)

[9] Bollig, B., Habermehl, P., Kern, C., and Leucker, M.: Angluin-style learn-
ing of NFA. In: Online Proceedings of IJCAI 21 (2009). Available from:
http://ijcai.org/papers09/contents.php

[10] Carme, J., Gilleron, R., Lemay, A., Terlutte, A., and Tommasi, M.: Resid-
ual finite tree automata. In: DLT 2003. LNCS, vol. 2710, pp. 171–182.
Springer (2003)

[11] Latteux, M., Roos, Y., and Terlutte, A.: Minimal NFA and biRFSA lan-
guages. RAIRO Theoretical Informatics and Applications, vol. 43, pp. 221–
237 (2009)

15

[12] Latteux, M., Lemay, A., Roos, Y., and Terlutte, A.: Identification of
biRFSA languages. TCL, vol. 356(1), pp. 212–223 (2006)

[13] Besombes, J. and Marion, J.-Y.: Learning Tree Languages from Positive
Examples and Membership Queries. In: ALT 2003. LNCS, vol. 3244, pp.
440–453. Springer (2003)

[14] Balcazar, J.L., Diaz, J., Gavalda, R., and Watanabe, O.: Algorithms for
learning finite automata from queries – a unified view. In: Advances in Algo-
rithms, Languages, and Complexity, pp. 53–72 (1997)

[15] Balcazar, J.L., Diaz, J., Gavalda, R., and Watanabe, O.: The query com-
plexity of learning DFA. New Generation Computing, vol. 12(4), pp. 337–358.
Springer (1994)

[16] Maler, O. and Pnueli, A.: On the learnability of infinitary regular sets. In:
Proceedings of the 4th Annual Workshop on Computational Learning Theory,
pp. 128–136. Morgan Kaufmann (1991)

[17] Kasprzik, A.: Meta-Algorithm GENMODEL: Generalizing over three
learning settings using observation tables. Technical report 09-2, University
of Trier (2009)

[18] Kasprzik, A.: Making finite-state methods applicable to languages beyond
context-freeness via multi-dimensional trees. In J. Piskorski, B. Watson, A.
Yli-Jyrä (eds): Post-proceedings of FSMNLP 2008, pp. 98–109. IOS Press
(2009)

[19] Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learn-
ing beyond context-freeness. In A. Clark, F. Coste, L. Miclet (eds): ICGI
2008. LNAI, vol. 5278, pp. 111–124. Springer (2008)

16

