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Abstract

We show that every semi-abelian category, as defined by Palamodov,
possesses a maximal exact structure in the sense of Quillen and that the
exact structure of a quasi-abelian category is a special case thereof.

1 Introduction

Palamodov [5] introduced the notion of semi-abelian category as an additive cat-
egory with kernels and cokernels where the canonical morphism f̃ : coim(f) →
im(f) associated to every morphism f : X → Y is both an epimorphism and a
monomorphism.
There is another, non-additive notion of semi-abelian category in the literature
introduced by Janelidze, Màrki and Tholen [3], namely that of a category that
is pointed, Barr exact and protomodular with binary products. A semi-abelian
category in their sense is additive if and only if it is abelian.
This article is concerned with Palamodov’s notion of a semi-abelian category.
Quillen [6] introduced the notion of an exact category, which is an additive cate-
gory C together with a distinguished class E (called an exact structure on C) of
kernel-cokernel pairs, subject to some closure requirements. On every additive
category C there exists a smallest exact structure Emin, namely the class of all
split exact sequences, but in general there is no largest exact structure on C.
In this article we show that if C is semi-abelian, such a largest exact structure
Emax exists.
Furthermore it follows that a semi-abelian category together with the exact
structure Emax is a generalisation of the notion of quasi-abelian category and
its largest exact structure (which contains all kernel-cokernel pairs), as used in
[7]. Finally we give an example of a semi-abelian category that is not quasi-
abelian.

2 Semi-Abelian Categories

In this section we recall the notion of a semi-abelian category and give an
overview of their basic properties.
If C is an additive category with kernels and cokernels and f : X → Y is a
morphism in C we will always write kf : ker(f) → X for its kernel, cf : Y →
coker(f) for its cokernel, cif : X → coim(f) for its coimage and if : im(f) → Y
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for its image. For every such morphism f there is a unique morphism f̃ :
coim(f) → im(f) making the following diagram commutative:

X

cif
��

f //

	

Y

coim(f)
f̃

// im(f)

if

OO

The category C is abelian if the morphism f̃ is always an isomorphism. The
following weaker notion was introduced by Palamodov in [5]:

Definition 1 An additive category C with kernels and cokernels is called
semi-abelian if for every morphism f : X → Y the canonical morphism f̃ :
coim(f) → im(f) is both an epimorphism and a monomorphism.

The dual category Cop of a semi-abelian category C is also a semi-abelian
category, since the morphism f̃ : coim(f) → im(f) remains the same.
In analogy to [7] we define a morphism f : X → Y in a semi-abelian category
to be strict if the canonical morphism f̃ : coim(f) → im(f) is an isomorphism.
The following is an important special case of semi-abelian categories (cf. [7,
Corollary 1.1.5]):

Definition 2 An additive category C with kernels and cokernels is called
quasi-abelian if it satisfies the following dual axioms:

(QA) If Y
g //

	

Z

P

pY

OO

pT

// T

t

OO is a pullback square and g a strict epimorphism,

the morphism pT is also a strict epimorphism.

(QA)∗ If X

t
��

f //

	

Y

sY

��
T sT

// S

is a pushout square and f a strict monomorphism,

the morphism sT is also a strict monomorphism.

As shown in [7], every quasi-abelian category is semi-abelian, but the converse
is not true in general (a counterexample will be given later in Example 19).
The following holds true in any additive category with kernels and cokernels,
as noted in [7]:

Remark 3 i) The kernel kf : ker(f) → X of any morphism f : X → Y in
C is a strict monomorphism and its cokernel cf : Y → coker(f) is a strict
epimorphism.

ii) A morphism is a strict epimorphism if and only if it is the cokernel of its
kernel and it is a strict monomorphism if and only if it is the kernel of its
cokernel.
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iii) A morphism f : X → Y is strict if and only if it factors as f = j ◦h where
j ist a strict monomorphism and h is a strict epimorphism.

In a semi-abelian category we get some useful results for compositions and
factorisations of strict epimorphisms and monomorphisms, analogous to those
proved in [7]. The following results were shown in [8], we will provide the
proofs nonetheless for the sake of completeness.

Proposition 4 Let C be a semi-abelian category.

i) If f : X → Y is a strict monomorphism and f factors as f = g ◦ h, then
h is also a strict monomorphism.

ii) If f : X → Y is a strict epimorphism and f factors as f = g ◦ h, then g
is also a strict epimorphism.

iii) If f : X → Y and g : Y → Z are strict monomorphisms (resp. epimor-
phisms), then g ◦ f is a strict monomorphism (resp. epimorphism).

iv) If f : X → Y is a strict morphism, g : W → X a strict epimorphism
and h : Y → Z a strict monomorphism, then f ◦ g and h ◦ f are strict
morphisms.

Proof : ii) is the dual statement of i) and iv) follows from iii) and Remark 3 iii),
so it suffices to show i) and iii).
i) It is obvious, that h : X → H is a monomorphism. Therefore idX : X → X
is a coimage of f , hence h = ih ◦ h̃. Similarly f = if ◦ f̃ .
Let cf : Y → coker(f) be the cokernel of f , then

cf ◦ g ◦ ih ◦ h̃ = cf ◦ g ◦ h = cf ◦ f = 0

and since h̃ is an epimorphism it follows that cf ◦ g ◦ ih = 0. The universal
property of im(f) gives rise to a unique morphism v : im(h) → im(f) with
if ◦ v = g ◦ ih. Since

if ◦ v ◦ h̃ = g ◦ ih ◦ h̃ = g ◦ h = f = if ◦ f̃

and because if is a monomorphism, we have v ◦ h̃ = f̃ , hence f̃−1 ◦ v ◦ h̃ =
idcoim(h). Then

h̃ ◦ f̃−1 ◦ v ◦ h̃ = h̃

and since h̃ is both an epimorphism and a monomorphism, it follows that h̃ is
an isomorphism, hence h is a strict monomorphism.
iii) Since f and g are strict monomorphisms they are their own images by
Remark 3 and since g ◦ f is a monomorphism we have g ◦ f = ig◦f ◦ g̃ ◦ f .
Then cg ◦ ig◦f ◦ g̃ ◦ f = cg ◦ g ◦ f = 0, hence cg ◦ ig◦f = 0 since g̃ ◦ f is an
epimorphism. The universal property of im(g) gives rise to a unique morphism
v : im(g ◦ f) → Y = im(g) with ig◦f = g ◦ v. Then it follows from g ◦ f =
ig◦f ◦ ˜g ◦ f = g ◦ v ◦ g̃ ◦ f that f = v ◦ g̃ ◦ f , since g is a monomorphism and
from cf ◦ v ◦ g̃ ◦ f = cf ◦ f = 0 it follows that cf ◦ v = 0, since g̃ ◦ f is an
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epimorphism. The universal property of im(f) then yields a unique morphism
w : im(g ◦ f) → X with v = f ◦ w.
If t : T → Z is any morphism with cg◦f ◦ t = 0, then there is a unique morphism
λ : T → im(g ◦ f) with t = ig◦f ◦ λ. Then

t = ig◦f ◦ λ = g ◦ v ◦ λ = g ◦ f ◦ w ◦ λ

and since g ◦ f is a monomorphism, the morphism w ◦ λ is unique with t =
g ◦ f ◦ w ◦ λ. Therefore g ◦ f is its own image and hence by Remark 3 a strict
monomorphism.

Any additive category C with kernels and cokernels possesses also pullbacks
and pushouts. In addition, morphisms under pullbacks have isomorphic
kernels and morphisms under pushouts have isomorphic cokernels:

Lemma 5 Let C be an additive category.

i) If g : Y → Z, t : T → Z are morphisms in C and (P, pT , pY ) is their
pullback, then there is a morphism j : X → P making the diagram

ker(g)
kg //

	

Y
g //

	

Z

ker(g)
j

//

id

OO

P

pY

OO

pT

// T

t

OO

commutative and j is a kernel of pT .

ii) If f : X → Y , t : X → T are morphisms in C and (S, sT , sY ) is their
pushout, then there is a morphism C : S → S making the diagram

X
f //

t

��
	

Y
cf //

sY

��
	

coker(f)

id
��

T sT

// S c
// coker(f)

commutative and c is a cokernel of sT .

Proof : ii) is the dual statement of i), so ist suffices to show i).
Since g ◦ kg = 0 = t ◦ o, the universal property of (P, pT , pY ) gives rise to a
unique morphism j : ker(g) → P with pY ◦ j = kG and pT ◦ j = 0. We show
that j is a kernel of pT : Let h : H → P be a morphism with pT ◦ h = 0. Then
g ◦ pY ◦ h = t ◦ pT ◦ h = 0, therefore the universal property of ker(g) yields a
unique morphism λ : H → ker(g) with pY ◦h = kG ◦λ, hence pY ◦h = pY ◦ j ◦λ
and pT ◦ h = 0 = pT ◦ j ◦ λ, so the universal property of (P, pT , pY ) shows
h = j ◦ λ and λ is unique with this property. This shows that j is a kernel of
pT .

Pullbacks and pushouts in a semi-abelian category have many useful
properties, a thorough discussion of which can be found in [8]. The following
proposition, which is also shown [8], will be of importance in our context:
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Proposition 6 Let C be a semi-abelian category and

(∗) X
t
��

f //

	

Y

sY

��
T sT

// S

be a pushout square.

i) If f is a strict epimorphism, then sT is a strict epimorphism.

ii) If f or t is a strict monomorphism, then (∗) is also a pullback diagram.

Proof : i) By Proposition 4 it suffices to show that sT is its own coimage. Let
r : T → R be a morphism with r ◦ ksT = 0. The diagram (∗) induces a unique
morphism λ : ker(f) → ker(sT ) with t ◦ kf = ksT ◦ λ. Then r ◦ t ◦ kf =
r ◦ ksT ◦ λ = 0. Since f is a strict epimorphism, it is its own coimage, hence
there is a unique ε : Y → R with r ◦ t = ε ◦ f . Then the universal property
of the pushout yields a unique morphism with η : S → R with ε = η ◦ sY and
r = η ◦ sT , which shows that sT is its own coimage.
ii) Let ωY : Y → Y × T , ωT : T → Y × T , πY : Y × T → Y , and πT :
Y × T → T denote the canonical morphisms. If p := (f,−t)t : X → Y × T
then (coker(p), cp ◦ ωY , cp ◦ ωT ) is a pushout of f and t (this is true in any
additive category with kernels and cokernels), so we can assume S = coker(p),
sY = cp ◦ ωY and sT = cP ◦ ωT . Furthermore:

(I) (im(p),−πY ◦ ip, πT ◦ ip) is a pullback of cP ◦ ωY and cp ◦ ωT .

Proof of (I): One has

−(cP ◦ωT ◦(−πT ◦iP ))+cP ◦ωY ◦πY ◦iP = cP ◦(ωT ◦πT+ωY ◦πY )◦iP = cP ◦iP = 0

and if lT : L→ T and lY : L→ Y are morphisms with cP ◦ωY ◦ lY = cP ◦ωT ◦ lT
we have cP ◦ (ωY ◦ lY − ωT ◦ lT ) = 0. The image of p gives rise to a unique
morphism h : L→ im(p) with iP ◦ h = ωY ◦ lY − ωT ◦ lT . Then

−πT ◦ iP ◦ h = −πT ◦ ωY ◦ lY + πT ◦ ωT ◦ lT = lT

πY ◦ iP ◦ h = πY ◦ ωY ◦ lY + πY ◦ ωT ◦ lT = lY

and h is unique with this property, which proves (I).
The diagram

X
f //

t

��

p̃◦ciP

""E
EEEEEEE

	

Y

sY

��

im(p)	

	

πY ◦iP
77ooooooooooooo

−πT ◦iP||yy
yy

yy
yy

y

T sT

// S
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is commutative and since C is semi-abelian, the morphism p̃ ◦ ciP is an epi-
morphism. If f or t is a strict monomorphism, then p̃ ◦ ciP is also a strict
monomorphism by Proposition 4, hence an isomorphism. Together with (I)
this proves the proposition.

The dual argument shows:

Proposition 7 Let C be a semi-abelian category and

(∗) Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

be a pullback square.

i) If g is a strict monomophism, then pT is a strict monomorphism.

ii) If g or t is a strict epimorphism, then (∗) is also a pushout square.

These propositions show what happens to strict epimorphisms under pullbacks
and to strict monomorphisms under pushouts in a semi-abelian category:

Corollary 8 i) If

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

is a pullback square and g a strict epimorphism, then pT is an epimor-
phism.

ii) If

X

t
��

f //

	

Y

sY

��
T sT

// S

is a pushout square and f is a strict monomorphism, then sT is a monomor-
phism.

Proof : ii) is the dual statement of i), so it suffices to show i). Since g is a
strict epimorphism, the pullback in i) is also a pushout by Proposition 7. Let
cpT : T → coker(pT ) be the cokernel of pT , then by Lemma 5 ii) there is a
commutative diagram

P
pT //

pY

��
	

T
cpT //

t

��
	

coker(pT )

id
��

Y g
// Z c

// coker(pT )
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where c is a cokernel of g. Since g is an epimorphism, we have coker(pT ) = 0
and thus pT is also an epimorphism.

The morphisms pT and sT of corollary 8 are not necessarily strict morphisms
(see example 19). We now turn our attention to those strict epimorphisms
and monomorphisms where this will be the case.

3 l-strict Epimorphisms and Monomorphisms

A sequence 0 → X
f→ Y

g→ Z → 0 in a semi-abelian category C is called exact,
if g ◦ f = 0, f is a strict monomorphism, g is a strict epimorphism and the
canonical morphism λ : im(f) → ker(g) is an isomorphism.

Lemma 9 For a short sequence (∗) 0 → X
f→ Y

g→ Z → 0 in a semi-abelian
category the following are equivalent:

i) (∗) is exact.

ii) f is a kernel of g and g is a cokernel of f .

Proof : i) ⇒ ii) If (∗) is exact it is enough to show that f is a kernel of g, since
g is a strict epimorphism, hence by Remark 3 a cokernel of its kernel. Since f
is a strict monomorphism f̃ ◦ cif is an isomorphism and since (∗) is exact, the
canonical morphism λ : im(f) → ker(g) with if = kg◦λ is also an isomorphism.
Then

f = if ◦ f̃ ◦ cif = kg ◦ µ ◦ f̃ ◦ cif ,

which shows that f is a kernel of g.
ii) ⇒ i) If f is a kernel of g and g is a cokernel of f , then f is a strict
monomorphism and g is a strict epimorphism by Remark 3 and g ◦ f = 0.
Since g is a cokernel of f , the kernel of g is an image of f , hence the canonical
morphism λ : im(f) → ker(g) with if = kg ◦ λ is an isomorphism. Therefore
(∗) is exact.

Given a short exact sequence 0 → X
f→ Y

g→ Z → 0 and a morphism
t : T → Z, Lemma 5 i) yields a commutative diagram

X
f //

	

Y
g //

	

Z

X
k

//

id

OO

P

pY

OO

pT

// T

t

OO

where (P, pY , pT ) is the pullback of g and t and k is a kernel of pT . By
Proposition 8 the morphism pT is an epimorphism, but it need not be a strict
epimorphism, so the bottom row is in general not exact. Dually, given a
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morphism t : X → T we have a commutative diagram

X
f //

t
��

	

Y
g //

sY

��
	

Z

id
��

T sT

// P c
// Z

where (s, sY , sT ) is the pushout of f and t and c is a cokernel of sT , the
morphism sT is a monomorphism, but not necessarily a strict monomorphism.
Those strict epimorphisms and monomorphisms that are preserved under
pullback, resp. pushout, deserve a special name:

Definition 10 Let C be an additive category with kernels and cokernels.

i) A strict epimorphism g : Y → Z is called an l-strict epimorphism (lifting-
strict), if for every pullback square

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

the morphism pT is also a strict epimorphism.

ii) A strict monomorphism f : X → Y is called an l-strict monomorphism,
if for every pushout square

X

t
��

f //

	

Y

sY

��
T sT

// S

the morphism sT is also a strict monomorphism.

Using these notions a quasi-abelian category is a semi-abelian category in
which every strict epimorphism and every strict monomorphism is l-strict.

Remark 11

Because of the transitivity of both pullbacks and pushouts the morphisms pT
and sT in definition 10 are again l-strict.

Since retractions are stable under pullbacks, coretractions are stable under
pushouts and isomorphisms are stable under both, we obtain:

Proposition 12 i) Retractions are l-strict epimorphisms.

ii) Coretractions are l-strict monomorphisms.

iii) Isomorphisms are l-strict epimorphisms and l-strict monomorphisms.
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In a semi-abelian category we obtain additionally:

Proposition 13 Let C be a semi-abelian category.

i) If g : Y → Z and g′ : Z → Z ′ are l-strict epimorphisms, then g′ ◦ g is an
l-strict epimorphism.

ii) If g : Y → Z is an l-strict epimorphism that factors as g = p ◦ q, then p
is an l-strict epimorphism, too.

iii) If f : X → Y and f ′ : Y → Y ′ are l-strict monomorphisms, then f ′ ◦ f is
an l-strict monomorphism.

iv) If f : X → Y is an l-strict monomorphism that factors as f = i ◦ j, then
j is an l-strict monomorphism, too.

Proof : iii) and iv) are the dual statements of i) and ii), so it suffices to show
these.
i) Because of the transitivity of the pullback, the diagram

Y
g //

	

Z
g′ //

	

Z ′

Q

qY

OO

qP
// P

pZ

OO

pT

// T

t

OO

is a pullback of g′◦g and t, if (P, pT , pZ) is a pullback of g′ and t and (Q, qP , qY )
is a pullback of g and pZ . By Proposition 4 iii) the morphism pT ◦ qP is a strict
epimorphism, hence g′ ◦ g is an l-strict epimorphism.
ii) This follows as above from the transitivity of the pullback by using Propo-
sition 4 ii) instead of iii).

4 Semi-Abelian Categories as Exact Categories

The notion of exact category was introduced by Quillen [6]. An excellent ele-
mentary exposition of the theory of exact categories can be found in [2]. We
use the following definition of exact category which is due to Keller [4] and has
a minimal set of axioms:

Definition 14 Let C be an additive category and E be a class of pairs (f, g),
called conflations, of composable morphisms

X
f // Y

g // Z

such that f is a kernel of g and g is a cokernel of f . A morphism f is called
an inflation, if (f, g) ∈ E for some morphism g and a morphism g is called a
deflation if (f, g) ∈ E for some morphism f . An exact structure on C is a class
E of conflations that is closed under isomorphisms and satisfies the following
axioms:
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(E0) 0 → 0 is a deflation

(E1) If Y
g→ Z and Z

g′→ V are deflations, then g′ ◦ g is a deflation.

(E2) If g : Y → Z is a deflation and t : T → Z is a morphism, then the pullback

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

of g and t exists and pT is a deflation.

(E3) If f : X → Y is an inflation and t : X → T is a morphism, then the
pushout

X

t
��

f //

	

Y

sY

��
T sT

// S

of f and t exists and sT is an inflation.

An exact category is a pair (C, E) consisting of an additive category C and an
exact structure E on C.

Remark 15 If C is a semi-abelian category and E is an exact structure on C,
then E is a subclass of all short exact sequences of C by Lemma 9.

Let now C be a semi-abelian category and let EC be the class of pairs (f, g) of
composable morphisms f : X → Y and g : Y → Z with

(1) 0 → X
f→ Y

g→ Z → 0 is exact,

(2) g is an l-strict epimorphism,

(3) f is an l-strict monomorphism.

We call EC the class of admissible short exact sequences of C.

T

The following theorem is the main result of this article:

Theorem 16 If C is a semi-abelian category, then the class EC of admissible
short exact sequences is an exact structure on C.

Proof : (E0) is satisfied by Proposition 12. We show that EC is closed under
isomorphisms: Let (f, g) ∈ EC and let

X
f //

iX
��

	

Y
g //

iY
��

	

Z

iZ
��

X ′
f ′

// Y ′
g′

// Z ′
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be a commutative square in C with isomorphisms iX , iY and iZ .

Then the sequence (∗) 0 → X ′ f ′→ Y ′ g′→ Z ′ → 0 is exact. In fact, since
iZ ◦ g = g′ ◦ iY is a strict epimorphism, g′ is also a strict epimorphism and f ′ is
obviously a kernel of g′. Since g′ is a strict epimorphism it is the cokernel of its
kernel by Proposition 4. Therefore (f ′, g′) is a kernel-cokernel pair, hence (∗)
is exact.
Every commutative square

E

φ
��

h //

	

F

ψ
��

E′
h′

// F ′

in C with isomorphisms φ and ψ is a pullback square as well as a pushout
square, hence f ′ is an l-strict monomorphism and g′ an l-strict epimorphism by
Remark 11 which shows (f ′, g′) ∈ EC .
(E2): The pullback of any two morphisms does exist in C, since C has products
and kernels. Let (f, g) ∈ EC , let

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

be a pullback square and k : K → P be a kernel of pT . Then pT is an l-strict
epimorphism and the sequence 0 → K

k→ Y
pT→ T → 0 is exact, so it only

remains to be shown that k is an l-strict monomorphism.
Lemma 5 i) shows that there is a unique isomorphism j : K → X such that
py ◦ k = f ◦ j. Let then

K

r

��

k //

	

P

sP

��
R sR

// S

(1)

be a pushout square. First construct pushouts

K

r

��

j //

	

X

φ1

��
T

ψ1

// Q1

(2)

and
P

sp

��

pY //

	

Y

φ2

��
T

ψ2

// Q2

. (3)
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Then ψ1 is an isomorphism. We have

ψ2 ◦ sR ◦ r = ψ2 ◦ sP ◦ k = φ2 ◦ pY ◦ k = φ2 ◦ f ◦ j,

hence by the universal property of (1) there is a unique morphism ε : Q1 → Q2

with ψ2◦sR = ε◦ψ1 and φ2◦f = ε◦φ1, so that the following cube is commutative:

Y
φ2 // Q2

X

f
??��������

//φ1
Q1

ε
>>||||||||

P

OO

pY

//
sP

S

ψ2

OO

K

j

OO

k

>>}}}}}}}
r

// R

OO

ψ1 sR

=={{{{{{{{

We have:

(I) (Q2, ε, φ2) is a pushout of f and φ1.

Proof of (I): Let l1 : Q1 → L and lY : Y → L be morphisms such that lY ◦ f =
l1 ◦ φ1. Then lY ◦ pY ◦ k ◦ j−1 = l1 ◦ ψ1 ◦ r ◦ j−1, hence lY ◦ pY ◦ k = l1 ◦ ψ1 ◦ r.
The universal property of (1) then yields a unique morphism µ1 : S → L with
lY ◦ pY = µ1 ◦ sP and l1 ◦ ψ1 = µ1 ◦ sR and the universal property of (3) yields
a unique morphism µ2 : Q2 → L with lY = µ2 ◦ φ2 and µ1 = µ2 ◦ ψ2. Then

l1 ◦ ψ1 = µ1 ◦ sR = µ2 ◦ ψ2 ◦ sR = µ2 ◦ ε ◦ ψ1,

hence l1 = µ2 ◦ ε, since ψ1 is an isomorphism, making the following diagram
commutative:

X

	

f //

φ1

��

Y

	

φ2

�� lY

��

Q1

	

ε
//

l1 //

Q2

µ2

  A
AA

AA
AA

L

.

The morphism µ2 is unique with this property because of the universal proper-
ties of (1) and (3). This shows (I).
Since f is an l-strict monomorphism it follows from (I) that ε is a strict
monomorphism. Then ε ◦ ψ1 = ψ2 ◦ sR is also a strict monomorphism and
by Proposition 4 it follows that sR is a strict monomorphism, hence k is an
l-strict monomorphism which shows (k, pT ) ∈ EC .
(E3): Since C has products and cokernels, the pushout of any two morphisms
does exist. The pair (f, g) is in EC if and only if (gop, fop) is in ECop . Then
(E3) follows from (E2) by duality.

(E1): Let 0 → X
f→ Y

g→ Z → 0 and 0 → X ′ f
′
→ Z

g′→ Z ′ → 0 be short exact
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sequences with (f, g), (f ′, g′) ∈ EC and let k : K → Y be a kernel of g′ ◦ g.
Since g′ ◦ g is a strict epimorphism, the sequence 0 → K

k→ Y
g′◦g→ Z ′ → 0 is

exact and by Proposition 13 the epimorphism g′ ◦ g is l-strict, so it remains to
show:

(II) k is an l-strict monomorphism.

Proof of (II): Since g′ ◦ g ◦ k = 0, there exists a unique α : K → X ′ with
f ′ ◦ α = g ◦ k. We have:

(II.1) The diagram

Y
g //

	

Z

K

k

OO

α
// X

f ′

OO

is a pullback square.

Proof of (II.1): Let lY : L→ Y and lX′ : L→ X ′ be morphisms with f ′ ◦ lX′ =
g ◦ lY . Then g′ ◦ g ◦ lY = g′ ◦ f ′ ◦ lX′ = 0, hence there exists a unique η : L→ K
with lY = k ◦η. This yields f ′ ◦ lX′ = g ◦ lY = g ◦k ◦η = f ′ ◦α ◦η and from this
follows lX′ = α ◦ η, since f ′ is a monomorphism, hence the following diagram
commutes:

Y

	

g // Z

K α
//

k

OO

X ′

f ′

OO

L

	

	

lY

<<

lX′

AA
η
??~~~~~~~~

.

Since k is a monomorphism, η is unique with this property, hence the diagram
in (II.1) is a pullback square.
We need the following Lemma:

(II.2) If (f, g) ∈ EC and

Y
g //

	

Z

P

pY

OO

pR

// R

r

OO

is a pullback square diagram then the sequence

0 → P
(−pR,pY )t

→ R× Y
(r,g)→ Z → 0 (4)

is an admissible short exact sequence, that is ((−pR, pY )t, (r, g)) ∈ EC .

Proof of (II.2): By Lemma 5 i) we have a commutative diagram

X
f //

	

Y
g //

	

Z

X
k

//

id

OO

P

pY

OO

pT

// T

t

OO
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such that k is a kernel of pR and by (E2) the pair (k, pR) is in EC .
If (S, sY , sP ) is the pushout of f and k, Lemma 5 ii) yields a commutative
diagram

X

	k
��

f // Y

	

g //

sY

��

Z

idZ

��
P

	pR

��

sp
// S c

//

c′

��

Z

R
idR

// R

such that c is a cokernel of sP and c′ is a cokernel of sY . By (E3) we have
(sp, c), (sy, c′) ∈ EC .
We have (−pR, pY )t ◦ k = ωY ◦ f , hence the universal property of the pushout
yields a unique morphism λ : S → R × Y with (−pR, pY ) = λ ◦ sP and ωY =
λ ◦ sY .
Then λ is an isomorphism. In fact, because of (sY ◦ pY − sP ) ◦ k = 0 there
exists a unique γ : R → S with sY ◦ pY − sP = γ ◦ pR. This in turn gives rise
to a unique morphism µ : R× Y → S with γ = µ ◦ ωR and sY = µ ◦ ωY .
With the help of the universal properties of coproduct and pushout it is easy
to check that λ ◦ µ = idR×Y and µ ◦ λ = idS .
The universal property of the coproduct shows that c◦µ = (r, g), so the diagram

P
sP //

idp

��
	

S
c //

λ
��

	

Z

id
��

P
(−pR,pY )t

// R× Y
(r,g)

// Z

commutes. This proofs (II.2), since EC is closed under isomorphisms.
Returning to the proof of (II), we know by (II.2) that the pair (p, q) of mor-
phisms p := (−α, k)t : K → X ′ × Y and q := (f ′, g) : X ′ × Y → Z lies in EC .
We have a commutative diagram

X ′

ωX′

��

f ′ //

	

Z

ωZ

��
X ′ × Y r

// Z × Y

(5)

where r :=
(
f ′ 0
0 idY

)
. Furthermore:

(II.3) (5) is a pushout square.

Proof of (II.3): Let lX′×Y : X ′ × Y → L and lZ : Z → L be morphisms with
lZ ◦ f ′ = lX′×Y ◦ ωX′ . This yields a unique morphism δ : Z × Y → L with
lZ = δ ◦ ωY and we have:

lX′×Y ◦ ωX′ = lZ ◦ f ′ = δ ◦ ωZ ◦ f ′ = δ ◦ r ◦ ωX′
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lX′×Y ◦ ωY = δωY = δ ◦ ωY πY ◦ r ◦ ωY
= δ ◦ (idZ×Y − ωZ ◦ πZ) ◦ r ◦ ωY
= δ ◦ r ◦ ωY

Hence the universal property of the coproduct yields lX′×Y = δ ◦ r, making the
following diagram commutative:

X ′

	

f ′ //

ωX′

��

Z

	

ωZ

�� lZ

��

X ′ × Y

	

r
//

lX′×Y //

Z × Y
δ

""F
FF

FF
FF

FF

L

The uniqueness of δ follows from the universal property of the coproduct, which
proves (II.3).
Then r is an l-strict monomorphism and by Proposition 13 the composition
r ◦ p is also an l-strict monomorphism. Define σ := (−g, idY )t, then we have:

r ◦ p =
(
f ′ 0
0 idY

) (
−α
k

)
=

(
−f ′ ◦ α

k

)
=

(
−g ◦ k
k

)
= σ ◦ k

Since r ◦ p is an l-strict monomorphism, it follows from Proposition 13, that k
is an l-strict monomorphism. That proves (II) and thus the theorem. �

Remark 17 The structure of the proof of (E1) in theorem 16 is basically the
same as that of the proof of Ex1op in [4], we just substitute Proposition 13 for
some properties of exact categories. A careful analysis of the proof of Theorem
16 shows, that the theorem also holds true for any additive category C which
has kernels and cokernels and in which Proposition 13 holds.

The exact structure EC is the largest exact structure on C:

Proposition 18 Let E be an exact structure on the semi-abelian category C.
Then E ⊂ EC .

Proof : If (f, g) ∈ E , the sequence 0 → X
f→ Y

g→ Z → 0 is exact by Lemma 9.
If

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

is a pullback square, the morphism pT is a deflation by (E2), hence it is a
cokernel of its kernel and thus a strict epimorphism, hence g is an l-strict epi-
morphism. Analogously, by (E3) the morphism f is an l-strict monomorphism,
which shows (f, g) ∈ EC .
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We hence define Emax := E.
The above shows, that the exact structure of a quasi-abelian category C is a
special case of the exact structure Emax, namely the case of Emax containing
all short exact sequences of C.

The following is an example of a semi-abelian category that is not
quasi-abelian:

Example 19 A subset B of a locally convex space X is called bornivorous if it
is absolutely convex and absorbs every bounded set. The locally convex spaceX
is called bornological if every bornivorous subset of X is a zero-neighbourhood.
Equivalently, X is bornological if and only if every locally bounded linear map
f : X → Z into a locally convex space Z is continuous.
Let (LC)bor be the category of bornological locally convex spaces and continuous
linear maps. It is a preadditive full subcategory of the category (LC) of locally
convex spaces.
The universal property of the final topology shows:

(1) If (Xi)i∈I is a family of bornological locally convex spaces, X a locally
convex space, fi : Xi → X a family of linear maps and T the final topology
on X with regard to the fi, then (X, T ) is bornological.

Therefore direct sums and quotients of bornological locally convex spaces are
again bornological, so (LC)bor has coproducts and cokernels.
If X = (X, T ) is a locally convex space, we define Xbor to be the vector space X
with the coarsest bornological topology on X that is finer than T . If f : X → Y
is a morphism in (LC)bor, the inclusion j : Lbor ↪→ X, where L := f−1({0}), is
a kernel of f :
If t : T → X is another morphism in (LC)bor with f ◦ t = 0, there is a
unique continuous linear mapping λ : T → L with t = j ◦ λ. If V is a zero-
neighbourhood in Lbor, then λ−1(V ) is a bornivorous subset in T , since λ is
continuous, so it is a neighbourhood of zero in T . Since λ(λ−1(V )) ⊆ V , this
shows that λ : T → Lbor remains continuous, therefore j is a kernel of f in
(LC)bor.
It follows that (LC)bor is an additive category with kernels and cokernels and
the canonical factorization of a morphism f : X → Y is given by:

X
f //

cif
��

	

Y

X/Lbor
f̃

// f(X)bor

if

OO

Since the algebraic structure of coim(f) and im(f) doesn’t change, f̃ is bijective
and therefore it is both an epimorphism and a monomorphism in (LC)bor. This
shows that (LC)bor is a semi-abelian category.
However, it is not a quasi-abelian category, since in [1] the authors construct
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morphisms g : Y → Z and t : T → Z in (LC)bor so that in the pullback square

Y
g //

	

Z

P

pY

OO

pT

// T

t

OO

the morphism pT is not a strict morphism.
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