
Auctions in mobile multihop ad-hoc

networks following the marketplace
communication pattern?

Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm

University of Trier
Department of Computer Science

54286 Trier, Germany
E-mail: {frey|goergen|lehnert|sturm}@syssoft.uni-trier.de

Abstract. This paper presents UbiBay, a self-organizing distributed
auction system using a mobile multihop ad-hoc network as its sole com-
munication platform. In order to substantially increase the probability
that negotiating peers successfully reach an agreement, communication is
focused on a static geographic area, called the marketplace. Users are not
constrained to be at the marketplace physically, but are allowed to utilize
other ones mobile devices located at the marketplace to let a software
agent negotiate with others on their behalf. The negotiation protocols
of UbiBay as well as a middleware architecture for applications based on
the marketplace metaphor are described in this work.

1 Introduction

Auction systems enable the exchange of goods on the basis of supply and de-
mand. They are central to any modern economy, e.g. in the form of stock ex-
changes. With the rise of the pervasive world-wide web they are also used by
millions of internet users in private homes on a daily basis. The most prominent
example of such an auction system is ebay. Selling and buying goods at these
online marketplaces is fairly easy. Offers are placed by a seller with a starting
price and a deadline several days ahead. Interested customers vie with one an-
other with increasing bids until the deadline is reached. The customer with the
highest bid wins and will buy the offered good. In order to reduce network traffic
and to relieve customers from the need to continuously monitor the auction 24
hours a day, software agents at the marketplace can be instructed to bid up to
a given limit automatically.

Auction systems for private users are a promising application domain for
mobile multihop ad-hoc networks if they are limited to a specific geographical
area, e.g. a small town, a suburb or the downtown area of a city. In these scenar-
ios, mobile devices such as smart phones, Pocket PCs and subnotebooks with

? This work is funded in part by DFG, Schwerpunktprogramm SPP1140 “Basissoft-
ware für selbstorganisierende Infrastrukturen für vernetzte mobile Systeme”.

wireless communication facilities form an ad-hoc network. Successful communi-
cation with a negotiating partner several hops away is at least challenging or
impossible in the end because of the dynamics in such a system and the high
probability for transient loss of messages. Therefore, self-organization is a pre-
requisite for any successful solution to mobile multihop applications. Addition-
ally, these systems should exploit the broadcast facility inherent to any wireless
communication technique. In order to eliminate the imminent broadcast storm
problem [8], various solutions are proposed such as limiting the number of hops
a broadcast might take or narrowing the affected area by means of topological
or geographical information.

A working solution for such applications is based on the marketplace metaphor
[3]. A marketplace is a fixed geographical location where information is traded.
Marketplaces should be located were high device density can be expected. Client
requests or agents acting on behalf of the client travel to the marketplace by in-
fecting promising nearby devices. This decision to infect another device within
communication range is based primarily on the relative geographical positions of
the device actually carrying the agent, the candidate device, and the marketplace
itself. When arriving at the marketplace, the agent searches for matching peers
by periodically announcing the set of requirements. These infrequent broadcasts
are limited to a given perimeter around the geographical center of the market-
place. Hosting devices are changed if they are going to leave the marketplace. At
a given deadline or if a sufficient number of matching peers is found, the success-
ful agent will travel back to the coordinates of its homezone to find the initiator’s
device. Figure 1 depicts a simple marketplace example. The requirements of an

��

����

��

��

	

��

����

������

����

��

����

����

����

������

�

!�!"

#$

%�%&�&

'(

)�)*

+�+,�,

Fig. 1. A simple marketplace example with one marketplace in the middle and four
user homezones. One agent tries to reach the marketplace, another one tries to reach
its homezone. Two agents are matching peers and communicate with each other. The
dashed lines depict the current network partitions.

auction system limited to a given geographical area match the characteristics of
a self-organizing system structure with the marketplace approach as the primary
communication pattern. First of all, since auctions typically last for several days,
the induced latency imposed by communication between network partitions can
be tolerated. Additionally, information about offered goods and the actual price
should be available to any resident or visitor since these are the potential cus-
tomers. Thus, the marketplace communication pattern is a perfect fit for most
of the communication requirements in an auction system.

The task of securing the auction system is subject of ongoing work, but
is beyond the scope of the paper. In particular, possible attacks like willful
agent deletion, faked auctions or message replay will be regarded in future work.
However, the auction platform is intended for low value goods, thus security is
not an important issue at the moment.

In the following section UbiBay, an auction system for mobile ad-hoc networks
using the marketplace communication pattern is described in detail. Section
3 gives a short overview of the middleware platform used to implement the
presented marketplace-based UbiBay. In section 4 the implementation of UbiBay
using a uniform workbench is described. Finally, the current and future work is
pointed out.

2 UbiBay

The task of UbiBay is to realize a mobile auction system solely based on mobile
devices with wireless communication capabilities forming a large scale multihop
ad-hoc network. UbiBay uses the marketplace communication pattern to increase
the probability that auctioneers and bidders find each others. Marketplaces are
used as regions were auctions can take place. Auctions are not controlled by
the users directly but by the auction agents acting on behalf of them. Users
interested in auctions must retrieve information on running auctions by sending
a discovery agent to the marketplace first. Thereafter they are able to send out
a bid agent, to represent their biddings at the marketplace.

2.1 Auction agent

An auction at a marketplace is represented by an auction agent. It provides
all relevant auction information such as product description, product category,
minimum bid and auction end. It is also responsible for the actual auction pro-
cess: the handling of bids, informing about outbidding and finally informing the
winner of the auction.

TaggedDuplicatedStart

MoveTo Auctioning FinishAuction MoveBackSuccess

FinishMoveBackNoBid

Fig. 2. Lifecycle of an auction agent

A simplified lifecycle of an auction agent is depicted in figure 2. The user
starts an auction by creating an auction agent, providing it with all necessary
auction information. The agent searches for an appropriate marketplace with the
aid of the marketplace localization service, provided by the middleware platform.
After reaching the marketplace by using the agent movement service, the agent
changes to the auctioning state. In this state it is able to answer discovery

requests by replying with its auction description information and to accept bids.
Incoming bids with a higher value than the current bid are accepted and granted,
lower or equal bids are refused. At the end of the auction, the auction agent moves
to its homezone and waits for its user. After it has jumped to its user’s device
the agent informs the user about the result of the auction.

Since agent duplications are possible (see agent transmission protocol in sec-
tion 3), all agents must take care about that. The transmission protocol ensures
that the agent is informed and tagged when a duplication possibly has occured.
A tagged auction agent does not accept bids immediately. After it has entered
(or reentered) the marketplace it must first search for other duplicates. When it
does not detect any other duplicates at the marketplace, it is allowed to switch
to auctioning state. In the case that it detects an already active duplicate it
deletes itself. When two or more duplicates search at the same time, one of them
is elected by using the highest current device id.

It is possible that no marketplace for the UbiBay application exists. In that
case the newly created auction agent must create a new marketplace. Appli-
cable regions for marketplaces are provided by the agent platform. The agent
chooses one, moves to this region and propagates this marketplace with aid of
the marketplace localization service described in section 3.

2.2 Discovery agent

Users interested in auctions must find out about the currently running auctions.
To minimize the amount of retrieved auctions and the duration of the discovery
procedure, the user is able to specify the product categories, product specification
and the auction related basic conditions like latest or earliest end time or the
minimum (current) bid.

The agent collects information about all auctions matching its premises for
a given time by asking all auction agents at the marketplace. After moving back
to its homezone and jumping to its user’s device it transfers all the collected
information to the user. The user is now able to choose auctions to take part in.

Duplications due to message loss must not be considered due to the fact that
this type of agent does not make any agreement with other agents. Nevertheless,
duplicate detection can be used to reduce the amount of agents.

2.3 Bid agent

In order to participate in an auction, the user creates an agent that bids on
behalf of him. He must specify his maximum bid, the height of each bid step the
agent is able to increase the current bid.

The bid agent moves to the marketplace and places bids until one of its bids
is accepted by the auction agent or its maximum bid is reached. If the agent’s
maximum bid is reached, it moves back to its homezone to inform the user that
he has currently lost the auction. Otherwise, it stays at the marketplace and
continues bidding if another agent places a higher bid.

The agent with the highest bid at the end of the auction is informed by the
auction agent. The bid agent replies to this notification and leaves the market-
place after a short waiting time. This waiting time is needed to avoid unresolved
message loss at the end of the auction. Thus, the auction agent is able to repeat
the message that informs the winner until the winner replies.

Duplicated bid agents should not outbid themselves. Bid agents tagged as
possibly duplicated must search for duplicates like the auction agents after en-
tering or reentering the marketplace.

3 Marketplace platform

The UbiBay application uses the marketplace communication pattern to bring
offers and bids together and allow self-organized auctions. Instead of directly
implementing the marketplace pattern in the UbiBay application, a middleware
platform for applications in mobile multihop ad-hoc networks is used. This mid-
dleware platform provides the application with all services needed to use the
marketplace pattern.The remainder of this section will discuss the architecture
and services of the middleware used by UbiBay.

Hardware abstraction: The foundation of the middleware is a hardware ab-
straction layer to unify access to basic operating system parts, to positioning,
wireless communication and device discovery.

Agent movement: Agents use the agent movement service to reach specific
places like marketplaces or homezones. The agent defines its target and the
movement service ensures that the agent reaches its destination. When the agent
arrives at the target, it is informed by the movement service.

The agent movement service transports the agent to its target by trans-
fering the agent to other devices repeatedly. Suitable hosts are selected by a
position-based greedy routing algorithm [6]. The actual transfer of the agent to
the selected device is handled by the agent transport protocol. When the agent
has reached its destination, the movement system informs the agent and ensures
that it stays there until a new target is set.

The way back to the homezone works similar. The movement service trans-
ports the agent back to its homezone. At the homezone, the owner’s device is
searched using a geographically limited broadcast. When the owner’s device is
to far away from its homezone, it leaves a link to its current position. After the
owner’s device is reached, the agent is informed by the movement service.

Agent transmission protocol: Whenever the agent movement service decides
to move an agent from one device to another, the agent transmission protocol is
used. Due to device mobility and wireless transmission, a reliable communica-
tion channel between two devices cannot be assumed. On the other hand agents
should not be lost during transmission. The agent transmission protocol solves

this dilemma by tolerating agent duplication. The sender keeps a copy of the
agent when sending it to another device. Both copies are marked as possibly du-
plicated. If all protocol messages are correctly acknowledged, the sender deletes
its copy and the receiver removes the duplicate marker from its copy. Otherwise,
the protocol guarantees that at least one copy of the agent exists. An agent is al-
ways marked when a duplication occurs, while the opposite does not necessarily
hold.

Duplicated agents may cause problems at the marketplace when they make
different agreements. Thus, upon arrival at the marketplace a duplicate elimi-
nation procedure is started for agents marked as potential duplicates

Communication at marketplaces: Due to the limited size of the marketplace,
communication at marketplaces commonly involves a few hops only. The higher
density of devices at the marketplace makes communication more reliable. All
the communication takes place between agents not devices, since the agents
might change devices during the communication. The middleware provides two
kinds of communication at the marketplace: a marketplace-wide broadcast and
a unicast addressing a specific agent.

The marketplace-wide broadcast is a geographically limited broadcast: mes-
sages are forwarded within the borders of the marketplace only. Therefore the
marketplace broadcast causes no additional network load outside of the market-
place area. The network load inside of the marketplace area is further reduced
by using a neighbor knowledge broadcast [11]. This special kind of broadcast
uses only a subset of all devices to distribute a message to every device at the
marketplace.

Unicasts addressing specific agents use topology-based source routing [10].
The routes commonly result from agents looking for other agents but can be
explicitly built with marketplace-wide discovery broadcasts.

Marketplace localization: The marketplace localization service helps agents
to find their corresponding marketplaces. It disseminates information on mar-
ketplace positions and applications running on them over the complete ad-hoc
network. In order to avoid redundant information exchange, devices exchange
hash values of their marketplace information first. Only if hash values differ, the
real information is exchanged and updated.

Distributed map computation: Marketplaces should be placed in areas
where a high density of mobile devices can be expected. Thus, an agent creating
a new marketplace needs to know about the hotspots of the ad-hoc network,
i.e. places with high device density. This is achieved by the distributed map
computation service.

The area covered by the ad-hoc network is divided in small grids. Each device
permanently updates the number of devices being in the grid where it is located.
Additionally, it periodically broadcasts its current map state to all neighbors and

listens for incoming map states. Incoming map states are averaged with locally
existing states.

4 Testing UbiBay in a workbench environment

The design and implementation of UbiBay and the middleware platform follows
a three-tier development principle consisting of simulation, emulation and testing
in a real environment. A Java-based uniform workbench [2] especially designed
for implementing applications for mobile multihop ad-hoc networks, supports
this design pattern. Code reuse is the main advantage of this framework com-
pared to other tools specialized for only one of the design steps. It turned out to
be of high value to implement parts of the middleware once and test them in sim-
ulation, emulation and execution on real devices. The first version of middleware
components were put into practice in the simulation part of the workbench. Re-
peatability of simulation experiments, fast forwarding, managing of thousands
devices, and finally rich but simple visualization abstractions proved to be of
high value for getting a better insight into the concept of marketplaces.

Fig. 3. Ubibay prototype with graphical user interface and visualization of the global
simulation state.

During the design of UbiBay the problem arose when timeouts set by the
agent occur during the absence from its marketplace. An early implementation
used the notification mechanism of the middleware platform, in order to register
as a listener for the event of leaving or reentering its designated geographic
region. Thus, processing of timer events and also incoming messages is done in
the context of the current agent state (inside or outside of the marketplace). It
turned out that application complexity can be reduced significantly by providing
a mechanism to handle this problem by the platform itself. Concerning this, the
middleware platform defers (or ignores) processing of timer events and delivering
of messages until the agent can be placed back to its marketplace.

Using the emulative environment allows to test UbiBay with real user inter-
action on real devices connected to a simulation with a high number of simulated

devices. In particular, the GUI development process benefits of this approach as
an intermediate step before testing the application in the real environment. But
also the other application parts were improved in this development step.

Up to now only a few devices were used to test UbiBay in the real environment
as a proof of concept.

5 Related work

In general, permanent network partitions are inherent to large scale ad-hoc net-
works, which prevents the provision of transparent end to end communication.
This shows the necessity of new communication paradigms like the marketplace-
based approach [3] followed by UbiBay and the underlying middleware platform.
Communication on marketplaces does not suffer from these problems, since mar-
ketplaces define small subsets of the entire ad-hoc network.

An increasing number of middleware systems is developed specifically for
mobile ad-hoc networks. Lime[9] and L2imbo[1] are based on the idea of tuple-
spaces, which they share between neighbored nodes. But due to the coupling
of nodes, these approaches are not well-suited for highly mobile multihop ad-
hoc networks. MESHMdl[4] employs the idea of tuple-spaces as well, but avoids
coupling of nodes by using mobile agents, which communicate with each other
using the local tuple-space of the agent platform. Proem[5] provides a peer-
to-peer computing platform for mobile ad-hoc networks. STEAM[7] limits the
delivery of events to geographic regions around the sender which is similar to
the geographically bound communication at marketplaces. STEAM provides no
long distance communication, it is only possible to receive events over a distance
of a few hops.

Adaptions and extensions [10] of classical topology-based routing protocols
known from static networks are coping with the problem of permanent link
failures due to device mobility. However, these routing protocols will only deliver
any packet, if at least sometimes there is a path from source to destination
over one or more wireless links. Related to the communication pattern used by
UbiBay, these protocols are applicable for communication inside a marketplace,
since the network topology at a marketplace tends to be unpartitioned.

Another class of routing protocols is based on position information [6]. Similar
to topology-based routing protocols, the objective are unpartitioned networks.
Using position information is an attractive way to avoid communication overhead
caused by maintaining routing information. In the marketplace communication
pattern such protocols can be used to move agents within a network partition
towards their destination. However, these protocols also assume that there exists
a path form source to destination and have to be extented to protocols using
device mobility as an additional message transport mechanism.

6 Conclusion and further work

This paper presents a working solution for auctions in mobile environments. The
mobile auction system UbiBay uses solely mobile devices forming a large scale
multihop ad-hoc network. This is achieved by a communication pattern based
on the marketplace metaphor. Marketplace-based communication perfectly fits
for non time critical applications in mobile multihop ad-hoc networks.

UbiBay and all necessary parts of the used middleware platform have been
implemented both in a simulation environment and on real hardware. First tests
with PocketPCs and notebooks using IEEE802.11b and GPS have been success-
fully carried out.

The presented components of the middleware platform are sufficient for
UbiBay. Besides UbiBay also other applications like electronic ride boards and
self-organized learning platforms are considered as applications using the pre-
sented middleware platform. Thus, many other features, like load balancing for
marketplaces, are implemented or planned. Finally, more extensive field trials
with UbiBay on real hardware are scheduled for the near future.

References

1. N. Davies, A. Friday, S. P. Wade, and G. S. Blair. L2imbo: A distributed systems
platform for mobile computing. ACM Mobile Networks and Applications (MONET)
- Special Issue on Protocols and Software Paradigms of Mobile Networks, 3(2):143–
156, August 1998.

2. Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm. A java-based
uniform workbench for simulating and executing distributed mobile applications.
In Proceedings of FIDJI 2003 International Workshop on scientific engineering of
distributed Java applications, 2003.

3. D. Görgen, H. Frey, J.K. Lehnert, and P. Sturm. Marketplaces as communication
patterns in mobile ad-hoc networks. In Kommunikation in Verteilten Systemen
(KiVS), 2003.

4. Klaus Herrmann. MESHMdl - A Middleware for Self-Organization in Ad hoc
Networks. In Proceedings of the 1st International Workshop on Mobile Distributed
Computing (MDC’03), May 19 2003.

5. Gerd Kortuem. Proem: a middleware platform for mobile peer-to-peer computing.
ACM SIGMOBILE Mobile Computing and Communications Review, 6(4):62–64,
2002.

6. M. Mauve, J. Widemer, and H. Hartenstein. A survey on position-based routing
in mobile ad-hoc networks. IEEE Network Magazine, 15(6):30–39, 2001.

7. Ren Meier and Vinny Cahill. STEAM: Event-based middleware for wireless ad hoc
networks. In 22nd International Conference on Distributed Computing Systems
Workshops (ICDCSW ’02), Vienna, Austria, July 2002.

8. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem
in a mobile ad hoc network. Proc. of the 5th ACM/IEEE Int. Conf. on Mobile
Computing and Networking, pages 151–162, 1999.

9. Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda
meets mobility. In International Conference on Software Engineering, pages 368–
377, 1999.

10. Elizabeth M. Royer and Chai-Keong Toh. A review of current routing protocols for
ad-hoc mobile wireless networks. IEEE Personal Communications, pages 46–55,
April 1999.

11. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), pages 194–205, 2002.

