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Abstract

The evolution of a software project is a rich data source for analyzing and improving the

software development process. But does the information about how developers change

the source code of a software systems also support to meaningfully group the elements

of the software system?

Recently, some researchers have incorporated different kinds of evolutionary information

into software clustering. Their results are promising but are not sufficient to finally assess

the quality of evolution based software clustering because a direct comparison to common

clustering approaches based on structural data is still missing. This thesis conducts

several clustering experiments with an approved clustering algorithm on six different

software projects comparing and combining evolutionary and structural data. These

experiments show that evolutionary data produces competitive clustering results in many

cases. Furthermore, evolutionary data is able to improve the quality of structural based

clustering approaches. Returning to the above question, this work attests software

evolution to be a valuable data source for software clustering.
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Chapter 1

Introduction

The evolution of a software project is a rich data source. To analyze how developers

change the source code of a software systems helps project leaders to control the de-

velopment progress, helps software architects to detect design flaws, helps developers to

find related files or hidden dependencies, and helps quality controllers to identify bugs.

But does the evolution of a software project also support to meaningfully group the

elements of the software system?

The current introduction gives an overview of related areas of research, namely software

clustering and software evolution, and finally formulates the objectives and hypotheses

of this thesis, which address the above question.

1.1 Software Clustering

The field of research that deals with the automatically grouping of software artifacts is

called software clustering. Different software artifacts might serve as subjects: functions

might be clustered to modules and classes [1, 55, 58, 63], or files to subsystems [2, 6], or

classes to packages and components [10, 25, 40, 72]. Software clustering is an important

discipline in software engineering in general, but especially in reverse engineering. It is

used, for instance, to understand complex software systems [42, 43, 62], to (re-)modu-

larize whole software architectures [5, 73], to identify reusable components [41], or to

detect misplaced software artifacts [64].

Software clustering algorithms need information about the software artifacts to yield a

reasonable clustering. Common clustering approaches usually retrieve this information

1



2 Chapter 1 Introduction

directly from the static source code of the artifacts. Such structural data are, for exam-

ple, method invocations and variable references among methods [4, 43, 46], or inheri-

tance, aggregation, and method invocations among classes [10, 50, 72]. Some approaches

try to improve the clustering by taking dynamic code dependencies collected during the

program execution into consideration [30, 75]. Other approaches use the source code only

indirectly by analyzing file names [6], variable names and comments [39, 42], or file own-

erships [14, 4]. Recently, some researches already performed first clustering experiments

based on the evolution of a software system—the according studies will be exhaustively

introduced in Section 1.3. Although there exists such a rich variety of data sources, only

few approaches integrate several of them into their clustering technique [4, 72].

Based on such relationship information among software artifacts, a clustering algorithm

transforms the set of software artifacts into a decomposition of the software system.

To this end, general data clustering algorithms can be applied: A common approach

is to describe the entities to be clustered by a set of features. In the case of software

clustering, for example, such a feature may be extends class A—the features are often

binary attributes. The whole description of an entity is called feature vector and usually

consists of a large number of dimensions. There exist diverse metrics to compute the

similarity of two entities by comparing their feature vectors; Maqbool and Babri [46]

introduce and compare several of them with respect to software clustering. A general

clustering algorithm is the agglomerative clustering algorithm. It works bottom-up

and thus starts with all entities in different clusters (singletons). In every iteration,

the algorithm unites the two most similar clusters until only one cluster exists. The

result is a hierarchy on the entities that can be transformed into a decomposition of the

software system by cutting it at a certain level. In the first step of the algorithm, the

similarities of the clusters are obviously equivalent to the similarities of the entities. In

the further steps, however, a similarity measure for arbitrary clusters (with more than

one element) is needed. Common approaches are, for example, to take only the two most

similar elements of the two clusters into account (single linkage), to consider the two

most dissimilar (complete linkage), or to compute an average similarity over all pairs of

elements (average linkage).

Nevertheless, algorithms exist that are specialized for the task of clustering software

artifacts. Andritsos and Tzerpos [4] propose such a specialized software clustering ap-

proach, called LIMBO, that aims to minimize the loss of information (in terms of the

feature vector) in every step of the clustering. It uses a similarity metric derived from

information theory and a modified version of the previously described general clustering

algorithm. Other works employing such feature data models can be found in [5, 39, 66].

Moreover, approaches exist that are based on totally different data models. For instance,

the clustering tool Bunch [24, 44] works on a graph structure instead of a feature based



Chapter 1 Introduction 3

data model: the software artifacts are represented as nodes that are directly connected

by dependencies (edges). The clustering algorithm of Bunch rests upon the principle

that the coupling between software artifacts from different clusters should be low while

the cohesion among software artifacts from the same cluster should be high—a well-

established concept of a good code architecture, already introduced in 1974 [59]. Bunch

optimizes the software decomposition to meet this requirement. Tzerpos and Holt [62]

introduce another graph based approach. Their clustering algorithm, called ACDC, is

searching for typical subsystem patterns in the dependency graph. They argue that the

resulting clusters will be more comprehensible for users. Other clustering techniques

are also based on graph data models [11, 20, 42, 52, 53]. Which clustering technique is

particularly going to be used in the current work will be discussed in Section 2.4.

1.2 Software Evolution

Software evolution, i.e., studying the development process of software projects, is a

growing research field in software engineering. Diehl [23] distinguishes two major areas

within this field of research: First, Design for Change focuses on researching development

patterns and software designs that assist future changes. Second, Analysis of Software

Histories deals with detecting interesting facts in the change history of a software project.

Clustering the artifacts of a software system based on its history certainly belongs to

the latter category.

The evolution of a software project is documented, among other things, by its release

history or, more fine-grained, by the changes applied to its source file during the devel-

opment. In modern software engineering these changes are stored in a revision control

system such as the popular systems CVS and SVN, here simply referred to as a version

archive. Since it is the developer’s decision when to commit his changes, the system is

not able to track every atomic change, it just stores the committed versions. Jointly

committed changes by the same developer form a transaction. There exist many tools

that prepare and visualize this evolutionary revision data, for instance, in an aggregated

overview [28, 19], in an animation [21], or on a time axis [17, 18, 29, 65]. Such visualiza-

tions are used to explore and to understand the software system [17, 18, 21, 65], or to

detect architectural weaknesses [28]. Beyond visualizing the evolutionary data, change

transactions from version archives are used, e.g., for change recommendation [79], error

prediction [37], or refactoring detection [68].

When two software artifacts have often been changed together during the development,

one can assume that they are somehow related. This relation is called evolutionary

dependency (or evolutionary/co-change coupling). Several similar exact definitions of
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this concept exist [9, 28, 77]. Evolutionary dependencies might be useful to cluster soft-

ware artifacts because frequent common changes indicate strong implicit dependencies

(which might not be detectable in the source code). Visualizing these evolutionary de-

pendencies as a graph structure already enables to detect clusters and outliers manually:

node-link [28, 19] as well as matrix [19] representations can be employed for this task.

1.3 Integrating Software Clustering and Software Evolu-

tion

Recently, researchers started to link ideas from both fields of research, software clustering

and software evolution. Depending on their research background, their approaches either

focus on enriching a software clustering algorithm with basic evolutionary information

or applying a software clustering algorithm on exclusively evolutionary data.

1.3.1 Clustering-Centered Approaches

Andritsos and Tzerpos [3, 4] enrich the structural feature vectors (derived from source

code) of their already introduced clustering technique LIMBO: They evaluate how addi-

tional non-structural information like the file ownership, the directory path, the number

of lines of code, and the timestamp of the last file change influences the clustering re-

sult. The results of their study identify the ownership and directory information to be

valuable to improve the clustering. Although the quality of the clustering stays nearly

uninfluenced by the timestamp information, the authors guess that a more elaborate

change information (i.e., a better evolutionary data source) promises additional im-

provements. They also introduce and evaluate different weighting schemes on feature

vectors. Their experiments, however only performed on structural data, show that some

weighting schemes are able to improve the clustering quality.

Another idea is that the intended architecture of a software system might be represented

in a purer form in the initial version than in a later one. Wierda et al. [72] tried

to use this effect for the recovery of the system architecture by combining different

versions. The structural dependencies of one version of the system are represented as

a dependency graph: two dependency graphs are merged by an intersection or union

operation. Finally, the authors use the Bunch clustering algorithm. Their evaluation

on two example systems shows that combining the current version with the first version

by intersection improves the decomposition significantly, whereas combining it with the

previous version or using the union operation does not provide better results.
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1.3.2 Evolution-Centered Approaches

Other researchers are focusing on the evolutionary aspect: In one of the first works

on software evolution, Ball et al. [9] already used a specialized graph layout algorithm

on an evolutionary dependency graph. Clusters emerge as visual groups in the graph

visualization. Beyer and Noack [11, 12] refine this approach: Instead of a dependency

graph they employ a graph that relates transactions with their participating files. The

graph is visualized using a specialized energy-based graph layout that intends to reveal

clusters. To improve readability, only file nodes are displayed, transaction nodes and

edges are hidden. These clustering approaches based on graph visualization, however,

need a user to finally mark the clusters in the visualization and are suffering from

occlusion and non-planarity problems.

Vanya et al. [64] identify clusters in a software system with a more traditional clustering

approach. They model each transaction as a feature, compute file similarities using these

features, and finally perform an average linkage clustering algorithm on the similarity

matrix. By comparing the resulting evolutionary decomposition to the current architec-

ture of the software, they are able to identify design flaws in the software architecture.

In a case study, experts for the studied software project rated most of the information

about detected design flaws as valuable.

Voinea and Telea [65, 66] integrate a clustering algorithm based on software evolution

into their tool CVSgrab, which visualizes the evolution of a software system. Every file

of the system is represented as vertical bar, and the evolutionary clustering is used to

group similar files. In contrast to the previously described approach by Vanya et al.,

the agglomerative clustering algorithm of CVSGrab does not work on the transaction

data of the version archive. Instead it works on pure commit moments: The similarity

of two files is defined by the neighborhood in time of the commits. The authors argue

that this approach—unlike a transaction based approach—is able to correlate files that

have different owners.

Finally, Bowman and Holt [14] investigate the relations between subsystem dependencies

of a software system in different views. They compare dependencies in the conceptual

architecture to dependencies in the concrete architecture and to dependencies in the

ownership architecture (it considers files that are developed by the same person as de-

pendent). Although no clustering algorithm is applied, the evaluation results show that

this form of evolutionary information—the ownership dependencies—can be used as a

predictor for structural dependencies.
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1.4 Objectives and Hypotheses

The previously introduced methods that integrate software clustering and software evo-

lution are very promising. They show

• that software clustering based on structural data can be improved by integrating

evolutionary data sources like file ownership or by intersecting two versions of the

software and

• that it is possible to cluster software only by using evolutionary data with graph

layout algorithms or traditional clustering algorithms.

But despite these positive results, there are some aspects that are not covered sufficiently

yet:

• The clustering-centred approaches only employ very basic evolutionary data: file

ownership or the first and latest program version. There exist, however, no studies

that estimate the value of integrating the rich data source of transaction based

evolutionary dependencies.

• In contrast, the evolution-centered approaches use this data source. But although

they show that their clustering techniques are working to some degree, they do not

allow to assess the value of the clustering results with respect to structural data

sources.

The goal of the present thesis is to overcome these shortcomings by comparing structural

and evolutionary data sources directly to each other and by integrating both to improve

the overall clustering result. The positive results of the described recent studies suggest

the following very general hypothesis.

Hypothesis 1. Software evolution provides valuable information for software clustering.

This first hypothesis can be confirmed in different ways: The evolutionary data might

provide competitive clustering results compared to the structural data, or the evolution-

ary data might be able to improve a structural clustering result. Since the integration of

basic evolutionary data already resulted in positive effects on the clustering results, the

following second hypothesis is allowed to refine the general statement of Hypothesis 1.

Hypothesis 2. It is possible to improve current software clustering algorithms that use

structural information by integrating evolutionary data.
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Moreover, the evidence from the previously conducted studies is not enough to predict

that software clustering exclusively based on evolutionary data can be successful in

general. Nevertheless, it will be interesting to observe the qualities of such clustering

results.

This work conducts an extensive study to test the hypotheses. Chapter 2 introduces

an appropriate experimental design that is able to cluster software systems—based on

structural data, evolutionary data, as well as combined data—and to assess the results.

The study is focusing on two major applications of software clustering: architecture

recovery and architecture improvement. Based on these applications Chapter 3 and

Chapter 4 present the actual experiments and analyze their results. Finally, Chapter 5

summarizes and concludes the findings.





Chapter 2

Experimental Design

After introducing the sample projects used in the evaluation, this chapter describes the

general experimental design step by step: The required dependency information has to

be extracted from different data sources and transformed into a comparable form. Then,

a clustering algorithm can be applied on this data. The quality of the resulting clus-

tering decompositions is used to compare the two data sources. An integrated software

environment implements all these steps.

2.1 Terminology

Object-oriented software systems consist of classes and interfaces. While classes and

interfaces have to be handled differently on programming level, they are very similar

from the more abstract perspective of architecture: Inheritance is realizable with classes

as well as with interfaces. Furthermore, both can use another class or interface in their

definition. The only difference on this level of abstraction is that classes can aggregate

other classes and interfaces as attributes while interfaces can neither aggregate classes

nor other interfaces. Summing up, classes and interfaces use comparable concepts on

the architecture level, and thus, the term class represents a class or an interface in the

present thesis if not explicitly indicated otherwise.

2.2 Sample Software Projects

Every study on software clustering needs to select at least one sample software project

that serves as a subject in the experiments. The current work employs the following set

of open source Java projects:

9
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• Apache Tomcat [7], a Java Servelet implementation,

• Azureus [8] (now called Vuze), a BitTorrent file sharing client,

• JEdit [32], a text editor,

• JFreeChart [33], a Java Swing chart library,

• JFtp [34], an FTP client, and

• JUnit [36], a regression testing framework.

Weißgerber already used these projects in his refactoring detection evaluation [67]. The

present author chose them for practical reasons—because their data has been available

to the author in a preprocessed form—and for theoretical reasons—because the selection

includes a broad spectrum of software types: The spectrum ranges from user clients and

libraries to server applications. Although this set of projects cannot be considered sta-

tistically representative for the whole population of software projects, it is representative

to a certain extent as it covers a wide range of project types.

Table 2.1 shows detailed information about the selected programs. Their version archives

provide the necessary evolutionary data for the present study. As version archive sys-

tems, both popular systems, CVS and SVN, are supported. The program versions were

not chosen intentionally but were determined by the checkout date in spring 2007—an

exception forms the JFtp project. The numbers of classes (based on the latest ver-

sion) give an idea of the project sizes: JFtp is the smallest examined project with only

78 classes while JEdit is the largest one with 840 classes. Note that the Azureus and

Tomcat project are each restricted to one of their main packages because they were

originally larger than 1000 classes—more than the experimental environment that will

be presented in the following is able to handle efficiently. Finally, the number of trans-

actions and developers (obtained from usernames) provides some further information

of the software development process: For example, although the JFtp project is much

smaller than the JFreeChart project (in number of classes as well as transactions), both

projects have the same number of developers (five).

2.3 Data Sources

The present work does not focus on evaluating the software clustering algorithm itself but

on evaluating the information the clustering algorithm is working with. Thus, the input

data of the algorithm is the independent variable in the experiments. The necessary
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Table 2.1: Characteristic data of the sample software projects and their repositories.

Project Archive Time frame # Classes # Transactions # Developers

Azureus CVS 2003/07/10 – 2007/02/14 477a 10665 27
JEdit SVN 2001/09/02 – 2007/02/12 840 2190 20

JFreeChart CVS 2001/10/18 – 2007/02/14 794 2413 5
JFtp CVS 2002/01/25 – 2003/03/23 78 210 5
JUnit CVS 2002/12/12 – 2007/02/08 317 673 7

Tomcat SVN 2006/03/27 – 2007/03/10 561b 661 13

arestricted to org.gudy.azureus2.core3
brestricted to org.apache.catalina

data is provided by structural information from the source code and by evolutionary

information from the version archive.

As discussed in Section 1.1, there exist different approaches in the domain of software

clustering to implement such information in a data structure. Here, a graph based

approach, where the nodes represent the classes and the edges represent the dependencies

between classes, is favored over a feature based approach. It is chosen because this data

structure implements class dependencies directly and fits the clustering algorithm that

is preferred for the present experiments as it will be argued in Section 2.4. Anquetil and

Lethbridge [5] compare these two approaches and also highlight the appealing simplicity

of the graph data model. But they concurrently argue that the feature data model has

a higher flexibility(which is, however, not necessary in this work) and tends slightly to

produce better clustering results (but that largely depends on the employed clustering

algorithm).

2.3.1 Structural Dependencies

Structural dependencies are dependencies that are derived by exclusively analyzing the

source code of a software project. As classes of an object-oriented system are the en-

tities to be clustered, this work discerns the following three types of structural class

dependencies:

Inheritance The concept of inheritance is one of the main concepts to relate two classes

in object-oriented programming. Class A depends on class B through inheritance

if class A extends class B.

Aggregation An alternative to incorporate the functionality of another class is to de-

fine it as an attribute (a variable on class level). To keep it simple, modifiers like
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static, final, or private are ignored as well as the multiplicity of the aggrega-

tion. Thus, class A depends on class B through aggregation if class B is needed to

define any attribute of class A.

Usage The most common form of inter-class dependencies, however, is the simple usage

of another class in a method or constructor (e.g., as a local variable, as a method

parameter, or by a method invocation). Class A depends on class B through usage

if class A uses class B in a method or constructor.

The source code of the sample software systems has to be analyzed to extract all neces-

sary information about these concepts. Since Java is based on polymorphism, the real,

dynamic dependencies can only be detected during the program execution. For exam-

ple, class A uses class B as a method parameter, and class B1 extends class B. It may

be possible that class A receives and uses class B1 through a method call at runtime

although no direct dependency between class A and class B1 can be detected in the

source code. Nevertheless, in such cases the dependency exists indirectly in the static

source code through a combination of dependencies (in the example through usage and

inheritance). As a detection of the dynamic dependencies would be very complex, the

present work has to focus on static structural dependencies.

In Java, classes are usually defined in a source code file that only contains that single

class. But classes can also be defined in a context of another class as member classes

(named classes defined on class level), local classes (named classes defined in a method),

or anonymous classes (unnamed classes defined in a method) (e.g., [26]). As member and

local classes can be identified by their class name and can be extracted from their con-

taining class easily, they are handled like other classes. In contrast, anonymous classes

will be ignored because they can be neither identified nor extracted easily. Moreover,

interfaces are treated like classes as already discussed in Section 2.1.

The following formalism introduces the foundations to define a formal data model for

structural dependencies; it adopts the style of the definitions used in the Unified Frame-

work for Coupling Measurement by Briand et al. [15]. Speaking of a particular soft-

ware system like in the following definition, the present work always refers to the latest

checked-out version of the system as listed in Table 2.1.

Definition 2.1 (Children, Attributes, Usage). Consider an object-oriented software

system S at a certain version. Let C(S) be the set of all classes of S (according to the

preliminary remarks).

(a) The children of a class c ∈ C(S) are the set Children(c) ⊂ C(S) of classes that

directly extends c.
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(b) The attributes of a class c ∈ C(S) are the set A(c) ⊂ C(S) of classes that are

used to define the directly implemented attributes in class c.

(c) The usage of classes is described by the set Uses(c) ⊂ C(S) of classes that are

directly used in a method or constructor of c.

Based on these definitions, a graph data structure can be formulated for each of the

structural dependency kinds. Since none of the structural relations is symmetric, the

appropriate graph types are directed graphs.

Definition 2.2 (Class Inheritance Graph). The directed graph

GCIG := (VCIG, ECIG)

VCIG := C(S)

ECIG := {(c1, c2) : c1 ∈ Children(c2)}

is called Class Inheritance Graph (CIG).

Definition 2.3 (Class Aggregation Graph). The directed graph

GCAG := (VCAG, ECAG)

VCAG := C(S)

ECAG := {(c1, c2) : c2 ∈ A(c1)}

is called Class Aggregation Graph (CAG).

Definition 2.4 (Class Usage Graph). The directed graph

GCUG := (VCUG, ECUG)

VCUG := C(S)

ECUG := {(c1, c2) : c2 ∈ Uses(c1)}

is called Class Usage Graph (CUG).

To integrate the three concepts of structural coupling, a combined graph can be defined

as follows:

Definition 2.5 (Structural Class Dependency Graph). The directed graph

GSCDG := (VSCDG, ESCDG)

VSCDG := C(S)

ESCDG := ECIG ∪ ECAG ∪ ECUG

is called Structural Class Dependency Graph (SCDG).
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To construct these graphs finally from source code, the tool DependencyFinder [22]

is employed. DependencyFinder is a code analysis suite that works on compiled Java

bytecode and, among other things, is able to extract all relevant dependencies into an

XML file. As the compiled bytecode is usually not included in the version archive, the

experimenter has to compile the source code of the latest considered sample project

version manually.

The GraphML format [31] is used to store the graphs persistently because it is both

flexible and XML-based. An XSLT script, developed by the author, transforms the

dependencies that are contained in the DependencyFinder XML output file into the

GraphML format according to the definitions given above for the CIG, CAG, and CUG.

The SCDG is generated later on.

2.3.2 Evolutionary Dependencies

For evolutionary analyses of software projects not only the current version of the project

but also previous versions must be available. Thus, version archives provide a perfect

data source for such analyses. In this thesis, evolutionary dependencies between classes

are determined as follows: Class A depends on class B through evolution if class A is

often changed together with class B.

As two classes cannot really be edited concurrently by the same developer, it is unclear

what the term together exactly means in this context. Version archives do not document

every change of a file, only sets of changes made by a developer and finally committed

concurrently to the archive. These sets are called transactions.

Definition 2.6 (Transaction). For a software system S in a certain version, let Ti ⊂
C(S) be the ith set of changed classes that are concurrently submitted to the version

archive (by a single author and with the same log message). Ti is called the ith trans-

action of the version archive.

Thus, class A and class B are changed together if they are members of the same transac-

tion. Note that only classes that are also contained in the latest version are considered

(Ti ⊂ C(S)) because dependencies among classes that no longer exist are not interesting

for clustering. Since classes are identified by their name and package, renamed or moved

classes cannot be tracked. All evolutionary information about the respective classes

before the rename or move refactoring is lost.

Based on the definition of transactions, it may be possible to define a pair of classes

as evolutionary dependent if they are at least once member of the same transaction.
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But some transactions might relate files randomly, for example, if a developer fixed two

totally unrelated bugs in two different files. Hence, a mechanism that allows to filter

out such noise and considers only strong dependencies might improve the reliability

and thus the quality of the evolutionary data. Zimmermann et al. [77] introduce the

concept of support and confidence to measure the strength of evolutionary dependencies.

The support value of a dependency counts how often the linked software artifacts were

changed together, i.e., were part of the same transaction. Additionally, the confidence

value of a dependency relates the support to the total number of changes applied to one

of the artifacts. According to the definition of Zimmermann et al. [77], this concept is

formalized as follows.

Definition 2.7 (Evolutionary Support and Confidence). Let c1, c2 ∈ C(S) be two classes

and {Ti}li=1 a sequence of transactions.

(a)

Support(c1, c2) := |{Ti : c1 ∈ Ti, c2 ∈ Ti}| ∈ N

is called support of the evolutionary dependency of class c1 to class c2.

(b) If c1 is element of at least one transaction Ti,

Confidence(c1, c2) :=
Support(c1, c2)
Support(c1, c1)

∈ [0, 1]

is called confidence of the evolutionary dependency of class c1 to class c2. Oth-

erwise, Confidence(c1, c2) := 0.

In the definition of Confidence the value of Support(c1, c1) represents the total number

of transactions in which c1 is changed. Thus, the value of Confidence is 1 (the maximum

confidence) if c2 is always changed when c1 is changed. Note that Support is a symmetric

function whereas Confidence is not a symmetric function.

Support and Confidence yield a pair values for two classes, c1 and c2. It is difficult to

handle such a tuple as a measure for inter-class dependencies. The following definition

introduces a simplified concept that allows to classify all pairs of classes into a set of

dependent and independent pairs of classes.

Definition 2.8 (Evolutionary Dependency). In an object-oriented system S, the set

EvDependentkα(c) := {c′ ∈ C(S) : Support(c, c′) > k ∧ Confidence(c, c′) > α}

of a class c ∈ C(S) with parameters α ∈ [0, 1) (minimum confidence) and k ∈ N (mini-

mum support) is called the set of evolutionary dependent classes for class c. And a

tuple of classes (c1, c2) is called evolutionary dependency if c2 ∈ EvDependentkα(c1).
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Since Confidence is not symmetric, EvDependent is also not symmetric in terms of

c2 ∈ EvDependentkα(c1) 6⇒ c1 ∈ EvDependentkα(c2).

Analogously to the structural dependencies, an evolutionary dependency graph can be

defined with the help of the EvDependent sets. But in contrast to the previous graphs,

the evolutionary graph depends on parameters because EvDependent does: the minimal

confidence α and the minimal support k. Thus, a reasonable parameter setting will have

to be found in the experiments.

Definition 2.9 (Evolutionary Class Dependency Graph). The directed graph

GECDGkα
:= (VECDGkα

, EECDGkα
)

VECDGkα
:= C(S)

EECDGkα
:= {(c1, c2) : c2 ∈ EvDependentkα(c1)}

is called Evolutionary Class Dependency Graph (ECDG) with parameters α ∈ [0, 1)

(minimum confidence) and k ∈ N (minimum support)—short: ECDGk
α.

Finally, those evolutionary class dependency graphs are to be extracted from the version

archives. As the archives are operating on file level and a Java class is not equivalent to

a file in general, a more fine-grained analysis approach is necessary that is able to detect

changed Java classes. Weißgerber and Zimmermann [67, 78] describe such an analysis

for CVS archives of Java projects: It first parses general information from the CVS

log, then restores the single transactions, and finally maps the changes to fine-grained

artifacts like classes and methods with the help of a light-weight Java parser. All this

information is stored in an SQL database for fast access. The second step, the restora-

tion of transactions, is necessary because the concurrent check-in of several files is not

registered as one transaction by the CVS system. A heuristic has to be used that groups

all nearly concurrent changes (based on a sliding time window approach) with the same

log message that have been committed by the same developer as one transaction. In [67],

Weißgerber also introduces an equivalent approach for SVN archives, which needs not

to use a transaction restoration because SVN systems preserve the transaction infor-

mation. He kindly provided me the current version of his Java library that implements

these techniques for CVS as well as SVN archives.

Based on this library, I developed a converter that reads the transaction data of the sam-

ple software projects and exports a class dependency graph with support and confidence

values as the edge weights. It became evident in practice not to store the ECDG in

different parameter settings directly, but instead, to store the raw data (the support and

confidence values) and apply the filtering later on. The transformation process omits



Chapter 2 Experimental Design 17

large transactions (here, transaction with more than 50 participating classes) to reduce

noise in the evolutionary dependency data. The goal of this technique is to filter out

transactions that produce random dependencies (e.g., the initial check-in transaction

or transactions with global refactorings) and is widely used in the domain of software

evolution (e.g., [76, 78]). To avoid conflicts because of several copies of the same class,

the converter also ignores classes from branched versions, i.e., it only works on the trunk

of the archive.

Although it is possible to relate non-source files with the concept of evolutionary depen-

dency, the present work is restricted to source code files to guarantee the comparability

to structural dependencies. But in real world applications the possibility to cluster non-

source files might be a crucial advantage of evolutionary dependencies over structural

dependencies.

2.3.3 Graph Operations

The definitions of the structural and evolutionary graphs provide a comparable data

structure to evaluate the performance of structural versus evolutionary data sources for

software clustering. Nevertheless, a mechanism to integrate both data sources is still

missing.

All introduced graphs are based on the same set of nodes (the classes of the software

system) while the dependencies are different. But the dependencies are also represented

in a comparable form, as edges. Including all dependencies in a single graph would

provide the desired integration. Thus, the integration can be formulated as a simple

union operation on graphs.

Definition 2.10 (Graph Union Operation). Given two unweighted directed graphs, G1 =

(V1, E1) and G2 = (V2, E2), the graph union operation ∪ applied to G1 and G2 creates

an unweighted directed graph

G1 ∪G2 := G3 = (V3, E3)

with V3 := V1∪V2 and E3 := E1∪E2 (here, ∪ identifies the normal set union operation).

As the present work only compares and combines graphs that belong to the same software

system S, the equation V1 = V2 = V3 = C(S) will hold true in every application of the

union operation. Note that the SCDG is equivalent to CIG∪CAG∪CUG.

After the union operation is applied, the relevance of all dependencies is identical—it

is not evident to which graph a dependency originally belonged. As one data source
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might be more reliable than another, an important information is lost. To preserve this

information, three groups of dependencies have to be distinguished:

(a) dependencies that belong to the first original graph but not to the second,

(b) dependencies that belong to both graphs, and

(c) dependencies that belong to the second original graph but not to the first.

These three groups of dependencies can be represented in a single graph by assigning

an importance value to each group. The importance value is implemented as an edge

weight for all members of the group. This technique can be expressed as a weighted

union operation on two unweighted graphs that results in a weighted graph.

Definition 2.11 (Weighted Graph Union Operation). Given two unweighted directed

graphs, G1 = (V1, E1) and G2 = (V2, E2), the weighted graph union operation

∪[ωa,ωb,ωc] with ωa, ωb, ωc ∈ R applied to G1 and G2 creates a weighted directed graph

G1 ∪[ωa,ωb,ωc] G2 := G3 = (V3, E3, µ)

with V3 := V1 ∪ V2, E3 := E1 ∪ E2, and a weight function µ : E3 → R defined as

µ(e ∈ E3) :=


ωa if e ∈ E1 ∧ e 6∈ E2

ωb if e ∈ E1 ∧ e ∈ E2

ωc if e 6∈ E1 ∧ e ∈ E2

Note that, while the simple union operation is symmetric, the weighted union operation

is not symmetric, except if ωa = ωc. Moreover, the definition allows weights of 0, which

will result in ignoring the according dependencies in the clustering.

2.4 Clustering Algorithm

The clustering algorithm is the core of the present experiments: If the clustering algo-

rithm does not work properly, the clustering results cannot show meaningful differences

between structural and evolutionary data. Thus, it is important to choose a good clus-

tering algorithm.

As discussed in Section 1.1, various software clustering approaches have been proposed

and studied. Since this work does not aim at improving a particular clustering algo-

rithm directly but at assessing the quality of different data sources, any good clustering
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algorithms would serve the purpose. It is neither necessary nor helpful to develop yet

another clustering algorithm.

To improve the generalizability, it would be desirable to use different clustering algo-

rithms. Nevertheless, the present studies focus on one clustering algorithm and leave a

study with other clustering algorithms to future work because several clustering algo-

rithm would multiply the effort of creating an appropriate experimental environment.

2.4.1 Clustering Decomposition

In general, a clustering algorithm divides a set of entities (here, classes) into several

groups (the clusters); the result of this division is called clustering decomposition. De-

pending on the algorithm, the decomposition is either flat or hierarchical: A flat de-

composition is a simple partition of the entity set. A hierarchical decomposition is a

sequence of partitions starting with a simple partition, which is summarized step by step

until all entities are included in one set. Formally, a decomposition can be defined as

follows.

Definition 2.12 (Decomposition). Let C(S) be the set of classes of a software system S.

(a) A partition P of C(S), i.e.,

P = {P1, . . . , Pk} ⊂ 2C(S),

k⋃
i=1

Pi = C(S), Pi ∩ Pj = ∅ ∀i 6= j,

is called flat decomposition of the software system S. PC(S) is the set of all flat

decompositions of the software system S.

(b) A family of partitions P = {P1, . . . ,P l} where for every level m (1 < m ≤ l) each

set Pmi ∈ Pm can be represented as Pmi =
⋃
j∈J P

m−1
j 6= ∅ for an index set J

and Pl = {C(S)} is called hierarchical decomposition of the software system

S. PC(S) is the set of all hierarchical decompositions of the software system S.

2.4.2 Choosing a Clustering Algorithm

To justify the choice of the clustering algorithm that will be used in the present work,

the following paragraphs refer to related evaluations on software clustering. These eval-

uations compare different software clustering algorithms, mainly the ones already intro-

duced in Section 1.1, in diverse experimental setups.
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The authors of LIMBO, Andritsos and Tzerpos, present a comparative study on software

clustering with two sample software projects [3]. The study includes the LIMBO, ACDC,

and Bunch algorithm as well as complete, single, and average linkage approaches. In [70]

and [4] the study is repeated with more evaluation metrics and an additional sample

projects. Summarizing the very similar results of these experiments, the LIMBO algo-

rithms yields better results than the other algorithms (which cannot be ordered further

because of close results).

Wu et al. [74] compare the clustering results of six clustering algorithms (complete

and single linkage, each in two setups; ACDC ; Bunch) applied to five sample software

projects. They measure the clustering quality on three dimensions over long sequences

of monthly checked-out versions:

Stability If the clustering results that were produced after small changes are similar to

the ones produced before, the algorithm is stable. The single linkage algorithms

and ACDC perform best while Bunch produces the most unstable results.

Authoritativeness If the clustering is similar to a good reference decomposition, the

authoritativeness is high. Here, the complete linkage approach and Bunch produce

the best results.

Extremity of Clustering Distribution If the clustering algorithm avoids to produce

extreme clusters, like a single huge cluster or many tiny clusters, the extremity

is low (i.e., good). While the single linkage algorithms, ACDC, and one of the

complete linkage algorithms produce extreme decompositions, the results of Bunch

are far better in terms of more evenly distributed clustering sizes.

In summary, Bunch performs best in this study for it has good results on the dimensions

of authoritativeness and extremity; the low stability is caused by the random component

of Bunch and can be eased by repetitive clustering runs.

Recently, Maqbool and Babri conducted a study where they compared hierarchical clus-

tering algorithms on four sample software systems [46]. The studied algorithms are

namely complete linkage, single linkage, average linkage, LIMBO, and the so-called

Combined Algorithm [54] and Weighted Combined Algorithm [45]. Since they proof

that a variant of the Weighted Combined Algorithm is equivalent to LIMBO, the two

algorithms are not evaluated separately. The study includes several assessment dimen-

sions: Although LIMBO (respectively the Weighted Combined Algorithm) is less stable

than the other algorithms, it produces better decompositions compared to a set of de-

compositions proposed by experts.
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These evaluations indicate that, first of all, LIMBO but also Bunch produce good clus-

tering results. LIMBO is a feature based clustering approach that focuses on the mini-

mization of information loss while Bunch is graph based and follows the concept of low

coupling and high cohesion. The present work will employ Bunch because its graph

based approach realizes the inter-class dependencies more directly: A dependency is

represented as an edge in the graph whereas in a feature based approach entities would

be clustered because of similar features (directly dependent classes need not have similar

features). Nevertheless, LIMBO could be chosen as well—it would be very interesting

to repeat the present study with this feature based algorithm.

2.4.3 Bunch

This section presents the selected clustering algorithm Bunch in detail. Bunch is a

clustering approach that optimizes a clustering quality metric with a heuristic search

technique and produces hierarchical clustering decompositions. It is implemented in the

Java programming language and can be used either as a stand-alone application or as

a library. Besides the papers [24, 44, 43] by Mancoridis, Mitchell et al., the PhD thesis

of Mitchell [47] provides an exhaustive description of the Bunch clustering tool and its

Java API. Moreover, Bunch is freely available [16]. The following brief introduction of

Bunch summarizes the works of Mancoridis, Mitchell et al. and describes all important

parameters of Bunch. Since it is not possible to vary these parameters systematically in

every part of the study, a reasonable default setup has to be chosen (it is summarized

in Table 2.2).

Bunch works on a graph structure that is called Module Dependency Graph. The graph

represents modules as nodes and module dependencies as directed edges. As the terms

module and dependency are not bound to a strict definition, the dependency graphs

defined in Section 2.3 can be considered as a Bunch Module Dependency Graph: classes

are equivalent to modules, and structural or evolutionary dependencies are equivalent

to module dependencies. In the default setting of Bunch the edges are not weighted,

but it is also possible to use weighted edges as required for the graphs produced by the

weighted union operation.

To optimize a decomposition, Bunch needs a metric to estimate the quality of the current

decomposition. The underlying quality criterion is the concept of low coupling and high

cohesion between modules/classes in a software system. The edges of the dependency

graph are partitioned into inter-edges (edges with source and target in the same cluster)

and intra-edges (edges with source and target in different clusters). Bunch provides a

metric using this classification of edges in three implementations: BasicMQ is a straight
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implementation of the principle of low coupling and high cohesion but has a high com-

putational complexity. TurboMQ is an efficient heuristic of BasicMQ but can be further

accelerated through an incremental computation, referred to as ITurboMQ. The only

reasonable choice is to use ITurboMQ, the fastest metric.

Using weighted graphs, I had problems with the class bunch.TurboMQIncrW of the Bunch

system, which implements the ITurboMQ metric: the metric evaluation showed no differ-

ences for non-weighted and weighted graphs. Thus, I re-implemented this class according

to the documented specification in [47] (Chapter 3.4.3) and validated my implementa-

tion using a small test data set by comparing the results to manually evaluated metric

values.

Bunch implements three clustering methods, which differ in the kind of optimization

strategy they use to find good clustering decompositions in terms of high quality metric

values.

Exhaustive Search Algorithm This algorithm performs an exhaustive search by sys-

tematically checking all possible solutions.

Hill Climbing Algorithm Starting with a random decomposition the algorithm searches

for a better solution in the neighborhood. The neighborhood consists of all decom-

positions that can be derived by one elementary transformation. This is repeated

for the improved solution until a local maximum is reached.

Genetic Algorithm A set of random decompositions forms an initial population. A

genetic algorithm using selection, reproduction, crossover, and mutation operations

aims to improve the decomposition quality generation by generation.

The exhaustive search algorithm is only applicable to systems with a very small number

of modules because of its computational complexity and thus cannot be used in the

study. Furthermore, the genetic algorithm tends to yield results of unstable quality in

varying runtime. The hill climbing algorithm, however, produces stable high quality

results with predictable runtime. Thus, the present work prefers this algorithm.

Using the hill climbing algorithm, further parameters need to be set. I performed some

performance tests for the JFtp project to find a good setup.

Population Size The quality of the local maximum reached by the algorithm might

be bad compared to the global maximum. To increase the probability to find a

high quality clustering, the algorithm can be applied to a set of random initial
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decompositions (the population) instead of just starting with one initial decom-

position. Although it sounds reasonable to choose a population larger than 1,

the tests showed that this would just increase the runtime without any significant

effect on the clustering quality.

Search Space This parameter defines how many percent of the neighboring decompo-

sitions should be at least evaluated searching for a better solution. The test results

do not significantly change for varying search space parameter settings. Hence, the

parameter is set to its default value of 0, i.e., the first decomposition that is better

than the current one is chosen (nearest ascent hill climbing).

Extensions Advanced extensions of the hill climbing algorithm, like building blocks or

simulated annealing, are omitted because they also showed no eminent clustering

quality improvements.

A study on the performance of Bunch by Mitchell and Mancoridis [50] confirms that

neither larger population sizes nor simulated annealing increases the clustering quality.

The other parameters are not tested in their study.

Table 2.2: Employed setup of the clustering tool Bunch.

Parameter Value

Modularization quality metric ITurboMQ

Clustering algorithm Hill climbing
Population size 1

Search space 0
Algorithm extensions off

Bunch produces hierarchical decompositions of a software system although the search

heuristic and the quality metric work on flat decompositions only: The clustering al-

gorithm is recursively applied on an aggregated Module Dependency Graph that treats

each detected cluster as a single node and unites the edges accordingly. The recursion

stops when all nodes are included in one cluster. The decompositions produced by the

steps of this algorithm form a hierarchy with the final single cluster as the root element.

Since Bunch uses a heuristic search approach that has a random element, the whole

clustering method can be considered as a random experiment. Mitchell and Mancoridis

showed in their study about Bunch [50] that the resulting decompositions mostly differ

only slightly. Nevertheless, several repetitions of the experiment will be performed to

increase the stability of the results.
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2.5 Evaluation Method

To determine the quality of a software clustering technique, the quality of the resulting

decompositions must be assessed. A first approach is to review the decomposition of one

or more software systems manually to get insights in the pros and cons of the examined

technique. This approach is often used in literature (e.g., [12, 39, 43]) and is easy to

realize, but the evidence is limited due to its high subjectiveness and a weak scalability.

A more elaborate and more objective approach is to estimate the quality of a software

decomposition with the help of some standardized metric.

The software decomposition can be evaluated on the one hand by considering some

internal quality criteria, on the other hand by comparing it to a reference decomposition

that is known as being a high quality decomposition. In the present work, according

to Maqbool and Babri [46], these approaches are referred to as internal and external

assessment.

For internal assessment, different metrics that map a decomposition to a quality value

can be employed: For example,

• the size and number of the clusters can be taken into account [5, 46],

• a high stability of the clustering result features a good clustering algorithm [46, 60],

or

• low coupling and high cohesion indicates the clustering quality [5, 50] (like em-

ployed in Bunch).

For external assessment, the first aspect is the availability of a reference decomposition,

which is often manually created by an expert. Secondly, the decompositions resulting

from the automatic clustering can be compared to this reference decomposition. Hence,

a metric is used to measure the similarity or distance between the two decompositions.

I decided to use an external instead of an internal assessment approach in my experi-

ments for several reasons: Metrics like cluster size, number, and stability just give a hint

at the clustering quality but do not independently measure the quality. For instance, a

clustering algorithm that always includes all classes in a single cluster achieves a perfect

result in terms of stability but obviously does not produce reasonable decompositions.

Nevertheless, a metric based on cohesion and coupling, like the already available metric

computed by Bunch, can be employed as an independent quality measure. But as the

metric value largely depends on the input graph, the results are not comparable for

different graphs, that is, the clustering results for structural and evolutionary depen-

dency graphs cannot be compared directly. In contrast, an external assessment can be
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employed as an independent quality measure that does not use the dependency graph.

There are, however, some other difficulties, which will be discussed in the following

sections.

2.5.1 Reference Decompositions

In general, the external assessment refers to an assessment method that uses some kind

of consensus as a benchmark for the clustering result. This benchmark is referred to as

an reference decomposition of the software system (e.g., [49]), other terms are expert

decomposition [5, 46], authoritative decomposition [3], or reference corpus [38].

The approach of creating a reference decomposition as a benchmark assumes that a

perfect clustering exists, which is closely approximated by the reference decomposition.

As the quality of a decomposition depends on the developer’s opinion, there are no

objective and reliable standards to determine the perfect clustering. Thus, this approach

can only be considered a heuristic to estimate the quality of a software clustering method.

The process of generating a reference decomposition can be implemented in different

ways. These approaches are presented in the following and are summarized in Table 2.3.

The simplest method is to use the factual architecture of the system, for example, the

package structure of an object-oriented system. This decomposition, which is called fac-

tual decomposition, uses the grown structure of the project generated by many experts—

the software architects and developers—during the development process. Of course, a

software architecture can degenerate over time, but one can assume that in a successful

software project—like the studied programs in the present work—this loss of archi-

tectural quality is limited to a certain extend and that the architecture can still be

considered a very good decomposition.

Possibly, a better quality can be achieved by employing one ore more independent ex-

perts to manually create the decomposition because they are not trapped in the historic

structures of the project. But this does not guarantee to obtain an improved reference

decomposition because their expertise might not be sufficient. If several experts are

attending, the result of their work can be a set of decompositions or just one decom-

position as a consensus. In comparison to the factual decomposition, however, these

approaches result in highly increased effort for generating the decompositions.

A totally different approach is the automatic generation of a reference decomposition as

described by Mitchell and Mancoridis [49]. They propose a framework called CRAFT

(Clustering Results Analysis and Tools), which is able to detect common patterns in

decompositions produced by different clustering algorithms. Thus, several algorithms
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instead of several experts create a consensus decomposition. While the quality of the

expert decomposition is limited by the expertise of the experts, it is now limited by the

quality of the clustering methods. This might be the main drawback of the CRAFT

framework because one cannot really improve a state-of-the-art automatic clustering

technique by employing another just as well automatic clustering technique as a refer-

ence.

Table 2.3: Summarized comparison of different methods to generate reference decom-
positions.

(1) Factual
decomposition

(2) Expert
decomposition

(3) Set of expert
decompositions

(4) Clustered
decomposition

Description Actual
architecture of
the project

One
decomposition
created by one
or more experts

Set of
decompositions
created by
several experts

Consensus of
several
clustering
algorithms

Used in [5, 43, 74] [3, 38] [46] [49]

Quality Medium Medium, up to
good

Medium, up to
very good

Low

Effort Very low Medium, up to
high

High, up to very
high

Low (if
clustering tools
are available)

In the present thesis the quality of clustering decompositions will be evaluated for sev-

eral software projects, which means that a reference decomposition must be generated

for every project. The effort is a crucial factor, and thus, constructing a set of ex-

pert decompositions has to be excluded. Furthermore, the automatic generation of the

decomposition is not suitable because of the questionable clustering quality of other

clustering techniques. Finally, comparing the first and second approach, the expected,

slightly improved quality of the second one does not justify time and effort for manu-

ally creating a new, high quality decomposition of every considered system. Hence, the

factual decomposition is chosen as the most suitable method. Even the drawback of the

possibly low quality of a single reference decomposition is relativized by the fact that

several systems will be analyzed. The risk of a poor decomposition is distributed among

all projects.

2.5.2 Similarity Measures for Decompositions

The decompositions created by the clustering algorithm have to be compared to the

reference decomposition. The most similar decomposition is considered the best result.

But this comparison is a non-trivial task because there is no natural metric that measures

the similarity between two decompositions.
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As Wen and Tzerpos pointed out in their study on such similarity measures [71], the

measures can be grouped by their underlying data model: Two decompositions can be

compared based on

• only the nodes of the dependency graph,

• only the edges of the dependency graph, or

• both the nodes and the edges of the dependency graph.

Considering the dependencies might be a good choice for evaluating different clustering

algorithms on the same input data. But when comparing different input data, the quality

metric cannot rely on the dependencies that are changing with the input data. Thus,

only metrics based on nodes can be employed in the present work.

Another aspect of a clustering similarity metric is whether it works with flat or hier-

archical decompositions. As described in the following, there exist many approaches

comparing flat decompositions whereas metrics directly considering hierarchical decom-

positions are rare.

Anquetil and Lethbridge [5] propose to measure the precision and recall of intra pairs,

i.e., pairs of entities that are in the same cluster: The precision value is the percentage

of intra pairs in the clustering decomposition that are also intra pairs in the reference

decomposition. And vice versa, the recall value is the percentage of intra pairs in the ref-

erence decomposition that are also intra pairs in the clustering decomposition. Although

this method provides detailed information about the difference of both decomposition,

it is difficult to use it as the single quality criterion because precision and recall must

be reasonably related and combined to a single value.

A similarity measure based on cluster overlapping between clustering decomposition and

reference decomposition is introduced by Koschke and Eisenbarth [38]: They classify

overlapping clusters into two categories: the category GOOD includes pairs of clusters

that are very similar, whereas the category OK includes pairs of clusters where one

component is (at least nearly) a subset of the other component but not concurrently

vice versa. Together with the set of components in the reference decomposition that are

neither fully nor partly matched, called true negatives, they are able to define a recall

value that estimates to which extent the components of the reference decomposition

are retrieved by the clustering result. This approach, however, ignores false positives,

that is, components of the clustering result that have no equivalent in the reference

decomposition. Other drawbacks of the approach are its behavior in extreme cases and

its disregard of necessary merge operations [71].
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Tzerpos and Holt [61] developed a metric, called MoJo, that is estimating the distance

between two decompositions with the minimal number of Move and Join operations

needed to transform one decomposition into the other. Furthermore, Wen and Tzerpos

introduced an optimal algorithm for the computation of MoJo [69] and an improved

metric normalization [70]. The new metric, which is called MoJoFM, ranges from 0,

representing a clustering that is farthest away from the reference, to 100, representing a

clustering that is completely identical to the reference. The number of Move and Join

operations is a natural measure to some extent because they are similar to operations

a user would perform to transform one decomposition into the other. Moreover, the

metric is clear and simple to understand and interpret.

While all these approaches require flat decompositions, the only yet published methods

comparing hierarchical decompositions are the END framework [56] and the UpMoJo

metric [57], both by Shtern and Tzerpos. END is a generic framework that reuses

an arbitrary similarity metric for flat decomposition by comparing the decompositions

level by level with this similarity metric and summing up the weighted results. It

stays unclear, however, which underlying similarity metric and which weighting function

should be employed. In contrast, UpMoJo is an independent similarity measure, not a

generic framework. It extends the MoJo measure by a third operation, the Up operation,

which allows to move up single entities or whole subsystems in the hierarchy by one

level. The distance between two hierarchical decompositions is again represented by the

number of operations to transform one decomposition into the other.

EdgeSim and MeCl by Mitchell and Mancoridis [48], and EdgeMoJo by Wen and Tzer-

pos [71] are further similarity metrics. But they cannot be applied in this study because

they are based on the dependency relations.

At last, the Precision/Recall metric, the Koschke-Eisenbarth metric, the MoJoFM met-

ric, the END framework, and the UpMoJo metric are possible candidates for an ap-

propriate metric in the current use case. Since both hierarchical approaches, END and

UpMoJo, are not evaluated in an extensive study yet and would add more complexity

to the results of the studies, the present thesis focuses on the metrics for flat decom-

positions. The question how to transform a hierarchical decomposition into a flat one

is discussed later. Since the interpretation of the Precision/Recall metric is unclear

and the Koschke-Eisenbarth metric is not so comprehensible and ignores false positives,

MoJoFM—a clear and simple metric—seems to be a good choice.
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2.5.3 Method Realization

The effort to retrieve the factual architecture of a sample software system as the reference

decomposition is low: The necessary information about the package structure is also

included in the dependency XML file, which is generated by the DependencyFinder tool

and is used to generate the structural dependency graphs (Section 2.3.1). A simple

XQuery script extracts the package structure as the factual decomposition.

As already mentioned, MoJoFM depends on the minimum number of Move operations

(a class is moved from one cluster to another) and Join operations (two clusters are

joined to one cluster) which can be formalized as follows.

Definition 2.13 (Minimum Number of Move and Join Operations). For a software

system S the minimum number of Move and Join operations that is needed to

transform a flat decomposition A ∈ PC(S) into a flat decomposition B ∈ PC(S) is defined

by a function

mno : PC(S) ×PC(S) → N+
0

(A,B) 7→ mno(A,B)

Based on that definition the MoJoFM metric is introduced as a normalized asymmetric

similarity function of decomposition A and decomposition B.

Definition 2.14 (MoJoFM). For two flat decomposition A,B ∈ PC(S)

MoJoFM : PC(S) ×PC(S) → [0, 100]

(A,B) 7→ 100 ·
(

1− mno(A,B)
maxx(mno(x,B))

)
is the MoJoFM distance from A to B.

As there is no inverse operation of the join operation, the function mno is not symmetric,

that is, mno(A,B) = mno(B,A) is not valid in general. Thus, MoJoFM is also not

symmetric, contrary to the intuitive understanding of the term similarity metric.

The MoJoFM function is normalized to a range of [0, 100] because mno(A,B) is divided

by maxx(mno(x,B)), the maximum of operations to transform any decomposition x into

partition B. As B is the criterion for the normalization, the reference decomposition

has to be represented by B. The polarity of the scale is reversed to get a measure of

similarity instead of distance. Thus, a low MoJoFM value close to 0 for A to B means

that many operations are needed to transform A into B—the similarity is low—whereas
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a high value close to 100 means that only few operations are needed to transform A into

B—the similarity is high.

But despite the normalization of MoJoFM, one cannot directly compare the MoJoFM

values of different sample projects because the normalization is not an overall standard.

But as maxx(mno(x,B)) depends on the structure of B, the normalization is restricted

to a certain reference decomposition. Thus, MoJoFM values can only be compared for

the same reference decomposition B. If the reference decompositions are different, the

information is, however, not completely worthless: It still gives a hint at the overall

similarity to the reference decompositions.

As a flat decomposition is needed for the evaluation of the clustering with MoJoFM, a

reasonable method for transforming the hierarchical decomposition retrieved from the

package structure as well as from Bunch into a flat decomposition must be specified.

Since a comparison to a very simple decomposition would be meaningless, it is desirable

for the reference decomposition to keep as much information as possible. Thus, the

most detailed level of the hierarchical decomposition is chosen. For the clustering result,

however, one cannot choose a certain hierarchy level because this might favor one of the

data sources. The simplest way to avoid this problem is just to compare the resulting

hierarchy to the reference hierarchy for each level and to select the best MoJoFM value.

Though, this best fit approach is not usable in real world applications because there,

a level must be chosen without knowing the clustering quality. With the help of the

experiments, however, a generally good level could be found.

2.6 Software Environment

Up to now, we have discussed the different parts of the experimental design including

the sample projects, the data sources, the clustering algorithms, and the evaluation

method. All together, these parts form the foundations of the present study on software

clustering. Nevertheless, a meta application that is integrating the fragments into a

working experimental environment is still missing. I developed a Java program called

Software Clustering Analysis Suite (SCAS) that implements such an integration and,

together with some additional tools and converters, forms the required experimental

environment.

Briefly summarized, this environment should be able to import class dependency data

from different data sources, transform the data into dependency graphs, cluster the

classes based on the dependency information, and finally analyze the quality of the

clustering results. Figure 2.1 shows this process and the underlying software architecture
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as a simplified diagram. External tools and data sources, which were not self developed,

are colored gray.

2.6.1 Preprocessing

To obtain the dependency graphs, the dependency information must be extracted from

the data sources. The preprocessing is different for structural and evolutionary data. It

is pictured in the upper half of Figure 2.1, split into two columns, one for each of the

data sources.

The source code of the latest checked-out version of the sample project is the base of the

structural dependency graph. As discussed in Section 2.3.1, the external tool Depen-

dencyFinder (Version 1.2.0, [22]) is used to obtain the relevant inheritance, aggregation

and usage information from the compiled source code. It is executed over its command

line interface with its default settings. The resulting XML file contains much more in-

formation than the necessary dependencies. I developed an XSLT template to filter and

transform the relevant dependency information to the Class Inheritance Graph (CIG),

the Class Aggregation Graph (GAG), and the Class Usage Graph (CUG), all stored in

the GraphML format.

Additionally, an XQuery script creates a reference decomposition from the Dependen-

cyFinder XML file: To this end, the script iterates over all classes and assigns each class

to a cluster identified by its aggregating package. This decomposition of the sample sys-

tem is output into a text file to be later read for the MoJoFM computation. Thus, the

decomposition forms the required flat reference decomposition that matches the current

system architecture.

For the evolutionary dependencies, my export tool uses the Java library provided by

Peter Weißgerber [67] as described in Section 1.3.2: The export tool iterates over all

transactions skipping large transactions and branches and collects all dependency in-

formation for the computation of the support and confidence values. The resulting

evolutionary dependency graph is exported into the GraphML format, but not exactly

according to the definition of the Evolutionary Class Dependency Graph (ECDG, Def-

inition 2.9): Instead of applying several filters for support and confidence (resulting in

separately stored dependency graphs), the raw data—support and confidence values—

are handled as edge weights. The necessary filtering has to be performed by SCAS later

on while importing the evolutionary dependencies.
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Figure 2.1: Simplified architecture of the experimental environment. External tools
are colored gray.
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2.6.2 Software Clustering Analysis Suite

The Software Clustering Analysis Suite (SCAS) is the main component of the software

environment. Although SCAS might at first glance look like a set of converters, it

actually addresses more tasks:

• It provides a dependency graph data structure that allows to perform various

operations on the graphs,

• parallelizes the time consuming clustering runs,

• summarizes the clustering results in complex data tables,

• and finally manages the workflow of the clustering experiments in different setups.

SCAS provides an import module for the GraphML format to read the dependency

graphs. It transforms the graphs to an internal graph representation that uses and

extends the graph data structure provided by the JGraphT library (Version 0.7.3, [35]).

For example, one of the extensions is the implementation of the union operations as

defined in Section 2.3.3. Such a union on the simple structural graphs is performed to

create the Structural Class Dependency Graph (SCDG). SCAS also applies the omitted

filtering by support and confidence to import the Evolutionary Class Dependency Graph

(ECDG) matching exactly its definition. Depending on the experiment setup, further

transformations or operations like uniting graphs with the weighted union operation

might be necessary. Finally, the internal graph structure includes all needed graphs for

every sample software project.

It might be interesting to learn some facts about the dependency graphs. To this end,

SCAS provides some analysis features like assessing basic characteristics (number of

nodes and edges) or intra-package edges (dependencies that relate classes in the same

package).

Now, the imported and transformed graphs can be clustered with the Bunch tool (Ver-

sion 3.3.6, [16]): Although Bunch is available as a Java library, the graph data cannot

be passed to Bunch as a parameter, but has to be available in a simple text based

graph format. Thus, the graphs are exported again and clustered with the Bunch tool

using the setup specified in Section 2.4.3. Depending on the graph size, a single cluster-

ing run with Bunch needs less than second up to a few minutes on an up-to-date PC.

Due to the repetitive runs, however, this becomes the main performance bottleneck of

the experiments. To use the full computation power of a multi-processor core system,

the clustering task is split into different threads: every repetitive clustering run is out-

sourced to its own thread, i.e., there exist as many threads as clustering repetitions and
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each thread has exactly the same task. In some cases, the employed version of Bunch

freezes for an unknown reason while performing the clustering. Then, SCAS has to

cancel and restart the respective Bunch thread. Finally, the clustering results can be

accessed over the Bunch API.

To measure the quality of the clustering decompositions, the MoJoFM metric of the

MoJo Java library (Version 2.0, [51]) is employed. Similar to Bunch, the MoJo library

is directly controlled by SCAS, but the raw data, here the clustering and reference de-

composition, has to be passed per text file. The Bunch API provides the clustering

decomposition while the previously generated reference decomposition is already avail-

able. SCAS summarizes the MoJoFM results in data tables that can be exported, for

example, as LATEX tables.

SCAS is implemented with a command line interface whereas the current configuration is

stored in a properties file. Each properties file represents a certain clustering experiment.

SCAS is started with such a properties file as a parameter: It reads the properties,

runs the experiment according to the properties, and finally output the results on the

command line. For example, properties are the structural graph to use, the filtering to

be applied on evolutionary graphs, the union operations to be performed, the kind of

clustering to be run, or the structure of the result table.



Chapter 3

Study on Architecture Recovery

One of the main use cases of software clustering is architecture recovery. When the

architecture of a software system is totally undocumented or the documentation is just

outdated, software clustering helps to retrieve the current architecture information. Fur-

thermore, an automatically recovered architecture supports the developers to remodu-

larize a badly structured project. For Java projects this applies, for example, if all classes

are placed in the default package or if the package structure is not thoroughly main-

tained in a growing project. Thus, architecture recovery is an important application for

software clustering.

The first study of the present work addresses the task of architecture recovery. It evalu-

ates the clustering quality in terms of similarity to the factual architecture by using the

factual decomposition as a reference for the MoJoFM similarity metric as described in

Section 2.5. The study is split into several experiments that stepwise test the hypothe-

ses formulated in Section 1.4. Thereby, the experiments aim to improve the clustering

results.

3.1 Graph Characteristics

Before discussing the actual clustering experiments, Table 3.1 presents characteristics of

the dependency graphs that help to understand the future clustering results. It portrays

the graphs in terms of number of nodes and edges.

The table shows that the selected sample projects are significantly varying in size, mea-

sured by the number of nodes: the smallest project, JFtp, has just 78 nodes (i.e., classes),

in contrast to the largest project, JEdit, which has 840 nodes. Please recall that Azureus

and Tomcat are each restricted to one of their main packages because the experimental

35
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Table 3.1: Dependency graph characteristics in number of nodes and edges.

Azureus JEdit JFreeChart JFtp JUnit Tomcat

# Nodes
(classes)

477 840 794 78 317 561

# Edges
(dependencies)

CIG 279 318 484 40 133 312
CAG 434 691 223 66 80 455
CUG 2269 4020 3714 38 851 2207
SCDG 2362 4117 3937 127 864 2348

ECDG0
0.0 6218 29372 13922 1184 2216 696

ECDG0
0.2 1354 8438 9512 738 1814 502

ECDG0
0.4 727 4011 5427 414 1318 293

ECDG0
0.6 345 2117 2478 261 975 177

ECDG0
0.8 277 1655 2063 166 920 169

ECDG0
0.99 267 1627 2058 158 920 169

ECDG1
0.0 2330 9430 2376 530 218 84

ECDG1
0.2 650 3289 1991 365 170 63

ECDG1
0.4 302 1542 1334 251 134 45

ECDG1
0.6 172 888 930 171 91 25

ECDG1
0.8 104 426 515 76 36 17

ECDG1
0.99 94 398 510 68 36 17

ECDG2
0.0 1258 4538 696 322 56 24

ECDG2
0.2 419 1713 588 231 43 23

ECDG2
0.4 193 814 338 164 22 18

ECDG2
0.6 99 390 172 122 15 13

ECDG2
0.8 51 247 56 50 5 11

ECDG2
0.99 41 219 51 42 5 11

ECDG3
0.0 786 2798 330 202 26 10

ECDG3
0.2 288 1137 300 159 24 10

ECDG3
0.4 129 504 178 111 6 6

ECDG3
0.6 63 256 82 84 3 5

ECDG3
0.8 35 155 31 37 0 3

ECDG3
0.99 25 127 26 29 0 3

environment is not able to handle more than 1000 classes efficiently. Hence, the projects

range from small to mid-size projects.

Comparing the simple structural dependency graphs with respect to their edge density,

it is obvious that the Class Usage Graph (CUG) is far more dense than the Class

Inheritance Graph (CIG) and the Class Aggregation Graph (CAG). The number of

edges of the two latter graphs, CIG and CAG, does not significantly exceed the number

of nodes in each project: The two graphs have an average edge degree of about 1 or

lower. This is a first hint that the clustering might be hard only using inheritance or
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aggregation dependencies because an average edge degree of 1 or lower indicates that

there must be many nodes without any dependency information—it is impossible to

cluster these nodes. The CUG, however, is promising because it contains about three

times more dependencies than nodes.

The difference in number of edges between the SCDG and the CUG is small. Thus, most

of the dependencies in the SCDG are usage dependencies. Moreover, the difference is

even significantly smaller than the number of edges of the CAG and the CIG. Thus,

many of the inheritance and aggregation dependencies are already included in the usage

graph. This is likely because inherited and aggregated classes will be probably used

in the inheriting or aggregating class. Though, it will be interesting to observe in the

following experiments whether the minor difference between the CUG and the SCDG

has an impact on the cluster quality.

As you may recall from Section 2.3, the Evolutionary Class Dependency Graph (ECDG)

depends on two threshold values, the minimum support and the minimum confidence.

These two parameters can be considered as filters that are getting stronger (i.e., reducing

the number of dependencies) with increasing values. Since it is hard to define reasonable

threshold values in advance without knowing any clustering results, the first experiments

will vary support and confidence systematically in a grid pattern: support threshold

values are (0, 1, 2, 3) and confidence threshold values are (0.0, 0.2, 0.4, 0.6, 0.8, 0.99). The

last confidence value of 0.99 is chosen instead of 1.0 because a confidence threshold of 1.0

would exclude every dependency as, according to Definition 2.8 and 2.9, the confidence

values must be greater than and not equal to the threshold value. Furthermore, the

ECDG0
0.0 represents the unfiltered graph, i.e., its edge set includes all pairs of classes

that are changed together at least once. The systematical variation finally results in 24

ECDG graphs.

Table 3.1 lists the number of edges for these evolutionary graphs and confirms that

the number is reduced block by block for increasing support values and line by line

for increasing confidence values. One can assume that a good clustering result is only

possible without or with just a moderate filtering because for stricter filters the number

of edges drops to an edge degree near 1 or below (i.e., there are many nodes without

any dependency information). Although these strictly filtered graphs probably will yield

poor clustering results when they are exclusively used as the data source, they might be

very helpful for enhancing structural data sources because the filtering is supposed to

increase the reliability of the dependencies.

It is also interesting to compare the evolutionary dependencies by the sample projects:

For example, examining the unfiltered graph, ECDG0
0.0, the number of dependencies

for JFtp (1184) is greater than for Tomcat (696) although JFtp (78 classes) is much



38 Chapter 3 Study on Architecture Recovery

smaller than Tomcat (561 classes). In contrast, the Azureus project, which has about

the same size as Tomcat in number of classes, has a much more dense ECDG0
0.0 (6218

dependencies). Hence, the evolutionary dependencies for Tomcat are very sparse and

it will be hard to cluster Tomcat with these dependencies exclusively. Furthermore,

the filtering affects the projects differently: Comparing the similarly sized Azureus and

JUnit project while increasing the filter threshold, the number of dependencies drops

much faster for a rising confidence threshold for Azureus than for JUnit. And for a rising

support threshold it is the other way around. Thus, a compromise has to be found that

yields good clustering results for at least most projects.

3.2 Clustering with Simple Data Sources

The first experiment addresses the question whether it is possible to get high quality

clustering decompositions using only single structural or evolutionary data sources: The

experiment compares the clustering results for the CIG, CAG, CUG, and SCDG to

the ECDG in different filtering setups. The clustering is performed as described in

Chapter 2 by the SCAS tool using Bunch as the clustering algorithm and MoJoFM as

the quality metric. Table 3.2 presents the results of the experiment as MoJoFM metric

values for each clustering setup. As Bunch yields different results for repetitive runs on

the same input data, the clustering runs have to be repeated to increase the precision

of the quality information. The MoJoFM values in Table 3.2 are averaged over n = 50

runs, which is a compromise between precision and runtime.

A precision measure of a mean value x is the standard error (e.g., [13]). It is computed

by distributing the variance of the measured variable (here, the MoJoFM values) to the

n repetitions.

Definition 3.1 (Estimated Standard Error of the Mean). Let σ̂2 be the estimated pop-

ulation variance. Then, the estimated standard error of the mean is defined as

σ̂x =

√
σ̂2

n

As the notation already implies, the standard error can be interpreted as the standard

deviation of the mean. Since the mean value of n identical distributed independent

random variable is approximately a Gaussian variable (central limit theorem), the mean

value is located in an interval [x− σ̂x, x+ σ̂x] with an estimated probability of 68% (e.g.,

[13]). Table 3.2 also shows the standard errors of the means (in the notation ±σ̂x).
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Additional to the clustering results for the structural and evolutionary graphs, the table

lists a default quality metric value in the last row: This value represents the quality of

a virtual decomposition where each class is located in the same cluster, i.e., the decom-

position consists of only one huge cluster. This decomposition, however, needs not be

the worst clustering with respect to the required number of move and join operations.

Thus, the MoJoFM quality of this default decomposition is normally greater than zero.

The value is added to the table to provide a reference for the MoJoFM values of a

project: Although MoJoFM is normalized, MoJoFM values of different projects are not

directly comparable because the normalization largely depends on the structure of the

reference decomposition (see Section 2.5.3). For Table 3.2 that means that MoJoFM

values can only be compared vertically but not horizontally. With the default decom-

position as a reference, however, one can roughly estimate the overall quality of a single

decomposition.

3.2.1 Results for Structural Graphs

Starting with the simple structural dependencies (CIG, CAG, and CUG) the highest

MoJoFM values indicating a high agreement with the reference decomposition are mostly

reached with the CUG. This fits the hypothesis that the CIG and CAG usually do not

contain enough information for a competitive clustering result. There exist, however,

some exceptions: For JUnit the quality of the CIG, CUG, and CAG results are nearly

equal although the CUG is much denser than the CIG and CAG. And for JFtp the CIG

(53.4) even outperforms the CUG (49.4) although the density of the CIG and CUG is

nearly equal (Table 3.1). Thus, the comparably good clustering quality in both cases

must be the result of a better dependency data quality of the CIG and CAG than of

the CUG. This quality relation might even hold for the other projects but might be

concealed by the disadvantage of the comparably sparse inheritance and aggregation

information.

As an aggregation of the CIG, CAG, and CUG, the SCDG unites the information

from the three simple structural graphs and hopefully increases or at least steadies the

clustering quality of the simple data sources. The average clustering quality of the SCDG

(54.3) shows this effect because it is clearly higher than the CIG and CAG average values

(41.9 and 37.9) and at least slightly higher than the CUG value (53.2). Discerning by

projects, the clustering quality of the CUG, however, is slightly higher in three of six

cases. This is probably the outcome of the minimal difference of the CUG and SCDG.

Nevertheless, for JFreeChart and JFtp the SCDG clearly outperforms the CUG. Thus,

the SCDG can be considered a stabilized version of the CUG.
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Table 3.2: MoJoFM clustering quality based on single structural and evolutionary
dependency graphs. For structural as well as evolutionary graphs, the best overall
quality values are highlighted in light gray and the best project specific ones in gray.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 30.2±0.2 42.0±0.5 35.4±0.3 53.4±0.4 58.0±0.1 32.8±0.1 41.9
CAG 28.6±0.3 47.1±0.7 14.3±0.0 45.7±0.3 55.9±0.0 35.8±0.0 37.9
CUG 52.4±0.4 63.5±1.7 40.6±0.6 49.4±0.0 58.8±0.2 54.5±0.5 53.2
SCDG 49.9±1.0 65.5±1.6 44.2±0.4 54.0±0.3 58.4±0.2 54.0±0.5 54.3

ECDG0
0.0 31.7±0.1 40.4±0.1 40.7±0.2 41.5±0.2 60.5±0.1 11.1±0.0 37.7

ECDG0
0.2 34.7±0.4 46.2±0.4 41.3±1.0 40.0±0.2 60.0±0.0 11.1±0.0 38.9

ECDG0
0.4 35.6±0.1 47.0±0.2 43.2±0.1 42.3±0.4 61.9±0.1 11.3±0.0 40.2

ECDG0
0.6 33.6±0.2 47.2±0.1 40.9±0.1 42.4±0.3 61.5±0.0 11.4±0.0 39.5

ECDG0
0.8 32.6±0.3 45.9±0.1 39.8±0.1 42.7±0.3 60.0±0.0 11.4±0.0 38.7

ECDG0
0.99 32.1±0.0 45.2±0.1 39.2±0.6 43.1±0.3 59.9±0.0 11.4±0.0 38.5

ECDG1
0.0 29.0±0.1 36.5±0.3 29.1±0.2 35.5±0.1 57.2±0.0 8.0±0.0 32.5

ECDG1
0.2 30.7±0.0 40.0±0.2 29.3±0.1 35.2±0.1 57.5±0.0 8.0±0.0 33.5

ECDG1
0.4 31.3±0.2 39.6±0.4 28.2±0.1 35.2±0.0 57.2±0.0 7.5±0.0 33.2

ECDG1
0.6 29.6±0.0 37.5±0.1 26.5±0.2 35.9±0.2 57.3±0.0 6.9±0.0 32.3

ECDG1
0.8 27.0±0.0 36.9±0.1 20.9±0.0 35.4±0.2 55.6±0.0 6.8±0.0 30.4

ECDG1
0.99 26.1±0.0 36.9±0.1 20.9±0.0 36.0±0.2 55.7±0.0 6.7±0.0 30.4

ECDG2
0.0 27.3±0.0 32.9±0.1 13.8±0.0 35.1±0.1 53.3±0.0 6.4±0.0 28.1

ECDG2
0.2 27.3±0.0 34.6±0.1 14.2±0.0 35.3±0.0 53.1±0.0 6.4±0.0 28.5

ECDG2
0.4 28.0±0.0 32.8±0.1 12.9±0.0 35.3±0.1 53.3±0.0 5.8±0.0 28.0

ECDG2
0.6 27.1±0.1 30.9±0.0 11.7±0.1 36.0±0.1 53.0±0.0 5.8±0.0 27.4

ECDG2
0.8 23.3±0.0 30.0±0.1 6.8±0.0 36.1±0.2 52.3±0.0 6.0±0.0 25.8

ECDG2
0.99 22.6±0.0 29.4±0.1 6.3±0.0 35.9±0.2 52.3±0.0 6.0±0.0 25.4

ECDG3
0.0 24.8±0.2 29.6±0.1 9.5±0.0 37.9±0.2 51.7±0.0 5.2±0.0 26.4

ECDG3
0.2 26.1±0.0 30.8±0.0 9.3±0.0 36.3±0.2 51.3±0.0 5.2±0.0 26.5

ECDG3
0.4 25.5±0.0 27.5±0.0 8.6±0.0 36.9±0.2 51.3±0.0 4.9±0.0 25.8

ECDG3
0.6 24.4±0.0 27.2±0.0 7.6±0.0 36.3±0.2 50.7±0.0 4.9±0.0 25.2

ECDG3
0.8 21.7±0.0 26.4±0.0 4.0±0.0 36.2±0.2 50.3±0.0 5.1±0.0 23.9

ECDG3
0.99 20.9±0.0 25.5±0.0 3.5±0.0 36.2±0.2 50.3±0.0 5.1±0.0 23.6

Default 16.3±0.0 15.7±0.0 1.8±0.0 36.6±0.0 50.3±0.0 4.1±0.0 20.8



Chapter 3 Study on Architecture Recovery 41

Classifying the quality of these first results for structural graphs, this paragraph com-

pares them in a brief excursus to other similar studies that also use the MoJoFM metric

or at least the predecessor metric MoJo (as shown in [70], MoJo produces just slightly

higher values than MoJoFM). The work that introduces MoJoFM [70] performs a clus-

tering experiment with several clustering algorithms on two sample projects, Linux and

TOBEY. The experiment yields MoJoFM values between 37 and 75 for Linux, and be-

tween 24 and 66 for TOBEY ; their results for the Bunch algorithm (used in a similar

setup as in the present work) are 74 for Linux and 58 for TOBEY. Results from other

studies are similar: For example, Maqbool and Babri [46] obtained values from 30 to

62 with the MoJo metric (averaged over several expert decompositions). Compared to

these related studies, the present results are competitive, that is, the clustering process

seems to yield good clustering results in the current setup. A stronger statement cannot

be made because the MoJoFM values are not directly comparable for different projects

as previously discussed.

3.2.2 Results for Evolutionary Graphs

The ECDG0
0.4, which has a support threshold of 0 and a confidence threshold of 0.4,

delivers the best average value over all projects for evolutionary dependencies (40.2),

closely followed by the other evolutionary graphs with a support threshold of 0. This

clustering quality is nearly equal to the values of the CIG (41.9) and the CAG (37.9)

but clearly lower than the CUG (53.2) and SCDG (54.3) values. Thus, in the average

case (at least for the current selection of sample projects) the evolutionary data source

performs just as well as the inheritance or the aggregation dependency information.

Observing the changes of the average clustering quality for different support filters, the

clustering quality steadily falls with a higher support threshold. Either the filtering does

not work as expected or the effect of decreasing the number of dependencies is stronger

than the effect of enhancing the dependency reliability. In contrast, increasing the

confidence threshold slightly improves the clustering quality for lower threshold values

although the filter is also reducing the dependency information. But after reaching

the maximum at a confidence threshold of 0.2 or 0.4 the quality decreases again. This

effect is a clear evidence that filtering by confidence is able to improve the dependency

reliability.

These characteristics of the average value need not be valid for every project. For

instance, the evolutionary clustering quality for the Tomcat project is very low (4.9 -

11.4) and far from being competitive to any structural dependency graph. As already

noticed before, this effect probably results from the relatively sparse evolutionary class



42 Chapter 3 Study on Architecture Recovery

dependency graph. In contrast, for JUnit the evolutionary dependencies yield better

results than any structural dependency kind (structural: 58.8; evolutionary: 61.9), and

for JFreeChart the relation is nearly balanced (structural: 44.2; evolutionary: 43.2).

The effect of the filter is very similar for all projects. The JFtp project, for example,

is a marginal exception with its best evolutionary clustering quality at the ECDG0
0.99

(43.1).

3.2.3 Experimental Quality and Impact

The default decomposition qualities surprisingly cover a very wide range of MoJoFM

values, from 1.8 (JFreeChart) up to 50.3 (JUnit). This observation clearly underlines

that comparisons of clustering results based on MoJoFM are only valid for the same ref-

erence decomposition (i.e., the same sample software project). The MoJoFM difference

between the best clustering and the default clustering is also heavily varying for the dif-

ferent projects: It ranges from 11.6 (JUnit) up to 49.8 (JEdit) and 50.4 (Tomcat). This

suggests that the clustering results for JEdit and Tomcat are better than the results

of JUnit although their absolute MoJoFM values are similar (JEdit: 65.5; JUnit: 58.8;

Tomcat: 54.4).

The precision of the measured MoJoFM quality values is yet not discussed. Mitchell

and Mancoridis [50] showed that the results of Bunch either cluster closely around a

single constant TurboMQ value (the internally used clustering quality metric of Bunch)

or around two TurboMQ values. The algorithm just has one or two stable decomposition

states. Probably, this has a similar impact on the MoJoFM distribution. The results

in Table 3.2 confirm this assumption because most results can be reproduced precisely

in repeated runs (low standard errors of 0.0–0.2), while few other results have a much

worse precision (0.5–1.5), which is probably caused by several peaks in the quality dis-

tribution. The three most imprecise mean values are the clustering qualities for JEdit

CUG (1.7), JEdit SCDG (1.6), and JFreeChart ECDG0
0.2 (1.0). They belong to JEdit

and JFreeChart, the two largest sample projects by number of classes. It underlines that

the Bunch is supposed to work more and more imprecise with an increasing graph size

because of a heavily extended search space of the clustering heuristic. The clustering

results, however, are precise enough to interpret MoJoFM differences of 1 or more as

real differences, at least for all average values and for most project specific values.

Since this first experiment addresses the clustering quality based on single data sources,

it already confirms for many cases that Software evolution provides valuable information

for software clustering (Hypothesis 1) because competitive clustering results are reached
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by exclusively using evolutionary dependencies. In general, the results of the best evo-

lutionary graph is comparable to the graphs based on inheritance or aggregation. When

the evolutionary information is sparse, however, a meaningful evolutionary clustering

result cannot be created. But that does not automatically mean that the information is

not valuable—it can be used in other ways as the following experiments show.

3.3 Analyzing the Dependency Quality

The idea behind the concept of support and confidence of evolutionary dependencies is

that the higher the support or confidence value the stronger the dependency. One can

assume that this statement also holds for the present software clustering application:

The evolutionary dependencies get more and more reliable for increasing support and

confidence thresholds. The results of the previous experiment, however, cannot directly

support this assumption because two contrary effects might collide:

• As discussed, stronger filter settings might provide data with higher quality.

• Concurrently, stronger filter settings reduce the available data.

To examine the influence of both effects, this section conducts additional analyses. The

results will also help to identify promising configurations for a combination of different

data sources.

3.3.1 Package Intra-Edges

In the dependency graph all edges that connect classes of the same package are called

intra-edges. They enable the clustering algorithm to detect a similar package structure.

All edges that connect classes from different packages are called inter-edges. In contrast,

they influence the clustering result negatively. Hence, the percentage of intra-edges

among all edges of the graph provides a measure for the dependency quality. It is

independent of the total amount of available dependencies. Table 3.3 lists the values of

this measure (first value) for the same selection of graphs as in the previous clustering

experiment. Additionally, the amount of available data is expressed as the percentage of

nodes with at least one in- or out-going edge (second value, printed smaller); this value

is called node coverage.

The average values in the last column of the table show similar intra-edge ratios for the

structural graphs, ranging from 39% to 49%, and more varying ratios for evolutionary
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Table 3.3: Percentage of package intra-edges (printed normal) and node coverage
(printed small) for single structural and evolutionary dependency graphs.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 25%60% 70%44% 69%50% 40%56% 26%42% 47%51% 46%51%

CAG 42%52% 81%64% 41%29% 26%59% 56%21% 46%61% 49%48%

CUG 32%98% 59%99% 27%97% 74%42% 37%91% 35%94% 44%87%

SCDG 31%99% 59%100% 29%98% 39%81% 37%91% 35%94% 39%94%

ECDG0
0.0 16%54% 23%65% 40%66% 37%68% 29%35% 30%15% 29%50%

ECDG0
0.2 32%54% 36%64% 47%66% 39%68% 31%35% 31%15% 36%50%

ECDG0
0.4 39%51% 43%64% 54%64% 41%65% 35%35% 35%14% 41%49%

ECDG0
0.6 45%45% 51%62% 67%57% 43%64% 41%33% 37%14% 47%46%

ECDG0
0.8 47%39% 53%60% 63%56% 44%64% 42%32% 37%14% 48%44%

ECDG0
0.99 48%39% 52%60% 63%56% 44%64% 42%32% 37%14% 48%44%

ECDG1
0.0 19%40% 29%49% 78%36% 41%49% 23%15% 48%06% 40%33%

ECDG1
0.2 36%39% 43%49% 83%36% 45%49% 24%15% 46%06% 46%33%

ECDG1
0.4 45%34% 54%48% 89%34% 40%49% 25%15% 49%06% 50%31%

ECDG1
0.6 45%30% 65%45% 94%32% 43%49% 21%13% 56%04% 54%29%

ECDG1
0.8 51%21% 83%41% 99%22% 46%42% 19%09% 71%03% 61%23%

ECDG1
0.99 54%19% 84%40% 99%22% 46%42% 19%09% 71%03% 62%23%

ECDG2
0.0 20%32% 33%39% 85%16% 37%42% 18%07% 67%03% 43%23%

ECDG2
0.2 36%31% 47%39% 87%15% 40%42% 19%07% 65%03% 49%23%

ECDG2
0.4 44%27% 59%38% 87%14% 37%42% 18%07% 61%02% 51%22%

ECDG2
0.6 45%21% 76%34% 98%12% 39%42% 20%06% 69%02% 58%20%

ECDG2
0.8 49%13% 90%31% 100%05% 40%35% 20%03% 82%02% 63%15%

ECDG2
0.99 56%11% 93%29% 100%05% 38%35% 20%03% 82%02% 65%14%

ECDG3
0.0 20%25% 34%30% 92%09% 40%36% 23%03% 60%02% 45%17%

ECDG3
0.2 35%24% 48%30% 92%09% 42%36% 21%03% 60%02% 50%17%

ECDG3
0.4 43%20% 61%29% 88%08% 39%36% 17%03% 50%01% 50%16%

ECDG3
0.6 44%15% 76%26% 99%06% 42%36% 00%01% 40%01% 50%14%

ECDG3
0.8 54%10% 90%23% 100%02% 38%29% – 67%01% –

ECDG3
0.99 68%08% 95%21% 100%02% 34%26% – 67%01% –

graphs, ranging from 29% to 65%. Thus, with the right filter setting, the evolutionary

dependencies provide better data qualities in terms of the intra-edge ratios. As seen in

the first experiment, this does not lead to better clustering results because the evolu-

tionary dependency data is too sparse. This is especially the case for the high quality

filter settings with, for example, 65% of intra-edges and only 14% of covered nodes

(ECDG2
0.99) or 62% of intra-edges and only 23% of covered nodes (ECDG1

0.99). But also

for the unfiltered ECDG0
0.0 only 50% of all nodes are covered by evolutionary depen-

dencies, i.e., at least 50% of nodes cannot be reasonably clustered because of missing

information. In contrast, the SCDG, which provides the overall best clustering results
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in the first experiment, has an average node coverage rate of 94% while the intra-edge

ratio is low (only 39%).

The intra-edge percentage values show that the data quality clearly increases with higher

confidence values. In contrast, varying the support, just the first step (incrementing the

support threshold from 0 to 1) enhances the quality. Further increments show no relevant

effect. In both cases of increasing the thresholds, however, the node coverage rate drops

step by step as expected.

These characteristics of the average values can be observed for the Azureus, JEdit,

JFreeChart, and Tomcat project in a similar way. JFtp and JUnit, though, show differ-

ent behavior for the filtered evolutionary data:

• For JFtp the filtering nearly has no impact on the intra-edge data quality, which

is only varying in a narrow range of 34% and 46% and does not increase generally

with stronger filter settings.

• The intra-edge data quality for JUnit even shows inverse effects compared to the

average values: It decreases for higher support threshold and changes diversely for

higher confidence values.

3.3.2 Incomplete MoJoFM Comparison

The percentage of intra-edges is not a direct measure of the data quality for the ap-

plication of software clustering because it is actually applied before the clustering. To

measure the quality directly but independently from the data density, the clustering re-

sults of the first experiment can be reused. But they are assessed slightly different with

the help of the MoJoFM metric: Instead of using decompositions of all classes, the de-

compositions are restricted to only those classes that are covered by dependencies of the

current dependency graph. Hence, every clustering result is compared to an individual

subset of the reference decomposition that exactly consists of the set of covered classes.

It is, however, a limiting factor of such an evaluation that the resulting MoJoFM values

are not comparable because they are normalized with different reference decompositions.

But as the reference decomposition for two evolutionary graphs with similar threshold

values only differs marginally, this effect can be considered as weak for such two graphs.

Nevertheless, the results must be interpreted more cautiously.

Table 3.4 provides the MoJoFM values of this incomplete comparison. The results of

this direct data quality measurement are similar to those of the previous indirect intra-

edge measurement: The data quality in MoJoFM points is ranging up to 57.1 (SCDG)
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for structural dependencies while higher values can be reached with strongly filtered

evolutionary data (up to 65.8). Increasing the confidence threshold, the data quality

increases. As in the indirect measurement, a higher support value improves the quality

only for switching from 0 to 1 significantly. Also JFtp and JUnit are the exceptions of

these trends: The MoJoFM quality of JFtp decompositions is nearly constant, and the

filtering for the JUnit project results in diverse behavior.

Table 3.4: MoJoFM clustering quality with incomplete reference decompositions
based on single structural and evolutionary dependency graphs.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 35.3±0.3 65.9±1.1 66.2±0.5 76.0±0.8 43.5±0.1 55.2±0.2 57.0
CAG 43.9±0.6 63.3±1.2 44.4±0.2 64.4±0.5 43.4±0.1 53.1±0.0 52.1
CUG 53.4±0.4 63.7±1.7 41.3±0.6 64.4±0.1 62.6±0.2 57.1±0.5 57.1
SCDG 50.4±1.0 65.6±1.6 44.1±0.4 63.8±0.3 62.2±0.2 56.3±0.6 57.1

ECDG0
0.0 44.9±0.2 46.8±0.2 56.8±0.3 50.0±0.3 49.4±0.2 48.0±0.2 49.3

ECDG0
0.2 50.2±0.7 56.1±0.6 57.8±1.6 47.7±0.4 47.6±0.1 48.5±0.1 51.3

ECDG0
0.4 51.9±0.1 57.5±0.3 62.1±0.1 51.2±0.7 53.3±0.2 52.0±0.2 54.7

ECDG0
0.6 52.9±0.4 60.3±0.1 65.4±0.1 52.5±0.5 55.4±0.1 54.4±0.1 56.8

ECDG0
0.8 56.6±0.9 59.7±0.2 65.8±0.1 53.0±0.5 52.4±0.1 54.4±0.1 57.0

ECDG0
0.99 55.9±0.1 58.8±0.1 64.6±1.1 53.6±0.4 52.2±0.1 54.3±0.0 56.6

ECDG1
0.0 47.1±0.1 52.4±0.6 71.5±0.5 47.6±0.2 49.1±0.2 60.5±0.4 54.7

ECDG1
0.2 50.8±0.1 59.6±0.4 72.2±0.2 46.9±0.2 51.8±0.2 62.1±0.0 57.2

ECDG1
0.4 54.1±0.5 60.1±0.8 73.7±0.3 46.9±0.1 53.1±0.2 55.6±0.0 57.2

ECDG1
0.6 52.6±0.1 60.2±0.2 74.6±0.6 48.4±0.4 52.9±0.1 57.3±0.1 57.7

ECDG1
0.8 56.2±0.1 64.3±0.3 85.0±0.1 53.9±0.5 56.2±0.1 67.1±0.2 63.8

ECDG1
0.99 56.1±0.1 65.7±0.3 85.2±0.2 55.6±0.4 56.4±0.2 66.8±0.1 64.3

ECDG2
0.0 50.3±0.1 56.7±0.3 70.6±0.3 46.1±0.3 33.3±0.0 71.4±0.0 54.8

ECDG2
0.2 50.1±0.1 61.3±0.2 75.1±0.3 46.6±0.1 29.8±0.4 71.4±0.0 55.7

ECDG2
0.4 54.6±0.1 57.7±0.3 71.7±0.2 46.7±0.2 33.3±0.0 63.6±0.0 54.6

ECDG2
0.6 59.2±0.4 59.5±0.1 77.5±0.5 48.4±0.4 37.5±0.0 70.0±0.0 58.7

ECDG2
0.8 56.6±0.0 63.7±0.2 91.7±0.1 52.7±0.5 50.0±0.0 77.8±0.0 65.4

ECDG2
0.99 60.0±0.0 64.9±0.2 89.8±0.2 52.1±0.6 50.0±0.0 77.8±0.0 65.8

ECDG3
0.0 45.8±0.8 61.1±0.3 79.3±0.3 53.9±0.6 42.9±0.0 71.4±0.0 59.1

ECDG3
0.2 51.4±0.1 65.3±0.2 77.3±0.3 49.1±0.6 28.6±0.0 71.4±0.0 57.2

ECDG3
0.4 52.5±0.1 54.9±0.1 81.1±0.3 50.9±0.5 33.3±0.0 60.0±0.0 55.5

ECDG3
0.6 56.3±0.1 60.0±0.0 87.2±0.3 48.9±0.5 33.3±0.0 60.0±0.0 57.6

ECDG3
0.8 55.6±0.1 63.0±0.1 98.7±0.4 50.9±0.7 – 75.0±0.0 –

ECDG3
0.99 62.5±0.0 63.9±0.1 96.0±0.8 42.0±0.8 – 75.0±0.0 –

Finally, the results of the indirect as well as of the direct evaluation indicate that the

filtering of evolutionary graphs by support and confidence works in practice as derived

from theory for all projects except JFtp and JUnit. Choosing a higher support threshold

than 1, however, is not recommendable because it would just restrict the data without
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increasing the quality significantly. Moreover, the data quality tends to be the strength of

the evolutionary graphs while the data density tends to be the strength of the structural

graphs.

3.4 Clustering with Combined Data Sources

While Hypothesis 1 deals with the autonomous clustering quality of evolutionary de-

pendencies, Hypothesis 2 focuses on combined dependencies from structural and evolu-

tionary data sources. Filtering evolutionary data was only partly successful because it

decreases the data density more than it increases the data quality—the slightly filtered

ECDG0
0.4 produces the best results. As the data quality of the evolutionary dependencies

is good, yet sparse, it can be presumed that integrating the evolutionary dependencies

into the dense structural data, which has a lower dependency quality, improves the over-

all clustering results. The union operations on graphs, defined in Section 2.3.3, provide

tools to realize the necessary data integration.

Combining each of the four structural graphs with each of the 24 evolutionary graphs

used in the first experiment would result in too high clustering costs. Hence, the set of

evolutionary graphs has to be restricted to a smaller but still representative selection.

The following selection is motivated by the analysis of the data quality in Section 3.3.

• ECDG0
0.0 (intra-edge ratio: 30%; incomplete MoJoFM : 49.2; node coverage: 51%):

This graph contains all evolutionary dependencies without any filtering (i.e., the

raw data) and thus provides the most complete evolutionary data set.

• ECDG0
0.4 (intra-edge ratio: 41%; incomplete MoJoFM : 54.4; node coverage: 50%):

The evolutionary graph that performs best in the first experiment is obviously a

candidate for further high quality clustering results.

• ECDG0
0.8 (intra-edge ratio: 47%; incomplete MoJoFM : 56.8; node coverage: 45%):

A higher confidence threshold increases the data quality while it decreases the data

density only moderately.

• ECDG1
0.4 (intra-edge ratio: 51%; incomplete MoJoFM : 57.3; node coverage: 31%):

Incrementing the support threshold from 0 to 1 has a similar effect (according to

Section 3.3 further increments are inefficient).

• ECDG1
0.8 (intra-edge ratio: 63%; incomplete MoJoFM : 62.3; node coverage: 23%):

Among the evolutionary graphs with the highest data quality, this graph is the

one with the best dependency density.
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3.4.1 Simple Union

The non-weighted union operation (Definition 2.10) is a simple method to combine two

graphs: It just performs a normal set union operation each on the two sets of nodes and

the two sets of edges. Thus, all dependencies are preserved uniting a structural with an

evolutionary dependency graph. The information which dependencies were contained in

which of the original graphs is lost however.

Table 3.5 presents the MoJoFM quality of different clustering decompositions (again

compared as complete decompositions): It contrasts the single structural or evolutionary

data sources to the combined data sources. The latter ones are created by pairwise

combinations of the structural and evolutionary graphs.

The graph combination with the simple union operation clearly improves the clustering

quality in nearly all cases comparing the combined graph to the two contained original

graphs. From the perspective of the structural graphs, the average clustering quality

rises

• for the CIG from 41.9 to 48.5 (CIG∪ECDG0
0.4),

• for the CAG from 37.9 to 46.9 (CAG∪ECDG0
0.8),

• for the CUG from 53.2 to 56.5 (CUG∪ECDG0
0.8),

• and, most important, for the SCDG from 54.3 to 57.4 (SCDG∪ECDG0
0.8).

Furthermore, the clustering quality is not only improved in these best case combinations

but also in nearly all other cases, except for the union of the CUG and SCDG with the

ECDG0
0.0. Switching the perspective to the evolutionary graphs, even every combination

is an improvement of the original clustering with exclusively evolutionary dependencies.

The combinations with the SCDG provide the best results.

On project level, the effect of improving a structural graph with at least one evolutionary

graph sustains unexceptional for each project, even slightly in the Tomcat project with

its very sparse evolutionary dependencies and in the JUnit project with its partly inverse

filtering behavior. And vice versa, improving an evolutionary graph, the effect holds

also for every project while it is, however, very small for the JUnit project, which has a

slightly better evolutionary than structural clustering quality.

Finally, this second clustering experiment demonstrates that it is possible to increase

the quality of a structural dependency based clustering by integrating evolutionary data,

even for projects with only sparse evolutionary dependency information. Thus, the



Chapter 3 Study on Architecture Recovery 49

Table 3.5: MoJoFM clustering quality based on combined structural and evolutionary
dependency graphs using the simple union operation ∪. The best average results are

highlighted gray for each block.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 30.2±0.2 42.0±0.5 35.4±0.3 53.4±0.4 58.0±0.1 32.8±0.1 41.9
CAG 28.6±0.3 47.1±0.7 14.3±0.0 45.7±0.3 55.9±0.0 35.8±0.0 37.9
CUG 52.4±0.4 63.5±1.7 40.6±0.6 49.4±0.0 58.8±0.2 54.5±0.5 53.2
SCDG 49.9±1.0 65.5±1.6 44.2±0.4 54.0±0.3 58.4±0.2 54.0±0.5 54.3

ECDG0
0.0 31.7±0.1 40.4±0.1 40.7±0.2 41.5±0.2 60.5±0.1 11.1±0.0 37.7

ECDG0
0.4 35.6±0.1 47.0±0.2 43.2±0.1 42.3±0.4 61.9±0.1 11.3±0.0 40.2

ECDG0
0.8 32.6±0.3 45.9±0.1 39.8±0.1 42.7±0.3 60.0±0.0 11.4±0.0 38.7

ECDG1
0.4 31.3±0.2 39.6±0.4 28.2±0.1 35.2±0.0 57.2±0.0 7.5±0.0 33.2

ECDG1
0.8 27.0±0.0 36.9±0.1 20.9±0.0 35.4±0.2 55.6±0.0 6.8±0.0 30.4

CIG∪ECDG0
0.0 33.9±0.2 44.1±0.9 49.8±0.1 45.0±0.2 58.8±0.1 34.4±0.4 44.3

CIG∪ECDG0
0.4 38.5±0.4 53.1±0.3 53.8±0.4 51.0±0.3 59.8±0.0 34.6±0.1 48.5

CIG∪ECDG0
0.8 36.4±0.1 52.7±0.9 55.1±0.2 47.3±0.3 60.6±0.0 34.6±0.0 47.8

CIG∪ECDG1
0.4 35.7±0.2 52.8±0.2 46.5±0.7 53.3±0.3 59.5±0.0 34.1±0.0 47.0

CIG∪ECDG1
0.8 34.0±0.1 54.4±0.3 44.4±0.6 57.2±0.2 59.6±0.0 34.1±0.0 47.3

CAG∪ECDG0
0.0 33.3±0.1 47.5±0.4 43.3±0.1 44.3±0.1 60.8±0.1 36.1±0.1 44.2

CAG∪ECDG0
0.4 35.8±0.1 56.7±0.7 44.6±0.1 45.7±0.3 62.0±0.1 36.0±0.0 46.8

CAG∪ECDG0
0.8 34.4±0.1 58.0±1.0 41.3±0.1 50.2±0.6 61.5±0.0 35.8±0.0 46.9

CAG∪ECDG1
0.4 33.3±0.0 55.5±0.4 31.9±0.5 45.1±0.1 57.9±0.0 35.7±0.4 43.2

CAG∪ECDG1
0.8 32.7±0.0 54.3±1.1 27.1±0.1 50.2±0.3 57.3±0.0 35.9±0.0 42.9

CUG∪ECDG0
0.0 49.2±0.5 53.6±1.2 50.4±0.2 46.1±0.3 56.5±0.3 51.0±1.2 51.1

CUG∪ECDG0
0.4 52.2±1.0 69.0±0.1 54.3±0.3 49.2±0.4 59.2±0.1 52.8±1.4 56.1

CUG∪ECDG0
0.8 53.1±0.7 65.2±1.5 52.1±0.4 54.6±0.4 58.6±0.1 55.6±0.5 56.5

CUG∪ECDG1
0.4 53.0±0.7 65.9±1.7 52.9±0.5 46.1±0.3 58.1±0.2 55.3±1.3 55.2

CUG∪ECDG1
0.8 52.3±1.1 65.6±1.5 47.9±0.7 48.2±0.4 59.1±0.1 56.5±0.7 54.9

SCDG∪ECDG0
0.0 48.4±0.6 54.8±1.2 53.1±0.2 47.7±0.2 57.2±0.2 51.7±0.9 52.1

SCDG∪ECDG0
0.4 50.6±0.8 63.7±2.0 55.9±0.2 52.4±0.4 59.1±0.1 56.1±0.2 56.3

SCDG∪ECDG0
0.8 52.7±0.1 68.7±0.7 53.3±1.1 55.1±0.4 58.8±0.1 55.9±0.2 57.4

SCDG∪ECDG1
0.4 52.3±0.4 64.6±2.1 56.0±0.5 54.0±0.4 58.9±0.1 57.0±0.2 57.1

SCDG∪ECDG1
0.8 52.6±0.2 64.1±2.1 50.5±0.8 61.0±0.2 58.3±0.2 56.6±0.2 57.2
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experiment clearly confirms Hypothesis 2 for the current use case of architecture recovery.

Moreover, it extends the validity of Hypothesis 1 to all projects: Even very sparse

evolutionary information is valuable for software clustering because it can be used to

improve the structural clustering result.

3.4.2 Weighted Union

A certain structural dependency may exist because a developer has misplaced a method.

Similarly, a certain evolutionary dependency may exist because two classes were changed

coincidentally at the same time. But if both dependencies link the same two classes, it

is unlikely that this happens just by chance. Thus, dependencies that are included in

the structural as well as the evolutionary graph are considered more reliable than those

that are only member of one of the graphs.

The weighted union operation extends the simple union operation by allowing different

weights for dependencies that are either included in only the first, in only the second,

or in both original graphs—a weighted union with weights of 1 for all three groups is

equivalent to the simple union. These weights influence the Bunch clustering algorithm,

or more exactly, its internal quality metric ITurboMQ (Section 2.4.3). It might be

possible to improve the clustering results further by choosing other weights, thus, to

strengthen the evidence of the previous experiment. Deduced from the considerations

above, it is reasonable to choose a higher weight for the twice occurring dependencies

and a lower weight for the single occurring dependencies: The weight of the exclusively

structural dependencies is set to 1 as well as the weight of the exclusively evolutionary

dependencies. To stress the importance of the concurrently structural and evolutionary

dependencies, their weight is set to 4 despite a naive choice for these twice occurring

dependencies would be a weight of 2. Table 3.6 presents the results of a repeated union

clustering experiment using the weighted union operation ∪[1,4,1] instead of the simple

union operation ∪.

The clustering qualities for the weighted combinations are very similar to the ones ob-

tained for the non-weighted combinations. A slight quality enhancement, however, can

be observed in most cases: The best combined quality rises

• for the CAG from 46.9 (CAG∪ECDG0
0.8) to 47.4 (CAG∪[1,4,1] ECDG0

0.8),

• for the CUG from 56.5 (CUG∪ECDG0
0.8) to 57.2 (CUG∪[1,4,1] ECDG0

0.4),

• for the SCDG from 57.4 (SCDG∪ECDG0
0.8) to 58.5 (SCDG∪[1,4,1] ECDG1

0.4).
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Table 3.6: MoJoFM clustering quality based on combined structural and evolutionary
dependency graphs using the weighted union operation ∪[1,4,1]. The best average results

are highlighted gray for each block.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 30.2±0.2 42.0±0.5 35.4±0.3 53.4±0.4 58.0±0.1 32.8±0.1 41.9
CAG 28.6±0.3 47.1±0.7 14.3±0.0 45.7±0.3 55.9±0.0 35.8±0.0 37.9
CUG 52.4±0.4 63.5±1.7 40.6±0.6 49.4±0.0 58.8±0.2 54.5±0.5 53.2
SCDG 49.9±1.0 65.5±1.6 44.2±0.4 54.0±0.3 58.4±0.2 54.0±0.5 54.3

ECDG0
0.0 31.7±0.1 40.4±0.1 40.7±0.2 41.5±0.2 60.5±0.1 11.1±0.0 37.7

ECDG0
0.4 35.6±0.1 47.0±0.2 43.2±0.1 42.3±0.4 61.9±0.1 11.3±0.0 40.2

ECDG0
0.8 32.6±0.3 45.9±0.1 39.8±0.1 42.7±0.3 60.0±0.0 11.4±0.0 38.7

ECDG1
0.4 31.3±0.2 39.6±0.4 28.2±0.1 35.2±0.0 57.2±0.0 7.5±0.0 33.2

ECDG1
0.8 27.0±0.0 36.9±0.1 20.9±0.0 35.4±0.2 55.6±0.0 6.8±0.0 30.4

CIG∪[1,4,1] ECDG0
0.0 33.9±0.3 44.3±1.1 48.6±1.2 44.8±0.2 59.6±0.0 34.3±0.1 44.2

CIG∪[1,4,1] ECDG0
0.4 38.0±0.2 51.7±1.1 53.5±0.6 51.4±0.3 60.3±0.0 34.8±0.1 48.3

CIG∪[1,4,1] ECDG0
0.8 35.8±0.2 53.4±0.4 53.5±1.0 47.0±0.3 60.3±0.0 34.0±0.5 47.3

CIG∪[1,4,1] ECDG1
0.4 34.8±0.3 52.9±0.2 46.8±0.6 54.0±0.3 59.3±0.1 34.3±0.1 47.0

CIG∪[1,4,1] ECDG1
0.8 34.1±0.1 54.3±0.3 44.3±0.3 56.9±0.3 59.6±0.0 34.0±0.1 47.2

CAG∪[1,4,1] ECDG0
0.0 34.7±0.6 50.9±1.1 42.2±0.6 45.7±0.3 61.0±0.1 36.6±0.2 45.2

CAG∪[1,4,1] ECDG0
0.4 35.7±0.5 59.1±0.1 44.0±0.5 45.5±0.2 61.6±0.1 36.3±0.0 47.0

CAG∪[1,4,1] ECDG0
0.8 35.5±0.0 59.6±0.1 40.7±0.7 51.3±0.6 61.6±0.0 36.0±0.0 47.4

CAG∪[1,4,1] ECDG1
0.4 34.3±0.0 56.1±0.1 31.9±0.1 44.9±0.2 58.3±0.0 36.1±0.0 43.6

CAG∪[1,4,1] ECDG1
0.8 33.0±0.1 56.3±0.2 27.3±0.1 47.5±0.4 57.3±0.0 36.0±0.0 42.9

CUG∪[1,4,1] ECDG0
0.0 54.7±1.0 60.9±2.3 50.7±1.1 48.3±0.3 58.1±0.1 51.9±0.9 54.1

CUG∪[1,4,1] ECDG0
0.4 53.8±0.7 69.5±0.2 54.4±0.1 50.6±0.3 59.2±0.2 55.4±0.2 57.2

CUG∪[1,4,1] ECDG0
0.8 53.1±0.6 68.6±1.3 50.9±1.2 55.8±0.4 59.1±0.1 53.9±1.5 56.9

CUG∪[1,4,1] ECDG1
0.4 53.9±0.6 69.5±0.1 52.8±0.9 47.7±0.3 57.2±0.1 56.1±0.7 56.2

CUG∪[1,4,1] ECDG1
0.8 53.8±0.1 69.7±1.1 48.0±0.5 46.4±0.3 58.9±0.2 57.0±0.2 55.6

SCDG∪[1,4,1] ECDG0
0.0 53.6±0.9 64.7±1.5 52.1±1.2 48.8±0.3 58.7±0.1 52.6±0.7 55.1

SCDG∪[1,4,1] ECDG0
0.4 52.8±0.9 67.9±1.4 54.8±0.9 55.4±0.2 58.5±0.2 55.1±1.0 57.4

SCDG∪[1,4,1] ECDG0
0.8 52.7±0.7 71.1±0.9 54.4±0.8 57.8±0.7 58.7±0.2 55.4±0.4 58.4

SCDG∪[1,4,1] ECDG1
0.4 53.1±0.8 69.0±1.4 54.8±0.5 62.1±0.2 56.9±0.2 55.3±0.9 58.5

SCDG∪[1,4,1] ECDG1
0.8 52.8±0.2 70.4±0.6 50.0±0.9 57.4±0.5 58.0±0.2 56.2±0.2 57.5
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Only for the CIG the best combined quality does not rise, it slightly decreases from 48.5

(CIG∪ECDG0
0.4) to 48.3 (CIG∪[1,4,1] ECDG0

0.4). The overall trend of a slight improve-

ment cannot be retrieved on project level. The individual values are varying too heavily:

some increase while others decrease. But since the best average value increases in three

of the four cases and stays constant in the other case, it is unlikely that this trend is a

random result. Thus, the results suggest that integrating the structural and evolution-

ary graphs with the weighted union operation while emphasizing the twice occurring

dependencies improves the clustering results as expected.

Comparing the weighted to the simple union experiment, the best clustering quality in-

creases from 57.4 (SCDG∪ECDG0
0.8) to 58.5 (SCDG∪[1,4,1] ECDG1

0.4). This underlines

on the one hand once more that “it is possible to improve current software clustering

algorithms that use structural information by integrating evolutionary data” (Hypoth-

esis 2), and states on the other hand that twice occurring structural and evolutionary

dependencies are more reliable for software clustering than other dependencies.

3.4.3 Parameter Optimization

The weights in the previous experiment were derived from theoretical considerations.

Nevertheless, better weighting setups may exist, which should be found by systematically

varying the weights in a reasonable range. The following sub-study implements such a

weight optimization by comparing the clustering qualities of combined graphs created

using different weighted union operations.

Due to runtime issues the weights can only be varied in five steps resulting in 53 = 125

different weight setups. Moreover, as the number of combinations should not be in-

creased further, only one structural as well as one evolutionary graph are considered:

As the SCDG tends to be the best structural graph for software clustering, it is used

to represent the structural graphs. As the ECDG1
0.4 produces the best results in com-

bination with the SCDG in the weighted union experiment, it is used to represent the

evolutionary graphs. These two dependency graphs are united by the weighted union

operation in 125 different setups. Additionally, the number of repeated Bunch clustering

runs has to be decreased from 50, as used in all previous experiments, to 10. Hence, the

results are more imprecise.

The search space is spanned by the set of weights {0, 1, 2, 4, 8} for each weight parameter.

To allow more extreme setups, the weights are elements of the exponential series of 2.

The value of 0 is included to allow to ignore one or more of the three subsets: for example,

∪[0,1,0] is equivalent to a simple graph intersection operation. Although a systematically

variation of the weights produces some redundancies (e.g., ∪[1,1,1] is equivalent to ∪[2,2,2]),
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these redundant graphs are not omitted because they help to estimate the precision of

the results.

Table 3.7 documents the parameter optimization experiment by a selection of the 15

best clustering results with respect to the average MoJoFM measure. The first and

most important conclusion from the results is that the clustering quality cannot be

improved in comparison to the weighted union ∪[1,4,1]. In this experiment the results

are, however, much more imprecise than before because of the lower number of repetitive

runs: The average clustering quality for the combination with ∪[1,4,1] was 58.5 in the

previous, more precise experiment (Section 3.4.2) but is now 59.5 and in the equivalent

case of ∪[2,8,2] 59.2 respectively.

Table 3.7: Best MoJoFM clustering qualities based on the combined SCDG and
ECDG1

0.4 using the weighted union operation in different setups. The already examined
weight setups are highlighted gray.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

SCDG 48.8±3.1 68.1±1.4 43.4±1.2 53.5±0.7 58.5±0.5 54.4±0.5 54.4

SCDG∪[1,4,1]ECDG1
0.4 53.6±0.4 70.9±0.2 56.0±0.3 62.7±0.5 57.4±0.4 56.3±0.2 59.5

SCDG∪[1,8,2]ECDG1
0.4 53.7±0.3 71.4±0.2 57.0±0.4 60.6±0.5 58.5±0.2 55.5±0.4 59.4

SCDG∪[2,8,2]ECDG1
0.4 53.3±0.2 70.9±0.3 56.0±0.2 62.8±0.5 56.4±0.3 55.6±0.3 59.2

SCDG∪[1,8,1]ECDG1
0.4 53.6±0.1 69.6±1.0 56.3±0.2 62.5±0.5 57.8±0.3 53.8±3.4 58.9

SCDG∪[2,4,1]ECDG1
0.4 54.2±0.4 70.0±0.3 52.8±0.2 63.0±0.4 58.5±0.3 54.7±0.4 58.8

SCDG∪[2,4,2]ECDG1
0.4 53.3±0.3 69.6±0.5 56.4±0.2 59.0±1.5 57.3±0.2 57.0±0.3 58.8

SCDG∪[4,8,4]ECDG1
0.4 53.9±0.4 69.9±0.3 55.5±0.6 58.0±1.6 56.8±0.3 56.3±0.6 58.4

SCDG∪[1,1,1]ECDG1
0.4 52.6±0.3 70.3±0.3 56.7±0.2 54.1±0.6 58.7±0.3 56.9±0.5 58.2

SCDG∪[2,2,1]ECDG1
0.4 51.8±1.6 69.6±0.2 52.7±0.3 61.7±0.5 58.3±0.4 55.0±0.5 58.2

SCDG∪[8,8,4]ECDG1
0.4 53.5±0.4 69.8±0.3 51.9±1.4 61.0±0.6 58.4±0.4 54.8±0.6 58.2

SCDG∪[1,2,1]ECDG1
0.4 53.5±0.4 70.2±0.2 51.3±4.7 59.0±1.3 57.1±0.3 57.3±0.2 58.1

SCDG∪[2,8,4]ECDG1
0.4 53.3±0.4 71.0±0.3 56.8±0.2 54.2±0.9 57.8±0.4 55.4±0.4 58.1

SCDG∪[2,1,2]ECDG1
0.4 51.2±0.2 70.7±0.2 56.5±0.2 53.0±0.6 59.2±0.2 57.3±0.3 58.0

SCDG∪[4,4,2]ECDG1
0.4 54.0±0.3 69.9±0.2 50.2±3.1 60.7±0.5 58.7±0.3 54.5±0.6 58.0

SCDG∪[4,8,2]ECDG1
0.4 51.1±3.7 70.3±0.3 52.8±0.1 61.3±0.5 58.0±0.3 54.7±0.4 58.0

Despite the increased uncertainty, some general trends can be observed:

• Only in one of the 15 best cases listed in Table 3.7, a structural-only or evolution-

ary-only weight is larger than the mid-weight (SCDG∪[2,1,2] ECDG1
0.4). In all other

cases the mid-weight, which is representing twice occurring dependencies, is at least

one of the strongest weights. An additional analysis considering all 125 setups

confirms this: It shows that the mean clustering quality of the group of setups

where the mid-weight belongs to the strongest weights is 57.9 whereas the rest

only reaches 56.7. This result underlines again that twice occurring dependencies
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are more important for software clustering than the dependencies that are only

included in one of the original graphs.

• Ignoring one of the dependency groups seems not to produce good clustering results

because no combination with a weight of 0 for any group is represented in the list

of the best combinations.

• The importance of the structural-only dependencies corresponds approximately

to the importance of the evolutionary-only dependencies. The list of the 15 best

results shows a minor preference of the structural dependencies: The weight for

structural-only dependencies is higher than for the evolutionary-only ones in five

cases and lower in only two cases. But averaging all setups with a higher structural

than evolutionary weight produces only a clustering quality of 56.7 while the group

with a higher evolutionary than structural weight produces slightly better qualities

of 57.2.

From the list of the 15 best weight settings, only two (∪[1,1,1] and ∪[1,4,1]) have been

already assessed in the previously used more precise experiment setup. But although

the graph SCDG∪[1,4,1] ECDG1
0.4 is top-ranked, a better weight setting may exist that

coincidentally performs not as well in the optimization due to the low measuring preci-

sion. It is worth a try to assess another weighted union operation with the previously

used exact experiment setup. Best candidate is obviously the weighted union operation

∪[1,8,2], which is the second best weight combination.

Table 3.8 presents the results for this experiment. Actually the clustering qualities

increase slightly compared to the equivalent experiment based ∪[1,4,1] (Table 3.6): The

best combined clustering quality rises

• for the CAG from 47.4 (CAG∪[1,4,1] ECDG0
0.8) to 47.6 (CAG∪[1,8,2] ECDG0

0.4),

• for the CUG from 57.2 (CUG∪[1,4,1] ECDG0
0.4) to 57.5 (CUG∪[1,8,2] ECDG0

0.8),

• for the SCDG from 58.5 (SCDG∪[1,4,1] ECDG1
0.4) to 58.8 (SCDG∪[1,8,2] ECDG1

0.4).

Only the clustering quality for the CIG decreases from 48.3 (CIG∪[1,4,1] ECDG0
0.4) to

47.8 (CIG∪[1,8,2] ECDG0
0.4). These marginal differences, however, may be a coincidental

result.
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Table 3.8: MoJoFM clustering quality based on combined structural and evolutionary
dependency graphs using the weighted union operation ∪[1,8,2]. The best average results

are highlighted gray for each block.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Average

CIG 30.2±0.2 42.0±0.5 35.4±0.3 53.4±0.4 58.0±0.1 32.8±0.1 41.9
CAG 28.6±0.3 47.1±0.7 14.3±0.0 45.7±0.3 55.9±0.0 35.8±0.0 37.9
CUG 52.4±0.4 63.5±1.7 40.6±0.6 49.4±0.0 58.8±0.2 54.5±0.5 53.2
SCDG 49.9±1.0 65.5±1.6 44.2±0.4 54.0±0.3 58.4±0.2 54.0±0.5 54.3

ECDG0
0.0 31.7±0.1 40.4±0.1 40.7±0.2 41.5±0.2 60.5±0.1 11.1±0.0 37.7

ECDG0
0.4 35.6±0.1 47.0±0.2 43.2±0.1 42.3±0.4 61.9±0.1 11.3±0.0 40.2

ECDG0
0.8 32.6±0.3 45.9±0.1 39.8±0.1 42.7±0.3 60.0±0.0 11.4±0.0 38.7

ECDG1
0.4 31.3±0.2 39.6±0.4 28.2±0.1 35.2±0.0 57.2±0.0 7.5±0.0 33.2

ECDG1
0.8 27.0±0.0 36.9±0.1 20.9±0.0 35.4±0.2 55.6±0.0 6.8±0.0 30.4

CIG∪[1,8,2] ECDG0
0.0 34.1±0.4 42.6±1.4 51.0±0.1 43.6±0.2 59.7±0.0 34.5±0.1 44.2

CIG∪[1,8,2] ECDG0
0.4 37.5±0.6 50.8±1.0 53.5±0.1 50.0±0.3 60.9±0.1 34.3±0.4 47.8

CIG∪[1,8,2] ECDG0
0.8 36.1±0.1 53.6±0.2 54.9±0.1 46.7±0.3 60.0±0.0 34.8±0.0 47.7

CIG∪[1,8,2] ECDG1
0.4 35.8±0.2 51.4±0.6 45.9±0.7 53.2±0.3 59.7±0.0 34.6±0.1 46.8

CIG∪[1,8,2] ECDG1
0.8 34.7±0.1 54.1±0.2 45.1±0.2 55.4±0.3 59.2±0.0 33.9±0.1 47.1

CAG∪[1,8,2] ECDG0
0.0 36.3±0.1 52.4±0.9 43.0±0.1 44.6±0.3 60.8±0.1 36.6±0.1 45.6

CAG∪[1,8,2] ECDG0
0.4 37.0±0.1 58.4±0.3 44.5±0.4 47.4±0.2 61.9±0.1 36.1±0.1 47.6

CAG∪[1,8,2] ECDG0
0.8 35.0±0.0 59.0±0.4 41.2±0.4 46.2±0.3 61.3±0.1 36.0±0.4 46.5

CAG∪[1,8,2] ECDG1
0.4 34.3±0.0 54.2±0.5 32.3±0.1 45.7±0.1 58.6±0.0 35.5±0.3 43.5

CAG∪[1,8,2] ECDG1
0.8 32.5±0.0 56.5±0.2 27.4±0.1 47.1±0.3 57.0±0.0 35.8±0.0 42.7

CUG∪[1,8,2] ECDG0
0.0 54.7±0.9 63.8±1.1 51.1±0.8 48.0±0.4 58.2±0.2 52.0±0.1 54.6

CUG∪[1,8,2] ECDG0
0.4 54.4±1.1 67.5±1.1 53.8±0.9 50.6±0.3 57.5±0.1 53.7±0.7 56.2

CUG∪[1,8,2] ECDG0
0.8 52.5±0.8 68.3±1.2 52.9±1.1 55.2±0.3 58.7±0.3 57.2±0.2 57.5

CUG∪[1,8,2] ECDG1
0.4 54.7±0.5 67.3±1.0 54.8±0.3 49.5±0.2 58.1±0.2 55.6±0.6 56.6

CUG∪[1,8,2] ECDG1
0.8 52.6±0.5 68.7±0.5 49.3±0.8 45.7±0.3 57.5±0.2 57.1±0.1 55.2

SCDG∪[1,8,2] ECDG0
0.0 53.7±1.1 63.9±1.5 52.9±1.0 50.2±0.3 58.9±0.1 52.5±0.1 55.3

SCDG∪[1,8,2] ECDG0
0.4 53.2±0.9 69.1±0.9 55.7±0.2 54.5±0.3 58.3±0.1 54.9±0.1 57.6

SCDG∪[1,8,2] ECDG0
0.8 50.9±0.5 69.3±1.7 55.4±0.7 51.7±0.3 58.6±0.1 56.9±0.1 57.1

SCDG∪[1,8,2] ECDG1
0.4 54.0±0.1 68.7±1.2 56.6±0.3 59.7±0.3 58.2±0.1 55.6±0.2 58.8

SCDG∪[1,8,2] ECDG1
0.8 52.0±0.2 66.9±1.4 51.9±0.8 53.4±0.3 57.8±0.1 56.3±0.5 56.4





Chapter 4

Study on Architecture

Improvements

After focusing on architecture recovery in the previous chapter, this chapter evaluates

the usefulness of software clustering to propose improvements for software architectures.

It studies the relevance of different data sources on this task. An automatically created

software decomposition usually differs from the factual decomposition defined through

the architecture of the system. The previous study tried to minimize this difference

because it aims to recover the architecture. In contrast, the current study will use

this difference to propose architecture improvements: The elements of the difference are

classes that are placed into a different cluster by the automatic clustering than by the

factual decomposition. This misplacement may be the result from either a weakness

in the clustering algorithm—an accidental difference—or a design flaw in the actual

decomposition—an intended difference.

This change of perspective—from considering the difference between the automatically

generated and the actual decomposition as harmful to considering them as useful—is

no contradiction: As discussed in Section 2.5.1, it has to be assumed that the factual

decomposition derived from the project package structure is not perfect, and thus, the

difference between both decompositions might include design flaws (i.e., intended dif-

ferences). By minimizing the decomposition difference in a single project both kinds of

differences, accidental and intended, are equally minimized. But by examining a set of

projects only systematic differences are minimized because they occur in every project.

Assumed that design flaws are not likely to occur systematically in different projects,

intended differences are not systematic. Thus, the optimization of a clustering algorithm

as conducted in the previous study reduces the accidental differences while it keeps the

intended differences.
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The clustering decompositions are often compared to a reference decomposition to eval-

uate a software clustering approach (Section 2.5.1). This evaluation method focuses on

architecture recovery and cannot answer the question whether the clustering technique

is able to detect design flaws in the architecture. As described in Section 1.3.2, Vanya et

al. [64] use software clustering based on evolutionary data to identify such design flaws

by comparing the clustering decomposition to the factual architecture. To evaluate this

approach, experts assessed the design flaws manually and confirmed most of them to be

valuable.

The present study addresses the same application of software clustering as the study by

Vanya et. al. but is conducted under different constraints: It is supposed to

• compare evolutionary, structural, and combined data sources,

• work automatically as far as possible (thus, do not employ experts).

To meet these requirements, I developed a novel evaluation method. This method uses

the version archives to identify transactions where the software architecture has changed.

Assuming that, at least in the average case, the developer changed the architecture

intentionally, such a transaction is likely to improve the architecture. A clustering setup

is good if the clustering decomposition based on the data before the architecture change

is able to predict the subsequent change.

4.1 Identifying Architectural Improvements

During development, the architecture of a software system is sometimes partly re-

designed. This redesign process results in a changed package structure of the system.

But a changed package structure is just a necessary, not a sufficient condition for an

architecture redesign: For example, a new class would also change the structure. Hence,

all changes that extend features of the program, solve errors, or alter the semantic of the

program in any other way are irrelevant for the present application. It is sufficient to

focus on refactorings, which are changes that do not alter the semantic of the program

by definition [27].

There exist lots of different refactoring types, for example, ExtractMethod, RemovePa-

rameter, or HideMethod refactorings (an exhaustive list can be found in [27]). For

the purpose of detecting architecture changes, only refactorings that change the package

structure are interesting, refactorings on finer-grained artifacts are not relevant. This re-

duces the set of important refactoring types to MoveClass and MoveInterface. A moved
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package is considered as a set of multiple MoveClass and MoveInterface refactorings.

Thus, as a heuristic, the transactions that change the system architecture are identified

by the occurrence of several such move refactorings in one transaction.

The present study uses an approach presented by Weißgerber and Diehl [68, 67] to

automatically detect such refactorings from version archives. At first, their technique

scans the version archive and parses the sources on a fine-grained level (it uses the

same library as the present work does to obtain the evolutionary dependencies, see Sec-

tion 2.3.2). Then, it identifies refactoring candidates by analyzing the changes of class

and method signatures—every refactoring type has its characteristic signature change

pattern. The candidates are ranked and filtered with the help of a code similarity mea-

surement. The filtered candidates finally form the set of detected refactorings. Beside

many other refactoring types, this technique is able to find the required MoveClass and

MoveInterface refactorings.

The parameters of the detection process are chosen in a conservative way that prefers

reliability over completeness of the detected refactorings. These two terms, reliability

and completeness, can also be expressed as the precision and recall of the detected refac-

torings compared to the actually applied ones. Based on the evaluation by Weißgerber

([67], Chapter 4), the filter parameters are set to a very reliable filter called b1c75 with

an estimated precision value of 1.0 (i.e., 100% of the detected refactorings are correct)

and an estimated recall value of 0.87 (i.e., 87% of the actual refactorings are detected)

for class-artifacts refactorings such as MoveClass and MoveInterface.

This refactoring detection technique was applied to the whole set of sample software

projects. Every transaction with at least two MoveClass or MoveInterface refactorings

(excluding very early move refactorings originating from the default package) is con-

sidered as a relevant architecture change. Table 4.1 presents the resulting numbers of

relevant transactions: Although thousands of transactions are included in the examined

time frame, a total of only twelve transactions were found. These transactions mainly

pool at the Azureus and JEdit project, each with five transactions. Hence, for this

second study only these two projects are worth considering.

Table 4.1: Number of transactions with at least two detected MoveClass and MoveIn-
terface refactorings.

Azureus JEdit JFreeChart JFtp JUnit Tomcat Sum

# Relevant transactions 5 5 1 0 1 0 12
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4.2 Predictive Capability of Software Decompositions

Assessing the usefulness of the different data sources for predicting architecture changes,

a different evaluation method than in the previous study has to be applied. One of the

main difference is that the clustering algorithm is not allowed to work on the latest

checked-out version but actually on the version just before the considered refactoring

happened. Thus, the experimenter has to check-out every predecessor version of a

detected relevant architecture change and has to compile it manually.

While the preprocessing and the clustering works exactly as before, an unmodified as-

sessment method is not useful: By now, the architecture change has to be somehow

considered to estimate the predictive capability of the clustering decomposition. This

is realized by comparing the similarity of the clustering decomposition and the software

architecture before the architecture change with the similarity after the particular archi-

tecture change. If the similarity increases, the clustering decomposition predicts the the

architecture change at least partly because the clustering decomposition is more similar

to the improved architecture.

The MoJoFM measure is not suitable to compute these similarities because it would

normalize the metric value based on two different reference decompositions. The distance

measure based on the number of necessary Move and Join operations (mno function,

Definition 2.13), however, provides an adequate tool. The mno difference is considered

as a predictive capability measure of the clustering decompositions.

Definition 4.1 (Predictive Capability). Consider a clustering decomposition A, a ref-

erence decomposition B according to the software architecture before the change, and a

reference decomposition B′ according to the software architecture after the change. The

Predictive Capability pc is defined as a function

pc : PC(S) ×PC(S) ×PC(S) → Z

(A,B,B′) 7→ pc(A,B,B′) := mno(A,B)−mno(A,B′)

Hence, a positive pc value indicates a higher similarity to the changed architecture, i.e., a

good Predictive Capability. A pc value of zero represents situations when the clustering

decomposition is equally similar to both reference decompositions. And finally, negative

values are also possible: the clustering decomposition is more similar to the architecture

before the change.

Concurrently to the MoveClass and MoveInterface refactorings, non-refactoring changes

might also alter the architecture in the same transaction. Thus, it is more reliable to
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create a virtual reference decomposition B′ that only applies the detected changes to

decomposition B than to use the real architecture after the change, which might be

influenced by additional changes. Nevertheless, decomposition B is generated like a

normal reference decomposition in the previous experiments.

4.3 Experimental Results

According to the previous description, the experiments of the present second study as-

sess the Predictive Capability of the automatically generated clustering decomposition.

Because of the low number of relevant architecture change transactions in other projects,

only Azureus and JEdit are considered. Besides the individual structural and evolution-

ary graphs, the clustering uses the best combined graph setup derived from the previous

study, which is based on the ∪[1,8,2] weighted union operation. The precision of the

Predictive Capability results is increased by 50 repetitive clustering runs.

Table 4.2 and Table 4.3 present the results for Azureus and JEdit. Each column repre-

sents a certain version identified by the given transaction ID of the architecture change

transaction (only the structural and evolutionary data before that transaction are taken

into account for the clustering). The number of moved classes in the respective transac-

tions give a roughly estimated maximum bound for the absolute Predictive Capability :

x moved classes can only result in a maximum mno difference of x.

It is obvious that the resulting Predictive Capability values are much more volatile than

the MoJoFM values in the previous experiments. For instance, the average values in the

last block (combinations of SCDG and ECDG) vary from −0.3 up to 0.4 for Azureus

and even from −1.2 up to −0.1 for JEdit. In contrast, these combined graphs produce

very similar clustering results in the previous study. Moreover, comparing the results of

different transactions does not directly show any similar behaviour of the values. The

reason of this volatility is probably the fact that the moved classes only affect minimal

parts of the software system: Coincidentally, one of the dependency graphs might include

information about this part, other graphs might not. Since the experiments only consider

five transactions, the sample size is probably just too small. Nevertheless, the number of

transactions cannot be increased because all possible transactions are already included.

Thus, for the assessed projects, the results at hand cannot be sharpened easily. They

are partly random and have to be interpreted cautiously.

Among the structural graphs, CUG and SCDG seems to perform best as they produce

the best results for both projects (0.2 and −0.4 respectively). Among the evolutionary
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Table 4.2: Predictive Capability of the clustering results based on combined structural
and evolutionary dependency graphs using the weighted union operation ∪[1,8,2] for

Azureus at relevant architecture changes.

Azureus Txn 611 Txn 774 Txn 792 Txn 936 Txn 962 Average

# moved classes 3 10 4 4 2

CIG 0.0±0.0 0.0±0.1 -1.0±0.0 1.9±0.0 -2.0±0.0 -0.2
CAG 0.0±0.0 -2.5±0.1 0.0±0.0 0.0±0.0 -2.0±0.0 -0.9
CUG 0.6±0.1 -1.4±0.1 -0.2±0.1 1.3±0.1 0.7±0.1 0.2
SCDG 0.4±0.1 -0.9±0.1 0.0±0.0 1.3±0.1 0.3±0.1 0.2

ECDG0
0.0 -3.0±0.0 0.5±0.2 -0.9±0.0 -1.1±0.0 1.0±0.0 -0.7

ECDG0
0.4 -3.0±0.0 1.0±0.0 -1.0±0.0 -1.0±0.0 1.0±0.0 -0.6

ECDG0
0.8 -2.0±0.0 0.0±0.0 -1.0±0.0 -1.3±0.1 1.0±0.0 -0.7

ECDG1
0.4 -1.0±0.0 -2.0±0.0 0.0±0.0 0.0±0.0 -2.0±0.0 -1.0

ECDG1
0.8 -1.0±0.0 -2.0±0.0 0.0±0.0 0.0±0.0 -2.0±0.0 -1.0

CIG∪[1,8,2] ECDG0
0.0 0.0±0.0 0.3±0.1 -1.2±0.1 1.9±0.1 1.0±0.0 0.4

CIG∪[1,8,2] ECDG0
0.4 0.0±0.0 0.7±0.1 -1.5±0.1 1.9±0.1 1.0±0.0 0.4

CIG∪[1,8,2] ECDG0
0.8 0.0±0.0 -0.3±0.3 -1.6±0.1 1.9±0.0 1.0±0.0 0.2

CIG∪[1,8,2] ECDG1
0.4 -0.1±0.0 0.0±0.2 -1.0±0.0 1.9±0.0 -2.0±0.0 -0.2

CIG∪[1,8,2] ECDG1
0.8 0.0±0.0 -0.3±0.2 -1.0±0.0 1.7±0.1 -2.0±0.0 -0.3

CAG∪[1,8,2] ECDG0
0.0 0.0±0.0 -0.2±0.1 -1.8±0.1 0.0±0.0 0.9±0.1 -0.2

CAG∪[1,8,2] ECDG0
0.4 0.0±0.0 0.0±0.0 -1.4±0.1 0.0±0.0 1.0±0.0 -0.1

CAG∪[1,8,2] ECDG0
0.8 0.0±0.0 -0.3±0.1 -1.4±0.1 0.0±0.0 0.9±0.1 -0.2

CAG∪[1,8,2] ECDG1
0.4 0.0±0.0 -1.9±0.0 -0.1±0.1 0.0±0.0 -2.0±0.0 -0.8

CAG∪[1,8,2] ECDG1
0.8 0.0±0.0 -2.0±0.0 0.0±0.0 0.0±0.0 -2.0±0.0 -0.8

CUG∪[1,8,2] ECDG0
0.0 0.1±0.0 0.0±0.0 -3.3±0.1 1.2±0.1 1.0±0.0 -0.2

CUG∪[1,8,2] ECDG0
0.4 0.4±0.1 0.0±0.0 -2.7±0.1 1.2±0.1 1.0±0.0 0.0

CUG∪[1,8,2] ECDG0
0.8 0.0±0.0 -0.6±0.1 -2.9±0.1 1.3±0.1 1.0±0.0 -0.2

CUG∪[1,8,2] ECDG1
0.4 0.0±0.0 -1.0±0.0 -0.1±0.1 1.1±0.1 0.9±0.1 0.2

CUG∪[1,8,2] ECDG1
0.8 0.0±0.0 -1.1±0.0 -0.2±0.1 1.2±0.1 0.9±0.1 0.1

SCDG∪[1,8,2] ECDG0
0.0 0.2±0.1 0.0±0.0 -2.0±0.0 2.0±0.0 1.0±0.0 0.2

SCDG∪[1,8,2] ECDG0
0.4 0.3±0.1 0.3±0.1 -1.4±0.1 2.0±0.0 1.0±0.0 0.4

SCDG∪[1,8,2] ECDG0
0.8 0.1±0.0 -0.3±0.1 -2.3±0.1 1.1±0.0 -0.2±0.2 -0.3

SCDG∪[1,8,2] ECDG1
0.4 0.0±0.0 -0.2±0.1 0.0±0.0 1.6±0.1 0.6±0.1 0.4

SCDG∪[1,8,2] ECDG1
0.8 0.0±0.0 -0.3±0.1 -0.1±0.1 1.4±0.1 -0.1±0.2 0.2
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Table 4.3: Predictive Capability of the clustering results based on combined structural
and evolutionary dependency graphs using the weighted union operation ∪[1,8,2] for

JEdit at relevant architecture changes.

JEdit Txn
4630

Txn
4678

Txn
5114

Txn
5225

Txn
7129

Average

# moved classes 4 8 3 2 6

CIG 0.0±0.0 -3.5±0.1 0.0±0.0 0.0±0.0 1.0±0.0 -0.5
CAG -3.1±0.2 -3.8±0.3 2.0±0.0 0.4±0.1 0.7±0.1 -0.8
CUG -2.6±0.3 -2.1±0.2 0.5±0.4 1.5±0.2 0.9±0.1 -0.4
SCDG -2.8±0.3 -1.4±0.1 -0.4±0.4 1.7±0.1 0.9±0.1 -0.4

ECDG0
0.0 0.0±0.0 -3.2±0.2 -0.6±0.1 0.0±0.0 1.0±0.0 -0.6

ECDG0
0.4 0.0±0.0 -3.9±0.1 -2.0±0.0 0.0±0.0 1.0±0.0 -1.0

ECDG0
0.8 0.0±0.0 -3.5±0.1 -2.0±0.0 0.0±0.0 1.0±0.0 -0.9

ECDG1
0.4 0.0±0.0 -1.0±0.0 -2.0±0.0 0.0±0.0 0.2±0.1 -0.6

ECDG1
0.8 0.0±0.0 -0.8±0.1 -2.0±0.0 0.0±0.0 0.6±0.1 -0.4

CIG∪[1,8,2] ECDG0
0.0 0.0±0.0 -3.3±0.1 -0.5±0.1 0.0±0.0 0.9±0.1 -0.6

CIG∪[1,8,2] ECDG0
0.4 0.0±0.0 -2.8±0.2 -1.7±0.1 0.0±0.0 0.9±0.0 -0.7

CIG∪[1,8,2] ECDG0
0.8 0.0±0.0 -2.1±0.1 -1.7±0.1 0.0±0.0 1.0±0.0 -0.6

CIG∪[1,8,2] ECDG1
0.4 0.0±0.0 -1.2±0.1 -1.9±0.1 0.0±0.0 1.0±0.0 -0.4

CIG∪[1,8,2] ECDG1
0.8 0.0±0.0 -2.0±0.1 -2.0±0.0 0.0±0.0 0.9±0.0 -0.6

CAG∪[1,8,2] ECDG0
0.0 0.0±0.0 -1.1±0.2 0.6±0.1 0.8±0.1 0.8±0.1 0.2

CAG∪[1,8,2] ECDG0
0.4 0.0±0.0 -4.1±0.4 0.0±0.0 -0.1±0.1 0.9±0.1 -0.7

CAG∪[1,8,2] ECDG0
0.8 0.0±0.0 -3.4±0.1 -1.0±0.0 0.0±0.1 0.1±0.1 -0.8

CAG∪[1,8,2] ECDG1
0.4 0.0±0.0 -0.2±0.1 -1.0±0.1 0.8±0.1 0.0±0.0 -0.1

CAG∪[1,8,2] ECDG1
0.8 0.0±0.0 -3.4±0.4 1.5±0.3 0.3±0.1 0.2±0.1 -0.3

CUG∪[1,8,2] ECDG0
0.0 -0.7±0.1 -2.8±0.2 -1.5±0.2 -1.2±0.1 0.9±0.0 -1.1

CUG∪[1,8,2] ECDG0
0.4 -0.7±0.1 -1.4±0.1 -2.0±0.0 0.7±0.1 0.3±0.1 -0.6

CUG∪[1,8,2] ECDG0
0.8 -0.8±0.1 -3.3±0.1 -2.9±0.1 1.4±0.1 -1.3±0.1 -1.4

CUG∪[1,8,2] ECDG1
0.4 -2.6±0.3 -2.2±0.2 1.5±0.2 1.1±0.2 0.9±0.0 -0.3

CUG∪[1,8,2] ECDG1
0.8 -2.9±0.3 -1.4±0.1 -2.9±0.1 1.2±0.2 1.0±0.0 -1.0

SCDG∪[1,8,2] ECDG0
0.0 -0.6±0.1 -3.4±0.3 -1.9±0.2 -1.1±0.1 1.0±0.0 -1.2

SCDG∪[1,8,2] ECDG0
0.4 -0.8±0.1 -1.7±0.1 -1.9±0.1 1.0±0.1 0.6±0.1 -0.6

SCDG∪[1,8,2] ECDG0
0.8 -0.8±0.1 -2.9±0.2 -2.8±0.1 1.2±0.2 0.6±0.1 -1.0

SCDG∪[1,8,2] ECDG1
0.4 -2.9±0.3 -1.8±0.1 1.8±0.1 1.4±0.1 1.0±0.0 -0.1

SCDG∪[1,8,2] ECDG1
0.8 -2.8±0.3 -2.2±0.1 -3.0±0.0 1.2±0.2 1.0±0.0 -1.2
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graphs, one cannot determine a best candidate because the results are too inconsis-

tent. In general, the structural graphs seem to perform slightly better than the evolu-

tionary graphs: The average Predictive Capability intervals are for Azureus [−0.9, 0.2]

(structural) and [−1.0,−0.6] (evolutionary), and for JEdit [−0.8,−0.4] (structural) and

[−1.0,−0.4] (evolutionary). The results for the combined graphs in both projects are

again too inconsistent to be assessed.

Nevertheless, the weak findings of this second study match with the findings from the

study on architecture recovery:

• CUG and SCDG are the most reliable structural graphs.

• Structural graphs produce slightly better clustering qualities than evolutionary

graphs.

Hence, the clustering results might show similar behaviour for both applications in

general. Although the latest results are not able to really strengthen the evidence of the

assumed hypotheses further, they neither contradict them in any way. If the experiment

included more projects, this would probably lead to more and stronger findings.



Chapter 5

Discussion

The experiments of this thesis provide diverse insights in the clustering capabilities of

structural and evolutionary data. This chapter summarizes and discusses these findings

and furthermore gives an outlook on possible future research.

5.1 Contributions

A first important contribution of this work is the development of a reliable experimental

environment for software clustering. The Software Clustering Analysis Suite (SCAS)

bundles a flexible graph based data model, a successful software clustering algorithm,

and a dependable evaluation method with controlling and analyzing features. This envi-

ronment design enables to conduct all experiments of this study. Moreover, it provides

a good infrastructure for further studies because it can be easily extended with other

data sources, clustering algorithms, or evaluation methods.

The study on architecture recovery, which is a major application of software clustering,

yields some strong findings. The first clustering experiment compares single structural

and evolutionary graphs directly. It shows that the evolutionary data produces competi-

tive clustering results in many cases: The best average evolutionary clustering quality is

reached with a filtering by confidence (ECDG0
0.4). The quality of this clustering is about

as high as the quality of the structural graphs based on inheritance and aggregation

information (CIG and CAG). Only taking usage dependencies into account (CUG and

SCDG) results in better clustering qualities. Nevertheless, for two of the six projects

the best evolutionary qualities even reach the best structural quality. For one project,

though, the clustering based on evolutionary clustering does not work reasonably well.

A closer look at the difference between structural and evolutionary dependency graphs
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shows that structural graphs are more dense while evolutionary graphs provide a better

dependency quality. Due to the sparse dependencies, clustering with only evolutionary

data is supposed to be more fragile than clustering with only structural data.

Moreover, adding evolutionary data to the structural data improves structural cluster-

ing quality clearly. Already a data integration with the non-weighted union operation

shows this effect. Using a weighted union operation that emphasizes twice occurring de-

pendencies (structural and evolutionary dependencies) enhances the quality even more.

A weight optimization finally is able to improve the result slightly again. Note that a

quality enhancement is reached in every project, even if the evolutionary dependency

data is weak.

The weight optimization experiment allows to compare the following three groups of

edges: structural-only, twice occurring, and evolutionary-only edges. Every group con-

tributes helpful information for clustering because excluding one of them leads to inferior

clustering results in the experiment. Among the three groups of edges twice occurring

edges are most important while structural-only edges tend to be as important as the

evolutionary-only edges.

All in all, the results confirm Hypothesis 1 and Hypothesis 2 for the application of

architecture recovery and the examined projects: Evolutionary data is valuable for soft-

ware clustering and is able to improve current software clustering approaches based on

structural data.

The second study addresses the software clustering application of architecture improve-

ment. This work introduces a novel evaluation method to assess to what extent a

clustering algorithm is able to predict architecture changes. Since the method is based

on refactoring detection and needs not to employ experts, it is totally automatable. But

the experiments based on that method show that only very few transactions among the

thousands examined ones include relevant architecture changes. This small data base

is not enough to detect similarly strong findings as in the first study. Nevertheless, the

results of the second study tend to confirm the results of the first study: CUG and

SCDG are the best structural data sources. Furthermore, the two graphs appear to

yield better results than the single evolutionary graphs. It cannot be said to what ex-

tent a combination of data sources is successful. Finally, the two hypotheses can neither

be confirmed nor discarded in the application of architecture improvement because of

statistical uncertainty.
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5.2 Threats to Validity

The results of a study are at first only valid for the examined subjects, here, for the

sample software projects in a certain version. If the findings cannot be applied to a

larger context, their relevance is limited. The current study is based on six different

software projects that cover a wide range of application types, however restricted to

Java projects with less than 1000 classes. Thus, the results of the present study can be

considered an indication for general Java projects and still a weak indication for other

software projects.

The clustering algorithm Bunch is a very important part of the experiment but is not the

examined subject. Improving the clustering results with Bunch does not automatically

mean that this is also possible for other clustering algorithms in the same way. In fact,

the whole data model and the data source integration mechanism has to be adapted when

using another algorithm. But the example of Bunch indirectly showed the increased

data quality for software clustering integrating structural and evolutionary data sources.

Probably other algorithms are also able to use this data quality improvement to produce

better clustering results.

Evaluations in the domain of software clustering are always difficult because no simple

natural quality criterion for software decompositions exists. In Section 2.5 the author

discussed internal and external assessment methods and chose an appropriate state-of-

the-art evaluation method based on the MoJoFM metric and the factual architecture as

the reference decomposition. The main problems of this technique are that the factual

architecture might not be a good reference decomposition and that MoJoFM might not

be an appropriate quality measure. At least, if these problems occurred only in one or

two of the projects, the number of six projects would help to restrict their impact.

The present study focuses on two main use cases of software clustering: architecture

recovery and architecture improvement. The employed evaluation technique, however,

only provides reliable results for the use case of architecture recovery. Thus, the results

are at first only valid for this application. Nevertheless, it is plausible that other use

cases of software clustering would also profit from the applied approach of integrating

structural and evolutionary dependencies.

Moreover, the study only showed that it is possible to improve the clustering results by

a certain setup, but it cannot make any statements about to what degree the potential

of the data sources is already used. It may be possible to get much better results

in a different setup (e.g., with a different data integration method or other clustering

parameters).
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5.3 Related Work

This thesis adopts and extends recent approaches on integrating software clustering

and software evolution (Section 1.3). The basic idea of using evolutionary information

for clustering software artifacts was already introduced by Ball et al. [9]. They model

the data as a dependency graph similar to the one used in the current study. Further

related approaches use clustering on evolutionary data to detect flaws in the software

architecture [64] or to improve a visualization of version archives [65, 66]. But yet no

study has compared the quality of an evolution based software clustering approach to

a state-of-the-art structural based software clustering approach like it is done in the

current study.

Andritsos and Tzerpos [3, 4] came up with the idea of enriching structural data with

non-structural data for software clustering. Among the non-structural data, they use

file ownership and file timestamp—two information sources that are evolutionary to

some extent. Furthermore, Wierda et al. [72] combine two version of the same software

project to improve the software clustering. This is also a strategy that uses some kind

of evolutionary information. Nevertheless, none of these integration approaches use the

rich evolutionary data source of change transactions. The present work is the first one

that successfully integrates this data source into a structural based software clustering

approach.

Since single sample projects might depart significantly from the average case, it is im-

portant to examine enough projects. While many studies only employ one or two

sample projects (e.g., [3, 42, 43, 49, 56, 62, 64, 71]), only a few use five or more

projects [48, 50, 74]. The present study uses six sample software projects. Further-

more, a broad spectrum of projects in terms of software type and size is necessary to

guarantee a certain generalizability of the results. Obviously, such a spectrum can only

be provided by the more extensive studies like the one at hand. A minor restriction of

the current study, however, is the project size limit of 1000 classes (JEdit is the largest

sample with 840 classes). But only few other studies cluster much more software ar-

tifacts (e.g., up to 3900 [11] or 3266 [74]). Most studies vary a certain part of their

experimental design depending on what they aim to assess: the data source [4, 72], the

clustering algorithm [50, 70], the evaluation method [48, 71], or several parts [5, 46].

A set of different evaluation methods is also employed to increase the reliability of the

results [46, 50]. Since the present study aims to compare different data sources, the kind

of data source is varied as the independent variable. Moreover, the data sources are

assessed in two use cases of software clustering.
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Summing up, the presented study is

• the first that systematically compares structural and evolutionary data sources for

software clustering,

• the first that integrates rich evolutionary data into a state-of-the-art clustering

approach based on structural data, and

• even one of the most extensive studies in the domain of software clustering in

general.

5.4 Future Research

To improve the generalizability of the results, it would be desirable to extend the study to

more projects as well as to other programming languages and paradigms. Additionally,

it would be also interesting to investigate closed source projects. Furthermore, the effi-

ciency of the preprocessing and clustering has to be increased, for example, by avoiding

the manual compilation of the source code or by using a faster clustering algorithm.

It would be very interesting to repeat the study with a different clustering algorithm and

an adapted data model, especially with the feature-based LIMBO algorithm as discussed

in Section 2.4.2. The results can be compared to the present study and the question

might be answered which of the approaches is more suitable to integrate structural and

evolutionary data.

But also the potential of the current approach might not be exhaustively used. Varying

the diverse parameters systematically or trying other data integration methods might

improve the clustering quality even more. A first step in this direction is the opti-

mization of the weight parameters of the weighted union operation as performed in

Section 3.4.3. Other parameters that would be promising to optimize are, for example,

the threshold values of the ECDG, further (weighted) union operations among struc-

tural and evolutionary graphs, or advanced edge weighting schemes for the dependency

graphs. Such optimizations, however, need a faster clustering algorithm and/or a more

elaborate optimization strategy.

Finally, other evolution based or non-structural data types that might be able to also

improve structural clustering results exist: for example, the file ownership information

(as already used in [3, 4]), class dependencies through bugs or through mail communi-

cation. Integrating all these data types into one data structure might provide a very
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rich data base for software clustering. As the number of parameters increases with ev-

ery additional data source, a good parameter optimization strategy would be necessary

again.

5.5 Conclusion

The results of the present study show that evolutionary information from version archives

is often able to provide a sufficient data set for a high quality software clustering and,

moreover, is capable to improve a clustering result based on extensive structural infor-

mation. Thus, the study clearly identifies software evolution as a valuable data source

for software clustering.

Furthermore, the data-centered experiments demonstrate how important the choice and

processing of data sources in the domain of software clustering is. The present re-

sults suggest that researchers will be able to improve the quality of software clustering

considerably by further extending the integration of structural and non-structural data

sources.
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