Distributed Reasoning with Conflicts in an Ambient Peer-to-Peer Setting

Antonis Bikakis, Grigoris Antoniou
Institute of Computer Science, FORTH, Greece

Artificial Intelligence Methods for Ambient Intelligence

Aim of this Study
- An algorithm for reasoning with distributed rule theories in an ambient setting
- The algorithm
 - models the participating agents as nodes in a P2P system
 - takes into account some special characteristics of context knowledge and ambient agents
 - considers the potential conflicts that may arise during the integration of the distributed knowledge
Talk Outline

- Context Knowledge and Ambient Agents
 - Notion of Context
 - Special Characteristics of Ambient Agents
 - Challenges of Reasoning in an Ambient Setting
- Related Work
- Algorithm Description
 - General Approach
 - Problem Statement - Definitions
 - Steps of the $P2P_{DR}$ Algorithm
 - The Algorithm in Action
 - Algorithm Properties
- Future Work

Notion of Context

- Context can be described as

 "... any information that can be used to characterize the situation of an entity. An entity is a person, place or object that is considered relevant to the interaction between a user and an application, including the user and application themselves." [Dey and Abowd, 1999]

- Context Characteristics
 - Multiple heterogeneous formats
 - Dynamic
 - Unknown
 - Ambiguous
 - Imprecise
 - Erroneous
Ambient Agents

- Diverse goals, experiences and perceptive capabilities
- Distinct vocabularies
- Different levels of sociality
- Dynamic behavior
 - Nodes join and leave the system randomly
 - An ambient agent is not able to know a priori all other entities that are present at a specific time instance
 - It cannot communicate directly with all other ambient agents

Challenges

- Reasoning with the highly dynamic and ambiguous context
- Managing the potentially huge piece of context data, in a real-time fashion, taking into account the restricted computational, storage and communication capabilities of some mobile devices
- Collective intelligence, by supporting information sharing, and distributed reasoning between the entities of the ambient environment.

Centralized reasoning is not a good solution, as it is too costly and cannot handle the system dynamics
Talk Outline

- Context Knowledge and Ambient Agents
 - Notion of Context
 - Special Characteristics of Ambient Agents
 - Challenges of Reasoning in an Ambient Setting
- Related Work
 - Algorithm Description
 - General Approach
 - Problem Statement - Definitions
 - Steps of the P2P_DS Algorithm
 - The Algorithm in Action
 - Algorithm Properties
- Future Work

Reasoning in PDMS (1/2)

- First Order Logic Interpretations of P2Ps
 - proposed by [Bernstein et al., 2002; Halevy et al., 2003]
 - problems regarding modularity, generality and decidability
- Semantics based on Epistemic Logic
 - proposed by [Calvanese et al., 2004]
 - does not deal with inconsistencies
- Autoepistemic Semantics
 - proposed by [Franconi et al., 2003]
 - formalizes local inconsistency
 - guarantees that a locally inconsistent database base will not render the entire knowledge base inconsistent
Reasoning in PDMS (2/2)

- **Non-monotonic Epistemic Logic Semantics**
 - proposed by [Calvanese et al., 2005]
 - enables isolating local inconsistency
 - handles peers that provide mutually inconsistent data

- **Propositional P2P Inference System**
 - proposed by [Chatalic et al., 2006]
 - detects mutually inconsistent data and reasons without them

- **Common Deficiencies**
 - Conflicts are not actually resolved; they are rather isolated
 - Trust is not part of the model
 - In most cases, the participating peers share a common alphabet

Non-monotonic Reasoning in MCS

- **Rule-based MCS with Default Negation**
 - proposed by [Roelofsen & Serafini, 2005]

- **Contextual Default Reasoning**
 - proposed by [Brewka et al., 2007]
 - models bridging rules between different contexts as default rules
 - closer to implementation due to the well-studied relation between Default Logic and Logic Programming
 - does not provide reasoning algorithms, leaving some practical issues unanswered
Talk Outline

- Context Knowledge and Ambient Agents
 - Notion of Context
 - Special Characteristics of Ambient Agents
 - Challenges of Reasoning in an Ambient Setting
- Related Work
- Algorithm Description
 - General Approach
 - Problem Statement - Definitions
 - Steps of the P2P_DR Algorithm
 - The Algorithm in Action
 - Algorithm Properties
- Future Work

Our Approach

- A P2P rule-based model that captures
 - local knowledge
 - bridging rules
 - trust
- Why P2P?
 - Each different peer independently collects and processes in its own way the available context information.
 - Each peer may not have (immediate) access to all information sources.
 - The peers share their knowledge through messages with their neighboring nodes.
 - Each peer may not trust all the other peers at the same level.
 - Peers join and leave the system randomly.
Definitions

- We assume a peer-to-peer system P as a collection of peer local theories $P = \{P_i\}, i=1,2,...,n$
- Each peer has a proper distinct vocabulary V_{P_i} and a unique identifier i.
- Each local theory is a set of rules that contain only local literals $r_i: a_{i1}, b_{i2}, ..., k_{i} \rightarrow x_i$
- Each peer also defines mappings that associate local literals with literals from the vocabulary of other peers (remote literals): $m_i: a_{i1}, b_{i2}, ..., z_{ik} \rightarrow x$

Problem Statement

- Given a peer-to-peer system P and a query about a literal x_i issued at peer P_i, find the truth value of x_i considering P_i’s local theory, its mappings and the theories of other system nodes.
- We assume that the local theories are consistent,
- ...but this is not necessarily true for the unification of the system peer theories (local rules and mappings).
- The inconsistencies result from interactions between local theories and are caused by mappings.
Steps of the **P2P_DR** Algorithm (**1/3**)

- **Step 1**
 - Use P_i's local theory to prove x_i.

- **Step 2**
 - Collect P_i's local and mapping rules that support x_i.
 - For each such rule, check the truth value of the literals in its body. For each local / remote literal, issue similar queries (*recursive calls of the algorithm*) to P_i (local literals) or to the appropriate P_i's acquaintances (remote literals).
 - To avoid *circles*, before each new call, check if the same query has been issued before during the same call of the algorithm.
 - Build the *supportive set of x_i*; this contains the 'strongest' set of mapping rules (defined either locally or remotely) that can be used to prove x_i in the absence of contradictions.

Steps of the **P2P_DR** Algorithm (**2/3**)

- **Step 3**
 - Collect P_i's local and mapping rules that support $\neg x_i$ (contradict x_i).
 - In the same way with Step 2, build the *supportive set of $\neg x_i$ (conflicting set of x_i)*.

- **Step 4**
 - Compare the *supportive* with the *conflicting set of x_i*.
 - If the *supportive set* is stronger set than the *conflicting set*, return *Yes* and terminate. Otherwise, return *No* and terminate.
Steps of the P2P_DR Algorithm (3/3)

- How to compare two mapping sets
 - Each peer defines an order of the system peers, based on the trust it has on each one of them. According to this ordering, for two mapping rules, \(m_k \) and \(m_l \), \(m_k \) is stronger than \(m_l \) from \(P_i \)'s viewpoint if \(P_k \) precedes \(P_l \) in \(P_i \)'s order.
 - The strength of a mapping set is determined by the strength of the weakest rule in this set.

Assume that we issue a query about \(x_1 \) to \(P_1 \).
Neither x_1 nor $\neg x_1$ derive from P_1's local theory.

r_{11} is a supportive rule for x_P, which has a_1 as its only premise.
r_{12} is a supportive rule for a_p, which has b_1 as its only premise.

m_{11} is a supportive rule for b_p, which has b_2 as its only premise.
b₂ belongs to P₁'s published theory, so P₁ queries P₂ about b₂

r₁₁ is a supportive rule for b₂, which has c₂ as its only premise. There is no supportive rule for c₂, so r₁₁ cannot be used to prove b₂
r_{23} is another supportive rule for b_2, which has f_2 as its only premise.

m_{23} is a supportive rule for f_2, which has f_5 as its only premise.
\[f_5 \text{ belongs to } \mathcal{P}_2 \text{'s published theory, so } \mathcal{P}_2 \text{ queries } \mathcal{P}_5 \text{ about } f_5 \]

\[\mathcal{P}_1 \]
\[a \rightarrow b \]
\[b_1 \rightarrow a \]
\[b_1 \Rightarrow b_2 \]

\[\mathcal{P}_2 \]
\[c_2 \rightarrow b_2 \]
\[d_3 \rightarrow \neg b_3 \]
\[f_3 \rightarrow b_3 \]

\[\mathcal{P}_3 \]
\[d_4 \Rightarrow d_3 \]
\[f_1 \Rightarrow f_2 \]

\[\mathcal{P}_4 \]
\[f_2 \]

\[\mathcal{P}_5 \]
\[g_5 \]

\[\mathcal{P}_6 \]
\[g_6 \]

\[\mathcal{P}_7 \]
\[k_7 \]

\[\mathcal{P}_8 \]
\[f_5 \]

\[\mathcal{P}_9 \]
\[g_4 \]

\[\mathcal{P}_{10} \]
\[k_4 \]

\[\mathcal{P}_{11} \]
\[d_4 \Rightarrow d_3 \]

\[\mathcal{P}_{12} \]
\[b_3 \Rightarrow b_2 \]

\[r_{13} \text{ is a supportive rule for } f_5, \text{ which has } g_5 \text{ as its only premise.} \]
$m_{3,2}$ is a supportive rule for g_5, which has g_6 as its only premise.

g_6 belongs to P_5’s published theory, so P_5 queries P_6 about g_6.
g_6 derives from P_6’s local theory

P_6 returns the answer Yes to P_5 about g_6 with an empty set of supportive mappings (it was proved locally)
P_3 returns the answer Yes to P_2 about f_2 with a supportive set $SS_{f2}=\{m_{21}\}$

P_2 returns the answer Yes for f_2 with a supportive set $SS_{f2}=(m_{11}, m_{21})$
P_2 builds an initial supportive set for b_2, $SS_{b_2} = \{m_{11}, m_{22}\}$

m_{24} is another supportive rule for b_2, which has b_2 as its only premise.
b_1 belongs to P_1's published theory, so P_2 queries P_1 about b_1

A cycle is detected, so P_2 abandons m_{24}
\(r_{22} \) is a conflicting rule for \(b_2 \), which has \(d_2 \) as its only premise.

\(m_{22} \) is a supportive rule for \(d_2 \), which has \(d_4 \) as its only premise.
d_4 belongs to P_4’s published theory, so P_5 queries P_4 about d_4

r_{41} is a supportive rule for d_4 which has k_4 as its only premise
m_{23} is a supportive rule for k_4, which has k_7 as its only premise

k_7 belongs to P_4's published theory, so P_4 queries P_5 about k_7
k_7 derives from P_7's local theory

P_1: $a \rightarrow x$
$d_1: b \rightarrow a$
$m_{11}: b_3 \Rightarrow b_1$

P_2: $c_1 \rightarrow b_1$
$d_2: d_3 \rightarrow \neg b_2$
$m_{12}: d_1 \Rightarrow d_2$
$m_{21}: f_1 \Rightarrow f_2$
$m_{24}: b_1 \Rightarrow b_2$

$SS_{b_2} = \{m_{11}, m_{22}\}$

P_3: $g_5 \rightarrow f_5$
$m_{31}: g_6 \Rightarrow g_5$

P_4: $k_4 \rightarrow d_4$
$m_{41}: f_4 \Rightarrow f_5$

P_5: $b_4 \Rightarrow b_5$
$m_{51}: g_6 \Rightarrow g_5$

P_6: $g_6 \Rightarrow g_5$
$m_{61}: g_6 \Rightarrow g_5$

k_7 derives from P_7's local theory

P_7: $k_7 \rightarrow g_7$
$m_{71}: f_7 \Rightarrow f_6$

P_5 returns the answer Yes to P_7 about k_7 with an empty set of supportive mappings (it was proved locally)

$SS_{k_7} = \{\}$

$SS_{b_2} = \{m_{11}, m_{22}\}$
P_4 returns the answer Yes to P_2 about d_3 with a supportive set

\[SS_{d_3} = \{m_{11}, m_{22}\} \]

P_2 returns the answer Yes for d_2 with a supportive set $SS_{d_2} = \{m_{41}, m_{22}\}$
P_2 builds the conflicting set of b_2: CS_{b_2} = \{m_{41}, m_{22}\}

\[\begin{align*}
P_1 & \quad \text{π}_{\pi_1} \quad a \rightarrow a \\
P_2 & \quad \text{π}_{\pi_2} \quad b_1 \rightarrow b' \\
CS_{b_2} & = \{m_{41}, m_{22}\} \\
SS_{b_2} & = \{m_{51}, m_{23}\}
\end{align*}\]

Assuming that P_2 trusts P_4 more than P_5, SS_{b_2} is not stronger than CS_{b_2}, so P_2 cannot prove b_2 and returns NO to the query issued by P_1.
Imagine the case that a new peer (P) joins the system, and P establishes a connection with the new peer through the mapping rule m.

\[P_1 \text{ returns successively NO for } b, a, \text{ and finally for } x_1 \]

\[P_1: a_1 \rightarrow x_1 \]
\[P_1: b_1 \rightarrow a_1 \]
\[m_1: b_2 \Rightarrow b_1 \]

\[P_2: c_2 \rightarrow b_2 \]
\[m_2: d_3 \Rightarrow d_3 \]
\[m_2: f_3 \Rightarrow f_3 \]
\[m_2: b_1 \Rightarrow b_2 \]

\[P_3: g_5 \rightarrow f_5 \]
\[m_3: g_6 \Rightarrow g_6 \]

\[P_4: k_4 \rightarrow d_4 \]
\[m_4: k_5 \Rightarrow k_4 \]

\[P_5: g_4 \rightarrow g_5 \]
\[m_5: k_6 \Rightarrow k_6 \]

\[P_6: g_4 \rightarrow g_5 \]
\[m_6: k_7 \Rightarrow k_7 \]

\[P_7: g_4 \rightarrow g_5 \]
\[m_7: k_5 \Rightarrow k_7 \]
m_{21} supports c_2, so rule r_{21} is now applicable

m_{21} has c_3 as its only premise, and P_2 issues a query about c_3 to P_3
c_2 derives from P_3's local theory, and P_3 returns $\text{Ans}_{c_2} = \text{Yes}$ with an empty supportive set.

P_2 returns the answer Yes for c_2 with a supportive set $SS_{c_2} = \{m_{21}\}$.

\[c_1 \rightarrow a \]
\[b_1 \rightarrow a \]
\[b_2 \Rightarrow b_1 \]

$SS_{b_2} = \{m_{41}, m_{22}\}$
$CS_{b_2} = \{m_{41}, m_{22}\}$

$SS_{b_2} = \{m_{51}, m_{23}\}$

$SS_{c_2} = \{m_{21}\}$

$CS_{c_2} = \{m_{41}, m_{22}\}$

$SS_{c_2} = \{m_{51}, m_{23}\}$

$\text{Ans}_{c_2} = \text{Yes}$
m_{2,2} is stronger than \{m_{4,1}, m_{2,2}\}, so SS_{b2} = \{m_{2,1}\}

Now SS_{b2} is stronger than CS_{b2} as m_{2,1} is stronger than \{m_{4,1}, m_{2,2}\}, and P_2 returns Ans_{b2} = Yes, with SS_{b2} = \{m_{2,1}\}
The algorithm is guaranteed to terminate.

The total number of messages that need to be exchanged for the evaluation of a single query is in the worst case \(O(n^2) \) (\(n \) is the total number of system nodes).

There is a defeasible theory that derives from the unification of the distributed theories and derives the same conclusions.
Talk Outline

- Context Knowledge and Ambient Agents
 - Notion of Context
 - Special Characteristics of Ambient Agents
 - Challenges of Reasoning in an Ambient Setting
- Related Work
- Algorithm Description
 - General Approach
 - Problem Statement - Definitions
 - Steps of the \textit{P2P_DR} Algorithm
 - The Algorithm in Action
 - Algorithm Properties
- Future Work

Future Work

- Extend the Algorithm to Support
 - Overlapping vocabularies
 - Defeasible Logic Local Theories
 - Non-Boolean queries
- Study Applications in the AmI Domain
 - Rules may represent ontological knowledge, policies, or regulations
Distributed Reasoning with Conflicts in an Ambient Peer-to-Peer Setting

Thank You!
Questions?

Artificial Intelligence Methods for Ambient Intelligence