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Abstract

This paper analyzes the distortions of (health) insurers’ benefit levels due to ad-
verse selection if individuals’ responsiveness to differences in contracts is heteroge-
neous. Within a discrete choice model with two risk types andimperfect competition
the following results are shown: In the pooling equilibrium, a positive correlation of
low risk and high responsiveness (e.g., younger individuals being both healthier and
faster to switch insurers than older individuals) increases the distortion of the uniform
benefit level if the share of low risks is small; if the share oflow risks is large, the
reverse holds, but only if the average level of responsiveness is high. In the separat-
ing equilibrium, a positive correlation increases the distortion of the contract for the
low risks, unless the number of insurers offering the contract for the high risks is very
small or a large share of the high risks chooses the contract designated for the low
risks. These results imply that the welfare effects of a policy intervention of making
individuals more responsive crucially depend on which risktypes’ responsiveness is
increased more. The results also have implications for the estimation of the level of
risk aversion and of the welfare effects of adverse selection.
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1 Introduction

Adverse selection in (health) insurance markets has recently attracted renewed attention,
as it has been observed that heterogeneity in other dimensions than risk may be of similar
importance as differences in risk and either mitigate or exacerbate the distortions caused
by adverse selection (Cohen and Siegelman 2010). Importantexamples for such additional
dimensions are risk aversion (Cutler et al. 2008), cognitive ability (Fang et al. 2008), switch-
ing costs (Handel 2013) or income (Johar and Savage 2012).

Yet another dimension that exhibits a considerable degree of heterogeneity is individuals’
general responsiveness to differences in the contracts offered by insurers. Some individuals
are rather attentive when buying insurance; these individuals respond even to small differ-
ences in contracts like additional benefits or price discounts. For others, a particular contract
has to yield considerably higher utility than all the other contracts before it is chosen with
high probability. For health insurance, one example of an observable variable that is corre-
lated with responsiveness is age: younger individuals usually belong to the first group, and
older individuals to the second.1 Since age is also a determinant of expected expenditures,
this would imply a positive correlation of low risk type and high responsiveness. Ericson
and Starc (2012b) have shown that such a correlation influences the effects of the modified
community rating regulation of the Massachusetts Health Insurance Exchange, and Bijlsma
et al. (2011) have shown that it alters the optimal design of arisk adjustment scheme.

So far it has neither been demonstrated empirically nor derived in a theoretical model how
a correlation of risk type and responsiveness affects the distortions caused by adverse se-
lection in the absence of such regulatory means.2 The general notion, however, seems to
be that a positive correlation of low risk and high responsiveness exacerbates the distortion:
if addressing the preferences of the low risks attracted many of these individuals (because
they are very responsive), this would increase the incentive to distort the contract. However,
this argument could also be reversed, i.e. argued that a negative correlation exacerbates the
distortion: if addressing the preferences of the low risks induced many of the high risks
to choose another insurer (if they were the ones who are very responsive), this would also
increase the incentive to distort the contract.

Within a discrete choice model with two unobservable risk types we show that either of
the two cases can occur: In the pooling equilibrium, a positive correlation increases the
distortion if the share of low risks is small; if the share of low risks is large, the reverse
holds, but only if the average level of responsiveness is high. In the separating equilibrium,
a positive correlation increases the distortion of the contract for the low risks, unless the
number of insurers offering the contract for the high risks is very small or a large share of
the high risks chooses the contract designated for the low risks.

These results have two main implications: First, from a policy perspective, they indicate
that the welfare effects of increasing individuals’ responsiveness by, e.g., providing easy

1See Ericson and Starc (2012b), who show that the higher premiums older individuals have to pay cannot
entirely be explained by higher costs, but are also due to thelower responsiveness of older individuals which
allows insurers to charge higher premiums.

2See also Einav et al. (2010, p. 333), who explicitly raise thequestion whether a correlation of the amount
of consumer search or consumer interest in plan switching and risk might affect competition.
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access to information about insurers’ offers (as with the government run websites for the
Health Insurance Exchanges in the U.S.), depend crucially on which of the two risk types’
responsiveness is increased more.

The second implication concerns the distortions in the separating equilibrium. Some studies
have used the set of contracts offered in such equilibria to estimate an underlying preference
parameter of risk aversion; they have also been used to determine an estimate of the wel-
fare losses caused by adverse selection.3 This study shows that using these contracts may
entail something akin to a ‘measurement error’, and that thesize of this measurement error
depends on the level of correlation. Ignoring this measurement error results in a downward
biased estimate of the level of risk aversion and of the welfare losses caused by adverse
selection.

We derive our results within a discrete choice model, namelythe (conditional or mixed)
logit. The logit model has been extensively used for empirical analyses of health insurance
choice;4 here it is used to capture different degrees of responsiveness in a theoretical model
of adverse selection.5

There are three important aspects of using this discrete choice model for a theoretical analy-
sis: First, it endogenizes whether a pooling or separating equilibrium occurs: if the average
level of responsiveness is low, the former, if it is high, thelatter equilibrium emerges.

Secondly, it allows to capture the fact that some individuals ‘make mistakes’ when choosing
their (health) insurance contract.6 If some individuals are less responsive to differences
in the contracts offered, they have a higher probability of making such a mistake. This
higher probability of choosing the ‘wrong’ contract can easily be depicted graphically by
introducing the concept of an ‘indifference curves area’. Such an ‘indifference curves area’
provides an intuitive understanding of the economic forcesdriving the additional distortions
caused by a correlation of risk type and responsiveness.

Thirdly, this discrete choice model relaxes the assumptionof a strong demand asymmetry
that is implicit in the studies which so far have analyzed health insurance choice under im-
perfect competition: Most of these studies consider a setting where – for the case of two
risk types – each insurer offers two contracts so that the incentive compatibility constraint is
satisfied; imperfect competition is then captured by a Hotelling-model.7 These models im-
ply the following strong asymmetry of demand responses: Consider a group of individuals
holding a contract from a particular insurer. A new contract, yielding slightly higher utility
than the contract they currently hold, would attract all these individuals, if offered by the
same insurer, but only a small share of them, if offered by a different insurer. This would be
a reasonable assumption if individuals were perfectly informed about all the offers of their
insurer, but not about those of the other insurers; it would also be reasonable if switching to

3See Einav et al. (2010) for an overview of such studies.
4See, e.g., Royalty and Solomon (1999), Harris et al. (2002),Keane (2004) and Ericson and Starc (2012a).
5The model is similar to the one employed by Lorenz (2013), who– in a setting without heterogeneity in

responsiveness – has examined the impact of imperfect competition on the effectiveness of a risk adjustment
scheme.

6See Handel and Kolstad (2013) and Sinaiko and Hirth (2011) for empirical evidence.
7See, e.g., Biglaiser and Ma (2003), Jack (2006), Olivella and Vera-Hernandez (2007) and Bijlsma et al.

(2011).
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another insurer incurred much higher transaction costs (like filling out an application form)
than switching to another contract of one’s current insurer. However, with more and more
individuals using the internet, it seems more appropriate to consider getting informed about
(and switching to) an alternative contract from either one’s current or from a different in-
surer as equally difficult (or easy).8 We therefore relax the assumption of the strong demand
asymmetry, and we do that in the easiest way possible in that we assume that each insurer
offers only one contract.

We will present the model in the way that the risk the individuals face is to develop an
illness which requires to be treated. All individuals are obliged to buy health insurance,
where each insurer offers a benefit level and charges a premium. We thus analyze benefit
level-premium-bundles and present the results graphically in a benefit-premium-diagram.9

The model and all results can, however, easily be transferred into the premium-deductible-
space or income when sick-income when healthy-space (Rothschild and Stiglitz 1976); the
results are therefore not confined to a health insurance setting.

Also, we will present the model under the assumption that both the risk type and the level
of responsiveness are unobservable (at the individual level). A different setting to which the
model applies, is that risk type and responsiveness are observable, but that insurers are not
allowed to charge type-specific premiums because of community rating.

The remainder of this paper is organized as follows: In Section 2 we present the model, in-
troduce the concept of the ‘indifference curves area’ and discuss the three types of equilibria
that can occur (a pooling equilibrium and two types of separating equilibria). The impact of
a correlation of risk type and responsiveness on the poolingequilibrium is analyzed in Sec-
tion 3, and on the separating equilibrium in Section 4. In Section 5 the policy implications
of the results and some of the assumptions are discussed. Section 6 concludes.

2 The Discrete Choice Model

2.1 Basic model

Each individual may suffer from an illness that occurs with probabilityp. If it occurs, utility
changes byv(m), wherem is the medical services (measured in monetary terms) provided
by an insurer, who in return charges a premiumR. v(m) is increasing at a decreasing
rate, i.e.v′(m) > 0 and v′′(m) < 0; the efficient level ofm is implicitly defined by
v′(mFB) = 1. There are two unobservable risk typesr = L,H, with pL < pH ; the share
of L-types isλ. Individuals’ preferences are therefore given by

u = prv(m)−R. (1)

As already stated in the introduction, a different (and may be more traditional) representa-
tion of preferences would be

u = prv(ys) + (1− pr)v(yh), (2)
8E.g., for Massachusetts, Ericson and Starc (2013) report that most individuals enrolled through the Health

Insurance Exchange’s website.
9We therefore adopt the representation of preferences of Zweifel et al. (2009), chapter 7.
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with ys = y −D − R andyh = y −R, whereys represents income when sick,yh income
when healthy,y initial income, andD the deductible.10 All results could just as well be
derived inys-yh-space using (2), but in this paper we will refer to the representation of
preferences as given by (1) and depict all results inm-R-space (as in Zweifel et al. (2009),
chapter 7).

There aren insurersj, each offering a contract{mj , Rj}. Individual i’s utility when choos-
ing an insurerj not only depends on this benefit-premium-bundle, but also onan insurer
specific utility componentεij , which captures all the influences on the choice of an insurer
that are independent ofm andR, like, e.g., perceived friendliness of personnel, location or
which insurer was recommended by family and friends; it may,however, also be unfounded
and thus represent ‘decision mistakes’. The utility of an individual i that is of risk typer
and chooses insurerj therefore is

ui(m
j , Rj) = prv(mj)−Rj + εij . (3)

εij is distributed according to the extreme value distributionwith Var(εij) = σ2
s
π2

6 .11 There
are two unobservableσ-typess = C, I, with σC < σI ; the share of theσ-type C isη. For
individuals with a small variance ofεij , i.e. forσ-typeC, all the additional utility compo-
nentsεij are very similar and thus only have a small influence on which insurer is chosen.
Individuals ofσ-typeC are therefore very responsive to differences in the contracts offered,
i.e. ‘careful’ or ‘conscientious’ to choose the benefit-premium-bundle which provides the
highest utility. On the other hand, individuals ofσ-type I are rather ‘insensible’ to or ‘ig-
norant’ about (small) differences in the contracts; as for these individualsεij assumes large
(positive and negative) values, the additional utility components have a much larger impact
on the decision of which insurer to choose than for the individuals ofσ-typeC.12

Table 1: Sharesµrs of the four types of individuals; a positive correlation of low risk and
high responsiveness is captured byδ > 0.

pL pH

σC µLC = λη + δ µHC = (1− λ)η − δ η

σI µLI = λ(1− η)− δ µHI = (1− λ)(1− η) + δ 1− η

λ 1− λ

The shares of the four types of individuals,µrs, are given in Table 1, whereδ > 0 captures
the case of a positive correlation of low risk type and high responsiveness.13 Increasingδ
increases this positive correlation without altering the shares of the two risk types,λ and
(1 − λ), and the shares of the twoσ-types,η and(1 − η). Because these shares have an

10In this case the deductible would equal the (fixed) cost of treatmentmFB minus the indemnity,m, i.e.
D = mFB −m.

11Note that it is common to state the variance ofεij as a multiple ofπ
2

6
for the extreme value distribution,

see Train (2009, p. 24).
12A low level ofσ therefore corresponds to a high level of responsiveness, and a high level ofσ to a low level

of responsiveness.
13In the following, we will often use the term responsiveness instead of ‘general responsiveness to differences

in the contracts offered’, and the term positive correlation instead of ‘positive correlation of low risk type and
high responsiveness’.
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influence on the equilibrium, it is important to hold them constant when changing the level
of correlation.

Denote byV j
r the utility of contractj for an individual of risk typer without the additional

utility componentεij :
V j
r = prv(mj)−Rj .

An individual i (being of risk typer) will choose an insurerk, if this insurer provides the
highest level of overall utility, i.e. if

V k
r + εik > V l

r + εil ∀ l 6= k. (4)

With εij distributed extreme value, it follows that the probabilityof individual i choosing
insurerk is14

Prob(i choosesk|i is of risk typer andσ-types) =
e

V k
r

σs

∑
j e

V
j
r

σs

. (5)

Denote this probability byP k
rs; it is also insurerk’s market share among the group of indi-

viduals of risk typer andσ-types.

As it will turn out easier to provide an intuitive explanation of the results, we formulate
insurerk’s objective in terms of{mk, V k

L } instead of{mk, Rk}. Graphically, inm-R-
space, insurerk chooses an indifference curveIV k

L for the L-types associated with the
utility level V k

L , and a benefit levelmk along this indifference curve. For{mk, V k
L }, the

utility level of theH-type is

V k
H = V k

L + (pH − pL)v(mk). (6)

Normalizing the mass of individuals to one and assuming profit maximization, the objective
of insurerk is

max
mk ,V k

L

πk =
∑

r

∑

s

µrsP
k
rsπ

k
r , (7)

whereπk
r denotes insurerk’s profit per individual of risk typer, which is given by

πk
r = pLv(mk)− V k

L − prmk. (8)

2.2 The equilibrium with one risk type and oneσ-type

We briefly discuss the equilibrium with only one risk type andoneσ-type to introduce the
concept of the ‘indifference curves area’ and to show the impact of different levels ofσ.15

With only one risk type and oneσ-type, in this section we can skip the indicesr ands and
write insurerk’s objective as

max
mk,V k

πk = P kπk
i =

e
V k

σ

∑
j e

V j

σ

(
pv(mk)− V k − pmk

)
, (9)

14See Train (2009, p. 40).
15This section is similar to Lorenz (2013).
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whereπk
i is insurerk’s profit per individual. Using the property ofP k that its derivative

with respect toV k can be expressed in terms ofP k itself in a simple way,

∂P k

∂V k
=

P k(1− P k)

σs
, (10)

the FOCs for insurerk’s objective are

∂πk

∂mk
= P k

[
pv′(mk)− p

]
= 0 (11)

∂πk

∂V k
=

P k(1− P k)

σ
πk
i − P k = 0. (12)

Condition (11) yieldsv′(mk) = 1, somk is chosen efficiently. Condition (12) requires
πk
i = σ

1−P k . As it can be shown that the only equilibrium is a symmetric one, all insurers

choose the same level of utilityV j = V ∗ ∀j. Since, in this case,P k = 1
n

, in equilibrium
profit per individual is

πk
i =

n

n− 1
σ, (13)

and total profit per insurer is

πk =
σ

n− 1
. (14)

As is to be expected, both, profit per individual and total profit per insurer increase inσ
and decrease inn. If σ is small, offering a higher utility level yields a large increase in
the share of individuals, because individuals are responsive even to small differences in
contracts. This raises the incentive to offer a higher utility level, thereby reducing profits in
equilibrium.

If n is large, each insurer’s market share is small. Offering a higher utility level then attracts
individuals from a large ‘external’ market share1 − P k. This again raises the incentive to
offer higher utility levels, lowering profits. We refer to this as the ‘more competition due to
a larger external market share’-effect. This effect plays an important role in the separating
equilibrium.

2.3 Graphical representation of the equilibrium with one risk type and one
σ-type

As P k denotes the share of all individuals choosing insurerk and depends onV k, it can be
considered a distribution functionP k(V k). In equilibrium, when all the other insurers offer
the same level of utilityV ∗, this distribution function is given by

P k = P k(V k|σ, V ∗) =
e

V k

σ

e
V k

σ + (n − 1)e
V ∗

σ

. (15)

The shape of this distribution function and of the corresponding densityP k(1 − P k) 1
σ

is
shown in Figure 1 for two different values ofσ; (ignore the curves labeled ‘average’ and the
lettersA andB at this point).
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Figure 1: Distribution functionP k(V k|σ, V ∗) and density functionP k(1 − P k) 1
σ

with
n = 2 andV ∗ = 1 for σC = 0.05 andσH = 0.20 (solid curves); the dashed curve represents
the average of the two functions forη = 0.5.

This distribution function can be depicted in them-R-diagram that shows the equilibrium
where all insurers offer{m∗, V ∗} by drawing a shaded area around theIV ∗

-indifference
curve representing the corresponding densityP k(1−P k) 1

σ
, see Figure 2; the different levels

of darkness of this shaded area are a measure of the level of this density.16

A

IV k

IV ∗

pm∗ + n
n−1σ

n
n−1σ

m∗,mFB

R

m

B

Figure 2: Equilibrium contractB if there is one risk type and oneσ-type. The shaded area
around the indifference curveIV ∗

represents the densityP k(1− P k) 1
σ

of the distribution
functionP k.

Above the shaded area,P k and the corresponding density are zero. The density is also zero
below the shaded area, whereP k = 1. In Figure 2, a contract likeA (with V k considerably
belowV ∗) would therefore not attract any of the individuals; in Figure 1, this contract could

16As a technical detail, note that forn = 2, the maximum of this density is atV k = V ∗, but forn > 2, it is

atV k > V ∗. Therefore the ‘center’ of the shaded area is at theIṼ -indifference curve forn = 2, and somewhat
below it forn > 2. To simplify the exposition in the graphs, we will always draw the center of the shaded area
atV ∗.
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be, e.g., atV k = 0.5 (for σ = 0.05).17

For the following reason, this shaded area could be referredto as an ‘indifference curves
area’: Consider the case thatn = 2, so that there is only one other insurerl that offersV ∗.
Insurerk, to be chosen by individuali, has to offer a benefit-premium-bundle which yields
utility

V k > V ∗ + (εil − εik).

For some individuals,εil − εik > 0; the indifference curve insurerk must offer to make
such an individual indifferent between the two insurers is somewhere belowIV ∗

. On the
other hand, for those withεil − εik < 0, it suffices to offer an indifference curve above
IV ∗

. From the perspective of insurerk, i.e. taking into account all the additional utility
componentsεij , the shaded area therefore also represents the whole set of the indifference
curves of all individuals, or, an ‘indifference curves area’.18

2.4 The impact of the level ofσ on the equilibrium with one risk type and one
σ-type

The equilibrium is affected by an increase ofσ in two ways. First, the iso-profit line asso-
ciated with the equilibrium contract is shifted upward as less responsive individuals allow
insurers to charge a higher premium, see condition (13).

Secondly, the shaded area around theIV ∗
-indifference curve changes as follows: It is

straightforward to show that the distribution functionP k as stated in (15) increases for
V k < V ∗ and decreases forV k > V ∗; the corresponding density decreases aroundV ∗ and
increases in the tails; see Figure 1, where the distributionand density function are drawn
for σ = 0.05 andσ = 0.20. If σ increases, the distribution is spread out (over a wider
range); in Figure 2, this can be depicted by a wider (and lighter) shaded area around the
IV ∗

-indifference curve.

In the full model, each risk type consists of two unobservableσ-types, so from the perspec-
tive of an insurer, the average distribution and density functions are relevant. In Figure 1,
such an average is shown for an equal share of bothσ-types, i.e., forη = 0.5. If η increases,
the distribution gets closer to the one ofσ-typeC, which, for the density, implies an increase
at the mode and a decrease in the tails.

The changes in the shape of the average distribution and density functions are the reason
why the equilibrium depends on the level of correlation. If the correlation increases, the
share of theσ-typeC increases for theL-types and decreases for theH-types. Therefore,
the (average) density of theL-types increases at the mode and decreases in the tails, while
for theH-types, the reverse holds: the density decreases at the modeand increases in the
tails. We will now show how the equilibrium is affected by these changes, but before give
an overview of the types of equilibria that can occur.

17Of course, strictly speaking,P k > 0 ∀ V k, see (15), but above the shaded area, bothP k and the density
P k(1− P k) 1

σ
are extremely small and almost equal to zero.

18If there is more than one other insurer, the argument is the same if εil is replaced bymaxl 6=kεil.
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2.5 Types of equilibria with two risk types

If there are two unobservable risk types (and oneσ-type), three types of equilibria can be
distinguished:19 For low levels ofσ, (i.e., a high degree of responsiveness), a separating
equilibrium very similar to the Rothschild-Stiglitz-equilibrium emerges, whereH-types re-
ceive the efficient level ofm, while L-types receive a benefit levelm < mFB, so that
the H-types are (about) indifferent between the two contracts.20 For intermediate levels
of σ, the separating equilibrium is of a different type as both benefit levels are distorted,
i.e.,mL < mH < mFB. Finally, if the level ofσ is high enough, a pooling equilibrium
emerges, where all insurers offer the same benefit-premium-bundle.

We will analyze these three cases in turn: We begin with the pooling equilibrium in Sec-
tion 3. We consider the separating equilibrium where only the benefit level of theL-types
is at an inefficient level in Section 4.1; the separating equilibrium where both benefit levels
are distorted is analyzed in Section 4.2.

3 The pooling equilibrium

In the full model, there are two risk types and twoσ-types; the FOCs for this full model
are stated as conditions (24) and (25) in Appendix A.1. As in this section we consider the
pooling equilibrium where all insurers offer the same contract, in the following we will skip
the indexk. Also, to simplify the notation, we usẽσ to represent the harmonic mean ofσC
andσI :

σ̃ =
1

η
σC

+ 1−η
σI

. (16)

We first consider the case without correlation, i.e.δ = 0.

3.1 The equilibrium without correlation

In equilibrium, individuals are distributed equally amongthe insurers, so that for all market
shares we haveP k

rs = 1
n

. With δ = 0, the FOC with respect toVL, condition (24), then
simplifies to

λπL + (1− λ)πH =
n

n− 1
σ̃; (17)

as before, (average) profit increases inσ̃ and decreases inn. The FOC with respect tom,
condition (25), can be written as

λ
[
pLv′(m)− pL

]
+(1−λ)

[
pLv′(m)− pH

]
+

[
(1− λ)

n− 1

nσ̃
(pH − pL)v′(m)

]
πH = 0.

(18)

19See Lorenz (2013).
20See Zweifel et al. (2009), chapter 7.
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Solving (17) forπH by usingπL = πH + (pH − pL)m, and substituting in (18) yields

[
1−

n− 1

nσ̃

(pH − pL)2

p
λ(1− λ)m∗

]
v′(m∗) = 1. (19)

Because the bracket is smaller than one,v′(m∗) > 1, i.e.m∗ < mFB. As is to be expected,
the equilibrium level ofm decreases in the difference of the probabilities,pH − pL. It also
decreases inn and increases iñσ. The higher the average level of responsiveness (i.e. the
lower σ̃), the more distorted the benefit level is.

The equilibrium contract is shown in Figure 3: Each insurer offers utility VL (depicted by
the indifference curveIVL) and medical servicesm∗, which determine the utility level for
theH-types,VH . Average profit per individual equalsnσ̃

n−1 , represented by the distance of
contractB to the pooling zero profit linēp.

{

m

R

mFBm∗

B

B′

IVH

IVL

p̄R∗

pH

nσ̃
n−1

Figure 3: Equilibrium withπH < 0. For larger levels of̃σ, contractB is above thepH -line;
thenπH > 0.

Similar to Figure 2, one could draw the shaded areas around the two indifference curvesIVH

andIVL, representing the density of the two risk types. It would then be straightforward
to derive the demand responses of the two risk types if one of the insurers deviated from
contractB. Moving, e.g., along theIVH -indifference curve to the right would keep the
share ofH-types constant and decrease the share ofL-types as indicated by the darkness of
the shaded area aroundIVL.

The shaded areas also make clear why it is not possible to destroy the pooling equilibrium by
offering a contract likeB′, as would be the case under perfect competition, whereB′ would
be chosen by all theL-types and none of theH-types. With a low degree of responsiveness,
the shaded areas around both indifference curves are wide and overlap atB′, so that an
insurer offeringB′ instead ofB would only attract a few moreL-types and a few less
H-types. Because profit perL-type,πL, is considerably lower atB′ than atB (asB′ is well
below the iso-profit-line for theL-types throughB which has slopepL), offeringB′ does
not yield a higher total profit thanB.
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The economic forces determining the degree of the distortion of the equilibrium level of
m are easiest to interpret using condition (18), where each ofthe three summands captures
one of the forces: Withv′(m) > 1, the first bracket, representing theL-types, is positive:
Increasingm along theIVL-indifference curve increases profit perL-type, because the
indifference curve has a larger slope than the iso-πL-line for m < mFB.

The sign of the second bracket, representing theH-types, is indeterminate: increasingm
(alongIVL) may either increase or decrease profit perH-type, depending on whether the
IVL-indifference curve atm∗ has a larger slope than the iso-πH -line.

The last term captures the effect that increasingm (along IVL) increases the share of
H-types choosing this insurer,21 where this increase is given by the density of theH-types
at contractB; in condition (18), this density is captured by the last bracket [·]. Weighting
these additionalH-types byπH then yields the effect on total profit.22 For the equilibrium
level ofm, these three effects have to cancel out.

3.2 The dependence of the equilibrium on the level of correlation

Replacingµrs by the respective values as given in Table 1, the FOC with respect toVL,
solved forπH yields

πH =
n

n− 1
σ̃ − λ(pH − pL)m− δσ̃

(
1

σC
−

1

σI

)
(pH − pL)m, (20)

and shows that the direct effect of an increase of the correlation (keepingm constant) is a
decrease ofπH , and thereby also ofπL: If δ increases, the share of theσC-types among
theL-types increases, so that theL-types become more responsive (on average). As it is
theL-types, and not theH-types, insurers compete for, this creates an incentive to provide
higher utilityVL, which reduces profits.

The FOC with respect tom can be simplified to

λ
[
pLv′(m)− pL

]
+(1−λ)

[
pLv′(m)− pH

]
(21)

+(1− λ)
n− 1

nσ̃
(pH − pL)v′(m)

[
1−

δ

1− λ
σ̃

(
1

σC
−

1

σI

)]
πH = 0,

where the second line, except forπH , represents the density of theH-types. An increase of
δ decreases this density: Because theH-types, for a positive correlation, consist of a larger
share ofσI -types which are less responsive, increasingm does not attract as manyH-types
as before.

The overall effect of an increase inδ therefore depends on how the product of the density
of theH-types and the profit perH-type changes. For this overall effect we can state the
following:

21Increasingm along theIVL -indifference curve, of course keeps the number ofL-types choosing this
insurer constant.

22If πH > 0, insurers like to have moreH-types, so the third effect reduces the distortion; ifπH < 0,
insurers try to avoid being chosen by theH-types, which increases the distortion.
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Proposition 1. In the pooling equilibrium,

∂m∗

∂δ
T 0 for λ T 1

2
+

nσ̃

2(n − 1)(pH − pL)m
− δσ̃

(
1

σC
−

1

σI

)
. (22)

Proof. See Appendix A.2.

Condition (22) defines a threshold level ofλ below whichm decreases inδ. Consider first
the case thatδ = 0 (so that the last term in (22) can be ignored), i.e., that a positive (or
negative) correlation is introduced beginning from no correlation. The threshold level then
is larger than12 ; it is below 1 if σ̃ is small, and above 1, if̃σ is large.

If the share ofL-types is below the threshold,m decreases inδ. This is the case confirming
the general notion: If low risks are more responsive, this increases the distortion. However,
if λ is above the threshold, the reverse holds andm increases inδ. This case is at odds
with the general notion, but it may in fact be the more relevant of the two cases for health
insurance markets: IfH-types represent the chronically ill, andL-types are those who have
not yet developed this illness, then1− λ represents the prevalence rate: For most illnesses,
the prevalence rate is small, soλ will be close to one.23

The following intuitive explanation can be given for why therelationship of the correlation
and the distortion reverses if the share ofL-types is large, but only, if̃σ is small: We showed
that the distortion ofm depends on the level of correlation only via the product ofπH and
the density of theH-types, where the direct effect of an increase inδ is a decrease inπH
(see (20)), and a decrease of the density (see (21)). For the effect on the product of the two
terms, two cases have to be distinguished:

If πH > 0, the product of the two terms – which are both positive and decreasing – de-
creases. IfπH < 0, the product of the two terms is negative, and what is important then
is how the two factors change in relative terms. IfπH decreased relatively little, but the
density decreased relatively much, the product would increase (get closer to zero). This is
exactly the case if the share ofL-types is large and̃σ is small:

First, if λ is large, the difference in risk type specific profits,πL − πH = (pH − pL)m, is
large, becausem∗ increases inλ for λ > (1 +

√
pL/pH)−1, see (19).24 Secondly, ifσ̃ is

small, bothπL andπH are small, see condition (17). Therefore, the combination of a large
level ofλ and a low level of̃σ leads to the smallest profit perH-type (i.e., the largest loss);
then the decrease ofπH due to an increase ofδ is small in relative terms. In addition, ifλ
is large, the relative change of the density caused by an increase inδ is large: see the term
δ

1−λ
in the last brackets of (21).

So far we considered the case thatδ = 0. If δ > 0, the threshold level ofλ is smaller since(
1
σC

− 1
σI

)
> 0. If δ increases (above zero), the share ofσ-typeC among theL-types

increases: Because theL-types become more responsive,V A
L increases, which decreases

profits, so for a given level ofλ, πH is more negative. Therefore, withδ > 0, λ can be
somewhat smaller forπH to be still negative enough so that the change ofπH due to an
increase inδ is small in relative terms.

23E.g., for diabetes,1− λ is about 6% for most OECD countries; see OECD (2011).
24Note thatλ also enters̄p.
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To sum up: If the share ofL-types is large and the average responsiveness is high (i.e.σ̃ is
small),H-types entail a particularly large loss. Ifδ increases, the relative change of this loss
is small, but the relative change of the responsiveness of theH-types is large. Increasingm
then attracts a substantially lower share ofH-types which incur only slightly higher losses,
so in equilibrium, the distortion is reduced. This case seems to be the one most relevant
for health insurance markets: the share ofH-types is small, but eachH-type entails a large
loss.

3.3 Example

We will illustrate all results, both for the pooling and the separating equilibrium, with an
example, for which we assumen = 10, ∆σ = σI − σC = 0.05, pL = 0.2, pH = 1 and
v(m) = ln(m), so that one of the risk types is chronically ill andmFB = 1; varying σ̃ then
yields the three different types of equilibria.

For σ̃ = 0.20, a pooling equilibrium emerges. Assuming an equal share of both σ-types,
i.e.η = 0.5, then requiresσC = 0.178 andσI = 0.228.

0.40

0.45

0.50

0.55

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

λ = 0.9

λ = 0.5

λ = 0.7

mA

δ

Figure 4: Example withn = 10, ∆σ = σI − σC = 0.05, pL = 0.2, pH = 1 and
v(m) = ln(m). mA for σ̃ = 0.20 and−0.05 ≤ δ ≤ 0.05.

Figure 4 shows the equilibrium levels ofm as a function ofδ for three different values of
λ. Forλ = 0.5 andλ = 0.7, an increase in the correlation reducesm, but for a high level
of L-types (λ = 0.9), it increasesm.25 Table 2 shows the corresponding profits forL- and
H-types: In all three cases, profit perL-type decreases inδ because insurers – competing
more heavily for theL-types if they become more responsive – provide higher utility VL

by charging a lower premium. WhetherH-types incur a profit or a loss depends onλ: For
λ = 0.5, πH > 0, som decreases inδ. Forλ = 0.7, πH < 0, but is close to zero, so that the
decrease ofπH due to an increase inδ is large in relative terms. Finally, forλ = 0.9, πH is
negative enough, so that its decrease is small in relative terms and more than compensated
by the decrease in the density of theH-types.

25For λ = 0.9, δ is confined to the interval[−0.05, 0.05], so that allµrs ≥ 0; this is why we present the
results only for−0.05 ≤ δ ≤ 0.05.
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Table 2: Example withn = 10, v(m) = ln(m), pL = 0.2, pH = 1, η = 0.5, σC = 0.1781,
σI = 0.2281, for different values ofλ andδ.

λ δ m∗ πL πH

0.5 0.00 0.455 0.4040 0.0404

0.5 0.05 0.447 0.3967 0.0389

0.7 0.00 0.421 0.3233 -0.0136

0.7 0.05 0.418 0.3183 -0.0157

0.9 0.00 0.519 0.2638 -0.1517

0.9 0.05 0.529 0.2594 -0.1641

4 The separating equilibrium

In the separating equilibrium, two types of insurers can be distinguished. We denote insurers
offering a contract for theL-types as insurers of typeA, and insurers offering a contract for
theH-types as insurers of typeB. The number of insurers isnA andnB respectively, with
nA + nB = n. We denote insurer type byA andB, and not byL andH, because the
contracts offered by insurers of typeA, although designated for theL-types, may be chosen
by both risk types; the same applies to the contracts offeredby insurers of typeB.

Because insurers of typeB offer a contract designated for theH-types, we express their
objective in terms of{V B

H ,mB} instead of{V B
L ,mB}. The FOCs for the two types of in-

surers are explicitly stated as conditions (24)-(27) in Appendix A.1. In addition, as insurers
can decide whether to be of typeA or typeB, the following profit equality condition,

πA =
∑

r

∑

s

µrsP
A
rsπ

A
r =

∑

r

∑

s

µrsP
B
rsπ

B
r = πB , (23)

has to be satisfied. This condition implicitly definesnA andnB. However, sincenA and
nB have to be integer, it is only an approximation. As it is not important for deriving the
results, we refrain from elaborating on a formula that determines whethernA as given by
(23) has to be rounded up or off.26

Because there is an intuitive graphical derivation for why the impact of a correlation of risk
type and responsiveness in general is ambiguous for the separating equilibrium, we focus
on this graphical derivation and only refer to the FOCs to confirm the results. We begin
with the case of a low level of̃σ, so that only the benefit level of theL-types is distorted
(Section 4.1); the case of an intermediate level ofσ̃ where both benefit levels are distorted
is analyzed in Section 4.2.

26Note that the requirement ofnA andnB to be integer can, for some parameter settings, cause the non-
existence of an equilibrium: For some values ofnA andnB , it may be profitable for an insurer of typeB to
enter the market for theL-types and become an insurer of typeA; but after the new ‘equilibrium’ has been
attained, whereπA

i is decreased andπB
i increased (because the increase ofnA increases competition among

insurers of typeA, while the decrease ofnB decreases competition among insurers of typeB), the same
insurer may then find it profitable to become of typeB again. This problem of the existence of an equilibrium
is discussed in greater detail in Lorenz (2013).
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4.1 The separating equilibrium for a high level of responsiveness

4.1.1 The equilibrium without correlation

We first give a brief intuitive explanation for why, in Figure5, contractsB andA3 constitute
the equilibrium.27

m

nB

nB
−1

σ

R

mA

A3

B

A1

A2

IV B
H

IV A
L

mFB

Figure 5: Separating equilibrium: contractsB andA3 are offered.

With perfect competition, and applying the equilibrium concept of Rothschild and Stiglitz
(1976), the equilibrium consists of contractB, chosen by theH-types, and contractA1,
chosen by theL-types (with both iso-profit lines shifted downward so that they pass through
the origin).28 However, as the shaded area around theIV B

H -indifference curve shows, with
less than perfect responsiveness, a considerable share of theH-types chooses contractA1.
Because theseH-types, when choosingA1, entail a large loss, insurers of typeA have to
shift their contract to the left.

Assume, that it is shifted toA2, where (almost) none of theH-types choose this contract.
But then an insurer of typeA could move its contract along theIV A

L -indifference curve
to the right: This would leave the number ofL-types choosing this insurer unaffected, but
increase profits perL-type,πA

L .29 It would also increase the number ofH-types choosing
this insurer, but since the average density of theH-types is (almost) zero at contractA2, at
the boundary of the shaded area this effect is of second order. The third effect when moving
alongIV A

L is ambiguous: Depending on whether the slope of theIV A
L -indifference curve is

smaller or larger than the slope of the iso-profit lines for theH-types, this will increase or
decrease profit perH-type,πA

H .

27This section is again similar to Lorenz (2013).
28See Zweifel et al. (2009), chapter 7. In Figure 5, we assumeλ = 0.5, so thatnA = nB . FornA 6= nB ,

the iso-profit lines start at different points on the ordinate.
29This is because the slope of theIV A

L -indifference curve is larger than the slope of the iso-πA
L -lines for all

contracts withmA < mFB.
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Insurers of typeA will move their contract to the right until these three effects – the increase
of πA

L , the increase ofPA
H , and the change ofπA

H – cancel out, which will be at a contract as
indicated byA3.

Therefore, in equilibrium, a small share of theH-types chooses the contracted designated
for theL-types. This contrasts with the contract offered by insurers of typeB: As contract
B is far away from the shaded area that can be drawn around theIV A

L -indifference curve,
none of theL-types choose contractB. As there is no interference of theL-types, contract
B is at the efficient level, as in the case of perfect competition.

4.1.2 The dependence of the equilibrium on the level of correlation

We will now analyze how this equilibrium is affected by a correlation of risk type and
σ-type. We will first show that an increase in the correlation leads to a ‘shift’ of the indiffer-
ence curvesIV A

L andIV B
H , and then how these shifts together with the change of the shaded

area aroundIV B
H affect the distortion ofmA.

We begin with the insurers of typeB, which are chosen by theHC- andHI-types. Replac-
ing µrs in the FOCs (24)-(27) by the respective values as given in Table 1, it can first be
shown that for the FOC with respect tomB the effects ofδ cancel out, so thatv′(mB) = 1
still holds.30 As contractB is chosen only by theH-types, there is no reason to offer an
inefficient benefit levelmB, irrespective of the level of correlation.

We next consider the direct effect of a (positive) correlation onV B
H :

As is apparent from the shapes of the two densities which constitute the shaded area around
IV B

H , theH-types choosing insurerA consist primarily ofσ-type I, soPA
HI > PA

HC ; see
Figure 1, where contractA3 could be, say, at 0.5. Those for which the additional utility
component plays a larger role when choosing an insurer are the ones who have a higher
probability of choosing the ‘wrong’ benefit package. Insurers of typeB therefore lose a
larger share of theHI-types than of theHC-types to insurers of typeA, soPB

HC > PB
HI .

The ‘number’ of individuals of the twoσ-types choosing an insurer of typeB areµHCP
B
HC

andµHIP
B
HI . If δ increases,µHC decreases andµHI increases. The direct effects of these

changes, holdingPB
HF andPB

HS constant, can be found in Table 3, which is to be read as
follows:

For insurers of typeB, the number ofHC-types decreases and the number ofHI-types
increases; the total number ofH-types decreases, and the share of theσI -types among the
H-types increases (see column two of Table 3).31

These changes have the following direct effects onV B
H : First, the decrease in the total

number ofH-types choosing an insurer of typeB creates an incentive to increaseV B
H :

This is the “more competition due to a larger external marketshare”-effect: The larger the
share of individuals who have chosen another insurer (in this case, an insurer of typeA),

30See condition (31) in Appendix A.3.
31The total number ofH-types decreases because∆H = PB

HC∆µHC + PB
HI∆µHI = −PB

HC∆δ +
PB
HI∆δ < 0 for PB

HC > PB
HI .
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Table 3: Direct effect of positive correlation holdingP k
rs constant. The first entry is to be

read as∂
∂δ
(µHCP

B
HC) < 0; the next entry in the same row as∂

∂δ
(µLCP

A
LC) > 0, and so on.

insurerB insurerA

H-types L-types H-types

C − + −

I + − +

C + I − V B
H ր 0 + V A

L ց mA ց

I
C+I

+ V B
H ց − V A

L ր +/0 V A
L (ց) mA(ց)

the larger the demand response whenV B
H is increased. Secondly, the increase of the share

of σI -types among theH-types decreases the density of theH-types at contractB, which
creates an incentive to decreaseV B

H : As theH-types become less responsive, this reduces
the incentive to provide a higher utility.

In general, the aggregate of these two effects is indeterminate. However, the first effect can
only be important if the number of insurers of typeB is small. If it was large, each insurer
of typeB would have a small market share, so the external market sharewould be close to
one. In this case, any increase in the external market share would be small, and therefore
also the “more competition due to a larger external market share”-effect, which would then
be dominated by the second effect.

Lemma 1. If nB is large enough, the direct effect of an increase inδ is a decrease ofV B
H .

Proof. See Appendix A.4.

Consider now the insurers of typeA, which are chosen both by theL-types and theH-types.
The direct effects of the changes inµrs due to the increase ofδ, holdingPA

rs constant, can
be found in the third and fourth column of Table 3. As can be seen from column three, the
number ofLC-types increases and the number ofLI-types decreases; withPA

LC = PA
LI ,

the total number ofL-types is unaffected. The only effect onV A
L caused by theL-types is

due to the lower share ofσ-typeI, which increases the density of theL-types at contractA:
As theL-types become more responsive, the incentive to offer a higher utility increases, so
V A
L is increased.

Insurers of typeA are, however, also chosen by theH-types. The last column of Table 3
shows that the number ofHC-types decreases and the number ofHI-types increases. The
total number ofH-types increases, as does the share of theσ-type I (unlessPA

HC = 0,
in which case it stays constant); this raises the average density of theH-types at contract
A, which creates an incentive to reduceV A

L . However, this second effect is small and
dominated by the first effect ifPA

HI (and therefore alsoPA
HC ) is small; then an increase of

µHI increases the total number ofH-types choosing an insurer of typeA only to a small
degree.

Lemma 2. If PA
HI is small enough, the direct effect of an increase inδ is a decrease ofV A

L .

Proof. See Appendix A.5.
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Figure 6: Equilibrium before (B0, A0) and after (B1, A1) an increase of the correlation of
risk type and responsiveness.

If nB is large enough andPA
HI is small enough so that the main effects dominate,V B

H is
decreased (because theH-types become less responsive) andV A

L is increased (because the
L-types become more responsive). These changes inV B

H andV A
L can be depicted by an

upward shift of theIV B
H -indifference curve and a downward shift of theIV A

L -indifference
curve; see Figure 6, where rather narrow shaded areas have been drawn so that these shaded
areas do not overlap. Clearly, ifmA did not change, a higher share of theH-types would
choose the insurers of typeA. This creates an incentive to reducemA.

In addition, there is a second effect onmA that is independent of the changes ofV B
H and

V A
L : As δ increases, the average density of theH-types increases in the tails. This increase

of the density of theH-types at contractA creates a second incentive to reducemA. In
Figure 6, this is reflected by the darker boundaries of the upper of the two shaded areas, and
by a distance to the indifference curves of theH-types that is larger for contractA1 than for
A0.

Proposition 2. If the number of insurers offering a contract for theH-types is large enough
and the share ofH-types choosing a contract designated for theL-types is small enough,
thenmA decreases if the correlation of low risk type and high responsiveness increases:

∂mA

∂δ
< 0 for PA

Hs small enough andnB large enough.

Proof. See Appendix A.6.

We comment on the implications of this result in the discussion section.

If the conditions of Proposition 2 are not satisfied,mA may decrease inδ, as we now show
with the second of the following two examples.
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4.1.3 Example

We now illustrate the results of Proposition 2 using the example introduced in Section 3.3.
Here we assume a low level ofσ̃, so that the separating equilibrium emerges. Withσ̃ = 0.05,
we haveσC = 0.0354 andσI = 0.0854. The equilibrium values ofmA are shown in Fig-
ure 7; the equilibrium values of some of the other variables can be found in Table 4, where
we show the results always for the lowest level ofδ for which each combination ofnA and
nB occurs.32 FornA = nB = 5, we also present the results for a few more values ofδ so
that the effect onV A

L , V B
H and the market shares can be seen. In addition, the Rothschild-

Stiglitz-equilibrium is given in the first row.
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mA

δ

Figure 7:mA for −0.25 ≤ δ ≤ 0.25.

For all levels ofδ, mB is at the efficient levelmFB = 1.33 As can be seen from Figure 7,
mA in general decreases inδ, but there are a few upward jumps, which occur whenever
nA decreases by one.34 If we compare the different levels ofmA from Figure 7 with the
Rothschild-Stiglitz-equilibrium wheremA = 0.398, we see that depending on the level ofδ,
the distance ofmA to its level under perfect competition can differ by a factorof two.35 The
distortion ofmA clearly depends on the level of correlation of risk type and responsiveness.

For δ increasing from -0.03 to 0.07, we see the opposite effects onV A
L andV B

H : While
insurers of typeA increaseV A

L from -0.363 to -0.358, insurers of typeB decreasesV H
B

from -1.058 to -1.068. Accordingly, profits for insurers of typeA decrease from 0.0068 to
0.0055, while profits for insurers of typeB increase from 0.0054 to 0.064. Ifδ increases
above 0.07, there exists an incentive for one of the insurersof typeA to offer the contract
designated for theH-types and become an insurer of typeB; therefore,nB increases.

Comparing the utility levels provided by the two insurers, we see that the difference for
the L-types,V A

L − V B
L , is much larger than the difference for theH-types,V B

H − V A
H .

Accordingly, none of theL-types choose contractB (PB
Ls = 0), but some of theH-types

choose contractA, where the share of theσ-typeI is larger than the share of theσ-typeC

32E.g., the smallest level ofδ so thatnA = 6 is δ = −0.15.
33We therefore omitmB from Figure 7 and Table 4.
34For those values ofδ for which an entry is missing in Figure 7, an equilibrium doesnot exist, see foot-

note 26. If we determinednA andnB according to formula (23), i.e. as a real instead of an integer number, all
equilibria exist andmA would be strictly decreasing inδ for all levels ofδ.

35∆mA(δ = 0.19)/∆mA(δ = −0.25) = (0.398 − 0.322)/(0.398 − 0.363) = 2.17.
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Table 4: Example withn = 10, v(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, η = 0.5,
σC = 0.0354, σI = 0.0854, for different values ofδ. The first row contains the Rothschild-
Stiglitz-equilibrium (RS).

δ nA nB mA V A
L V B

L V A
H V B

H PA
HC PA

HI PB
Ls πA πB

RS - - .398 -.264 -1.00 -1.00 -1.00 - - - - -

-.25 7 3 .363 -.393 -1.05 -1.20 -1.052 .0045 .041 .00 .0080 .0084

-.15 6 4 .352 -.375 -1.05 -1.21 -1.052 .0028 .032 .00 .0072 .0062

-.03 5 5 .342 -.363 -1.06 -1.22 -1.058 .0019 .026 .00 .0068 .0054

.00 5 5 .337 -.361 -1.06 -1.23 -1.060 .0016 .024 .00 .0064 .0057

.03 5 5 .333 -.359 -1.06 -1.24 -1.063 .0014 .023 .00 .0060 .0059

.07 5 5 .327 -.358 -1.07 -1.25 -1.068 .0011 .021 .00 .0055 .0064

.09 4 6 .336 -.356 -1.07 -1.23 -1.068 .0018 .023 .00 .0072 .0053

.23 3 7 .330 -.354 -1.09 -1.24 -1.093 .0022 .024 .00 .0088 .0062

(PA
HI > PA

HC > 0); e.g., forδ = 0.00, about 12% of theHI-types (2.4% for each of the
five insurers), but only about 0.8% of theHC-types choose an insurer of typeA.

We now alter two of the parameters of the example to show that the main result may be
reversed, i.e., thatmA may increase inδ. In Figure 8, we depict the increase inmA for an
increase ofδ from 0.00 to 0.01, for different levels ofλ (the different curves) andη (on the
abscissa). For most levels ofλ, mA decreases inδ irrespective of the level ofη. However,
if both λ andη are high (e.g.λ = 0.9 andη = 0.9), mA increases inδ. If λ is large,nB is
small (because there are not manyH-types). In addition, ifη is large, the share of theσI -
types is small; then, ifδ increases, the increase of theHI-types (who are the ones choosing
an insurer of typeA) is large in relative terms. Therefore, if bothλ andη are large, there is
a particularly strong ‘more competition due to a larger external market share’-effect, so that
V B
H increases, which leads to a decrease ofmA.
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∆mA

Figure 8: Increase ofmA for an increase ofδ from 0.00 to 0.01 for different levels ofλ and
η, i.e.,∆mA = mA(δ = 0.01|λ, η) −mA(δ = 0.00|λ, η).
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4.2 The separating equilibrium for an intermediate level responsiveness

4.2.1 The equilibrium without correlation

In the previous section the separating equilibrium for a lowlevel of σ̃, where only the con-
tract for theL-types is distorted, has been analyzed. Ifσ̃ increases, at some point insurers
of typeB begin to distort the contract designated for theH-types, and if̃σ is large (but still
below the level for which the pooling equilibrium emerges),the distortion ofmB can be
substantial.

The reason for the distortion ofmB is the following. For a low level of̃σ, the shaded
area around the indifference curve of theL-types is so narrow that contractB0 is far away
from it. If σ̃ increases, the distribution functionsP k

rs are spread out, so that the shaded
area aroundIV A

L becomes wider; at some point, it ‘reaches’ contractB0, and if σ̃ increases
further, contractB will be inside this shaded area, see Figure 9.

m

R

mA

B0

B1

IV B
H

IV A
L

m∗

Figure 9: Separating equilibrium with two unobservable risk types; σ̃ large: ContractB
distorted fromB0 toB1.

If contractB0 is inside the shaded area aroundIV A
L , an insurer of typeB can increase its

profit by moving its contract along theIV B
H -indifference curve to the left: This leaves the

share ofH-types choosing this insurer unaffected, but increases theshare ofL-types.36 Of
course, moving along theIV B

H -indifference curve also reduces profit perH-type,πB
H , but

initially, asm is close tomFB, this effect is of second order. ContractB0 will therefore be
shifted to the left, until these three effects cancel out.

4.2.2 The dependence of the equilibrium on the level of correlation

It follows immediately how the distortion ofmB is affected by a positive correlation of risk
type and responsiveness if the two main effects described inthe previous section dominate,

36This is because the slope of theIV B

H -indifference curve is larger than the slope of the iso-PB
Ls-curves,

which are identical to the slope of theIV A

L -indifference curve.
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so thatV B
H is decreased andV A

L is increased: Both the upward shift ofIV B
H and the down-

ward shift ofIV A
L move contractB closer to the boundary of the shaded area aroundIV A

L :
This decreases the density of theL-types at contractB, so the incentive to distortmB is
reduced. With the lower density of theL-types, insurerB now attracts fewerL-types when
moving contractB alongIV B

H to the left, so that the countervailing effect of the decrease in
profits for theH-types will stop the distortion whenm is closer tomFB.

Like in the previous Section 4.1.2, there is an additional effect that reduces the distortion of
mB , irrespective of the change ofV B

H andV A
L . As shown above, ifδ increases, the shape of

the density represented by the shaded area aroundIV A
L increases at the mode and decreases

in the tails. Because the density of theL-types decreases at contractB, the incentive to
distortmB is reduced again. We can therefore state the following result:

Proposition 3. In the separating equilibrium for intermediate levels ofσ̃ wheremB is
below the efficient level,mB increases in the correlation if the main effects dominate so
thatV B

H decreases andV A
L increases:

If mB < mFB, then∂mB

∂δ
> 0 for

∂V A
L

∂δ
> 0 and

∂V B
H

∂δ
< 0.

4.2.3 Example

We illustrate this result using the same example as before. Here we set̃σ = 0.17, which
requiresσC = 0.1486 andσI = 0.1986. We refrain from presenting the results as detailed
as in Table 4, but only show the levels ofmA andmB in Figure 10.
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mB

mA

δ

Figure 10:mA andmB for σC = 0.1486, σI = 0.1986 and−0.25 ≤ δ ≤ 0.25.

Again, the downward jumps ofmB occur for all levels ofδ, for which an increase innB

emerges.37 As can be seen, there is a small and steady decrease ofmA, but a considerable
increase ofmB from 0.755 to 0.935 asδ increases from -0.25 to 0.25. We comment on the
implications of this result in the following section.

37In this example, the equilibrium exists for all levels ofδ, so there is no entry missing in Figure 10.

23



5 Discussion

5.1 Implications of the results

The purpose of this paper is to show that the distortion of thebenefit levels caused by adverse
selection not only depend on the shares of risk types and the average level of responsiveness
(via the type of equilibrium that emerges), but also on the level of correlation of risk type
and responsiveness.

We think that the results derived have three main implications. The first one regards the
policy intervention of making individuals more responsiveby, e.g., providing easy access
to information about the contracts offered by insurers. Oneexample of such a policy inter-
vention are the government run websites about the Health Insurance Exchanges in the U.S.
We do not question the usefulness of these websites, but wantto point to a side effect such
information provision may have. For the pooling equilibrium we showed that the effect of
such a policy intervention not only depends on how the average responsiveness changes, but
also on which of the two risk types is affected more. Interestingly, for the parameter setting
which is likely to be the most relevant one for health insurance markets – a small share of
H-types which incur a large negative profit – increasing the responsiveness of theH-types
(e.g., the chronically ill) has the most detrimental effecton the distortion, and therefore on
welfare. This shows that an information campaign about the quality of insurers’ benefit
packages that is specifically targeted at the chronically ill would have the largest negative
side effect on welfare.

The second implication regards the separating equilibriumfor a high level of average re-
sponsiveness, which is similar but not identical to the equilibrium under perfect competi-
tion. Some studies have used the sets of contracts offered inseparating equilibria to estimate
individuals’ risk aversion (the curvature of the indifference curves). Our analysis shows that
with less than perfect responsiveness, the ‘average’H-type – i.e., average with respect to
the additional utility components – is not indifferent between the two contracts. Instead, the
contract for theL-type is located to the left of the indifference curve of theH-type (in the
benefit-premium-diagram). This distance between the contract and the indifference curve
could be considered a ‘measurement error’. It would lead to adownward biased estimate of
the level of risk aversion, as the indifference curve for theH-type appears to have a lower
curvature than it actually has. Our analysis shows that the size of this measurement error is
largest for a positive correlation.38 It may therefore be important to take this measurement
error into account when estimating the level of risk aversion.

The third implication regards the separating equilibrium for an intermediate level of respon-
siveness where both benefit levels are distorted. For such a separating equilibrium, even the
benefit level of theH-types depends on the level of correlation of risk type and responsive-
ness; as the example given in Section 4.2.3 showed, the impact of the correlation on this
benefit level can be substantial. The contract for theH-types may therefore be a (severely)
biased indicator of the efficient benefit level. If this bias is large, this may have to be taken

38In the example of Section 4.1.3 we found a factor of two when comparing the largest and the smallest
distance ofmA to the respective level under perfect competition.
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into account when estimating the overall welfare effects ofadverse selection. In fact, recent
empirical studies have found surprisingly low estimates ofthe welfare consequences of ad-
verse selection caused by inefficient pricing of agivenset of benefit packages.39 However,
as explicitly stated by Einav, Finkelstein, and Levin (2010), the welfare losses due to an in-
efficient set of benefit packages may be much larger, and our analysis shows that the level of
these additional welfare losses depends on the correlationof risk type and responsiveness.

5.2 Robustness of results

In the discrete choice model we analyzed, we made a number of simplifying assumptions.
Several of these assumptions have been discussed in Lorenz (2013), to which we refer.
There it has been shown that the model can also be applied if insurers can offer more than
one contract or if the premium is set by a regulator and insurers offer multidimensional
benefit packages; there it has also been discussed why the IIA-property does not cause a
problem for this model, so that the conditional logit is moreappropriate than the nested
logit model, and that the equilibrium is very similar for other distributional assumptions for
εij than the extreme value distribution.

Here, we discuss the simplifying assumption that there are only two types of responsiveness
to differences in the benefit-premium-bundles offered. We think that the results are very
similar if there are more than twoσ-types or if there is a continuous distribution ofσ-

types: In this case, the expression forσ̃ =
(

η
σC

+ 1−η
σI

)
−1

would have to be augmented by

the additional risk types or replaced by the respective integral terms, but the main results
should still hold. For the separating equilibrium, the impact of a correlation depends on
how this affects the utility levels (V A

L andV B
H ) and the shape of the shaded areas around

the indifference curves: A positive correlation will increase the responsiveness of theL-
types and decrease the responsiveness of theH-types also in this more general case; then,
as long as a positive correlation raises the density close tothe boundaries of the shaded
area around the indifference curve of theH-types and lowers it for the shaded area around
the indifference curve of theL-types, the distortion of the contract for theL-types should
increase, and (if a distortion existed) decrease for theH-types. For the pooling equilibrium
it was shown that the impact of a correlation depends on whether the share of low risks is
large and̃σ is small, so that theH-types incur a large negative profit. As the effect of a
(positive) correlation only depends on the product of this negative profit and the density of
theH-types, where the relative changes of these two factors mainly depend on the share
of L-types and the average level of responsiveness, the result for the pooling equilibrium
should also not be affected by the number ofσ-types.

6 Conclusion

We have analyzed how the distortions of (health) insurers’ benefit levels caused by adverse
selection are influenced by a correlation of risk type and responsiveness to differences in the

39See Einav, Finkelstein, and Cullen (2010), Bundorf et al. (2012) and Handel (2013).
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contracts offered by insurers. Within a discrete choice model which endogenizes whether a
separating or a pooling equilibrium emerges, we showed the following main results: For the
pooling equilibrium, the effect of such a correlation depends on the share of low risks and
the average level of responsiveness. If the share of low risks is small, a positive correlation
increases the distortion; if the share of low risks is large,the reverse holds, but only if
the average level of responsiveness is high. For the separating equilibrium the effects of a
positive correlation are ambiguous. If the main effects dominate, i.e., if the share ofH-types
choosing the contract designated for theL-types is small enough and the number of insurers
offering the contract for theH-types is large enough, a positive correlation will increase the
distortion of the benefit level for theL-types, while the distortion of the benefit level of the
H-types – if such a distortion exists – will decrease.

Regarding policy implications we discussed that selectively increasing the responsiveness
of theH-types (by, e.g., providing information about insurers’ offers only to the chronically
ill) has the largest welfare-decreasing effect in the pooling equilibrium. For the separating
equilibrium we showed that it may be important to take into account that the benefit levels
of the two contracts are affected by the level of correlationof risk type and responsiveness
when estimating the degree of risk aversion or the welfare effects of adverse selection.
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A Appendix

A.1 First order conditions for the full model

The FOCs in the full model with two risk types and twoσ-types are:

∂πk

∂V k
L

=
∑

r

∑

s

µrs

[
P k
rs(1− P k

rs)

σs
πk
r − P k

rs

]
= 0 (24)

∂πk

∂mk
=

∑

r

∑

s

µrsP
k
rs

[
pLv′(mk)− pr

]

+
∑

s

[
µHs

P k
Hs(1− P k

Hs)

σs
(pH − pL)v′(mk)πk

H

]
= 0. (25)

For the separating equilibrium where we distinguish insurers of typeA and typeB, in (24)
and (25),k has to be replaced byA; in addition, the FOCs for insurers of typeB are:

∂πB

∂V B
H

=
∑

r

∑

s

µrs

[
PB
rs(1− PB

rs)

σs
πB
r − PB

rs

]
= 0 (26)

∂πB

∂mB
=

∑

s

µLsP
B
Ls

[
pHv′(mB)− pL

]
−

∑

s

µLs
PB
Ls(1− PB

Ls)

σs
(pH − pL)v′(mB)πB

L

+
∑

s

µHsP
B
Hs

[
pHv′(mB)− pH

]
. (27)

A.2 Proof of Proposition 1

The only terms in (21) containingδ are the last two factors, i.e.,
[
1− δ

1−λ
σ̃
(

1
σC

− 1
σI

)]
πH .

Substituting (20) forπH , this expression equals

nσ̃

n− 1
− λ

(
pH − pL

)
m+

δ2σ̃2

1− λ

(
1

σC
−

1

σI

)2

(pH − pL)m (28)

+
δσ̃

1− λ

(
1

σC
−

1

σI

)[
(2λ− 1)(pH − pL)m−

nσ̃

n− 1

]
.

Taking the derivative of (28) with respect toδ and dividing by σ̃
1−λ

(
1
σC

− 1
σI

)
yields

(2λ− 1)(pH − pL)m−
nσ̃

n− 1
+ 2δσ̃

(
1

σC
−

1

σI

)
(pH − pL)m. (29)

This expression isT zero for

λ T 1

2
+

nσ̃

2(n− 1)(pH − pL)m
− δσ̃

(
1

σC
−

1

σI

)
. (30)

Therefore, (28) decreases inδ if λ is smaller than the right hand side of (30); thenv′(m)
has to increase, i.e.m has to decrease so that (21) is still satisfied.

27



A.3 FOC of insurers of typeB with respect tomB if σ̃ is small

With PB
LC = 0 andPB

LI = 0, condition (27) simplifies to

[
µHCP

B
HC + µHIP

B
HI

] [
pHv′(mB)− pH

]
. (31)

Therefore,v′(mB) = 1, irrespective ofµHC andµHI , and therefore irrespective ofδ.

A.4 Direct effect of an increase inδ on π
B
H

Using thePB
LC = 0 andPB

LI = 0 and replacingµrs by the respective values of Table 1,
condition (26) solved forπB

H yields:

πB
H =

(1− λ)
[
ηPB

HC + (1− η)PB
HI

]
+ δ(PB

HI − PB
HC)

(1− λ)
[
ηPB

HC
(1−PB

HC
)

σC
+

(1−η)PB
HI

(1−PB
HI

)
σI

]
+ δ

[
PB
HI

(1−PB
HI

)
σI

−
PB
HC

(1−PB
HC

)
σC

] .

(32)

Taking the derivative with respect toδ we have

∂πB
H

∂δ
=

(1− λ)PB
HIP

B
HC

(
1−PB

HC

σC
−

1−PB
HI

σI

)

D2
, (33)

whereD is the denominator of (32). Therefore, the direct effect of an increase inδ is an
increase inπB

H if nB is large enough so that both1− PB
HC and1− PB

HI are close to one.

A.5 Direct effect of an increase inδ on π
A
L

Taking the FOC of insurerA with respect toV A
L , solving forπA

L and taking the derivative
with respect toδ holding allPA

rs constant yields that the sign of this derivative is equal to
the sign of

n− 1

n2
(pH − pL)mA

[(
PA
HI(1− PA

HI)

σI
−

PA
HC(1− PA

HC)

σC

)
λ

σ̃
(34)

−

(
1

σC
−

1

σI

)
(1− λ)

(
PA
HC(1− PA

HC)
η

σC
+ PA

HI(1− PA
HI)

1− η

σI

)]

−
n− 1

n2

(
1

σC
−

1

σI

)[
λ

n
+ (1− λ)

(
ηPA

HC + (1− η)PA
HI

)]

+
λ

σ̃

n− 1

n2
(PA

HI − PA
HC)

+(1− λ)(PA
HI − PA

HC)

(
PA
HC(1− PA

HC)
η

σC
+ PA

HI(1− PA
HI)

1− η

σI

)

−

(
PA
HI(1− PA

HI)

σI
−

PA
HC(1− PA

HC)

σC

)[
λ

n
+ (1− λ)

(
ηPA

HC + (1− η)PA
HI

)]
.
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The last line of (34) is negative, but the first line is positive and may, depending on the
levels ofλ andη, dominate the negative second line; likewise, the positivefourth and fifth
line may dominate the negative third line. However, if the share ofH-types choosing an
insurer of typeA is small enough, so thatPA

HC andPA
HI are close to zero, we have

sign

(
∂πA

L

∂δ

)
= sign

(
−
n− 1

n2

(
1

σC
−

1

σI

)
λ

n

)
= −1. (35)

A.6 Effect of a (positive) correlation onmA in the separating equilibrium

Replacing bothPA
LC andPA

LI by 1
nA , condition (25) can be simplified to

λ

nA

(
pLv′(mA)− pL

)
(36)

+
[
(1− λ)(ηPA

HC + (1− η)PA
HI) + δ(PA

HI − PA
HC)

] (
pLv′(mA)− pH

)

+

[
(1− λ)

(
η
PA
HC(1− PA

HC)

σC
+ (1− η)

PA
HI(1− PA

HI)

σI

)

+δ

(
PA
HI(1− PA

HI)

σI
−

PA
HC(1− PA

HC)

σC

)]
(pH − pL)πA

Hv′(mA) = 0.

If the main effects dominate, an increase ofδ leads to a decrease ofV B
H and an increase of

V A
L ; this leads to an increase of bothPA

HC andPA
HI . This increases the bracket[·] in the

second line of (36), sov′ has to increase, becausepH > pL. It also increases the bracket
[·] of the third and fourth line, sov′ has to increase again, becauseπA

H < 0. In addition,
the bracket in the second line also increases due to the increase inδ itself, sov′ has to be
increased again. Finally, an increase inδ increases the last bracket of the third and fourth
line itself, sov′ has to increase again. Therefore, ifδ increases,mA decreases.
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