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Abstract

This paper analyzes optimal risk adjustment for direct riskselection (DRS). Inte-
grating insurers activities for risk selection into a discrete choice model of individuals’
health insurance choice shows that DRS has the structure of acontest. For the contest
success function used in most of the contest literature, optimal transfers for a risk ad-
justment scheme have to be determined by means of a restricted quantile regression,
irrespective of whether insurers primarily engage in positive DRS (attracting low risks)
or negative DRS (repelling high risks). This is at odds with the common practice of
determining transfers by means of a least squares regression. However, this common
practice can be rationalized within a discrete choice modelfor a new class of contest
success functions, but only if positive and negative DRS areequally important; if not,
optimal transfers have to be calculated from a restricted asymmetric least squares re-
gression. Using data from a German and a Swiss health insurer, we find considerable
differences between the three types of regressions. Optimal transfers therefore criti-
cally depend on which contest success function represents insurers’ incentives for DRS
and whether positive and negative DRS are equally importantor not. Results from the
two data sets indicate that if a regulator does not know whichcase applies, transfers
should rather be calculated by means of a quantile than a least squares regression.
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1 Introduction

In many health insurance markets, insurers are not allowed to differentiate their premiums
according to individuals’ expected cost; instead, they have to charge a uniform premium to
all risk types. In such a setting, insurers will make (expected) profits with some individuals,
and losses with others. This creates incentives to attract profitable and repel unprofitable
individuals. If insurers act on these incentives, they are said to be engaged in risk selection.1

Two forms of risk selection can be distinguished: direct andindirect risk selection.2 With
indirect risk selection (IRS), insurers influence who wantsto join them by designing their
benefit package in a way so that it is attractive for low risks but not for high risks. This
can be achieved with, e.g., scrupulous utilization reviews, a physician network with only
a small number of specialists or by not covering certain services primarily needed by the
high risks. With direct risk selection (DRS), insurers use measures unrelated to the benefit
package like selective advertising, offering discounts for fitness club memberships or by
‘losing’ applications of unprofitable individuals. Since DRS is targeted at a specific risk
type, insurers have to know whether a particular individual(or group of individuals) is
of below or above average risk. Examples for such groups are certain age brackets or
individuals living in high cost areas.

In some settings, like the U.S. Medicare Advantage program,where insurers are allowed
to differ in their physician networks or drug formularies, incentives to distort the benefit
package can be severe and are at least of similar importance as are incentives for DRS.3

However, in the European context, where the benefit package is usually heavily regulated,
the scope for IRS is rather limited; here, insurers who try toinfluence the risk structure of
their insured will be primarily engaged in DRS.4

A regulator can reduce the incentives for both DRS and IRS by implementing a risk adjust-
ment scheme, i.e., by setting transfers insurers receive orhave to pay depending on the risk
structure of their insured.5 There are several ways to organize these payments, but effec-
tively, each insurer has to pay a uniform risk adjustment feefor each insured equal to the
average cost of all insured in the respective health insurance market, and in return receives
an individual specific transfer for each insured (dependingon the signals of the insured).
In most risk adjustment schemes, these transfers to insurers equal the predicted values of a
regression of actual cost on a set of variables like age, gender and morbidity. However, even
sophisticated risk adjustment schemes only reduce, but do not eliminate incentives for risk
selection.6

There is a huge literature on how the regression models used for risk adjustment can be im-
proved so that more accurate cost predictions (and therefore transfers) can be determined.

1See van de Ven and Ellis (2000).
2See Breyer et al. (2011).
3For incentives to distort the benefit package, see Frank et al. (2000), Cao and McGuire (2003) and Ellis

and McGuire (2007); for the profitability of DRS in the U.S. setting, see Shen and Ellis (2002).
4See, e.g., the Special Issue on ‘Risk adjustment in Europe’ in Health Policy(Chernichovsky and van de

Ven 2003).
5See Zweifel et al. (2009), chapter 7.
6See van Veen et al. (2014).
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The criterion to choose among competing models has almost always been theR2, the ex-
plained part of the variance. The larger theR2, the closer the transfers are to actual cost,
and the lower the incentives for risk selection should be.

There is a small literature that deviates from this statistical approach; instead, it explicitly
analyzes insurers’ incentives to engage in risk selection and determines the optimal transfers
as a solution to such an incentive problem. This approach hasbeen termed ‘optimal risk
adjustment’ by Glazer and McGuire (2000). They have shown that a regulator can increase
the effectiveness of a risk adjustment scheme by distortingthe transfers as calculated with
conventional, regression based risk adjustment: if the signals used as explanatory variables
in the regulator’s regression are less than perfectly correlated with risk type, there has to
be overpayment for signals which indicate high risk, and underpayment for signals which
indicate low risk.

So far, the optimal risk adjustment literature has been exclusively concerned with IRS, i.e.,
with insurers’ incentives to distort the benefit package.7 This is suitable for all settings
where insurers can influence at least some aspect of the benefit package (as in the Medicare
Advantage program in the U.S.), but in the European setting with its heavily regulated
benefit packages, DRS is the more severe problem.

This study analyzes optimal risk adjustment for DRS and shows that – as in the case of
IRS – a regulator can in general increase the effectiveness of a risk adjustment scheme by
deviating from the transfers as calculated from a least squares regression that maximizes the
R2. Integrating insurers’ activities to risk select in a discrete choice model of individuals’
health insurance choice, we first derive that DRS has the structure of a contest. We show
that for the Tullock-contest success function – the contestsuccess function employed in the
vast majority of all models in the contest literature – maximizing theR2 does not minimize
insurers’ incentives for DRS; rather, the correct objective is to minimize the mean abso-
lute deviation,MAD.8 This is achieved by using a restricted quantile regression instead
of a least squares regression. We show that such a quantile regression is optimal regard-
less of whether insurers are primarily (or exclusively) engaged in positive DRS (attracting
profitable individuals) or in negative DRS (repelling unprofitable individuals).

Since almost all risk adjustment schemes calculate transfers from a least squares regression,
we proceed by asking whether this common practice can be rationalized within a discrete
choice model, i.e., for a different contest success function (csf) than the Tullock-csf. We
find that such a csf exists (although it has not been employed in the contest literature so
far). However, contrary to the Tullock-csf, for this csf, the least squares regression is only
optimal for the symmetric contest where positive and negative DRS are equally important.
In the asymmetric case, where insurers focus on one of the twotypes of DRS, transfers have
to be determined by means of a restricted asymmetric least squares regression.

Which of the three regression models – the least squares, theasymmetric least squares or
the quantile regression – should be used by the regulator therefore depends on which of
the two contest success functions applies and, if it is the second one, whether both forms

7See, e.g., Glazer and McGuire (2002), Jack (2006), Bijlsma et al. (2011) and McGuire et al. (2013).
8The Tullock-contest success function has been introduced by Tullock (1980). For an overview of the

contest literature see, e.g., Konrad (2009) and Congleton et al. (2008).
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of DRS are equally important or not. If there was data on insurers’ expenditures for risk
selection, this could be easily be determined, but we are notaware that such data exists.9

In the empirical part of this paper, using data from a German sickness fund and from a
Swiss health insurer, we therefore compare the performanceof the three types of regressions
and find the following two asymmetries: When the asymmetric least squares regression is
optimal, it is only somewhat more successful than the quantile regression, but when it is
not optimal, it can perform much worse than the quantile regression; in some settings, it
even increases incentives for risk selection. We find the same asymmetry when comparing
the least squares and the quantile regression: the least squares regression never performs
substantially better, but sometimes considerably worse than the quantile regression. If these
asymmetries were also found in other data sets, the quantileregression could be considered
a valuable alternative to the least squares regression for calculating the transfers of a risk
adjustment scheme.

The remainder of this paper is organized as follows. In Section 2, we derive the contest
structure of DRS within a discrete choice model. In Section 3, we show that for the Tullock-
csf, a regulator should not maximize theR2, but minimize theMAD by using a restricted
quantile regression. TheR2 criterion is rationalized in Section 4. We illustrate the difference
between the least squares and the quantile regression with asimple example in Section 5
and show that these differences can be substantial for real data in Section 6. Section 7
concludes.

2 Direct risk selection

2.1 Profits and losses for insurers with a risk adjustment scheme

For direct risk selection to occur, insurers have to be able to classify individuals into differ-
ent risk types according to some signals which are informative about expected cost. Denote
the set of signals insurers observe bySH , and letSH

i be the set of signals for an individual
i.10 Using these signals, insurers’ expectation of individuali’s cost is given by

cHi = E[c|SH
i ]. (1)

If the regulator was able to observe the full set of signals,SH , he could infer insurers’ cost
predictionscH , (wherecH is the vector of all cost predictions for theI individuals in the
respective health insurance market). Setting the transfers of the risk adjustment scheme,
cR, equal to these cost predictions, insurers’ expected profits (or losses) for each individual
would be equal to zero and the incentives for risk selection eliminated completely.

There are two reasons why, in general, the transferscR will differ from insurers’ cost pre-
dictionscH . First, the regulator may not be able to observe the full set of signals used by

9E.g., Newhouse (2002, p. 176) notes: “. . . the data suggest that cost is not a bar to some selection. I have
no evidence, however, on the cost of engaging in selection.”

10For all variables the superscriptH will be used for the health insurer andR for the regulator.
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the insurers.11 Secondly, the regulator may not want to use the full set of signals because
some of the signals can be influenced by the insurers. One example for such a signal is
prior year expenditures. Using this variable increases theexplained part of the variance by
several percentage points, but is in fact just retrospective partial cost reimbursement, which
reduces incentives for cost efficiency.12

For these two reasons, the regulator will base his cost predictions (and thus his transfers)
only on a subsetSR ⊂ SH of the variables used by the insurers. Therefore, transferswill
be calculated as

cRi = h(SR
i ) (2)

and differ from the insurers’ cost predictionscHi . Denote this difference byDi = cRi − cHi ,
and the vector of all these differences byD. If Di > 0, insurers expect a profit, ifDi < 0,
they expect a loss. Insurers will act on these incentives andtry to increase the probability
of being chosen by individuals withDi > 0 (positive DRS), and reduce the probability of
being chosen by those withDi < 0 (negative DRS).

We now show how these activities can be integrated in a discrete choice model of indi-
viduals’ health insurance choice. We integrate DRS in a model of imperfect competition
because DRS seems incompatible with perfect competition, where individuals are perfectly
informed about the benefit packages offered and the premiumscharged, and always choose
the insurer who offers the best benefit package-premium combination.

2.2 The discrete choice model without DRS

There areJ insurersj, each offering a benefit package-premium combination which, for
individual i, yields utility V j

i . Individual i’s decision of which insurer to choose, however,
not only depends on which insurer offers the highest utilityV j

i , but also on some other
factors like location or which insurer was recommended by family and friends. In a discrete
choice model, the influence of these other factors is captured by an individual- and insurer-
specific utility componentεji . Without DRS, individuali’s utility when choosing an insurer
j is therefore given by

uji = V j
i + εji . (3)

Assumingεji to be i.i.d. extreme value, the logit model arises. Specifying the variance ofεji
asVar(εji ) = σ2 π2

6 , the probability of individuali choosing a particular insurerk is given
by13

Prob(i choosesk) = Prob(V k
i + εki > V l

i + εli ∀ l 6= k) =
e

V k
i
σ

J∑

j=1

e
V
j
i
σ

. (4)

11E.g., in Germany, the regulator does not know the zip code of the insured, a variable readily observable for
insurers who can use this information to identify high and low cost areas.

12See van de Ven and Ellis (2000, p. 805). See also Schokkaert and van de Voorde (2004); their examples
of variables insurers can and should influence (and which should therefore not be used for risk adjustment) are
the lifestyle of the insured or their propensity to go immediately to a specialist; accordingly, they denote these
variables as responsibility variables.

13See Train (2009, p. 40).
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2.3 The discrete choice model with DRS

Positive DRS is an activity insurers are engaged in which increases the probability of being
chosen by a particular individual (or group of individuals); of course, any such activity will
also generate some cost.14 We denote the cost insurerj incurs byaj , and model the increase
in the probability of being chosen to stem from an increase inthe utility uji (as perceived by
individual i) by g(aj), whereg is increasing and concave. With positive DRS, individual
i’s perceived utility when choosing insurerj therefore is

uji = V j
i + g(aj) + εji . (5)

Because we consider a setting where the benefit package is regulated and is thus identical for
all insurers (so that the premium does not differ between insurers as well),V j

i is the same
for all insurers (but will be different for different individuals). Therefore, the probability
that individuali chooses insurerk if there is positive DRS is given by

Prob(i choosesk) = Prob(V k
i + g(ak) + εki > V l

i + g(al) + εli ∀ l 6= k)

= Prob(g(ak) + εki > g(al) + εli ∀ l 6= k)

=
e

g(ak)

σ

∑
j e

g(aj)

σ

. (6)

Likewise, negative DRS is an activity insurers are engaged in which decreases the proba-
bility of being chosen.15 We denote the cost of negative DRS bybj and the utility decrease
as perceived by individuali by f(bj), wheref is increasing and concave, so that individual
i’s utility when choosing insurerj is

ui = V j
i − f(bj) + εji . (7)

In this case, the probability that individuali chooses a particular insurerk is given by

Prob(i choosesk) =
e

−f(bk)

σ

∑
j e

−f(bj )

σ

. (8)

This shows that DRS has the structure of a contest (with (6) and (8) as the contest success
functions): There are several agents competing for a rent byspending money to increase
the probability of receiving the rent: With positive DRS, insurers compete for individuals
with Di > 0; with negative DRS, they compete for the rent of not having tobear the loss
associated with individuals for whichDi < 0.

The money spent in this risk selection contest is completelywasteful, and the insured do not
want insurers to waste that money: It does not improve the quality of the benefit package but

14Examples for positive DRS are selective advertising or offering discounts for fitness club memberships.
15Activities falling into this category are that insurers require additional (unnecessary) paper work or involve

the high risk individuals in phone calls in which they try to persuade these individuals to choose a different
insurer. In fact, after a German sickness fund operating mainly in high cost areas went bankrupt in 2011,
members of this fund, who then applied at other funds received phone calls in which some of the insurers told
them that they could not continue their drug therapy or disease management program should they not choose a
different insurer; see, e.g., Spiegel (2011).
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eventually has to be borne by the insured whose premiums are increased. It is exactly this
waste of money which constitutes the welfare loss of DRS.16 The objective of the regulator
therefore has to be to minimize insurers’ investments in this risk selection contest. In the
following two sections we show that the solution to this objective critically depends on
which particular csf (within the class of contest success functions as given by (6) and (8))
best represents insurers’ incentives for risk selection.

3 TheMAD-criterion

3.1 Derivation of theMAD-criterion for the Tullock-csf

The contest success function used in the vast majority of allcontest models is the Tullock-
csf.17 The general csf derived in the previous section encompassesthe Tullock-csf, since,
with g(a) = γ ln(a) and settingγ

σ
= m,

Prob(i choosesk with positive DRS) =
e

γ ln(ak)

σ

∑
j e

γ ln(aj)

σ

=
(ak)

γ
σ

∑
j(aj)

γ
σ

=
(ak)

m

∑
j(aj)

m
. (9)

Likewise, if for the case of a negative rent we assumef(b) = δ ln(b) and setδ
σ
= n, we

have

Prob(i choosesk with negative DRS) =
(bk)

−n

∑
j(bj)

−n
. (10)

Employing the Tullock-csf as given in (9), expected profit for insurerk in the contest for a
positive rentDi is given by

πk =
(ak)

m

∑
j(aj)

m
Di − ak. (11)

Solving the set of FOCs for all insurers yields the well knownresult that the equilibrium
level of investments is18

a∗j =
(J − 1)m

J2
Di. (12)

Therefore, the sum of investments of all insurers for a positive rentDi equals

SI+i =
∑

j

a∗j =
(J − 1)m

J
Di. (13)

For a negative rent, using the contest success function as given in (10), insurerk’s objective
reads as

πk =
(bk)

−n

∑
j(bj)

−n
Di − bk. (14)

16In Lorenz (2014b), it has been shown that in some settings it is the insurers who have to bear the cost of
DRS. Nevertheless, the cost of DRS is a welfare loss in such a setting as well.

17The Tullock-csf has been employed for the analysis of activities as diverse as rent-seeking (Lockard and
Tullock 2001), political campaigns (Skaperdas and Grofman1995) or sports (Szymanski 2003).

18See, e.g., Nitzan (1994).
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The equilibrium level of each insurer’s investment is

b∗j =
(J − 1)(−n)

J2
Di, (15)

so that the sum of investments of all insurers is given by

SI−i =
∑

j

b∗j =
(J − 1)n

J
|Di|. (16)

Comparing the sum of investments for a positive and a negative rent of equal absolute value
shows that insurers invest more for a positive rent ifm > n: If investments for a positive
rent are more effective (in the sense thatg′(a) > f ′(b) ∀ a = b), incentives for positive
DRS are higher than incentives for negative DRS. Accordingly, the regulator should focus
on reducing positive rents. In the following, we will first assume thatn = m, so that
positive and negative DRS are equally important. We will consider the more realistic case
thatm 6= n in Section 3.3.

If m = n, the total sum of investments,TSI, of all insurers for all rentsDi is given by

TSI =
∑

i+

SI+i +
∑

i−

SI−i =

I∑

i=1

(J − 1)m

J
|Di| =

(J − 1)mI

J
MAD. (17)

For the symmetric case ofm = n, we can therefore state the following proposition:

Proposition 1. In a symmetric contest with a Tullock-contest success function, the mean
absolute deviation is the correct measure for insurers’ incentives for risk selection.

For the Tullock-csf, the total sum of investments is proportional to theMAD. This implies
that the regulator can minimize the welfare loss caused by DRS by minimizing theMAD.
However, in the next section, we show that such a risk adjustment scheme is in general not
feasible, so that theMAD-criterion has to be qualified.

3.2 The estimation method for theMAD-criterion

Let X be anI × T -matrix, containing in each columnt one of theT variables used by the
regulator (including the constant), and denote thei’th row of X by x′i. Then the regulator’s
objective is given by

min
β

I∑

i=1

|cHi − x′iβ|. (18)

Using the estimated coefficients,̂β, cost predictions are given bycR = Xβ̂. However,
the regulator cannot use these cost predictions as the transfers in a risk adjustment scheme
because the sum of these predictions in general does not equal the sum ofcH . This can
most easily be seen ifX only consists of a constant, in which case the optimization problem
becomes

min
β1

I∑

i=1

|cHi − β1|. (19)
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The solution to this minimization problem is the median:β̂1 = cmedian. Since health care
expenditures are usually skewed to the right, the median will be below average cost. If
the regulator used this estimate and set transfers equal to the median, he would minimize
incentives for risk selection, but insurers would make a loss. The solution which minimizes
theMAD is therefore not feasible for risk adjustment.

To ensure a balanced budget for the risk adjustment scheme sothat insurers neither make
profits nor losses due to the transfers set by the regulator, the following constraint has to be
satisfied: ∑

i

cRi =
∑

i

cHi . (20)

Therefore, the full optimization problem of the regulator is given by

min
β

∑

i

|cHi − x′iβ| s.t.
∑

i

(cHi − x′iβ) = 0, (21)

which is equivalent to the optimization problem of a restricted quantile regression. For esti-
mation purposes, it is convenient to reformulate it as an unrestricted optimization problem.
Expressing constraint (20) as

x̄′β = c̄H , (22)

where the bar represents the mean, solving for the last element of β, i.e.,βT , and plugging
into (18) yields

min
β1,...,βT−1

∑

i

|(cHi − c̄H

x̄T
xTi )−

T−1∑

t=1

(xti −
x̄t

x̄T
xTi )βt|. (23)

This is the optimization problem of an unrestricted quantile regression for the 0.5-quantile
with cHi −(c̄H/x̄T )xTi as the dependent andxti−(x̄t/x̄T )xTi as the explanatory variables.19

Having estimated(β̂1, . . . , β̂T−1), one can determinêβT using (22).

3.3 Asymmetric investments

So far we have derived the estimation method which minimizesinsurers’ investments for
the symmetric case ofm = n. We now consider the more realistic case thatm 6= n. In this
case, the total sum of investments is given by

TSI =
∑

i

(
(J − 1)m

J
Di1(Di>0) −

(J − 1)n

J
Di1(Di≤0)

)

=
(J − 1)(m+ n)

J

∑

i

(
n

m+ n
(−Di)1(Di≤0) −

m

m+ n
(−Di)1(Di>0)

)
, (24)

19It can be solved using the simplex algorithm, see Barrodale and Roberts (1974). For large data sets,
alternatives to the simplex algorithm like the interior point method have to be used. Most statistical software
packages have implemented different algorithms for quantile regression.
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where1(·) is the indicator function. Substitutingα = n
m+n

andDi = x′iβ − cHi shows that
the total sum of investments can be minimized by solving

min
β

∑

i

(
(cHi − x′iβ)α1(cHi −x′

iβ≥0) − (cHi − x′iβ)(1 − α)1(cHi −x′

iβ<0)

)
. (25)

This is the optimization problem of a general quantile regression for theα-quantile.20

If m < n, insurers invest less for a positive rent than for a negativerent of equal absolute
value. The regulator should therefore put less emphasis on reducing positive rents than on
reducing the absolute value of the negative rents. Since rents are defined asDi = cRi −cHi =
x′iβ̂ − cHi , while residuals are defined asei = cHi − x′iβ̂, a positive rent corresponds to
a negative residual, and vice versa. Putting more emphasis on negative rents therefore
requires putting more emphasis on positive residuals in theregression. This is exactly what
is achieved by a quantile regression for anα-quantile withα > 0.5; the largerα, the higher
the weight on positive residuals. Withα = 1, only positive residuals, i.e., only negative
rents are considered, while forα = 0, negative rents are ignored.α = 1 therefore captures
the case that insurers are only engaged in negative DRS, andα = 0 that they are only
engaged in positive DRS.

The solution to (25) will in general depend onα, i.e., β̂ = β̂(α). Therefore, to determine
the optimal transferscR(α), it seems necessary to knowm andn (or m

n
, to be more precise).

If this was correct, the optimal transfers could not be calculated because it is unlikely that
a regulator could infer these parameters (with reasonable precision). However, the solution
to (25) which satisfies the balanced budget constraint does not depend onα, so that we can
state the following proposition:

Proposition 2. For the Tullock-csf, the optimal transfers which minimize insurers’ invest-
ments in the risk selection contest are independent of whether insurers are primarily en-
gaged in positive or negative DRS.

Proof: See Appendix A.1.

This result can most easily be understood by noting the following implication of the con-
straint: If, e.g.,α > 1

2 , the regulator will want to put more emphasis on reducing positive
residuals than on reducing the absolute value of negative ones. In the unrestricted quantile
regression this can be achieved by reducing the sum of positive residuals and increasing
the sum of negative ones. In the restricted regression this is not feasible, because the sum
of positive residuals always has to equal the sum of negativeresiduals so that the balanced
budget constraint is satisfied. The optimal transfers can therefore be determined without
knowing whether insurers invest more for a positive or a negative rent of equal absolute
value.

20See Koenker (2005).

10



4 TheR2-criterion

4.1 Rationalization of theR2 criterion

The preceding section showed that in a contest model with theTullock-csf, theMAD is
the correct measure for insurers’ incentives for risk selection. However, in almost all risk
adjustment schemes transfers are determined by means of a least squares regression, which
maximizes theR2. TheR2 is also the criterion that is used to choose among competing
models (e.g. if there are different ways to employ diagnostic information).21 Maximizing
the R2, the explained part of the variance, is equivalent to minimizing the unexplained
part of the variance. Because the unexplained part of the variance is just the sum of squared
deviations, it is obvious that theR2 criterion applies if insurers’ investments are proportional
to the square of the rents.

If for the general contest success functions (6) and (8) we assumeg(a) = γ
√
a and

f(b) = δ
√
b, and setγ

σ
= m and δ

σ
= n, we arrive at the csf as given in (27) and (28)

below. With these contest success functions, the solutionsto the insurers’ objectives as
stated in (11) and (14) are

a∗j =
m2(J − 1)2

4J4
D2

i for Di > 0 and b∗j =
n2(J − 1)2

4J4
D2

i for Di < 0. (26)

As is apparent, these investments are proportional to the square of the rent.22 Because
insurers’ investments for positive and negative rents differ if m 6= n, for theR2-criterion,
which puts equal weight on positive and negative deviations, we have to havem = n. We
can therefore state the following proposition:

Proposition 3. TheR2-criterion can be rationalized in a contest model for the contest
success functions

Prob(i choosesk with positive DRS) =
em

√
ak

∑
j e

m
√
aj

(27)

and

Prob(i choosesk with negative DRS) =
e−n

√
bk

∑
j e

−n
√

bj
(28)

with m = n.

If these two contest success functions apply andm = n, insurers’ incentives for risk se-
lection are minimized using the least squares regression. Because for any least squares
regression the sum of the residuals equals zero by definition, condition (22) is always satis-
fied and does not have to be stated as an explicit constraint.

21Part of the risk adjustment literature deals explicitly with determining the maximumR2 that can be
achieved by different regression models, see van de Ven and Ellis (2000), Section 3.2.6.

22In Lorenz (2014a) it has been shown that the csf as given in (27) is the only one within the class of
contest success functions given by (6) for which investments in equilibrium are proportional to the square of the
rent. There it has also been shown that for the existence of anequilibrium in pure strategies with two players,
0 < m < 5.49D−

1

2 has to be satisfied; the same inequalities hold forn with D replaced by|D|.
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4.2 The estimation method for asymmetric investments

We now consider the case thatm 6= n. If m < n, insurers’ investments for a positive rent
are smaller than for a negative rent of equal absolute value.This requires the regulator to
put less emphasis on reducing positive rents than on reducing the absolute value of negative
rents. This is achieved by employing an asymmetric least squares regression (also termed
expectile regression).23 Following Schnabel (2011), in the remainder of this paper wewill
refer to this regression as the LAWS (least asymmetrically weighted squares) regression.

Because for the LAWS regression (as for the quantile regression) the sum of residuals does
in general not equal zero, form 6= n we have to explicitly state the balanced budget con-
straint (22). Therefore, to minimize insurers’ investments, the regulator has to solve

min
β

∑

i

(
(cHi − x′iβ)

2α1(cH
i
−x′

i
β≥0) + (cHi − x′iβ)

2(1− α)1(cH
i
−x′

i
β<0)

)
s.t. x̄′β = c̄H ,

(29)

whereα = n2

m2+n2 . We will refer to this regression as the RLAWS (restricted LAWS)
regression. Employing the same transformation of variables as used in (23) for the quantile
regression, (29) can be reformulated as an unrestricted asymmetric least squares regression
with cHi −(c̄H/x̄T )xTi as the dependent andxti−(x̄t/x̄T )xTi as the explanatory variables.24

Unlike with the quantile regression, the balanced budget constraint does not imply that the
solution to (29) is independent ofα. Therefore, if insurers’ investments are proportional to
the square of the rent, the optimal transfers are not independent of whether insurers invest
more for a positive or for a negative rent of equal absolute value. As we show in Section 6,
the effectiveness of the transfers calculated form the different regression models crucially
depends on which of the two cases applies. Although (as we already argued in Section 3.3)
it will be difficult for a regulator to inferm

n
exactly, he may nevertheless know whether

positive or negative DRS is the more severe problem in the health insurance market he is
responsible for and, accordingly, choose a different regression model for the two cases.

5 Comparison of the LS, the RLAWS and the RQ regression

Although the difference between the LS, the quantile and theLAWS regression could be
considered straightforward, the difference for the restricted versions (RQ and RLAWS) may
not be immediately obvious. We therefore illustrate this difference with a simple example.

There are ten individuals which can be distinguished according to a dummy variablex1, say,
gender. Five of the individuals are male (x1 = 0), five are female (x1 = 1). Cost predictions
of insurers for these individuals are as given in Figure 1, where each dot represents an

23See Newey and Powell (1987).
24This regression can be estimated using, e.g., the expectreg-package of the statistical software R, see Sobotka

et al. (2014). The expectreg-package does not allow estimating a model without an intercept, as is necessary
with these transformed variables. I thank Jan Pablo Burgardfor adapting the expectreg.ls-function so that a
model without an intercept could be estimated.

12



individual. Both cost distributions have the same mean and are skewed to the right, but the
skewness is higher for males than for females.

RQ

LS

0 2 4 6 8 10 12 14 16 18
cHi

males
x1 = 0

females
x1 = 1

Figure 1: Difference between the LS and the RQ regression fordiscrete cost distributions

In the LS regression forcHi = β0 + β1x1i + ηi, coefficientβ0 will be estimated as the mean
cost of males, andβ1 as the difference of the mean cost of females compared to males.
Since average cost is 7 for both groups,β̂0 = 7 and β̂1 = 0, so that the regulator’s cost
predictions and transfers arecR(males) = cR(females) = 7, as indicated by the blue
squares in Figure 1.

In this example, the number of individuals below (and above)the two cost predictionscR

from the LS regression is different for the two groups. This allows the regulator to reduce
the sum (or mean) of absolute deviations by deviating from these cost predictions. However,
any other pair of cost predictions just as well has to satisfythe balanced budget constraint.
Reducingβ̂0 by some∆β̂ therefore requires increasinĝβ1 by 2∆β̂. In this example, such
a reduction of̂β0 accompanied by the respective increase ofβ̂1 will indeed reduce the sum
of absolute deviations: First, the decrease ofβ̂0 reduces the absolute value of the negative
residuals for four individuals, while the increase ofβ̂1 increases it for only three individuals;
this reduces the sum of absolute deviations by∆β̂. Secondly, the decrease ofβ̂0 increases
one positive residual, while the increase ofβ̂1 reduces two positive residuals; this again
implies a reduction of the sum of absolute deviations by∆β̂.

Reducingβ̂0 (accompanied by the increase ofβ̂1) will reduce the sum of absolute deviations
as long as the number of males with cost belowcR(males) is larger than the number of fe-
males with cost belowcR(females). The RQ regression therefore sets the cost predictions
at the same quantile of the two cost distributions and chooses the quantile that satisfies the
balanced budget constraint; (in this example, it is the 80%-quantile, see the green crosses in
Figure 1).25 The same applies for continuous cost distributions, and also for a continuous
explanatory variable.26

Comparing the residuals of the LS and the RQ regression for the example in Figure 1 shows
that the RQ regression reduces the absolute value of a relatively large number of negative

25If the number of individuals differs for the two groups, the argument has to be slightly altered to take this
into account, but the result that the same quantile is chosenfor both distributions still holds.

26If expected cost is linear in the continuous explanatory variable and, e.g., the skewness of the distribution
(conditional on this variable) is decreasing in this variable, then the coefficient for this variable will be larger
for the RQ than for the LS regression (so that cost predictions are reduced for small values of this variable and
increased for large values of this variable).
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residuals which are close to zero and increases a relativelysmall number of very large posi-
tive residuals. This is a general pattern of the RQ regression; we return to this in Section 6.4,
where we show the residuals for real data.

6.2

6.4

6.6

6.8

7

7.2

7.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β̂0

β̂0 + β̂1

α

Figure 2: Coefficients for the RLAWS regression for the example of Figure 1

We finally consider the RLAWS regression. Results for this regression can be found in
Figure 2, where we plot̂β0 and β̂0 + β̂1, i.e., cR(males) andcR(females), for different
levels ofα. Forα = 0.5, the RLAWS regression puts equal weight on positive and negative
(squared) residuals and is therefore identical to the LS regression (sôβ0 = 7 andβ̂1 = 0).
Forα < 0.5, there is less weight on positive residuals. Because positive residuals (negative
rents) are relatively large (compared to the absolute values of the negative residuals), this
implies putting less weight on large residuals. This is similar to the quantile regression,
which, compared to the LS regression, also puts less weight on large residuals (by weighting
each residual by one instead of the absolute value of the residual itself as with the LS
regression). Reducingα below 0.5 in the RLAWS regression is therefore a step into the
direction of the RQ regression.27

6 Empirical analysis

In this section, we show that the differences between the LS,the RLAWS and the RQ
regression discussed in the previous section can – in some cases – be substantial for real
data.

6.1 Data

We present results for two different data sets: one of a German sickness fund covering the
years 1998 to 2006, the other of a Swiss health insurer, covering the years 1997 to 1999.
These panel data sets contain information on age, gender, cost, hospitalization, number of
months insured and whether the individual died. There is no information on morbidity,
a variable now used in several risk adjustment schemes. We can therefore not determine

27For α = 0, the RLAWS can deviate from the LS regression to a greater or lesser extent than the RQ
regression.
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by how much the three types of regressions differ for the typical set of variables currently
used for risk adjustment. Whether the results would be more pronounced with such a full
set of variables is hard to tell a priori and depends on whether the cost distributions for
the morbidity groups (defined, e.g., by DCGs) differ to a greater or lesser extent (in their
skewness) than for, e.g., gender.

For both data sets, we show the results for the most recent year.28 Because we use prior year
expenditures to determine the cost prediction of the insurer, we only use those observations
which are observable in both the last and the second to last year. We do not drop individuals
which are only observable for part of the year; instead, their cost is annualized and in all
regressions these observations are weighted by the fraction of the year they are observable.29

Table 1: Descriptive Statistics for the Swiss and German data set

Variable Swiss (1999) German (2006)

Male (in %) 45.8 50.8

Mean Age 41.3 31.6

Hospitalization in prior year (in %) 10.4 8.0

Number of observations 147,306 109,208

Descriptive statistics for the two data sets can be found in Table 1. The Swiss data set
contains all expenditures covered by the health insurer, while in the German data set indi-
viduals’ expenditures on ambulatory care are missing whichat that time were covered by a
uniform fee per capita insurers paid to the Association of SHI Physicians.

6.2 Prediction measures

With these two data sets, we determine the coefficients and the cost predictions for the LS,
the RLAWS and the RQ regression. We then compare by how much these cost predictions,
when used as transfers, reduce insurers’ incentives for risk selection. To do so, we employ
the appropriate (prediction) measures for the different settings we considered: Investments
are either proportional to the square or the absolute value of the rent and are either equal or
different for positive and negative rents of equal absolutevalue. For an overview of the four
settings and the corresponding measures, see Table 2.

If insurers’ investments are proportional to the square of the rents and equal for positive and
negative rents of equal absolute value (m = n), theR2 is the correct measure of insurers’
incentives for risk selection. Form 6= n, it is the ‘asymmetric version’ of theR2, given by

asymR2(α) = 1−
∑

i

(
(cHi − cRi )

2α1(cHi −cRi ≥0) + (cHi − cRi )
2(1− α)1(cHi −cRi <0)

)

∑
i

(
(cHi − c̄)2α1(cHi −c̄≥0) + (cHi − c̄)2(1− α)1(cHi −c̄<0)

) .

28Results are very similar for the other years.
29Although in all regressions all observations are weighted by the fraction of the year they are observable, we

do not alter the terminology used so far, i.e., we do not referto these regressions as WLS, WRQ or WRLAWS.
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Table 2: Insurers’ investments, optimal regression model and corresponding prediction mea-
sure

Insurers’ investments Symmetry of in- Optimal Corresponding pre-

proportional to: vestments (m = n) regression diction measure

square of the rent yes LS R2

square of the rent no RLAWS asymR2(α)

absolute value of the rent yes RQ CPM

absolute value of the rent no RQ CPM

If insurers’ investments are proportional to the absolute value of the rent andm = n, the
correct criterion is theMAD. To have a measure that is comparable to theR2, we use
Cumming’s prediction measure, representing the explainedpart of theMAD:30

CPM = 1− MAD(model)

MAD(no model)
= 1−

∑
i |cHi − cRi |∑
i |cHi − c̄| .

Like with theR2, we could, as a fourth measure, introduce an asymmetric version of the
CPM , theasymCPM(α). However, because of the balanced budget constraint, the sum
of the positive residuals always equals the absolute of the sum of the negative residuals, so
any asymmetric weighting of positive and negative residuals does not alter the result, i.e.,
CPM = asymCPM(α) ∀α. Therefore, theCPM is the correct measure if insurers’
investments are proportional to the absolute value of the rents, independent of whether
insurers are primarily (or only) engaged in positive or negative DRS.

Like theR2, theasymR2 and theCPM are normalized to the unit interval. Therefore, with
cRi = c̄H , all three measures assume the value zero, and withcRi = cHi , they all assume the
value one.

6.3 Choice of the dependent variable

We present results for two different dependent variables: actual cost and a cost predic-
tion of the insurer. In most risk adjustment schemes, the regulator uses actual cost as the
explanatory variable in the regression. However, as shown in Section 2, the objective of
the regulator has to be to minimize the difference between his transfers and insurers’ cost
predictions, not actual cost.

We therefore first present the results using insurers’ cost predictionscH as the dependent
variable. We determinecH as the predicted values from a (weighted) least squares regres-
sion using as explanatory variables age, age2, age3, hospitalization in the prior year, prior
year expenditures and prior year expenditures squared, these six variables interacted with

30See Cumming et al. (2002).
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a male dummy, and the male dummy itself.31 This regression uses all the variables avail-
able in the two data sets. With better data, certainly more precise cost predictions could be
calculated.32

If there are some signals used by insurers to determine theircost predictions which cannot
be observed by the regulator even with such a better data set,the regulator cannot infer
these predictions. This is of no consequence for the LS regression because, by the Frisch-
Waugh-Lovell-theorem, the estimated coefficients from theregression with actual cost as
the dependent variable are identical to the coefficients from the regression with insurers’
cost prediction as the dependent variable.33 The FWL-theorem, however, does not apply to
the quantile and the LAWS regression, because these regressions are not orthogonal projec-
tions. In these settings, the optimal transfers which minimize incentives for risk selection
simply cannot be calculated.

6.4 Results for insurers’ cost prediction as the dependent variable

We first compare the coefficients of the three types of regressions for the simplest case
of only one explanatory variable (see Table 3): In Model 1, weuse gender, in Model 2,
age (as a continuous variable) and in Model 3, a dummy variable for hospitalization in the
prior year. In all three cases, the coefficients for the RQ regression differ markedly from
those of the LS regression. E.g., for hospitalization in theprior year, transfers increase by
1,350e for the LS regression, but only by 1,011e for the RQ regression. It can also be seen
that the RLAWS regression withα < 0.5 is always a step into the direction of the quantile
regression, and away from it forα > 0.5.

Table 3: Estimated coefficients for the LS, the RLAWS and the RQ regression; German data
set; dependent variable: cost prediction of insurercH ; explanatory variable: Model 1: male
dummy; Model 2: age; Model 3: hospitalization in the prior year

Model 1 Model 2 Model 3

intercept male intercept age intercept hospt−1

RLAWS (α = 0.6) 606.41 -86.67 -7.21 18.00 430.83 1639.74

LS 613.45 -100.53 42.02 16.45 454.03 1350.47

RLAWS (α = 0.4) 619.16 -111.76 95.75 14.75 473.19 1111.58

RQ 652.58 -177.51 203.38 11.35 481.26 1011.07

31TheR2 for these regressions is 19.6% for the German and 46.6% for the Swiss data set. TheR2 for the
Swiss data set seems very high; however a similar figure has been reported by Beck (2004). The high value
is mostly due to the fact that insurers only have to pay 50% of inpatient bills in Switzerland, which have a
particularly high variance.

32Such a better data set may have to be collected by the regulator at some cost. Stam et al. (2010) analyze
such a setting where a regulator incurs some cost to collect asmall data set with more variables than usually
observable to him.

33See Davidson and MacKinnon (2004).
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However, more important than these differences in the coefficients are the differences in the
cost predictions derived from these coefficients as evaluated by the prediction measures. We
begin by comparing theR2 and theCPM for the LS and the RQ regression (for different
models with different explanatory variables), see Table 4.

Table 4: Predictive performance of different regression models; German data set; dependent
variable: cost prediction of insurercH
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R2 CPM ∆R2 ∆CPM

1 X X 0.18 0.08 1.43 1.75 0.11 0.31

2 X X 5.38 4.86 8.52 13.24 0.52 4.72

3 X X X 5.58 5.06 10.00 13.60 0.52 3.60

4 X X X X 5.60 5.05 9.97 14.62 0.55 4.64

5 X X X X X 14.39 13.07 16.84 24.81 1.33 7.97

6 X X X X X X 14.96 13.75 17.92 25.02 1.21 7.11

7 X X X X X X X 19.05 18.72 36.21 38.07 0.33 1.86

By definition, the LS regression always performs better thanthe RQ regression for theR2

criterion, while the RQ regression always achieves a higherCPM . For all models, we find
that theR2 is not much higher for the LS than for the RQ regression (see the second to last
column of Table 4). This is different for theCPM , which for some models is considerably
higher for the RQ than for the LS regression (see the last column of Table 4). The results
are similar for the Swiss data set (see the middle part of Table 5 in Appendix A.2), but less
pronounced.34 In both data sets, we therefore find that erroneously using the RQ regression
when the LS regression should be used seems less problematicthan vice versa, i.e., using
the LS regression when the RQ regression should be used.

For one of the models (Model 3 with age and gender as the explanatory variables) we give a
more detailed picture of the difference between the LS and the RQ regression by comparing
the distributions of the residuals. In Figure 3, we plot the negative of these residuals, i.e.,
insurers’ rents, for all percentiles of the distribution.35

34It seems reasonable to assume that this is due to the fact thatexpenditures in the Swiss data set are less
skewed, since health insurers cover only half of inpatient cost, see Beck (2004).

35The curves are thus the inverse of the distribution functions.
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Figure 3: Insurers’ rents without risk adjustment and for the LS and the RQ regression.
German data set; Model 3; dependent variable: cost prediction of insurercH

The thin dotted curve shows the distribution of insurers’ rents without risk adjustment (i.e.,
for cRi = c̄H ), plotted in ascending order. As is to be expected, the number of negative
rents (about 25% of all observations) is much smaller than the number of positive rents,
and the absolute value of the largest negative rents is much larger than the largest positive
rents. The blue dotted curve shows insurers’ rents (i.e., the negative of the residuals) for
the LS regression, and the green curve for the RQ regression.The black line represents
an indicator function: if it is above zero, the absolute value of the rent is smaller for the
RQ regression; if it is below zero, it is smaller for the LS regression. As can be seen from
this indicator function, the LS regression yields smaller absolute values of the rents for the
largest negative rents (up to the eighth percentile) and forthe 28. to 42. percentile. For all
the other percentiles (9 to 28 and 43 to 100), the absolute values of the rents are smaller for
the RQ regression. As already discussed in Section 5, this isa general feature of the RQ
compared to the LS regression: a small number of very large positive residuals (negative
rents) are increased, while a large number of the remaining residuals are reduced.36

So far we have compared the results for the symmetric contestin which insurers invest the
same amount for positive and negative rents of equal absolute value. We now consider the
asymmetric case. Figure 4 shows the results, again for Model3 with age and gender as the
explanatory variables. The results for theasymR2 for different levels ofα can be found in
Figure 4(a). (Recall that for low levels ofα, there is a small weight on positive residuals,
i.e., on negative rents; a low level ofα therefore captures the case that insurers are primarily
engaged in positive DRS.) Of course, the RLAWS regression performs best for theasymR2

criterion (except forα = 0.5, when it is identical to the LS regression). Forα > 0.5, the
RLAWS and the LS regression perform somewhat better than RQ regression, which does
not put as much weight on the few very large negative rents. Onthe other hand, for low
levels ofα, the RQ performs much better than the LS regression.

36van Barneveld et al. (2000) have suggested to also consider a‘modified version’ of theMAD where all
deviations below a certain threshold (e.g. 100e ) are ignored. As is to be expected from what we just derived
for the residuals, for this measure, the advantage of the RQ over the LS regression is even larger than for the
‘regular’ MAD (or theCPM ), because the RQ regression results in a considerably larger share of residuals
below the threshold.
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Figure 4:asymR2(α) andCPM for the LS, the RLAWS and the RQ regression. German
data set; Model 3; dependent variable: cost prediction of insurercH

The results for theCPM are shown in Figure 4(b). Independent of the level ofα, the
highestCPM is of course achieved by the RQ regression; in this model, it is considerably
higher than for the LS regression (see also the third line of Table 4). Forα = 0.5, the
RLAWS equals the LS regression so that both achieve the sameCPM . Being a step into
the direction of the RQ regression for smaller levels ofα, for α < 0.5 the RLAWS performs
somewhat better than the LS, but is still less successful than the RQ regression. Forα > 0.5,
it performs considerably worse than the LS regression, and for α > 0.85, it is even worse
than setting a uniform transfer ofcRi = c̄H . With α close to one, the RLAWS regression
effectively aims to explain the few outliers with very high cost, and ignores the large number
of small (negative) residuals which enter theCPM with equal weight. Therefore, the
CPM achieved by the RLAWS regression drops drastically for highvalues ofα.

In our data sets, we find the patterns shown in Figure 4(a) and (b) in all the models we
estimated (i.e., for different sets of explanatory variables). If these patterns were also found
in other data sets with more variables (especially morbidity variables now used in many
risk adjustment schemes), one might draw the following conclusion: Since it is not clear
whether insurers’ investments are proportional to the absolute value or the square of the
rent and whether insurers are primarily engaged in positiveor negative DRS, it might be
more appropriate to calculate transfers for a risk adjustment scheme by means of a restricted
quantile instead of a least squares regression: If investments are proportional to the absolute
value of the rent, it performs better for all levels ofα; if investments are proportional to the
square of the rent, the RQ regression performs considerablybetter than the LS regression for
low levels ofα and only somewhat worse for high levels ofα. However, if the regulator is
certain that insurers’ investments are proportional to thesquare of the rent and that insurers
are at least as much engaged in negative as they are in positive DRS, there is no need to
change the common practice of using least squares regression for risk adjustment: In this
case, it performs better than the RQ regression and only slightly worse than the RLAWS
regression.
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6.5 Results for actual cost as the dependent variable

Because in basically all risk adjustment schemes actual cost is used as the dependent vari-
able in the regression and also to evaluate the performance of different models, we also
present the results for actual cost. For the German data set,we only find very small differ-
ences in theR2 and theCPM between the LS and the RQ regression (see the upper part of
Table 5 in Appendix A.2); for the Swiss data set, we find results which are comparable to
the regressions with insurers’ cost predictions as the dependent variable (but somewhat less
pronounced, see the middle and lower part of Table 5 in Appendix A.2).

In Figure 5 we replicate the results of Figure 4 for actual cost as the dependent variable.
Again, the RQ regression performs considerably better thanthe LS regression according to
theasymR2-criterion for low levels ofα, and only somewhat worse for high levels ofα,
while for theCPM criterion, the RLAWS regression performs much worse than the LS
or the RQ regression for high levels ofα. As is the case with insurers’ cost prediction as
the dependent variable, using the RQ regression is preferable to the LS regression unless
insurers are primarily engaged in negative DRS and investments are proportional to the
square of the rents.
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Figure 5:asymR2(α) andCPM for the LS, the RLAWS and the RQ regression. German
data set; Model 3; dependent variable: actual cost

7 Conclusion

In this paper we have analyzed optimal risk adjustment for direct risk selection (DRS).
Integrating insurers’ activities for risk selection in a discrete choice model of individuals’
health insurance choice shows that DRS has the structure of acontest. For the Tullock-
contest success function used in most of the contest literature, optimal transfers have to
be determined by means of a restricted quantile regression:This regression minimizes the
mean absolute deviation conditional on satisfying the balanced budget constraint for the risk
adjustment scheme. It is optimal regardless of whether insurers are primarily engaged in
positive or negative DRS.

The common practice, however, is to use a least squares and not a quantile regression to
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determine the transfers. We have shown that the least squares regression can be rationalized
in a discrete choice model for a new class of contest success functions. However, the least
squares regression is only optimal if positive and negativeDRS are equally important. If
they are not, transfers have to be determined by means of a restricted asymmetric least
squares regression.

In the empirical part of the paper, using data from a German sickness fund and a Swiss
health insurer, we find considerable differences between the cost predictions of the three
types of regressions. We also find an asymmetry in that the quantile regression never per-
forms much worse than the least squares and the asymmetric least squares regression, but
sometimes considerably better. If these results were also found in other data sets, in partic-
ular those containing information on morbidity now used in many risk adjustment schemes,
a regulator who does not know which contest success functionapplies and whether positive
or negative DRS is the more important problem in the health insurance market he is respon-
sible for, might want to calculate transfers for the risk adjustment scheme by means of a
restricted quantile instead of a least squares regression.
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A Appendix

A.1 Proof of Proposition 2

Assume thatβ∗ is the solution to (25) s.t. the balanced budget constraint (22) for α = 1
2 ,

andβ̃ 6= β∗ is the solution forα 6= 1
2 . If X has full rank, thenXβ∗ 6= Xβ̃; this implies

cH −Xβ∗ = e(β∗) 6= e(β̃) = cH −Xβ̃. (30)

The vector of residuals,e(β∗), satisfies the constraint that the sum of positive residuals,∑

i+

e+i (β
∗), equals minus the sum of negative residuals,

∑

i−

e−i (β
∗). The same holds for̃β.

The weighted sum of residuals,WSR, i.e., the value of (25), forα = 1
2 for the optimalβ∗

and the non-optimal̃β are

WSR(β∗|α =
1

2
) =

1

2

∑

i+

e+i (β
∗)− 1

2

∑

i−

e−i (β
∗) =

∑

i+

e+i (β
∗) (31)

WSR(β̃|α =
1

2
) =

1

2

∑

i+

e+i (β̃)−
1

2

∑

i−

e−i (β̃) =
∑

i+

e+i (β̃), (32)

where the last equality in both equations holds because the constraint is satisfied.

If α 6= 1
2 , the weighted sum of residuals for the optimalβ̃ and the non-optimalβ∗ are given

by

WSR(β̃|α 6= 1

2
) = α

∑

i+

e+i (β̃)− (1− α)
∑

i−

e−i (β̃) =
∑

i+

e+i (β̃) (33)

WSR(β∗|α 6= 1

2
) = α

∑

i+

e+i (β
∗)− (1− α)

∑

i−

e−i (β
∗) =

∑

i+

e+i (β
∗). (34)

Now, if
∑

i+ e
+
i (β̃)<

∑
i+ e

+
i (β

∗), thenβ∗ cannot have minimizedWSR(β|α= 1
2 ). If, on

the other hand,
∑

i+ e+i (β
∗) <

∑
i+ e+i (β̃), thenβ̃ cannot have minimizedWSR(β|α 6= 1

2).
This implies that both optimization problems must yield thesame residuals and therefore
the same cost predictions, sõβ = β∗.
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A.2 Regression results

Table 5: Predictive performance of different regression models
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R2 CPM ∆R2 ∆CPM

German data set; dependent variable: actual cost

1 X X 0.04 -0.01 0.16 0.22 0.04 0.06

2 X X 1.06 1.03 1.39 1.49 0.03 0.10

3 X X X 1.09 1.04 1.45 1.62 0.05 0.17

4 X X X X 1.10 0.95 1.57 1.83 0.15 0.26

5 X X X X X 2.82 2.44 3.49 4.11 0.38 0.63

6 X X X X X X 2.93 2.53 3.51 4.13 0.41 0.62

7 X X X X X X X 3.74 3.21 5.58 5.98 0.52 0.41

Swiss data set; dependent variable: cost prediction of insurer

1 X X 1.16 1.03 1.61 1.72 0.13 0.11

2 X X 19.73 18.67 15.95 19.62 1.07 3.67

3 X X X 20.09 18.99 16.78 19.96 1.11 3.18

4 X X X X 20.34 19.39 17.08 20.48 0.95 3.40

5 X X X X X 35.02 34.13 24.69 28.18 0.89 3.48

6 X X X X X X 35.08 34.21 24.77 28.20 0.86 3.42

7 X X X X X X X 39.68 39.53 33.50 33.96 0.15 0.47

Swiss data set; dependent variable: actual cost

1 X X 0.56 0.46 1.05 1.15 0.10 0.11

2 X X 9.52 8.79 6.00 8.63 0.72 2.63

3 X X X 9.69 8.93 6.36 8.90 0.76 2.54

4 X X X X 9.81 9.09 6.80 9.29 0.71 2.49

5 X X X X X 16.89 16.21 10.52 13.17 0.68 2.65

6 X X X X X X 16.92 16.23 10.57 13.17 0.68 2.60

7 X X X X X X X 19.14 18.72 15.19 15.73 0.41 0.54
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