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Aim and objectives of Deliverable 2.1

Present a state-of-the-art of the literature in parametric income distribution, which jus-
tifies the selection of an income distribution model that fits satisfyingly the equivalized
income used in the EU-SILC survey and is, at the same time, easily applicable. From
this study, it has become clear that a four-parameter size distribution called the Gener-
alized Beta of the second kind (GB2) has been found as the best fitting distribution of
income. Further we present and investigate the GB2 distribution and its properties and
test different fitting methods for the GB2 (ML, Dagum’s method of nonlinear regression
on quantiles, moments) at the EU-SILC country level. The most promising methods are
programmed and provide an input for simulation and robustness studies. Another goal is
to get insight into the relationships between the characteristics of the theoretical distri-
bution and a set of indicators, e.g. by sensitivity plots and to develop reliable variance
estimation techniques for the fitted parameters and indicators. Also the use the mixture
property of the GB2 distribution for fitting subgroup distributions by calibration and
deduce by this method the subgroup indicators’ estimates is investigated
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Chapter 1

Introduction

In the context of the AMELI project, we aim at developing reliable and efficient meth-
odologies for the estimation of a certain set of indicators of poverty and social exclusion
computed within the EU-SILC survey, and in particular on the use of parametric estima-
tion of the median, the at-risk-of-poverty rate (ARPR), the relative median poverty gap
(RMPG), the quintile share ratio (QSR) and the Gini index (see e.g. Eurostat, 2009).
This document investigates the use of parametric estimation in this context.

If we have income data, we can fit the theoretical distribution and compute the indicators
from the parameters of the fitted distribution. The functional relationship between the
indicators and the parameters under the assumed distribution gives insight into both:
sensitivity of indicators to variations of shape can be assessed on the one hand, and on
the other hand interpretation of shape parameters is deepened by the relationship to the
indicators.

Parametric income distributions have long been used for modeling income. The advantage
of parametric estimation of income distributions is that there exist simple and explicit
formulas for the inequality measures as functions of the parameters of the income distri-
bution. Both modeling of the whole income range or of the tails of the distribution have
been investigated in the literature.

Suppose we do not have the income micro data at disposal, but that the indicators, fitted
on empirical data, are publicly available. The indicators have been produced without
any reference to a theoretical income distribution. It is then possible to go the other way
round, that is to reconstruct the whole income distribution, knowing only the values of the
empirical indicators and assuming that the theoretical distribution models the empirical
distribution to an acceptable precision. This approach has been applied to EU-SILC data
with success. This means that the set of indicators contains enough information to permit
the reconstruction of the empirical distribution generally to an acceptable precision.

The deliverable is structured in the following way. Chapter 2 gives an overview of para-
metric estimation of income distributions. In Chapter 3, are given the basic properties of
the generalized Beta distribution of the second kind. Chapter 4 gives a description of the
methods used for fitting the GB2, both using the whole microdata information, or the
set of empirical indicators only. Chapter 5 shows how the compounding property of the
GB2 can be used to decompose the distribution and uses this model on subpopulations.
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Chapter 6 is on the application of mixture distributions in the context of heterogeneous
populations. Finally, Chapter 7 gives some conclusions.
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Chapter 2

Review of Parametric Estimation in
Income Distributions

2.1 Introduction

This bibliography collects seminal and recent papers in the field of parametric income dis-
tributions. The domain is so large and vivid that the collection is necessarily incomplete.
The bibliography within each of the following references will give further information. We
proceed by themes.
First publications on the mathematical properties of models for income distributions are
described. They are followed by papers on international comparisons. Then some estima-
tion procedures used in different contexts are reviewed. Next the Gini coefficient has given
rise to much research. In particular the case of Gini with reference to negative incomes
is considered. Finally we present the important subgroup decomposition of inequality
indices in different contexts.

2.2 Statistical size distributions

Three books on income distributions and inequality indices are of great value:
Kleiber and Kotz (2003) is a reference book on statistical size distributions. It contains
a encyclopedic bibliography on the derivation of the different types of distributions as well
as on empirical applications. One huge difficulty that is overcome with the help of Kleiber
and Kotz’s book is the terminology they have unified and clarified. We propose to follow
their terminological choices.

In the book of Chotikapanich (2008), seminal papers on size distributions and Lorenz
curve are collected.

Atkinson and Bourguignon (2000) describe income distributions from a more econo-
metric point of view. The book starts with a review of existing economic theories seeking
to explain the distribution of income. Chap.1: relation between the idea of social justice
and the analysis of income distribution(A.Sen); Chap.2: basis for comparing different
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4 Chapter 2. Review of Parametric Estimation in Income Distributions

distributions and measuring inequality (F. Cowell); Chap. 3 and 4: historical perspect-
ives; Chap. 5: empirical evidence on income inequality in industrialized countries (P.
Gottschalk and T. Smeeding); Chap.6: income poverty in advanced countries, definitions
of poverty and equivalence scales(M. Jäntti and S. Danziger); Chap. 7: theories of the
distribution of earnings (D. Neal and S. Rosen); Chap. 14: income distribution, economic
systems and transition (J. Flemming and J. Mickelwright). The rest of the book is of a
less measurement nature (i.e. purely economic). This book is also relevant for WP1.

One prevailing family of income distributions is the Generalized Beta distribution of the
Second Kind (GB2). Some recent papers about the GB2 are cited now:
McDonald (1984) gives a unified view of many income distributions, utilizing the gen-
eralized beta and gamma distributions family. This paper is the basis of Kleiber and
Kotz (2003)’s chapter on the GB2.

Jenkins (2007) derives the generalized entropy class of inequality indices for the GB2
income distributions, thereby providing a full range of top-sensitive and bottom-sensitive
measures. An examination of British income inequality in 1994/95 and 2004/05 illustrates
the analysis. Jenkins (2008) is essentially the same paper.

Milgram (2006) is an electronic paper on the generalized hypergeometric function 3F2(1)
(that appears in the Gini formula for GB2).

2.3 Estimation methods

Burkhauser et al. (2008) estimate trends in US income inequality with special emphasis
on top income shares. On comparing with estimates from administrative data, they
conclude that the trend is linked to the top-coding (for confidentiality reasons) of the
CPS data. They show that their CPS estimates of trends in top income shares match the
estimates of trends reported on the basis of administrative records, except for within the
top 1% of the distribution. Thus, they argue that, if income inequality in the USA has
increased substantially since 1993, such increases are confined to this very highest income
group.

In the proceedings of the EU-SILC conference Eurostat (2007), Van Kerm (2007)
considers extreme incomes and the estimation of poverty and inequality indicators from
EU-SILC. Social indicators are known to be sensitive to the presence of extreme incomes
at either tail of the income distribution. It is therefore customary to make adjustments
to extreme data before estimating such statistics. Thus it is important to evaluate the
impact of such adjustments and assess how much resulting cross-country comparisons are
affected by alternative adjustments. The paper presents the results of a large scale sens-
itivity analysis considering both simple, classical adjustments and a more sophisticated
approach based on modeling parametrically the tails of the income distribution. A Pareto
distribution was used as the parametric tail model. An inverse Pareto distribution was
used for the lower tail.

In Biewen and Jenkins (2005), the decomposition of poverty differences is based on a
parametric model of the income distribution and can be used to decompose differences in
poverty rates across countries or years. The parameters of the GB2 family are modeled
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2.4 The Gini coefficient 5

with the help of covariates to account for population differences. The authors encountered
sometimes convergence problems.

In the context of capital asset pricing model, McDonald (1989) estimates regression
coefficient using partially adaptive techniques and a generalized t (GT) distribution for
the error term. The idea is put further to any type of regression with positive variables
in Butler et al. (1990) and McDonald and Butler (1990).

In Neocleous and Portnoy (2008), the partially linear Censored Regression Quantile
(CRQ) model combines semiparametric estimation for censored data with quantile re-
gression techniques, and uses B-splines for the estimation of the nonlinear term. An ap-
plication to administrative unemployment data from the German Socio-Economic Panel
Survey is presented. In a very interesting paper, McDonald and Butler (1987) apply
generalized mixture distributions to unemployment duration.

Yu et al. (2004) present wage distributions via bayesian quantile regression.

Victoria-Feser and Ronchetti (1994) show that classical estimation methods are
very sensitive to model deviations and set the scene for the optimal B-robust estimation
(OBRE) in income distribution analysis for Gamma and Pareto models.

Victoria-Feser (2000) shows that robust techniques can play a useful role in income
distribution analysis and should be used in conjunction with classical methods. The data
available for estimating welfare indicators are often incomplete: they may be censored
or truncated. Furthermore, for robustness reasons, researchers sometimes use trimmed
samples. Cowell and Victoria-Feser (2003) derive distribution-free asymptotic vari-
ances for wide classes of welfare indicators not only in the complete data case, but also in
the important cases where the data have been trimmed, censored or truncated.

2.4 The Gini coefficient

A huge literature exists on the Gini coefficient, and we do not pretend to be exhaustive.
One interesting reference is Xu (2004)’s survey paper. Its aim is to help the reader to
navigate through the major developments of the literature and to incorporate recent theor-
etical research results with a particular focus on different formulations and interpretations
of the Gini index, its social welfare implication, and source or subgroup decomposition.
One interesting question is the comparability of Gini indices between distributions without
negative incomes and distributions that have some negative incomes. Chen et al. (1982)
propose a normalized Gini coefficient that deals with the issue. Berberi and Silber
(1985) point out a mistake in Chen and Saur’s paper and propose an alternative formu-
lation that is in turn criticised by Chen et al. (1985).

2.5 Subgroup decomposition

Another line of research is the decomposition of inequality measures, either by sub-groups
or by source of income. The case of Gini and entropy is considered in Mussard and Ter-
raza (2007) for both types of decomposition. The decomposition of inequality measures
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6 Chapter 2. Review of Parametric Estimation in Income Distributions

by sub-groups is a subject of continuous interest. Dagum et al. (1984) compare male-
female income distribution on the basis of an economic distance which is a normalized
and dimensionless measure of inequality between distributions.

Chiappero-Martinetti and Civardi (2006) propose a decomposition of the Foster,
Greer, Thorbecke (FGT) class of poverty indexes into two additive components (namely,
poverty within groups and poverty between groups) when both a community-wide threshold
and a specific poverty line for each subgroup of population is used. For any given order of
stochastic dominance, Makdissi and Mussard (2006) decompose standard concentra-
tion curves into contribution curves corresponding to within-group inequalities, between-
group inequalities, and transvariational inequalities. The latter gauges between-group
inequalities issued from the groups with lower mean incomes and thus brings out the
intensity with which the groups are polarized.

Mussard (2007) first introduces between-group and within-group transfers, then axio-
matically derives Gini’s mean difference (Gini (1912)) and Dagum’s Gini index between
two populations (Dagum (1987)). An application is performed with the Gini decompos-
ition in order to understand the impact of within- and between-group transfers on the
variations of the overall Gini index. A conclusion follows to highlight the debate between
the use of entropy and Gini measures throughout the prism of decomposition techniques.

Dastrup et al. (2007) extend the analysis using the generalized beta distributions to
include the impact of transfer payments and taxes on the distribution of income.

The paper by Lilla (2007) attempts to measure income inequality and its changes over
the period 1993-2000 for a set of 13 Countries in ECHP. Focusing on wages and incomes
of workers in general, inequality is mainly analyzed with respect to educational levels as
proxy of individual abilities. Estimation of education premia is performed by quantile
regressions to stress differences in income distribution and questioning the true impact of
education. The same estimates are used to decompose income inequality and show the
rise in residual inequality.

AMELI-WP2-D2.1



Chapter 3

Basic Properties of the Generalized
Beta Distribution of the Second
Kind

3.1 Introduction

The Generalized Beta Distribution of the Second Kind is a four-parameter distribution
and is denoted by GB2(a, b, p, q). It has been derived by McDonald (1984). Most of
the following formulas are collected in Kleiber and Kotz (2003). The GB2 distribution
encompasses Fisk’s (p = q = 1), Dagum’s (q = 1) and Singh - Maddala’s (p = 1)
distributions. Empirical studies on income (see e.g. Jenkins, 2007; Dastrup et al.,
2007; Kleiber and Kotz, 2003, Table B2), tend to show that the GB2 outperforms
other 4-parameter distributions.

The GB2 can be obtained by a transformation of a standard Beta random variable. The
derivation of moments and likelihood equations also necessitates the use of special math-
ematical functions, like the beta function and the gamma function and its derivatives.
The Fisher information matrix has been obtained by Brazauskas (2002). Formulas for
the indicators are new, except for the Gini index that was derived by McDonald (1984).
An efficient method for the computation of the Gini index is described in Graf (2009).
The paper is given in Annex C of this document.

3.2 Density and distribution function

The GB2 density takes the form:

f(x; a, b, p, q) =
a

bB(p, q)

(x/b)ap−1

(1 + (x/b)a)p+q
, (3.1)

where B(p, q) is the beta function, b > 0 is a scale parameter, p > 0, q > 0 and a > 0 are
shape parameters. The parameter a represents the overall shape, p governs the left tail
and q - the right tale.
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8 Chapter 3. The Generalized Beta Distribution of the Second Kind

Let Iz(p, q) be the incomplete beta function ratio, given by

Iz(p, q) =
1

B(p, q)

z∫
0

up−1(1− u)q−1du, 0 ≤ z ≤ 1 (3.2)

The distribution function of a GB2 variable can be written as

F (x; a, b, p, q) = Iz(p, q), (3.3)

where z = y/(1 + y) and y = (x/b)a.

Let zα be the α−th quantile of the Beta(p, q) distribution, and yα = zα/(1− zα), then the
α−th quantile of the GB2(a, b, p, q) is given by:

xα = b y1/aα . (3.4)

If Z is a random variate of a standard Beta(p, q) distribution, and Y = Z/(1− Z), then
the GB2(a, b, p, q) random variate is given by

X = b Y 1/a. (3.5)

3.3 Log density

If we set y = (x/b)a, then ∂y/∂a = (1/a)y log(y) and ∂y/∂b = (−a/b)y. Then the log
density of the GB2 distribution is given by:

log(f) = log(a)− log(b)− log(Γ(p))− log(Γ(q)) + log(Γ(p+ q))

+ (ap− 1) log(x/b)− (p+ q) log(1 + y),

where log(f) stands for ln(f) and Γ is the gamma function.

Let us set r = p/(p+ q) and s = p+ q. Then p = rs and q = (1− r)s. Then, we obtain a
new formula for the log density, given by

log f = log a− log b− log Γ(rs)− log Γ((1− r)s) + log Γ(s)

+ (ars− 1) log(x/b)− s log(1 + y)

The partial derivatives of the log density with respect to a, b, r and s are given by

∂ log f

∂a
=

1

a
+ rs log(x/b)− s(1/a)y log(y)

1 + y
=

1

a

[
1 + rs log(y)− sy log(y)

1 + y

]
∂ log f

∂b
= −1

b
− ars− 1

b
+
as

b

y

1 + y
=
as

b

[
y

1 + y
− r
]

∂ log f

∂r
= −sψ(rs) + sψ((1− r)s) + s log(y) = s [log(y)− ψ(rs) + ψ((1− r)s)]

∂ log f

∂s
= −rψ(rs)− (1− r)ψ((1− r)s) + ψ(s) + r log(y)− log(1 + y)

In Appendix A are given the first and second partial derivatives of the log density with
respect to a, b, p and q.
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3.4 GB2 Log-likelihood Equations 9

3.4 GB2 Log-likelihood Equations

We express the log-likelihood as a weighted mean of the log density evaluated at the data
points.

logL =
∑

wi log f(xi; a, b, rs, (1− r)s)/
∑

wi,

where f(.) is the GB2 density in Equation (3.1). Next, we can calculate the score functions,
which are readily obtained as weighted sums of the partial derivatives of log f evaluated
at data points.

It is easy to solve the ML equations for r and s in function of a and b: ∂ logL/∂b = 0 <=>

r̂ =
∑

wi
yi

1 + yi
/
∑

wi (3.6)

∂ logL/∂a = 0 <=>

ŝ−1 =
∑

wi log(yi)

(
yi

1 + yi
− r̂
)
/
∑

wi (3.7)

=
∑

wi
yi

1 + yi
(log(yi)−m) /

∑
wi, (3.8)

where

m =
∑

wi log(yi)/
∑

wi. (3.9)

We see that ŝ−1 is the empirical covariance between log yi and yi/(1 + yi).

Introducing these solutions into the likelihood leads to the profile log-likelihood logLp
which has two parameters a and b,

logLp =
∑

wi log f(xi; a, b, r̂ŝ, (1− r̂)ŝ)/
∑

wi (3.10)

The advantage over the full log-likelihood is that contour plots can be produced (see
Figure 4.3).

3.5 Moments and other properties

Let X be a random variable following a GB2 distribution. Then the moment of order k
is defined by

E(Xk) = bk
Γ(p+ k/a)Γ(q − k/a)

Γ(p)Γ(q)
, (3.11)

where moments exist for −ap < k < aq.
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10 Chapter 3. The Generalized Beta Distribution of the Second Kind

The incomplete moment of order k is given by

E(Xk|X < x)

E(Xk)
= F(k)(x; a, b, p, q) = F (x; a, b, p+

k

a
, q − k

a
). (3.12)

Thus it can be expressed with the help of a GB2 distribution function with special para-
meters.

Equation (3.11) can be viewed as the moment generating function of log(X). Thus the
moments of log(X) can be easily obtained by differentiation. Let denote by ψ the digamma
function (the logarithmic derivative of the gamma function). The polygamma function
of order n, ψ(n), is the n-th order derivative of the digamma function. The expectation,
variance, skewness and kurtosis coefficients of log(X) are given by:

E(logX) = (ψ(p)− ψ(q))/a+ log(b)

Var(logX) = (ψ(1)(p) + ψ(1)(q))/a2

Skew(logX) = (ψ(2)(p)− ψ(2)(q))/(ψ(1)(p) + ψ(1)(q))3/2

Kurt(logX) = (ψ(3)(p) + ψ(3)(q))/(ψ(1)(p) + ψ(1)(q))2

The four parameters have a direct interpretation in terms of the distribution of log(X).
The location parameter is log(b), a is the scale parameter, and p and q determine the
asymmetry and the skewness of the distribution. One can easily prove that when p = q,
all odd moments vanish (except the first), thus the distribution of logX is symmetric
around log(b) in this case; in general, it is skewed to the right if p > q, and to the left if
p < q. Let us also remark that, contrary to X, log(X) has moments of all orders.

3.6 Indicators of poverty and social exclusion in the

EU-SILC framework

The advantage of parametric estimation of income distributions, and in particular the
GB2, is that there exist simple and explicit formulas for the inequality measures as func-
tions of the parameters of the income distribution. McDonald (1984) gave the analytic
form of the Gini index under the GB2 distribution, but the GB2 expressions for the other
indicators are new and easily obtained through the cumulative distribution function, or
the quantile function, or using the moments of the distribution. An efficient algorithm to
compute the Gini index from its analytical expression has been described in Graf (2009),
see Annex C, and implemented in R.

The following inequality measures are defined in Eurostat (2009). Robust methods for
the direct estimates are addressed in Deliverable 4.2. The implementation in EU-SILC is
described in Deliverable 5.1. Here we derive the indicators under the GB2 hypothesis.

• At-risk-of-poverty threshold (ARPT)

Let x50 be the median of the GB2(a, b, p, q), computed from Equation (3.4) with
α = 50%. Then ARPT is given by

ARPT (a, b, p, q) = 0.6x50 (3.13)
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3.6 Indicators of poverty and social exclusion within EU-SILC 11

• At-risk-of-poverty rate (ARPR)

The at-risk-of-poverty rate being scale-free, b can be chosen arbitrarily and can be
fixed to the value of 1.

ARPR(a, p, q) = F (ARPT (a, 1, p, q); a, 1, p, q), (3.14)

where F is the GB2 distribution function given in Equation (3.3).

• Relative median poverty gap

RMPG is defined as one minus the ratio between the median income of the poor to
60% of the median income of the population.
If A = ARPR(a, p, q),

RMPG(A, a, p, q) = 1− qGB2(A/2, a, 1, p, q)/qGB2(A, a, 1, p, q), (3.15)

where qGB2 is the GB2 quantile function.

• Quintile share ratio (QSR or S80/S20)

Let x80 (resp. x20) be the 80-th (resp. the 20-th) percentile of the GB2 distribution
(see Equation (3.4)). The quintile share ratio can be expressed with the help of the
incomplete moments of order 1 (Equation 3.12, with k = 1):

QSR(a, p, q) = ( 1− F(1)(x80; a, 1, p, q) )/F(1)(x20; a, 1, p, q) (3.16)

• Gini index

The Gini index of the GB2 distribution is given by (McDonald, 1984):

GINI(a, p, q) =
B(2p+ 1/a, 2q − 1/a)

B(p, q)B(p+ 1/a, q − 1/a)

{
1

p
G1 −

1

p+ 1/a
G2

}
, (3.17)

where

G1 = 3F2

[
1, p+ q, 2p+ 1/a ; 1

p+ 1, 2(p+ q)

]
(3.18)

and

G2 = 3F2

[
1, p+ q, 2p+ 1/a ; 1

p+ 1 + 1/a, 2(p+ q)

]
, (3.19)

where 3F2 is the generalized hypergeometric series. A direct application of Equation
(3.17) can lead to convergence problems.

• Gini: Particular cases

In some special cases, the Gini takes a simpler form:

B2 distribution (a = 1):

GINI(p, q) =
B(2p, 2q − 1)

2pB2(p, q)
(3.20)

Dagum distribution (q = 1):

GINI(a, p) =
Γ(p)Γ(2p+ 1/a)

Γ(2p)Γ(p+ 1/a)
− 1 (3.21)

Singh-Maddalah distribution (p = 1):

GINI(a, q) = 1− Γ(q)Γ(2q − 1/a)

Γ(2q)Γ(q − 1/a)
(3.22)
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12 Chapter 3. The Generalized Beta Distribution of the Second Kind

3.7 Sensitivity plots

As ARPR, RMPG, QSR and Gini do not depend on the scale parameter b, we can ask
ourselves how do these indicators behave in function of the shape parameters a, p and q.
A sensitivity plot, implemented in the R package GB2 Graf and Nedyalkova (2010),
illustrates this.

Figure 3.1 shows how the values of ARPR vary in function of the parameters p and q,
for different values of a which is kept fixed. We can see that for small values of a, ARPR
depends on all three parameters, but when a increases, the dependence on q diminishes.
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Figure 3.1: Sensitivity plot of the ARPR

Sensitivity plots can also be produced for RMPG, QSR and Gini.
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Chapter 4

Methods of estimation of the
parameters of the GB2

In this section we consider several methods of estimation of the GB2 parameters a, b, p and
q. Amongst them, the pseudo maximum likelihood, nonlinear least squares on the quantile
function (Dagum (1977)), nonlinear fit for indicators. In our experience, the pseudo
maximum likelihood estimation has proven to be the most suitable, giving the best fit of
the distribution and allowing for easy calculation of variance estimates (by linearization)
of the fitted parameters and indicators. Variance estimation takes the sampling design
into account. The pseudo log-likelihood is computed as a weighted sum over the sample
of the log density of the distribution, where the weights are the sample weights. It is a
function of the parameters of the distribution. Optimizing the pseudo-likelihood provides
us with a set of parameters which fits the GB2 to the income variable by taking the
sampling design into consideration.

4.1 Dagum’s Method

Let F̂ (x) be the empirical distribution function estimated at x and FGB2(x; a, b, p, q) the
GB2 cumulative distribution function.
Dagum’s method (Dagum (1977)) consists of finding a, b, p, q that minimise the following
objective function:∑

wi

[
F̂ (xi)− FGB2(xi; a, b, p, q)

]2
, (4.1)

where wi is the sampling weight of xi.

We start with initial values from the Fisk distribution, which is GB2 with p = q = 1.
Moment estimators of a and b for this distribution are, (see Graf, 2007):

m` =
∑
wi log xi/

∑
wi (4.2)

v` =
∑
wi(log xi −m`)

2/
∑
wi

b̂ = exp(m`) (4.3)

â = π/
√

3v` (4.4)
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14 Chapter 4. Fitting the GB2

4.2 Pseudo maximum likelihood estimation of the

parameters of the GB2 distribution under cluster

sampling

In the classical case of maximum likelihood estimation the log-likelihood function is defined
as a sum over the sample of the log density evaluated at the data points. However, in
the framework of EU-SILC, we are in the case where the data is observed at two levels -
personal level and household level. Households (clusters) are sampled and then all persons
of the selected households enter in the sample. All persons of a household have the same
equivalised disposable income (xi), which is also the household’s equivalised disposable
income, thus the observations are not independent. Let m,ni and n denote, respectively,
the number of selected households, the number of persons belonging to household i and
the number of selected persons. Then, the weighted pseudo log-likelihood function (see
e.g. Skinner et al., 1989, Chapter 3.4.4), at the household level, is defined as

lm(θ) =
m∑
i=1

wini log f(xi; θ), (4.5)

where f(·) is the GB2 density, given in Equation (3.1), θ = (a, b, p, q)T is the vector of
parameters and wi are the sampling weights (the sampling weight of a household equals
the sampling weight of each person belonging to the household). We can scale lm(θ) by
dividing by the mean of weights over the sample of households w̄m =

∑m
i=1wi/m in order

to avoid large numerical values in the computation.

The partial derivatives of the log-likelihood function are readily obtained as weighted sums
of the partial derivatives of log(f(xi)) (see Section 3.3), evaluated at the data points. Thus,
the first and second partial derivatives of lm with respect to θ are:

l′m(θ) =
m∑
i=1

winiui(xi; θ), (4.6)

where

ui(xi; θ) = [log f(xi; θ)]
′ =

∂

∂θ
log f(xi; θ)

is the 1 × 4 vector of the first partial derivatives of log(f(xi; θ)) with respect to θ, for a
given observation i.

Similarly, we have

l′′m(θ) =
m∑
i=1

winihi(xi; θ), (4.7)

where

hi(xi; θ) = [log f(xi; θ)]
′′ =

∂2

∂θ2
log f(xi; θ)

is a symmetric 4× 4 matrix of the second partial derivatives of log(f(xi; θ)) with respect
to θ, for a given observation i (see Appendix A).

AMELI-WP2-D2.1



4.3 Robustification of the sampling weights 15

The quantity
I(θ) = −E(l′′m(θ)).

is called the Fisher information matrix. For the GB2 distribution, the Fisher information
matrix was obtained by Prentice (1975) and recently by Brazauskas (2002).

In classical maximum likelihood theory, when the assumed model is correct, it can be
proved that

E(l′m(θ)) = 0 (4.8)

Var(l′m(θ)) = −E(l′′m(θ)) (4.9)

The value of the parameter θ that maximizes the log-likelihood is called the maximum
likelihood estimate θ̂m and is obtained by setting the first derivatives equal to zero. Thus
we have

l′m(θ̂m) = 0. (4.10)

Functions performing pseudo maximum likelihood estimation based on the full and the
profile log-likelihoods are implemented in Graf and Nedyalkova (2010). Maximum
likelihood estimation is obtained through methods for non-linear optimization like the
BFGS method. As for Dagum’s method, the same initial values for a and b, given in
Equations (4.4) and (4.3), are chosen.

4.3 Robustification of the sampling weights

In general, GB2 estimation and other ML estimation from parametric distributions have
robustness problems and are sensitive to extremes (see e.g. Victoria-Feser and Ron-
chetti, 1994; Victoria-Feser, 2000). Actions have been taken by the SILC data
producers in order to avoid very large incomes in the databases, but less attention has
been given to the left tail of the income distribution. In our simulation study (see Chapter
7 of Deliverable D7.1), we have noticed that a certain bias in the estimates is induced.
This led us to the idea to robustify the sampling weights in creating an ad hoc procedure
for correcting the sampling weights. Our procedure is inspired, but not following directly,
by the MAD-rule (see Luzi et al., 2007). We start from the Fisk distribution, which is a
GB2 with p = q = 1. Its cumulative distribution function (see Kleiber and Kotz, 2003,
p.222) is given by:

F (x; a, b, 1, 1) =
(x/b)a

1 + (x/b)a
=

y

1 + y
, (4.11)

where y = (x/b)a.

The α−th quantile of the Fisk(a, b) is given by:

xα = b

(
α

1− α

)1/a

. (4.12)
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16 Chapter 4. Fitting the GB2

From Equation 4.12, it follows that:

xα
b

x1−α
b

= 1. (4.13)

Thus the geometric mean between the two symmetric quantiles xα and x1−α is equal to
b, the median under the Fisk distribution.

Let x denote the observed value, in our case the equivalized income. Our procedure is as
follows:

1. First we define our scale as:

d = |xα
b
− x1−α

b
|, (4.14)

where α can take different values, e.g. 0.001, 0.002, etc.

2. Next, the correction factor is calculated as follows:

corr = max(c,min(1,
d

|b/x− 1|
,

d

|x/b− 1|
)), (4.15)

where c is a constant, that can take different values, e.g. 0.1, 0.2, etc. and that
allows to limit the correction factor. The correction factor is of Huber-type (Huber
(1981)). One can easily find that the correction factor corr is given by

corr =


c if x/b ≤ c/(d+ c),
d x/(b− x) if c/(d+ c) ≤ x/b ≤ 1/(d+ 1),
1 if 1/(d+ 1) ≤ x/b ≤ d+ 1,
d b/(x− b) if d+ 1 ≤ x/b ≤ (d+ c)/c,
c if (d+ c)/c ≤ x/b.

3. The sampling weights are multiplied by the correction factor corr.

4. The weights are multiplied by the ratio of the sum of the unadjusted weights and
the sum of the adjusted weights, in order to keep the sum of weights constant.

This robust procedure tends to make the fitted GB2 parameters p and q closer.

For example, in our simulation study with the AMELIA data set (created by Kolb et al.,
2011), if this adjustment is processed, we downweight about 0.2% of the observations,
essentially on the left tail. Figure 4.1 shows the correction of the weights obtained with
a = 1.78 and α = 0.01 (which implies that d ≈ 13), and c = 0.1. These parameters are
similar to those used with the AMELIA dataset.

4.4 Variance estimation

We fit the GB2 by pseudo-maximum likelihood and derive the design variance of both the
parameters and the indicators by linearization. Simulations with the AMELIA artificial
dataset show a bias of the linearization variances relative to the simulation variance of
around 10% (see Chapter 7 of Deliverable D7.1).
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Figure 4.1: Correction factor for the robustification of weights (Huber-type function).
Dotted line corresponds to limit c.

4.4.1 Variance estimation of the parameters of the GB2 distri-
bution

We can approximate l′m(θ̂m) by the first two terms of a Taylor series around θ. Thus we
have

l′m(θ̂m) ≈ l′m(θ) + l′′m(θ)(θ̂m − θ),
θ̂m − θ ≈ [−l′′m(θ)]−1l′m(θ).

Then

Var(θ̂m) = E(θ̂m − θ)2 ≈ [l′′m(θ)]−1V (θ)[−l′′m(θ)]−1, (4.16)

where

V (θ) = Var(l′m(θ)),

= E((l′m(θ))(l′m(θ))′).

This formula leads to the so called sandwich variance estimator (Freedman (2006);
Huber (1967); Pfeffermann and Sverchkov (2003)):

V̂ar(θ̂m) ≈ [l′′m(θ̂m)]−1V̂ (θ̂m)[l′′m(θ̂m)]−1, (4.17)

where l′′m(θ) and V (θ) are estimated directly from the sample. Thus we have

l′′m(θ̂m) =
m∑
i=1

winihi(xi; θ̂m) (4.18)

and V̂ (θ̂m) can be calculated in two different ways. If we do not consider the cluster effect,
thus supposing that the persons are independently distributed within a household, then
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18 Chapter 4. Fitting the GB2

the variance of l′m(θ) is readily obtained as the sum of variances of the scores weighted at
the personal level, so

V̂ (θ̂m) =
m∑
i=1

ni∑
j=1

w2
i ui(xi; θ̂m)ui(xi; θ̂m)′

=
m∑
i=1

niw
2
i ui(xi; θ)ui(xi; θ)

′. (4.19)

In our case, we use a variance estimator which takes into account the cluster effect, in
supposing that the households are independently ( but not identically due to the different
ni) distributed. Thus we sum the squared sums at he household level of the weighted
scores, i.e.

V̂ (θ̂m) =
m∑
i=1

(
ni∑
j=1

wiui(xi; θ̂m)

)(
ni∑
j=1

wiui(xi; θ̂m)

)′

=
m∑
i=1

n2
iw

2
i ui(xi; θ̂m)ui(xi; θ̂m)′. (4.20)

Note that, in the case of a correctly specified model, the variance of the MLE is given by

the inverse of the Fisher information matrix
(
I(θ̂m)

)−1
.

We can also calculate the midterm of the sandwich variance estimator numerically, using
the full design information, e.g. using the R package survey (see Lumley, 2010). In this
case, inclusion probabilities, sample strata sizes, etc. are considered when calculating the
variance of the scores. We have implemented this in our simulation study with success.
We have seen that our variance estimate by linearization is almost equal to the design
variance calculated with the package survey for the one-stage sampling designs. Results
and comments will be given in Deliverable of WP7 (see Chapter 7 of Deliverable D7.1).

4.4.2 Variance estimation of the aggregate indicators

Now we would like to estimate the variance of the estimated Laeken indicators, to con-
struct confidence intervals and to compare with the empirical estimates of the indicators.
We know that the median, ARPR, RMPG, QSR and Gini all can be expressed as functions
of the GB2 parameters a, b, p and q (see Section 3.6) . Thus in order to obtain a variance
estimator for a given indicator, we can apply the delta method (see e.g. Davison, 2003).
If we denote, for example, Â = A(θ̂m), the ML estimate of the ARPR, then by the delta
method, we have:

V̂ar(Â) =
∂Â

∂θ̂m

′

V̂ (θ̂m)
∂Â

∂θ̂m
,

V̂ (θ̂m) is given in Equation 4.20. The derivatives of the indicators with respect to the
vector of parameters are calculated numerically. Next, we can easily compute confidence
intervals and confidence domains.
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4.5 Estimation of income data from a set of indicators 19

4.5 Estimation of income data from a set of indicat-

ors

Suppose we do not have the income micro data at disposal, but that the indicators, fitted
on empirical data, are publicly available. The indicators have been produced without any
reference to a theoretical income distribution. It is then possible to go the other way
round that is to reconstruct the whole income distribution, knowing only the value of the
empirical indicators and assuming that the theoretical distribution models the empirical
distribution to an acceptable precision. This approach has been applied to EU-SILC data
with success. This means that the set of indicators contains quite a lot of information
about the empirical distribution.

Consider a set of indicators A = (median, ARPR, RMPG, QSR, Gini) and their cor-
responding GB2 expressions AGB2(a, b, p, q). The method of estimation we developed
(hereafter referred to as method of nonlinear fit for indicators) consists of finding the
set of GB2 parameters a, b, p and q that minimizes the distance between the empirical
estimates of the indicators Aempir and their GB2 representations AGB2(a, b, p, q):

5∑
i=1

ci (Aempir,i − AGB2,i(a, b, p, q))
2 ,

where the weights ci take the differing scales into account.

Instead of fitting the GB2 parameters all together, we can also process in two consecutive
steps, which appears to be more efficient:

• In the first step, we use the set of indicators A, excluding the median. These indic-
ators do not depend on the parameter b, thus we set b = 1 and their corresponding
expressions are given in function of a, ap and aq. This is done in order to be able
to bound the parameters ap and aq in the algorithm, so that the constraints for the
existence of the moments of order at least 2 (aq > 1) and the existence of the excess
for the calculation of the Gini (ap > 1) are fulfilled. The bounds for the parameter
a can be defined in function of the coefficient of variation of the ML estimate of the
parameter a.

• In the second step, only the parameter b is estimated, optimizing the weighted
square difference between the empirical median and the GB2 median in function of
the already obtained NLS estimates of the parameters a, p and q.

Initial values 1. Initial values for the parameters can be taken as the moment estimat-
ors of the Fisk distribution in Equations (4.3) and (4.4), and p = q = 1; 2. Alternatively,
the initial value for b can be given by the empirical median, and for a by the inverse of
the Gini coefficient, which is in accordance with the information the user is supposed to
have, namely the set of indicators A; 3. If the ML estimates of the GB2 parameters are
known, they give a third choice for the initial values.

c© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


20 Chapter 4. Fitting the GB2

4.6 Graphical representations and evaluation of the

GB2 fit

In order to visualize the various results of fitting the GB2 distribution we present examples
of different plots, programmed in R, for the case of the EU-SILC survey.

4.6.1 Distribution plots

• Cumulative distribution plot: presents the GB2 versus the empirical distribution
function.

• Density plot: presents a kernel density estimate (Epanechnikov) of the income vari-
able and the fitted GB2 density.

The Epanechnikov kernel is a quadratic weight function within an interval around each
observed value. The length of the interval is called the bandwidth and N is the sample
size.

Figure 4.2 shows an example of the GB2 fitted distribution by maximum likelihood es-
timation and the method of non-linear fit for indicators with the Austrian EU-SILC data,
2006. We can see that the fit by the pseudo maximum likelihood is better.

4.6.2 Contour plot of the profile log-likelihood

On Figure 4.3, we can see a contour plot of the profile log-likelihood for the Austrian
EU-SILC sample, 2006. With F, M and N are given the Fisk, ML and NLS estimates of
the parameters a and b, respectively. The value of the log-likelihood at these points can be
read on the plot. We can see that the value of the estimated maximum log-likelihood (M)
is close to the small quadrangle on the figure, which is the graphical representation of the
maximum value of the log-likelihood. The values of the parameters and the log-likelihood
are given in Table 4.1. We can also notice that the profile log-likelihood is really flat.

a b log-likelihood

F 3.45 17494 -10.44958
M 5.89 19410 -10.43806
N 1.56 15039 -10.48561
graphical ML 5.91 19410 -10.42302

Table 4.1: Log-likelihood and parameter values corresponding to the points depicted in
Figure 4.3
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Figure 4.2: Distribution and density plots, AT 2006

4.6.3 Estimated parameters and indicators, EU-SILC particip-
ating countries 2006

In Tables 4.2 and 4.3 are presented the fitted GB2 parameters, the estimated median,
ARPR, RMPG, QSR and Gini index for the 26 participating countries in the EU-SILC
2006 survey. The used methods of estimation are maximum likelihood using the full
and profile log-likelihoods with adjusted sampling weights using the ad hoc procedure
described in Section 4.3 and the method of nonlinear fit for indicators using the third
approach.
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country type a b p q median ARPR RMPG QSR GINI
AT Direct − − − − 17854 12.547 15.425 3.647 0.253
AT NLS 1.523 15050 5.195 4.079 17854 12.547 15.425 3.646 0.257
AT ML full 4.964 19005 0.654 0.790 17911 12.716 19.833 3.661 0.253
AT ML prof 4.990 18996 0.650 0.784 17911 12.710 19.840 3.662 0.253
BE Direct − − − − 17225 14.547 19.034 3.960 0.272
BE NLS 1.941 18719 2.474 2.853 17225 14.547 19.034 3.960 0.270
BE ML full 3.367 18643 1.050 1.319 17043 13.707 19.740 3.791 0.260
BE ML prof 3.279 18706 1.090 1.376 17041 13.729 19.698 3.787 0.260
CY Direct − − − − 14532 15.747 18.965 4.268 0.288
CY NLS 1.132 13919 6.487 6.194 14532 15.747 18.965 4.268 0.285
CY ML full 2.642 14245 1.564 1.536 14366 14.343 18.922 4.128 0.280
CY ML prof 2.551 14192 1.658 1.617 14361 14.362 18.829 4.124 0.280
CZ Direct − − − − 4797 9.796 16.967 3.516 0.253
CZ NLS 7.017 4619 0.537 0.465 4797 9.796 16.967 3.516 0.252
CZ ML full 4.846 4609 0.854 0.751 4796 10.213 16.187 3.457 0.248
CZ ML prof 4.869 4610 0.849 0.746 4796 10.208 16.198 3.457 0.248
DE Direct − − − − 15646 12.339 19.625 3.800 0.260
DE NLS 5.831 15902 0.555 0.586 15646 12.339 19.625 3.800 0.263
DE ML full 7.481 16351 0.400 0.468 15680 12.458 20.791 3.703 0.255
DE ML prof 7.530 16348 0.397 0.465 15680 12.448 20.796 3.701 0.255
DK Direct − − − − 22718 11.326 15.159 3.241 0.230
DK NLS 0.870 26747 14.380 16.525 22718 11.289 15.169 3.257 0.233
DK ML full 6.332 24834 0.517 0.732 22665 11.275 19.302 3.174 0.223
DK ML prof 6.261 24840 0.525 0.743 22661 11.262 19.255 3.172 0.223
EE Direct − − − − 3645 18.141 21.841 5.361 0.328
EE NLS 1.878 3354 2.203 1.929 3645 18.141 21.841 5.360 0.331
EE ML full 2.597 3972 1.116 1.298 3679 18.804 24.781 5.517 0.331
EE ML prof 2.557 3984 1.140 1.331 3680 18.834 24.788 5.511 0.331
ES Direct − − − − 11493 19.760 25.399 5.109 0.308
ES NLS 0.912 22321 5.824 10.393 11493 19.474 25.464 5.164 0.316
ES ML full 2.691 15675 0.914 1.738 11476 19.465 27.468 5.108 0.307
ES ML prof 2.722 15628 0.900 1.707 11477 19.461 27.491 5.109 0.306
FI Direct − − − − 18317 12.523 14.459 3.631 0.258
FI NLS 1.078 12092 11.079 7.198 18317 12.523 14.459 3.632 0.257
FI ML full 3.803 18083 1.091 1.101 18024 11.279 16.886 3.466 0.246
FI ML prof 3.769 18074 1.106 1.115 18023 11.279 16.854 3.465 0.246
FR Direct − − − − 16197 13.050 18.361 3.936 0.272
FR NLS 3.561 15957 1.075 1.034 16197 13.050 18.361 3.936 0.271
FR ML full 4.000 16251 0.900 0.911 16179 12.947 18.817 3.894 0.269
FR ML prof 3.991 16248 0.903 0.914 16178 12.946 18.806 3.893 0.269
GR Direct − − − − 9880 20.137 25.049 5.698 0.337
GR NLS 1.270 11471 3.395 4.037 9880 20.137 25.049 5.698 0.337
GR ML full 2.433 10794 1.176 1.410 9803 19.391 25.478 5.695 0.336
GR ML prof 2.425 10800 1.182 1.418 9803 19.397 25.477 5.694 0.336
HU Direct − − − − 3854 15.650 23.309 5.165 0.327
HU NLS 5.862 3842 0.453 0.448 3854 15.650 23.309 5.165 0.325
HU ML full 6.163 3906 0.424 0.446 3841 15.538 23.560 4.951 0.315
HU ML prof 6.283 3906 0.414 0.436 3841 15.526 23.617 4.957 0.315
IE Direct − − − − 19679 18.464 16.358 4.870 0.319
IE NLS 0.714 5356 21.948 8.870 19679 17.688 16.584 5.051 0.321
IE ML full 2.047 16587 2.379 1.816 19372 15.810 18.841 4.688 0.307
IE ML prof 1.822 16037 2.945 2.179 19372 15.924 18.616 4.666 0.306

Table 4.2: GB2 fitted parameters and indicators, countries 1-13
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Table 4.3: GB2 fitted parameters and indicators, countries 14-26

country type a b p q median ARPR RMPG QSR GINI
IS Direct − − − − 28015 9.540 18.480 3.578 0.257
IS NLS 7.794 27600 0.451 0.425 28015 10.247 17.982 3.514 0.250
IS ML full 8.162 27573 0.436 0.406 28065 9.949 17.764 3.470 0.248
IS ML prof 8.283 27566 0.429 0.399 28063 9.938 17.791 3.472 0.248
IT Direct − − − − 14559 19.216 23.210 5.233 0.316
IT NLS 0.632 17728 14.071 15.893 14559 19.214 23.211 5.234 0.322
IT ML full 3.396 17318 0.711 1.062 14584 18.816 26.652 5.226 0.314
IT ML prof 3.390 17333 0.713 1.066 14584 18.822 26.659 5.225 0.314
LT Direct − − − − 2536 19.927 28.852 6.163 0.347
LT NLS 4.317 2857 0.488 0.657 2536 19.927 28.852 6.163 0.346
LT ML full 2.883 2942 0.807 1.077 2552 20.717 28.369 6.336 0.352
LT ML prof 2.946 2926 0.786 1.041 2551 20.679 28.366 6.349 0.353
LU Direct − − − − 29683 13.925 19.403 4.082 0.278
LU NLS 3.428 29996 1.054 1.082 29683 13.925 19.403 4.082 0.277
LU ML full 3.278 28902 1.185 1.106 29727 13.603 18.571 4.087 0.279
LU ML prof 3.198 28869 1.230 1.145 29728 13.633 18.519 4.084 0.279
LV Direct − − − − 2546 22.731 24.315 7.303 0.386
LV NLS 0.645 1170 13.574 8.351 2546 22.731 24.315 7.303 0.387
LV ML full 2.521 2763 0.931 1.076 2551 22.039 29.206 7.502 0.388
LV ML prof 2.468 2770 0.959 1.111 2551 22.074 29.195 7.485 0.387
NL Direct − − − − 17293 9.399 16.601 3.571 0.255
NL NLS 7.586 16367 0.508 0.409 17293 9.399 16.601 3.571 0.257
NL ML full 5.214 17499 0.695 0.698 17479 11.311 17.968 3.574 0.252
NL ML prof 5.240 17495 0.691 0.693 17478 11.304 17.977 3.574 0.252
NO Direct − − − − 27806 11.001 18.117 3.967 0.280
NO NLS 7.050 26401 0.497 0.411 27806 11.001 18.117 3.967 0.278
NO ML full 10.552 28955 0.288 0.346 27770 11.414 20.424 3.411 0.238
NO ML prof 10.270 28953 0.297 0.358 27751 11.393 20.353 3.403 0.238
PL Direct − − − − 3112 19.018 24.977 5.605 0.332
PL NLS 2.539 3359 1.140 1.322 3112 19.018 24.977 5.605 0.334
PL ML full 2.744 3505 0.970 1.221 3129 19.319 25.976 5.661 0.334
PL ML prof 2.746 3505 0.969 1.220 3129 19.319 25.977 5.661 0.334
PT Direct − − − − 7311 18.466 23.468 6.726 0.377
PT NLS 3.368 6605 0.859 0.686 7311 18.467 23.469 6.726 0.383
PT ML full 4.443 6858 0.569 0.481 7339 18.422 24.905 7.170 0.396
PT ML prof 4.362 6861 0.582 0.492 7342 18.467 24.887 7.151 0.396
SE Direct − − − − 17795 11.609 20.097 3.334 0.231
SE NLS 7.747 19003 0.401 0.522 17795 11.609 20.097 3.334 0.233
SE ML full 6.948 20412 0.416 0.690 17920 12.742 21.468 3.300 0.227
SE ML prof 6.858 20433 0.422 0.702 17919 12.728 21.422 3.298 0.227
SI Direct − − − − 9316 11.677 18.539 3.388 0.238
SI NLS 4.697 9954 0.753 0.930 9316 11.677 18.539 3.388 0.238
SI ML full 4.342 10220 0.817 1.070 9360 11.919 18.682 3.377 0.237
SI ML prof 4.336 10221 0.819 1.072 9360 11.920 18.678 3.377 0.237
SK Direct − − − − 3313 11.608 19.918 4.034 0.280
SK NLS 7.139 3260 0.448 0.422 3313 12.018 19.643 4.001 0.276
SK ML full 8.545 3372 0.362 0.389 3312 11.718 20.135 3.682 0.256
SK ML prof 8.325 3372 0.373 0.401 3312 11.716 20.066 3.677 0.256
UK Direct − − − − 19375 18.976 22.395 5.208 0.320
UK NLS 0.741 19096 11.153 11.037 19375 18.976 22.396 5.208 0.322
UK ML full 2.803 22495 0.976 1.329 19412 18.517 25.260 5.176 0.316
UK ML prof 2.758 22487 1.001 1.359 19406 18.516 25.195 5.173 0.316
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Chapter 5

The Generalized Beta Distribution
of the Second Kind as a Compound
Distribution

Authors: Monique Graf and Desislava Nedyalkova

5.1 Introduction

The GB2 distribution can be expressed as an infinite mixture of distributions with vary-
ing scale parameters, that is as a compound distribution, (see Kleiber and Kotz, 2003,
Table 6.1). Thus, as quoted by Kleiber and Kotz (2003), the GB2 distribution and its
subfamilies can be given a theoretical justification as a representation of incomes arising
from a heterogeneous population of income receivers. The compounding property will be
used to derive a decomposition of the GB2 into a finite mixture of components.

The GB2 parameters a, b, p, q need a large sample size (a few thousands) in order to be
estimated with an acceptable precision. The GB2 model is thus hardly applicable to do-
mains, even of moderate size. The compounding property of the GB2 distribution will
allow us to exploit the model fitted at the national level, also for small sub-populations.
The idea behind is that the population consists of heterogeneous groups with respect to
the scale of income and that this heterogeneity is well represented by the GB2. The aim is
to set up a model that estimates the heterogeneity of subgroups and is consistent with the
overall fit. Once the distribution of incomes in the subgroup is determined, any subgroup
characteristic (e.g. an indicator of poverty and social exclusion) can be computed.

In Section 5.2 we give a theoretical justification for the decomposition of the GB2. Two
different decompositions are presented: with respect to the right or the left tail of the
distribution. Next, an example that illustrates both approaches is given.

In Section 5.3 we explain how the compounding property of the GB2 can be used in a
survey context and in the context of small sub-populations. We define two models, with
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26 Chapter 5. GB2 as a compound distribution

or without auxiliary information. The pseudo log-likelihood, using the survey weights is
defined and the method of estimation is presented.

5.2 Decomposition of the GB2 distribution

Starting with a generalized gamma distribution GG(a, θ, p) with scale parameter θ, the
compound representation of the GB2 distribution is obtained by assigning a inverse gen-
eralized gamma distribution InvGG(a, b, q) to θ (see, e.g. Johnson et al., 1995).

Let us recall that the probability density of the GB2 with parameters a, b, p, q is given by:

f(x; a, b, p, q) =
a

bB(p, q)

(x/b)ap−1

((x/b)a + 1)p+q
(5.1)

with a, b, p, q > 0.

The density g(.; a, θ, p) of GG(a, θ, p) is given by

g(x; a, θ, p) =
a

θ Γ(p)
(x/θ)ap−1 exp−(x/θ)a (5.2)

and the density h(.; a, b, q) of the distribution InvGG(a, b, q) is

h(θ; a, b, q) =
a

bΓ(q)
(θ/b)−aq−1 exp−(θ/b)−a (5.3)

The GB2 density is obtained by integration over θ:

f(x; a, b, p, q) =

∞∫
0

h(θ; a, b, q) g(x; a, θ, p) dθ (5.4)

This is the compounding property of the GB2. The proof is recalled in Appendix B.1.

5.2.1 Decomposition with respect to the right or the left tail

Notice that the distribution of the random scale parameter θ does not depend on the
shape parameter p governing the left tail. For this reason, we denote the decomposition
in Equation (5.4) a decomposition with respect to the right tail.

A similar decomposition with respect to the left tail can be obtained using the following
property of the GB2:
Let y = 1/x denote the inverse of the income variable x. Then y also follows a GB2
distribution and its density can be written as

f(y; a′, b′, p′, q′),
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5.2 Decomposition of the GB2 distribution 27

where a′ = a, b′ = b−1, p′ = q and q′ = p (see Kleiber and Kotz, 2003).

We have, using Equation (5.4):

f(y; a′, b′, p′, q′) =

∞∫
0

h(θ; a′, b′, q′) g(y; a′, θ, p′) dθ (5.5)

By a change of variable (x = 1/y) in Equation (5.5), we obtain the left tail decomposition
of the GB2 density in Equation (5.1):

f(x; a, b, p, q) =

∞∫
0

h(θ; a, b−1, p) (1/x2)g(1/x; a, θ, q) dθ (5.6)

The decomposition with respect to the left tail emphasizes the variability of the poor and
gives better results for the poverty indicators.

5.2.2 Right tail discretization

For simplicity, let us drop the explicit reference to the fixed parameters a, b, p, q in Equa-
tion (5.4).

We propose to use the decomposition in the following way: Discretize the random scale
parameter θ by partitioning its domain of integration into L intervals, with limits

θ0 = 0 < θ1 < ... < θL =∞.

Then the GB2 density can be written as a mixture:

f(x) =
L∑
`=1

θ`∫
θ`−1

h(θ)g(x, θ) dθ

=
L∑
`=1

 θ`∫
θ`−1

h(θ) dθ

 ∫ θ`θ`−1
h(θ)g(x, θ) dθ∫ θ`
θ`−1

h(θ) dθ
=

L∑
`=1

pL−` fL−`(x) (5.7)

The conditional density fL−`(x) given that the scale parameter is in (θ`−1, θ`) is defined
by the fraction in Equation (5.7). The term in brackets is the probability pL−` giving the
weight of the density fL−`(x) in the mixture. (The numbering with L − ` instead of ` is
such that densities with more mass towards zero have a larger index.)
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28 Chapter 5. GB2 as a compound distribution

Evaluation of f`(x) and p`

With u = (θ/b)−a (see Equation 5.3), the integration bounds are changed to

u` = (θL−`/b)
−a, ` = 0, ..., L, (u`−1 < u`).

Denoting by P (·, q) the cumulative distribution function of the standard gamma distribu-
tion with shape parameter q, we obtain

p` = P (u`, q)− P (u`−1, q) (5.8)

In practice, the p` are chosen and determine the u`.
Set t = (x/b)a + 1. The component density is given by:

f`(x) = f(x)
P (tu`, p+ q)− P (tu`−1, p+ q)

P (u`, q)− P (u`−1, q)
(5.9)

where f(x) is the GB2 density in Equation (5.1). Proofs are given in Appendix B.2.

5.2.3 Left tail discretization

The principle is to apply the right tail discretization to the inverse income y, and obtain
the decomposition in the original income scale by a change of variables x = 1/y.
For the inverse income, we have: u′ = (θ′/b′)−a = (θ−1/b−1)−a = (θ/b)a and

u′` = (θ`/b)
a, ` = 0, ..., L, (u′`−1 < u′`).

Knowing that q′ = p, we see that u′` is determined by:

p̃` = P (u′`, p)− P (u′`−1, p).

With t′ = (y/b′)a
′
+ 1 = (x/b)−a + 1, and changing to the variable x = 1/y, we obtain

new component densities f̃`(x):

f̃`(x) = f(x)
P ((t′u′`, p+ q)− P ((t′u′`−1, p+ q)

P (u′`, p)− P (u′`−1, p)
(5.10)

The proof is in Appendix B.3. Finally we have, that:

f(x) =
L∑
`=1

p̃` f̃`(x) (5.11)

Notice that in this representation, densities with more mass towards zero have a smaller
index. Now, we can fit the compound GB2 distribution using this new decomposition of
the GB2 density function.

Figure 5.1 shows the right and left tail decomposition of the GB2 for AT2006, with
p` = p̃` = 1/3, ` = 1, 2, 3. One sees clearly that the very poor are totally in f1 for the
left tail decomposition (bottom pane), but are scattered between all 3 components in the
right tail decomposition (upper pane).
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Figure 5.1: Right and left tail decomposition and the parent GB2 density

5.2.4 Sensitivity plot to the mixture probabilities

Consider a GB2 fit, determined by a = 5.89, p = 0.49, q = 0.65, close to the AMELIA
fitted parameters. Because we are only interested in scale-free indicators, b can be given
an arbitrary value, e.g. 1. The component densities of the right tail decomposition and
the left tail decomposition with p` = 1/3, ` = 1, . . . , 3 are computed. The break points in
Equation 5.8 are (0, u1, u2,∞) and u = (u1, u2)= (0.17, 0.65) ((0.09, 0.65)), for the right
(left) tail decomposition, respectively. In Figure 5.2 and Figure 5.3, we let the mixture
probabilities pp1 and pp2 of f1 and f2 respectively vary. The probability of f3 is thus
1− pp1 − pp2.

For the right tail decomposition, f1 is the component having the less mass towards zero
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30 Chapter 5. GB2 as a compound distribution

(Figure 5.2), whereas for the left tail decomposition f1 is the component having the most
mass towards zero (Figure 5.3). The dot in each panel shows the position of the indicator
in the original GB2 distribution, here corresponding to pp1 = pp2 = 1/3.

With varying probabilities (pp1, pp2) the left tail decomposition (Figure 5.3) generates a
much larger range for the indicators of poverty ARPR and RMPG. This is the reason why
this approach proves to be more efficient in our context than the right tail decomposition.
The instabilities of RMPG in Figure 5.3, when pp2 ≈ 0 for small values of pp1, has to
be noticed. If pp3 → 1, a large variance in RMPG has to be expected; on the contrary,
if pp3 → 0 (diagonal in the graph), RMPG is almost insensitive to the shares of pp1 and
pp2.
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Figure 5.2: Right tail decomposition: sensitivity plots
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5.3 Use of the decomposition

5.3.1 New model

The GB2 parameters a, b, p, q are determined at the global (national) level.

Now, given a partition into L intervals for the scale parameter θ of incomes, we can
define a new model for a sub-population based on a mixture of the densities f`(.) given
in Equation (5.7) or f̃`(.) in Equation (5.11). In this model, the component densities f`
of the mixture are fixed and the probabilities p` are re-fitted at the sub-population level.

The initial GB2 fit of p`, given by the bracket in Equation (5.7) or (5.11) will serve as

starting values p
(0)
` .

The estimation method is by pseudo-maximum likelihood as before for the GB2 fit. We
can use the procedure in two ways:

1. Fit the p` on a sub-population.
It is assumed that we need a much smaller sample size for a good estimate of the
probabilities p` than it was necessary for the estimation of the GB2 parameters.

2. Model the p` with auxiliary information.
Auxiliary variables can be used to model the probabilities p`, without reference to
the density h(·). In this way, heterogeneous population structures can be accounted
for.

In both cases, an iterative algorithm is constructed. The initial values p
(0)
` for p` are given

by the GB2 fit, i.e. by the expression in brackets in Equation (5.7).

5.3.2 Pseudo-likelihood

Let us write for simplicity the component densities as f`. The estimation method is the
same for f̃`.

Let n be the sample size. The pseudo-log-likelihood is written as

logL(p1, ..., pL) =
n∑
k=1

wk log

(
L∑
`=1

p`f`(xk)

)
(5.12)

There are only L − 1 parameters to estimate, because the probabilities p` sum to 1.
Moreover the p` must be positive. With these constraints in mind, change the parameters
p`, ` = 1, ..., L, to

v` = log(p`/pL), ` = 1, ..., L− 1

then

p` = exp(v`)/(1 +
∑

1,...,L−1

exp(vj)), ` = 1, ..., L− 1
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pL = 1/(1 +
∑

1,...,L−1

exp(vj)).

The partial derivatives are, respectively:

∂p`
∂v`

= p`(1− p`), ` = 1, ..., L− 1,

∂p`
∂vj

= −p` pj, j 6= `; ` = 1, ..., L; j = 1, ..., L− 1.

Thus, for ` = 1, ..., L− 1, the likelihood equations are:

∂ logL

∂v`
=

n∑
k=1

wk
p`

[
f`(xk)−

∑L
j=1 pjfj(xk)

]
∑L

j=1 pjfj(xk)
= 0

⇐⇒
n∑
k=1

wk

(
f`(xk)∑L

j=1 pjfj(xk)
− 1

)
= 0 (5.13)

From the set of equations (5.13), we can estimate pj.

5.3.3 Introduction of auxiliary variables

One can model the probabilities p` with auxiliary variables. Let zk be the vector of
auxiliary information for unit k. This auxiliary information modifies the probabilities
p` at the unit level. Let us denote by pk,` the weight of the density f` for unit k. For
` = 1, ..., L− 1, we pose a linear model for vk,`:

log(pk,`/pk,L) = vk,` =
I∑
i=1

λ`izki = zkλ` (5.14)

The log-likelihood becomes:

logL(λ1, ...,λL−1) =
n∑
k=1

wk log

(
L∑
`=1

pk,`f`(xk)

)
(5.15)

One must solve

∂ logL

∂λ`
=
∑
k

∂ logL

∂vk,`

∂vk,`
∂λ`

= 0, ` = 1, ..., L− 1,

which is equivalent to

n∑
k=1

wk

(
pk,`f`(xk)∑L
j=1 pk,jfj(xk)

− 1

)
zk =

n∑
k=1

wk

(
exp(zkλ`)f`(xk)∑L−1

j=1 exp(zkλj)fj(xk) + fL(xk)
− 1

)
zk = 0 (5.16)

For each ` = 1, ..., L − 1, the number of equations in (5.16) is equal to the dimension of
zk.
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34 Chapter 5. GB2 as a compound distribution

5.3.4 Usage

Estimate the GB2 parameters a, b, p, q by pseudo-ML at the population (national) level
and choose a partition of the GB2 as in Equation (5.7).

Algorithm without auxiliary variables

For a given sub-population, adapt the GB2 fit by changing the probabilities p`.

1. Compute the initial probabilities p` = p̂
(0)
` and the component densities f`(x) ac-

cording to Equations (5.8) and (5.9), respectively.

2. Starting with the initial values p̂
(0)
` , maximize the pseudo-likelihood with respect to

p` in Equation (5.12) by solving the system (5.13).

Algorithm with auxiliary variables

For the whole population, use the information given by the vector of auxiliary variables
zk to adapt the GB2 fit by changing the probabilities pk,`.
Let I be the dimension of zk.

1. Compute the initial probabilities pk,` = p̂
(0)
` (not depending on k) and the component

densities f`(x) according to equations (5.8) and (5.9), respectively.

2. We must find initial values for λ`i, i = 1, ..., I. Let z̄i =
∑

k wkzki/
∑

k wk be the
average value of the i-th explanatory variable. Writing

log(p̂
(0)
` /p̂

(0)
L ) = v

(0)
` =

I∑
i=1

λ
(0)
`i z̄i,

we can choose

λ
(0)
`i = v

(0)
` /(Iz̄i) (5.17)

as starting values.

3. Starting with the initial values λ
(0)
`i , maximize the pseudo-likelihood with respect to

λ`i in Equation (5.15) by solving the system (5.16).

Choice of partition

The number L of components f` can be chosen arbitrarily, but it may be reasonable to
keep L small. In the examples, we choose L = 3 and the integration bounds in Equation
(5.8), so that p

(0)
` = 1/3. In this way, the components f1, f2, f3 represent respectively the

income distributions with small, medium and high scale parameters, that is with more
mass to the left for f1, more mass to the center for f2 and more mass to the right for f3,
each having the same weight in the overall GB2 fit. A better founded way to choose the
partition has still to be developed.
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Chapter 6

Use of mixture distributions in the
context of heterogeneous populations

6.1 Introduction

In this chapter, we investigate the use of parametric mixture distributions in the special
case of two components, each following the same type of distribution. Mixture distribu-
tions are appropriate when the population consists of heterogeneous subpopulations. For
instance, in many species the body weight depends on the gender. The weights of the
males and the weights of the females might each be approximatively normally distributed,
but with different means and standard deviations. In this context, it can make sense to
interpret the overall distribution of weights as a mixture of the weight distributions by
gender in this species.
The field of analysis of income distributions is not a typical example for the usage of mix-
ture distributions, but in this context they might be useful as well. If there is an income
sample of a population, consisting of different subpopulations with heterogeneous income
distributions, which can be fitted well by single component models each, a mixture dens-
ity can be adequate. In some sense the income data set of Amelia, explained in detail in
Alfons et al. (2011), can be interpreted as an income distribution of a synthetic Europe,
which consists of income distributions of several countries. This might justify the usage
of a mixture distribution in this context.

After these rather intuitive explanations it is necessary to quote a formal definition of a
mixture distribution. A mixture density or mixture distribution can be defined as the
following (see Redner and Walker, 1984): Let fi, i = 1, . . . ,m, be densities, with
each of them determined unequivocally by parameter vectors ai, i = 1, . . . ,m, where
ai ⊆ Ωi ⊆ Rm, for all i. Then for x ∈ Rn, n ∈ N

f(x|A) =
m∑
i=1

αifi(x|ai), (6.1)

is called (parametric) mixture distribution (with a finite number of components), with

αi ≥ 0, i = 1, . . . ,m,
m∑
i=1

αi = 1 and A = (α1, . . . , αm, a1, . . . , am). The fi(x|ai) are called
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36 Chapter 6. Use of mixture distributions

mixture components (or simply components), the αi are named mixture proportions. So
a mixture density can be interpreted as a convex combination of single densities.

Since there are many different component densities used in the field of income distributions
and there are infinitely many combinations to combine those to a mixture density, there
are infinitely many possible choices of mixture densities. There is always a conflict of goals
between the goodness of fit and the simplicity of a model. In general, a large number of
parameters increases the flexibility of a model, since its number of degrees of freedom
also raises. In addition, the downside of many model parameters is, that the model
tends to get more complex and more difficult to fit. Also the economic interpretation
of each parameter of a model with many parameters may become more intricate. It
seems reasonable to choose the same parametric distribution for all mixture components,
which should be a generally accepted model for the subject. In the context of income
distributions this means that the GB2 and related distributions should be considered.
Since a mixture density of two GB2s would already contain nine parameters (four for
each GB2 component and one mixture parameter), it is sensible to fall back on single
distributions with less parameters. In this report we choose a mixture distribution of two
Dagum distributions due to the fact that this three-parametric distribution has proven
to be the best fitting three-parametric special case of the GB2 in the context of income
distributions (see Bandourian et al., 2002). In the following, the selected model is
referred to as the TCD (two component Dagum) for the sake of clarity.

Figure 6.1 shows the density of the positive part of the Amelia income data set (variable:
EDIS). For a better illustration the highest 8,000 incomes were excluded. It is easy to
see that this synthetic Europe income distribution does not have the typical shape of the
income distribution of a single country. Hence, in these cases we would expect a good fit
with a mixture density.

Figure 6.2 shows a sample of size 15,528 fitted with a TCD. Again, for a better illustration,
the highest 28 incomes were excluded. Although there are some fitting problems close to
0 and for high incomes, in general the distribution provides a decent fit.

The next section provides a few definitions and facts about the Dagum distribution and
the TCD as well as fitting methods for the named distributions. The third section deals
with the numerical calculation of inequality and poverty measures of the TCD. Finally,
this chapter concludes with a description of a simulation study. One way for estimat-
ing inequality and poverty measures of a population in practice is to draw samples and
calculate estimators of the indicators directly from the sample. Those estimators (in the
following referred to as direct estimates) are in general unbiased, but may have a very
high variance for some non-robust indicators like the quintile share ratio (QSR). Another
approach is to fit a parametric distribution to the sample and then calculate the indicators
out of the fitted distribution. Those estimators will be called indirect estimates. In this
chapter, the indirect estimation is always associated with a TCD fit. The results of the
described simulation study can be found in Hulliger et al. (2011).
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Figure 6.1: Kernel density of the equivalized household income of the Amelia data set

6.2 Fitting of mixtures of Dagum distributions

This section explains how the TCD can be fitted to data. Therefore, some preparatory
work has to be done, which leads to the formation of this section. Firstly, the single Dagum
distribution and the TCD are introduced very shortly. Since the theoretical distribution
is well documented in the literature, only a few key facts are pointed out. More details
about the Dagum distribution can be found in (Dagum, 1977 and Kleiber and Kotz,
2003).
Afterwards, the fitting procedure for a single Dagum distribution with the maximum
likelihood method is presented. This forms a central component in the EM algorithm,
used for fitting a TCD. A subsection about the EM algorithm concludes this section.
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Figure 6.2: Kernel density of an income sample fitted with a TCD

6.2.1 The Dagum distribution and the TCD

The Dagum distribution (D) is a three-parametric model developed by and named after
Camilo Dagum in 1977. Other common names for the Dagum distribution are Burr-III-
distribution, inverse Burr distribution, (three-parametric) Kappa distribution and Beta-
K-distribution (Kleiber and Kotz, 2003). Its density is

fD(x; a, b, p) =
apxap−1

bap[1 + (x/b)a]p+1
, x > 0, (6.2)

where a, b, p > 0.
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6.2 Fitting of mixtures of Dagum distributions 39

b is a scale parameter, whereas a and p are shape parameters. It can be shown that the
Dagum distribution is a special case of the more general GB2 (GB2(x; a, b, p, q = 1) =
D(x; a, b, p)). The cdf of the Dagum distribution is

FD(x; a, b, p) =

(
1 +

(x
b

)−a)−p
. (6.3)

Its quantile function exists analytically and is given as

QD = F−1(u; a, b, p) = b[u−1/p − 1]−1/a. (6.4)

The moments of the Dagum distribution exist for k < a and can be calculated as

ED(xk) =
bkB(p+ k/a, 1− k/a)

B(p, 1)
=
bkΓ(p+ k/a)Γ(1− k/a)

Γ(p)
. (6.5)

In particular its mean exists for a > 1 and can be calculated as

µD =
bkB(p+ 1/a, 1− 1/a)

B(p, 1)
=
bkΓ(p+ 1/a)Γ(1− 1/a)

Γ(p)
. (6.6)

It is rather trivial to extend some of these properties to the TCD, since it is a convex
combination of two Dagum distributions. The density of the TCD is

fTCD(x) =
αapxap−1

bap[1 + (x/b)a]p+1
+

(1− α)a2p2x
a2p2−1

ba2p22 [1 + (x/b2)a2]
p2+1

, x > 0, (6.7)

a, a2, b, b2, p, p2 > 0 and α ∈ [0, 1]. This leads to the cdf

FTCD(x; a, b, p) = α

(
1 +

(x
b

)−a)−p
+ (1− α)

(
1 +

(
x

b2

)−a2)−p2
. (6.8)

In contrast to the Dagum distribution, the cdf of the TCD is not invertible, so there is no
closed form expression of its quantile function. Calculating quantiles of the TCD is one
issue in section 6.3.
The mean of the TCD is

µTCD =
αbΓ(p+ 1/a)Γ(1− 1/a)

Γ(p)
+

(1− α)b2Γ(p2 + 1/a2)Γ(1− 1/a2)

Γ(p2)
, (6.9)

exists at least if a, a2 > 1. After this complementing list of definitions and facts about
the TCD, the following subsection deals with the fitting of a single Dagum distribution.

6.2.2 Fitting a Dagum distribution with the maximum likeli-
hood method

Before fitting a TCD distribution, it seems reasonable to have a look at the fitting of a
single Dagum distribution. In the original paper Dagum (1977) Dagum presented five
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40 Chapter 6. Use of mixture distributions

different methods to fit the Dagum distribution. However, the maximum likelihood ap-
proach (in the following abbreviated with ML) tends to lead to the best results.
Since the Dagum distribution is a special case of the more general GB2, its fitting pro-
cedure can be derived directly from the ML-fit of the GB2. Let x = (x1, . . . , xn)T denote
a complete random sample of size n, then its log-likelihood function is given by

logLD = n log a+ n log p+ (ap− 1)
n∑
i=1

log xi − nap log n

−(p+ 1)
n∑
i=1

log
[
1 +

(
xi
b

)a]
. (6.10)

To maximize the value of logLD, we need to solve a system of equations which are given
by the roots of its partial derivatives. This leads to the following equations (see Kleiber
and Kotz, 2003):

n
a

+ p
n∑
i=1

log
(
xi
b

)
− (p+ 1)

n∑
i=1

log
(
xi
b

) [(
b
xi

)a
+ 1
]−1

= 0

np− (p+ 1)
n∑
i=1

[
1 +

(
b
xi

)a]−1
= 0

n
p

+ a
n∑
i=1

log
(
xi
b

)
−

n∑
i=1

log
[
1 +

(
xi
b

)a]
= 0. (6.11)

For solving this system of equations, methods of non-linear optimization like the BFGS
method are required. It is possible to implement weights, for example survey weights, into
(6.11), in analogy to Equation (4.5). Indeed for the fitting of a mixture of two Dagum
distributions performed by the EM algorithm, the version with weights is used.

Let wi denote the weight of xi and let the weights already be standardised, i.e.
n∑
i=1

wi = 1,

then (6.11) turns into the following system of equations:

1
a

+ p
n∑
i=1

wi log
(
xi
b

)
− (p+ 1)

n∑
i=1

wi log
(
xi
b

) [(
b
xi

)a
+ 1
]−1

= 0

p− (p+ 1)
n∑
i=1

wi

[
1 +

(
b
xi

)a]−1
= 0

1
p

+ a
n∑
i=1

wi log
(
xi
b

)
−

n∑
i=1

wi log
[
1 +

(
xi
b

)a]
= 0. (6.12)

It can be solved in analogy to (6.11).

6.2.3 Fitting of a TCD: The EM algorithm

The maximum likelihood method leads to good fitting results for a single Dagum distri-
bution. For a mixture of Dagum distributions, like the TCD, the log-likelihood function
tends to have multiple local maxima. Also the additional constraint on the mixture para-
meter α increases the complexity of the general optimization problem. Therefore it is
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6.2 Fitting of mixtures of Dagum distributions 41

advisable to avoid the usage of a ML-fit in this context. A good alternative is the EM
algorithm, invented by Dempster/Laird/Rubin in 1977 (Dempster et al., 1977). The
following explanations refer to McLachlan and Krishnan (2008).
Let x denote an income vector of length n, whose density is to approximate with a TCD.
We assume that each element of x, xi can be allocated to one of the mixture components.
There exist label vectors zi = (zi1, zi2) for each xi which indicate from which component
xi is taken. For all entries of zi:

zij = 1, if xi belongs to the j-th component, (6.13)

zij = 0 else.

The zij will be denoted as component labels in the following text. In general, the zi are
not known. Therefore, the whole issue can be interpreted as a missing data problem.
With the same notation as in 6.1 and survey weights wi (i = 1, . . . , n), the log-likelihood
function L(f), which is to be maximized, can be expressed as

logL(f) =
n∑
i=1

m∑
j=1

zijwi (logαj + log fj(xi|aj)) . (6.14)

One main idea of the EM algorithm is to assign the data x to the mixture components
fj. Therefore, the component labels zij ∀i, ∀j have to be estimated, which is performed
by one step of the EM algorithm. The EM algorithm requires starting values for all
distribution parameters. The algorithm consists of two steps, which justify its name: The
Expectation step and the Maximization step.

For the kth run the steps can be described as the following:

E-step:

To estimate the z
(k)
ij , calculate the estimated probability that xi originates from distribu-

tion fj under the condition that the distribution parameters â
(k)
j coincide with the true

parameter values aj. For the estimators of z
(k)
ij one gets

ẑ
(k)
ij =

α
(k−1)
j fj

(
xi|â(k−1)

j

)
m∑
l=1

α
(k−1)
l fl

(
xi|â(k−1)

l

) . (6.15)

Indeed ẑ
(k)
ij is a real number ∈ [0, 1] and not necessarily binary. This arises from the fact

that, in general, it is not possible to determine the origination of the label components
unequivocally.
Summation of the ẑ

(k)
ij leads directly to the mixture parameters. The mixture parameter

of the first mixture component is

α̂
(k)
1 =

1

n

n∑
i=1

ẑ
(k)
i1 . (6.16)

Since we analyse a mixture density which consists of only two components, the mixture
parameter of the second component can be calculated as α2 = 1−α1 and it is possible to
reduce the whole notation to a single mixture parameter α.
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M-step:

After the estimation of z
(k)
ij , the M-step realizes the estimation of the distribution para-

meters of both components by weighted pseudo maximum likelihood estimation, where
the survey weights multiplied with the associated component labels are the weights of the
estimation procedure. For each mixture component

a
(k)
j := argmax

aj

n∑
i=1

zijwi log fj(xi|aj) (6.17)

has to be determined. With given component labels, a
(k)
1 and a

(k)
2 minimize the equation

(6.14).

The EM algorithm has some very desirable properties, but most of them are not of direct
importance for the matters of this study and can be found in (Dempster et al., 1977
and Redner and Walker, 1984). Its key property is that it improves the parameter
estimation with every step and the associated likelihood function L converges to a value L∗.
Unfortunately L∗ is not necessarily the global maximum of L. The question whether the
global maximum is reached, depends highly on the used starting values for all parameters.
Because of that, it is essential to find sufficiently good starting values, which is a highly
non-trivial problem. One approach applicable in our simulation study can be found in
6.4.2.

6.3 Numerical calculation of inequality measures of

the TCD

There are three monetary poverty or respectively inequality measures estimated in the
simulation study in section 6.4. The Gini coefficient (for short Gini), the quintile share
ratio (QSR) and the at-risk-of-poverty rate (ARPR). All of them are in the set of indicators
of povery and social cohesion, formerly known as Laeken indicators, used by the European
Commission. For rather complex continuous distributions like the TCD, there are in
general no closed formulae for these indicators. That is why they have to be computed
numerically. The detailed calculation methodology, also needed in 6.4, is explained in this
section.

6.3.1 The Gini coefficient

The calculation of the Gini coefficient for continuous distributions can be a rather complex
task because obtaining the Lorenz curve of an extensive function is a highly non-trivial
challenge. Because of that, it seems reasonable to avoid the calculation of the Lorenz
curve of the TCD if possible. As a matter of fact, there exists an old formula, invented by
Gumbel in 1929, for the calculation of the Gini of a continuous distribution, which does
not require an explicit specification of its Lorenz curve (see Gumbel, 1929):
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Let F (x) denote the cdf of a continuous density function f(x) with mean µ and domain
(a, b). Then its Gini coefficient can be calculated as

G = 1− a

µ
− 1

µ

b∫
a

[1− F (x)]2 dx. (6.18)

Since the cdf, the mean and the domain (i.e. (0,∞)) of the TCD are known, its Gini
coefficient can be calculated with the following formula:

GTCD = 1−µTCD

∞∫
0

(
1− α

(
1 +

(x
b

)−a)−p
+ (α− 1)

(
1 +

(
x

b2

)−a2)−p2)2

dx. (6.19)

The integral in (6.19) has to be calculated numerically and the infinity in the upper bound
has to be substituted with an adequate finite value. For the calculation of this integral
we use the R function integrate.

6.3.2 The quantile function of the TCD

The calculation of some of the inequality and poverty measures, by name, the quintile
share ratio and the at-risk-of-poverty rate, requires the calculation of quantiles. As men-
tioned in 6.2.1, the quantile function of the TCD does not exist analytically. That is why
its quantiles have to be computed numerically. Since the distribution function

FTCD(x; a, b, p) = α

(
1 +

(x
b

)−a)−p
+ (1− α)

(
1 +

(
x

b2

)−a2)−p2
(6.20)

is monotonically increasing and its domain is limited to the interval [0, 1], it is an easy
task to solve the equation

α

(
1 +

(u
b

)−a)−p
+ (1− α)

(
1 +

(
u

b2

)−a2)−p2
−Q = 0 (6.21)

for a given Q ∈ (0, 1) with respect to u. The resulting u then is the Q-quantile, e.g. in
the case of Q = 0.5, u would be the median of the distribution.

6.3.3 The quintile share ratio

The general definition of the QSR of a continuous function f(x) with u1 = F−1(0.2) and
u2 = F−1(0.8) is

QSR =

0.2
∞∫
u2

xf(x)dx

0.2
u1∫
−∞

xf(x)dx

=

∞∫
u2

xf(x)dx

u1∫
−∞

xf(x)dx

. (6.22)
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For functions without an invertible cdf it is impossible to calculate u1 and u2 analytically.
The inverse of a cdf is the quantile function, so the inverse of the TCD has no closed form
expression. We tackle this problem by choosing Q1 = 0.2 and Q2 = 0.8 in (6.21) which
leads to numerical results for u1 and u2. After doing this, u1 and u2 can be used in the
equation (6.22). Since in the indefinite case∫

xfTCD(x)dx =
αapb−apxap+1

2F1

(
p+ 1, p+ 1

a
; p+ 1

a
+ 1;−

(
x
b

)a)
ap+ 1

(6.23)

+
(1− α)a2p2b

−a2p2
2 xa2p2+1

2F1

(
p2 + 1, p2 + 1

a2
; p2 + 1

a2
+ 1;−

(
x
b2

))a2
a2p2 + 1

it is possible to solve (6.22) either analytically or numerically, with both methods leading
to the correct result.

6.3.4 The At-risk-of-poverty rate

The At-risk-of-poverty rate is defined as the share of a population with an income lower
than 60% of its median income. In analogy to the calculation of the quintile limits in
6.3.3 we get the median xmedTCD numerically as described in 6.3.2. Since the TCD’s cdf is
given by (6.20), the ARPRTCD can be obtained directly as

ARPRTCD = α

(
1 +

(
0.6xmedTCD

b

)−a)−p
+ (1−α)

(
1 +

(
0.6xmedTCD

b2

)−a2)−p2
. (6.24)

6.4 The TCD in practice: A simulation study on the

Amelia data set

6.4.1 General setup of the simulation study

After these rather theoretical remarks, this subsection deals with the TCD in practice.
In the simulation study the Amelia equivalized disposable personal income data set re-
stricted to positive incomes was used. Details about the Amelia data set can be found in
Alfons et al. (2011). The simulation results are presented in Hulliger et al. (2011).
The simulation study bases on a repeated drawing of samples according to the different
designs and the estimation of the Gini, the QSR and the ARPR with the indirect and
the direct approach, explained in section 6.1. The compared sampling designs, explained
in Münnich and Zins (2011) are: Simple random sampling (design 1.2) and stratified
random sampling (design 1.4a), with a regional indicator as stratification variable. For
each design 1,000 samples of 6,000 households (approximatively 15,888 persons each) are
drawn. Afterwards all non-positive incomes are eliminated. Finally, the indicators are
estimated in the direct and the indirect way.

With regard to further analysis, it is necessary to provide also some variance estimators
for all methods. For the direct approach linearisation methods are available. They are
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explained in detail in Münnich and Zins (2011). For the Dagum mixture case of the
indirect approach there are no linearisation methods developed yet. That is why we
estimated the variances with a bootstrap routine with 50 replications per sample. The
variance of the point estimators for each design were used as benchmarks for the variance
estimators.

6.4.2 The generation of starting values for the EM algorithm

As already stated in 6.2.3, the result of a fit with the EM algorithm depends highly on
the starting values for all parameters. For the simulation study we utilized a peculiarity
of the Amelia data set: The income sample of the whole Amelia continent can be divided
into subsamples coming from Amelia’s four subregions. Afterwards, we recombined the
subsamples optimally to two samples consisting of two subsamples each, which can be
fitted by a single Dagum distribution each. In extenso: There are three possibilities to
combine the four subregions to two doublesubregions (dsr) in the explained way:

1. dsr1: region 1 and region 2; and dsr2: region 3 and region 4

2. dsr1: region 1 and region 3; and dsr2: region 2 and region 4

3. dsr1: region 1 and region 4; and dsr2: region 2 and region 3

For each of these combinations we fitted single Dagum distributions to the doublesub-
regions and summed up the log-likelihood values. The parameters of the combination
with the highest sum of log-likelihood values were taken as the starting values for the EM
algorithm. The whole concept is based on the fact that it is plausible that the Dagum
distribution provides a decently good fit to components of the whole sample.
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Chapter 7

Summary and Discussion

The reason why parametric estimation may be useful, when empirical data and estimators
are available is threefold: 1. to stabilize estimation; 2. to get insight into the relationships
between the characteristics of the theoretical distribution and a set of indicators, e.g. by
sensitivity plots; 3. to deduce the whole distribution from known empirical indicators,
when the raw data are not available. Deliverable 2.1 addresses these points and conveys
the experiences done within the AMELI project on the parametric estimation of the EU-
SILC monetary indicators.

In Chapter 2, we give a general overview of the state-of-the-art in parametric estimation
of income distributions. The literature points out that a specially useful distribution in
this context is the Generalized Beta distribution of the second kind (GB2), derived by
McDonald (1984). The focus of our study is thus on the GB2 which is a highly flexible
four-parameter income distribution. Apart from the scale parameter, this distribution has
three shape parameters: the first governing the overall shape, the second the lower tail and
the third the upper tail of the distribution. These characteristics give to the GB2 a large
flexibility for fitting a wide range of empirical distributions and it has been established
that it outperforms other four-parameter distributions for income data (Kleiber and
Kotz, 2003).

In Chapter 3, we present the basic properties of the GB2 distribution and give formulas
for the indicators of poverty and inequality under the GB2. Our main developments are
presented in Chapter 4. We have studied different types of estimation methods, taking
into account the design features of the EU-SILC surveys. Pseudo maximum likelihood
estimation, using either the full or the profile likelihood, is compared with a nonlinear
fit from the indicators. We have seen that both methods of ML estimation give similar
results, but that the optimization with the profile log-likelihood is much faster. The third
estimation method, the method of nonlinear fit from indicators uses the GB2 assumption
and direct estimates of the main indicators of poverty and inequality (ARPR, RMPG,
QSR, Gini and median income) to reproduce the whole income distribution. It is shown
that the empirical (direct) distribution is guessed to a good precision.

ML estimation tends to produce a bias in the estimates of ARPR and RMPG (see
Tables 4.2 and 4.3). We have developed an ad hoc procedure for robustification of the
sampling weights which markedly improves the bias in point estimates.
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Variance estimation is done by linearization and different types of simplified formulas for
the variance proposed in the literature are evaluated by simulation in Deliverable 7.1.

Chapter 5 focuses on the compounding property of the GB2 distribution. This property
implies that the GB2 density can be seen as a mixture of component densities arising from
the breaking down of the scale range into intervals. The intervals breakdown can be chosen
arbitrarily. For each breakdown, there exist probabilities of the mixture components that
reproduce the original GB2 density. It can be highly useful, when we wish to use the
overall GB2 fit and adapt for subpopulations by adjusting the mixture probabilities. The
advantage of this approach is that we can derive the component densities from the global
(population) level using the global GB2 fit and then only readjust the probabilities of the
components at the subpopulation level, without changing the components themselves.
Because the the components are fixed, the iterative algorithm for searching the optimal
probabilities is fast. Of course the way the components are chosen is crucial for the quality
of the result. Further development could be to estimate the optimal breakdown and the
probabilities by an EM algorithm in the spirit of Chapter 6.

The parametric methods described in Chapters 3 to 5 are programmed in R (R Develop-
ment Core Team, 2011) and are accessible to the wide public through the GB2 package
(Graf and Nedyalkova, 2010), which is part of the output of the AMELI project.

For the methods developed for the GB2, simulation results based on the AMELIA dataset
will be presented in the simulation report in Deliverable D7.1 (WP7).

Chapter 6 presents a different approach, useful in the context of heterogeneous popula-
tions. The case considered here is the mixture of two Dagum distributions (i.e. GB2 with
parameter q = 1). However, the difference with the method described in Chapter 5 is
that at each step of estimation, the distribution parameters and the mixture parameters
are re estimated by the EM algorithm.

This study shows that parametric estimation is perfectly feasible in the context of complex
survey designs. It is provides insight into the data. One byproduct is that the five indic-
ators of poverty and inequality (ARPR, RMPG, QSR, Gini and median income) provide
enough information about the underlying income distribution to permit the reconstruction
of this distribution under the GB2 hypothesis.
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Appendix A

Partial derivatives of the log density
of the GB2 distribution

Knowing that ∂y/∂a = (1/a)y log(y) and ∂y/∂b = (−a/b)y, and denoting as ψ the
digamma function (the derivative of the natural logarithm of the gamma function), the
partial derivatives of the log density with respect to a, b, p and q are:

∂ log(f)

∂a
=

1

a
+ p log(x/b)− (p+ q) log(x/b)

y

1 + y
,

∂ log(f)

∂b
= −a

b
p+

a

b
(p+ q)

y

y + 1
,

∂ log(f)

∂p
= ψ(p+ q)− ψ(p) + log(y)− log(1 + y),

∂ log(f)

∂q
= ψ(p+ q)− ψ(q)− log(1 + y).

Let denote g(y) = y/(y+1) and ψ′ the derivative of the digamma function. Knowing that

∂g(y)

∂a
=
∂y

∂a

1

(y + 1)2
=

y log(y)

a(y + 1)2
,

and that
∂g(y)

∂b
=
∂y

∂b

1

(y + 1)2
=

−ay
b(y + 1)2

,

we have:

∂2 log(f)

∂a2
= − 1

a2
− (p+ q)

a2
y log2(y)

(y + 1)2
,

∂2 log(f)

∂a∂b
= −p

b
+

(p+ q)

b

[
y

y + 1
+
ylog(y)

(y + 1)2

]
,

∂2 log(f)

∂a∂p
=
log(y)

a

1

(y + 1)
,
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∂2 log(f)

∂a∂q
= − log(y)

a

y

(y + 1)
,

∂2 log(f)

∂b∂a
=
∂2 log(f)

∂a∂b
,

∂2 log(f)

∂b2
=
ap

b2
− a(p+ q)

b2

[
y

y + 1
+

ay

(y + 1)2

]
,

∂2 log(f)

∂b∂p
= −a

b

1

(y + 1)
,

∂2 log(f)

∂b∂q
=
a

b

y

(y + 1)
,

∂2 log(f)

∂p∂a
=
∂2 log(f)

∂a∂p
,

∂2 log(f)

∂p∂b
=
∂2 log(f)

∂b∂p
,

∂2 log(f)

∂p2
= ψ′(p+ q)− ψ′(p),

∂2 log(f)

∂p∂q
= ψ′(p+ q)

∂2 log(f)

∂q∂a
=
∂2 log(f)

∂a∂q
,

∂2 log(f)

∂q∂b
=
∂2 log(f)

∂b∂q
,

∂2 log(f)

∂q∂p
=
∂2 log(f)

∂p∂q
,

∂2 log(f)

∂q2
= ψ′(p+ q)− ψ′(q).
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Appendix B

Proofs to Chapter 5

B.1 Derivation of the GB2 as a compound distribu-

tion

It is instructive to derive the result in Equation (5.4). We have

f(x; a, b, p, q) =
a2

bΓ(p) Γ(q)
J(x; a, b, p, q) (B.1)

where J(x; a, b, p, q) =

∞∫
0

xap−1θ−ap+1θ−1 exp (−(x/θ)a)(θ/b)−aq−1 exp (−(θ/b)−a) dθ =

(x/b)ap−1
∞∫
0

(θ/b)−a(p+q)θ−1 exp[−((x/b)a + 1)(θ/b)−a] dθ

Letting t = (x/b)a + 1 and changing the variable to u = (θ/b)−a,
du = −(a/b)(θ/b)−a−1dθ = −a(θ/b)−aθ−1dθ, we obtain

J(x; a, b, p, q) =
(x/b)ap−1

a

∞∫
0

up+q−1 exp(−tu) du

=
(x/b)ap−1

a

Γ(p+ q)

tp+q

=
(x/b)ap−1

a

Γ(p+ q)

((x/b)a + 1)p+q

Introducing this expression into Equation (B.1), we obtain the GB2 density in Equation
(5.1):

f(x; a, b, p, q) =
a2

bΓ(p) Γ(q)

(x/b)ap−1

a

Γ(p+ q)

((x/b)a + 1)p+q
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=
a

bB(p, q)

(x/b)ap−1

((x/b)a + 1)p+q

B.2 Derivation of the right tail discretization

The computation of f`(x) in Equation (5.9) and of the initial value of p` in Equation (5.8)
is analogous to the computation of J(x; a, b, p, q) in Equation (B.1).

p` =
1

Γ(q)

u`∫
u`−1

uq−1 exp(−u) du = P (u`, q)− P (u`−1, q)

f`(x) =
1

p`

a

bΓ(p)Γ(q)

[
(x/b)ap−1

] u`∫
u`−1

up+q−1 exp(−tu) du

=
1

p`

a

b

Γ(p+ q)

Γ(p)Γ(q)

(x/b)ap−1

tp+q
[P (tu`, p+ q)− P (tu`−1, p+ q)]

= f(x)
P (tu`, p+ q)− P (tu`−1, p+ q)

P (u`, q)− P (u`−1, q)

B.3 Derivation of the left tail discretization

Starting now from Equation (5.5), parameters a′, b′, p′, q′ and

t′ = t′(y) = (y/b′)a
′
+ 1 = (x/b)−a + 1 = t′(x),

we can write new component densities in function of the inverse income y as:

f`(y; a′, b′, p′, q′) = f(y; a′, b′, p′, q′)
P (t′u′`, p

′ + q′)− P (t′u′`−1, p
′ + q′)

P (u′`, q
′)− P (u′`−1, q

′)
,

where t′ is viewed as a function of y.

Changing to the variable x = 1/y, we obtain the new component densities f̃`(x):

f̃`(x) =
1

x2
f(

1

x
; a′, b′, p′, q′)

P (t′u′`, p
′ + q′)− P (t′u′`−1, p

′ + q′)

P (u′`, q
′)− P (u′`−1, q

′)

= f(x; a, b, p, q)
P (t′u′`, p+ q)− P (t′u′`−1, p+ q)

P (u′`, p)− P (u′`−1, p)

where t′ is viewed as a function of x. This proves Equation (5.10).
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An efficient algorithm for the
computation of the Gini coefficient
of the Generalized Beta Distribution
of the Second Kind

Author: Monique Graf
(Published in JSM Proceedings, Business and Economic Statistics Section, Alexandria,
VA: American Statistical Association, pages 4835-4843.)

Abstract

The analytical expression for the Gini coefficient of the Generalized Beta Distribution of the
Second Kind (GB2) has been derived by McDonald (1984). This formula involves the compu-
tation of two generalized hypergeometric functions at z = 1, for which a direct evaluation can
lead to a very slow convergence. The proposed algorithm selects among the ten Thomae (1879)
equivalent representations the one with the fastest convergence. The gain can be extremely
large. The implementation has been done in the open source language R.

Keywords: Income distribution; Gini coefficient; GB2 distribution; algorithm; convergence; R

language; hypergeo package.

C.1 Introduction

Theoretical income distributions have attracted a lot of interest. A huge literature emerged
and many equivalent distributions have appeared under different names. A encyclopedic
overview of income and size distributions can be found in Kleiber and Kotz (2003). One
of the main contributions of Kleiber and Kotz’s book is the unification of the terminology.
In this paper, their terminology will be followed. A panorama of the modeling of income
distributions and inequality measures, from seminal papers to current research, has been
published by Chotikapanich (2008). The Generalized Beta Distribution of the Second
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Kind (GB2) is a four parameter distribution that has been introduced by McDonald
(1984) as a flexible and widely applicable income distribution. It encompasses many
distributions used in the context of incomes as special cases: Singh-Maddala, Dagum,
Fisk, and the Generalized Gamma as a limiting case. Empirical findings, summarised in
Kleiber and Kotz (2003), show that family income distributions are generally best fitted
by the GB2 or one of its particular cases. McDonald and Xu (1995) have embedded the
GB1 and the GB2 into a five parameter distribution, called Generalized Beta (GB) (see
also McDonalds and Ransom, 2008, Chap.8), but did not derive the Gini index in this
general case. Their empirical findings show that the GB2 fit is competitive with regard to
the GB. Thus the GB2 (or its subdistributions) still seems to remain the generally best
fitting parametric distribution to family income data.
Inequality can be assessed by several different indices. A widely used inequality index is
the Gini index, defined by a ratio of expectations:

G =
E(|X − Y |)

2 E(X)

where X and Y are two independent identically distributed random variables. In the GB2
case, it takes the form of a linear combination of two generalized hypergeometric functions

3F2 at z = 1, for which a direct evaluation can lead to a very slow convergence. The
proposed algorithm selects, among the ten Thomae (1879) equivalent representations of
the 3F2, the one with the fastest convergence. The algorithm thus provides a more efficient
evaluation.

In Section C.2 the principal characteristics of the Generalized Beta Distribution of the
Second Kind and the formula for the Gini coefficient are recalled. Section C.3 states
Thomae’s theorem; the algorithm is described in Section C.4. Section C.5 concludes with
evaluations and comparisons.

C.2 Generalized Beta Distribution of the Second Kind

(GB2)

The Generalized Beta Distribution of the Second Kind is a four-parameter distribution
and is denoted GB2(a, b, p, q). Its density takes the form:

fGB2(y; a, b, p, q) =
|a|

bB(p, q)

(y/b)ap−1

(1 + (y/b)a)p+q
(C.1)

where B(p, q) is the beta function, b > 0 is a scale parameter, p > 0, q > 0 and a real
are shape parameters. The extension to a negative a parameter is unessential, because
GB2(−|a|, b, p, q) = GB2(|a|, b, q, p), as can be readily seen on multiplying the numerator
and denominator of the density in Equation (C.1) by (y/b)−a(p+q). Moreover, the GB2
has been shown to be closed under inversion, i.e. if Y follows a GB2(a, b, p, q), then 1/Y
follows GB2(a, 1/b, q, p) (see Kleiber and Kotz, 2003, Equation (6.14)). We see from
this formula that 1/Y has the same shape parameter a as Y . Thus from now on, we
suppose that a > 0.
The moment of order k exists, when

−ap < k < aq
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The Gini coefficient is only defined when the expectation exists, that is when

q − 1/a > 0 (C.2)

The formula for the Gini index invoIves the generalized hypergeometric function 3F2,
defined by

3F2(U,L; z) = 3F2

[
u1, u2, u3 ; z

l1, l2

]
= 1 +

∞∑
n=1

(u1)n (u2)n (u3)n
(l1)n (l2)n n!

zn (C.3)

where (x)n =
∏n−1

k=0(x + k) is the Pochhammer’s symbol, and U = (u1, u2, u3) and L =
(l1, l2) are the vectors defining the coefficients of the infinite series.
For |z| = 1, the series in Equation (C.3) converges absolutely, if

s = l1 + l2 − u1 − u2 − u3 > 0 (C.4)

(see e.g. Henrici, 1977). The parameter s is called the excess. Representing the Poch-
hammer’s symbols as ratios of gamma functions, (x)n = Γ(x+n)/Γ(x), and using Stirling’s
formula, we can see that the series is (up to a constant not depending on n) asymptotic
to n−s−1. Thus the speed of convergence is directly related to the excess.

The Gini index of the GB2 distribution is given by (McDonald, 1984):

GGB2 =
B(2p+ 1/a, 2q − 1/a)

B(p, q)B(p+ 1/a, q − 1/a)

{
1

p
G1 −

1

p+ 1/a
G2

}
(C.5)

where

G1 = 3F2

[
1, p+ q, 2p+ 1/a ; 1

p+ 1, 2(p+ q)

]
(C.6)

and

G2 = 3F2

[
1, p+ q, 2p+ 1/a ; 1

p+ 1 + 1/a, 2(p+ q)

]
(C.7)

The parameters a, p, q in Equations (C.6) and (C.7) are all positive. Thus the convergence
condition (C.4) translates to s = q−1/a > 0 for G1, and to s = q > 0 for G2. The second
condition is always fullfilled by hypothesis on the parameter space. The first condition is
exactly the condition for the existence of the expectation given in Equation (C.4).

C.3 Thomae’s Theorem

Thomae (1879) derived equivalent representations for 3F2(U,L; 1). His result is nicely
expressed by Krattenthaler and Rao (2004) as the following theorem:
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Thomae’s theorem The expression

1

Γ(l1)Γ(l2)Γ(l1 + l2 − u1 − u2 − u3)
3F2

[
u1, u2, u3 ; 1

l1, l2

]
(C.8)

is a symmetric function of the five arguments

g1 = l1 + l2 − u2 − u3
g2 = l1 + l2 − u1 − u3
g3 = l1 + l2 − u1 − u2
g4 = l1

g5 = l2.

When all parameters in 3F2 are real, the argument in the third gamma factor in Equation
(C.8) is the excess s. The condition s > 0 implies that all gi > 0, i = 1, ..., 5.
The function 3F2 is invariant by permutations of (u1, u2, u3) and of (l1, l2) , so it is easy
to see that there are only 10 equivalent expressions for 3F2(U,L; 1): the combinations of
two among the five arguments above as possible candidates for the two components of the
vector L. These 10 expressions are listed e.g. in Milgram (2006). Let sg = (1/2)

∑
gi.

The excess corresponding to a specific choice is given by

sij = sg − gi − gj (C.9)

C.4 Computation of the Gini coefficient in the GB2

case

The five arguments g1, ..., g5, computed from the parameters in Equations (C.6) and (C.7),
for G1 and G2 respectively, are:

G1 parameters G2 parameters
g1 = q + 1− 1/a q + 1
g2 = p+ 2q − 1/a p+ 2q
g3 = 2p+ q 2p+ q + 1/a
g4 = p+ 1 p+ 1 + 1/a
g5 = 2(p+ q) 2(p+ q)
sg = 3(p+ q) + 1− 1/a 3(p+ q) + 1 + 1/a

To each pair of lower arguments Lij = (gi, gj) corresponds another excess parameter sij
given by Equation (C.9), see Table C.1 for G1. The last combination (4, 5) is the original
one in Equation (C.6) and it is clear that the excess s45 is never the largest possible
(e.g. s34 is always larger). Let 1 ≤ k1 < k2 < k3 ≤ 5 be the 3 distinct integers different
from {i, j}. Then the vector of upper parameters U ij is given by un = gkn−sij, n = 1, 2, 3.
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Table C.1: The 10 possible lower arguments L = (gi, gj) of 3F2, corresponding excess and
upper arguments for the equivalent representations of G1

Lower arguments Lij Excess Upper arguments U ij

(i, j) l1 = gi l2 = gj sij u1 u2 u3
(1, 2) q − 1/a + 1 p + 2q − 1/a 2p + 1/a q − 1/a 1− p− 1/a 2q − 1/a
(1, 3) q − 1/a + 1 2p + q p + q q − 1/a 1− q p + q
(1, 4) q − 1/a + 1 p + 1 2(p + q)− 1 1− p− 1/a 1− q 1
(1, 5) q − 1/a + 1 2(p + q) p 2q − 1/a p + q 1
(2, 3) p + 2q − 1/a 2p + q 1 q − 1/a p 2(p + q)− 1
(2, 4) p + 2q − 1/a p + 1 p + q 1− p− 1/a p p + q
(2, 5) p + 2q − 1/a 2(p + q) 1− q 2q − 1/a 2(p + q)− 1 p + q
(3, 4) 2p + q p + 1 2q − 1/a 1− q p 2p + 1/a
(3, 5) 2p + q 2(p + q) 1− p− 1/a p + q 2(p + q)− 1 2p + 1/a
(4, 5) p + 1 2(p + q) q − 1/a 1 p + q 2p + 1/a

We suppose that s45 = q − 1/a > 0. The Thomae’s representations with negative excess
are discarded. Negative excess can occur if either (i) 1 − q < 0 or (ii) 1 − p − 1/a < 0
or (iii) 2(p + q) − 1 < 0. It is easy to see that (i) and (iii) cannot occur simutaneously;
the same for (ii) and (iii). Thus there will always be more than one feasible combination.
Moreover, there will always be at least one combination (i, j) with sij > s45 (s34 fullfills
the condition). In conclusion, we can always improve the convergence by exchanging the
original combination (4, 5) by the one with the maximum excess. Moreover, it is shown in
the Appendix C.6.1 that only 4 combinations out of 10 need to be tested. More details on
the optimal combination can be found in Appendix C.6.1. Once the optimal combination
(i, j) is found, the correction factor C = Cij from Thomae’s theorem (Equation C.10) is
determined and multiplied by the ratio of beta functions in Equation (C.5).

Cij =
Γ(g4)Γ(g5)Γ(s45)

Γ(gi)Γ(gj)Γ(sij)
(C.10)

The function hypergeo series from R package hypergeo, Hankin (2008) has been used for

3F2 evaluations. Extensive use of mathematical functions provided in the R language R
Development Core Team (2011) is acknowleged. The description of the algorithm
will be done for G1 and is analogous for G2.

c© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


58 Appendix C. Algorithm for the computation of the Gini of the GB2

Algorithm

1. Input a, p, q.

G1 case:

2. Compute U and L from Equation (C.6).

3. Choose the combination with maximum excess in Table C.1.

4. Compute 3F2 for the chosen combination.

5. Compute the sum of the logarithm of the correction factor in Equation (C.10) and
of the logratio of the beta functions appearing in Equation (C.5).

6. Similar steps are performed for G2.

7. The Gini coefficient is computed by using Equation (C.5).

C.5 Results and Discussion

Table IV in McDonald (1984) gives estimated distribution functions to the 1975 U.S.
family income data and corresponding Gini coefficients. For the GB2, the estimated
parameters are a = 3.4977, p = 0.4433, q = 1.1372 and the Gini is estimated at 0.352.
The different feasible combinations (positive excess) for the same parameter set are shown
in Table C.2, where niter is the number of iterations. Using the third combination (i, j) =
(1, 4), that gives the maximum excess in this application, the algorithm converged in 55
iterations for G1 and 78 for G2 (not shown). It can be seen (Table C.2) that the gain in
efficiency is large, the number of iterations until convergence for the original combination
(i, j) = (4, 5) being 99141. The tolerance has been set to 1e-07 in the function evaluating

3F2. The resulting Gini is 0.35364 and is nearer to the Census estimate of 0.358.

The algorithm has been tested with the Fisk distribution, which is GB2 with p = q = 1.
In this case, the Gini takes a very simple form: G = 1/a. If p = q = 1, the combination
with maximum excess is always (1, 4) (see Appendix C.6.2) and for this combination,
u2 = 0 (Table C.1). This implies that all coefficients in Equation C.3 are zero, except the
first and 3F2 = 1. Thus the convergence occurs in one iteration, whereas for the original
combination 10000 iterations do not suffice. In the Fisk case, the algorithm automatically
finds the closed form.

The lack of convergence is not the only numerical problem that can be encountered. In
(McDonald, 1984, Table III) the fit of a B2 distribution (which is GB2 with a = 1)
to the 1970 U.S. family income data gave p = 2.5556, q = 22.8234 and G = 0.355. The
feasible combinations are shown in Table C.3. It can be observed that for combination
(1,3), C13 is of the order 10e+11, compensating 3F2 converging to a value near zero. This
implies rounding errors and the estimated G1 = 2.1755 is far away from the correct value
of G1 = 4.3504. In this case, combination (4,5) gives a reasonable value for G1 and the

1The maximum number of iterations has been set higher than it would be in practice to make the gain
visible.
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same Gini is found as by the optimal combination (1,4) although in a higher number of
iterations. It is observed in Appendix C.6.1 that combination (1, 3) never corresponds to
the maximum excess. Moreover, one can see (Appendix C.6.3) that the maximum factor
Cij would occur when gi = gj = sij and it can be observed in Table C.3 that indeed
g1, g3 and s13 are the closest of all combinations. By contrast, the combination with
maximum excess implies a discrepancy between sij, and gi and gj, thus won’t give rise to
comparatively high coefficients, except in extreme cases. One such case would be when q
is large and q − 1/a is near zero, but such occurrence is unlikely to appear in practice.
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C.6 Appendix

C.6.1 Combinations in Table C.1 with maximum excess

We have the following relationships between the excesses sij, that are valid for the G1 as
well as for the G2 parameters:

s45 < s34 ; s25 < s23 ; s35 < s23 ; s15 < s12 (C.11)

thus all combinations involving g5 can be discarded. Moreover all the excesses s12, ..., s34
are identical for G1 and for G2 and the following relations hold:

s12 + s34 = 2s13 = 2s24 ⇒ max(s12, s34) ≥ s13 and s24 (C.12)

s14 = s12 + s34 − 1⇔ s14 = max(s12, s34) + min(s12, s34)− 1 (C.13)

Thus, if

• min(s12, s34) > 1⇒ s14 > max(s12, s34) > s23, so the maximum excess is s14.

• min(s12, s34) < 1⇒ s14 < max(s12, s34)

– If max(s12, s34) > 1⇒ the maximum excess is max(s12, s34).

– If max(s12, s34) < 1⇒ the maximum excess is s23 = 1.

When equalities occur, then there is more than one solution for which the maximum
excess is attained. In any case, the maximum excess is greater than or equal to 1.

C.6.2 Special GB2 distributions

Special parameter values give rise to a simpler Gini formula (see Kleiber and Kotz,
2003, for an exposition of all the special cases). If one of the upper arguments vanishes,

3F2 = 1, so that the algorithm converges in one iteration.

• Dagum : q = 1
In this case, s34 = 2 − 1/a > 1, because by hypothesis 0 < q − 1/a = 1 − 1/a,
thus the maximum excess is s14 (see above). For the combination (1, 4), in the G1

expression, u2 = q − 1 = 0 and the corresponding 3F2 = 1.

• Singh-Maddalla : p = 1
In this case, s12 = 2 + 1/a > 1, thus the maximum excess is also s14. For the
combination (1, 4), in the G2 expression, u1 = 1 − p = 0 and the corresponding

3F2 = 1.

• Fisk: p = q = 1
In this case, the algorithm converges in one iteration for G1 and G2 and the exact
value of Gini which is 1/a is returned.
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C.6.3 Maximum C factor

From Equation (C.9), we see that gi + gj + sij = sg is constant. Cij in Equation (C.10) is
maximum, when Γ(gi)Γ(gj)Γ(sij) is minimum. Writing A,B,D for g4, g5, s45 respectively,
and A−x,B−y,D+x+y for gi, gj, sij (which is possible by Equation C.9), the logarithm
of the above product of gamma’s is expressed as

log Γ(A− x) + log Γ(B − y) + log Γ(D + x+ y)

Taking the partial derivatives with respect to x and y and denoting the logarithmic de-
rivative of the Gamma function by ψ, we obtain

−ψ(A− x) + ψ(D + x+ y) = 0

−ψ(B − y) + ψ(D + x+ y) = 0

On the positive range of the argument, the ψ function is monotonic. Thus the above
system has only one solution, which is

A− x = B − y = D + x+ y = sg/3

It is easy to see that the eigenvalues of the Hessian are ψ′(sg/3) and 3ψ′(sg/3) and are
strictly positive, thus the above solution gives the minimum of Γ(A − x)Γ(B − y)Γ(D +
x+ y). This implies that

Γ(g4)Γ(g5)Γ(s45)/[Γ(sg/3)]3

is a superior bound for Cij.
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