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Aim and Objectives of Deliverable 2.2 
 

There is increasing user demand for regional or sub-population official statistics 

within the EU. In many countries, statistics on poverty and social exclusion are based 

on sample surveys, such as the SILC survey. One of the aims stated for the AMELI 

project was to investigate the adaptation of modern small area and domain estimation 

(SAE) approaches for selected indicators on poverty and social exclusion (Laeken 

indicators). At-risk-of poverty rate, the Gini coefficient, relative median at-risk-of 

poverty gap and quintile share ratio were selected for consideration. Estimation 

approaches examined in Work Package 2 involved the use of auxiliary population 

data and statistical models for borrowing strength for regional (e.g. area sizes below 

NUTS3) and small area estimation purposes. The methods included design-based 

model-assisted estimators and model-based estimators. The relative merits and 

practical applicability of the methods was assessed by simulation experiments using 

real register and survey data. It was considered important to cover a broad variety of 

typical practical estimation settings existing in different EU countries. Therefore, the 

methods were investigated under various statistical infrastructures, sampling designs, 

domain compositions and outlier contamination schemes. In many cases, the methods 

assumed access to unit-level auxiliary population data. This option is becoming 

increasingly realistic in statistical infrastructures of the EU countries, where 

opportunities to use administrative registers and population census data for statistical 

purposes are improving. Methods were also developed that use aggregate-level 

auxiliary data, which option is useful for countries where aggregate auxiliary data are 

available for example from official statistics sources. The accompanying R programs 

codes were provided for practical application of the methods. In the production of 

Deliverable 2.2 on small area statistics methodology, the aim was to combine 

expertise from academic research with expertise from Official statistics producers. 

NSIs involved include Statistics Finland, Statistics Estonia and Statistics Slovenia. 

University of Helsinki has the main responsibility of the production of the deliverable. 



IV 
 

  AMELI-WP2-D2.2 

 

Contents 
 
1   Introduction           1 

     1.1   Objectives           1 

     1.2   Basic approaches          2 

             1.2.1   Estimation approaches        2 

 1.2.2   Report structure         4 

     1.3   Planned and unplanned domain structures       5 

     1.4   Direct and indirect estimators        6 

     1.5   Estimation of poverty indicators        6 

     1.6   The role of models and auxiliary data       8 

 1.6.1   The role of models         8 

 1.6.2   The role of auxiliary information       9 

 1.6.3   Estimation under outlier contamination    11 

 

2   Basic properties of domain estimators      12 

 

3   Models and estimators        13 

     3.1   Models and auxiliary data       14 

     3.2   Design-based estimators       17 

 3.2.1   Horvitz-Thompson estimator      17 

 3.2.2   Generalized regression estimator     17 

 3.2.3   Model calibration       18 

     3.3   Model-based estimators       23 

 3.3.1   Synthetic estimator       23 

 3.3.2   EBLUP and EBP estimators      23 

     3.4   Transformations of predictions      25 

     3.5   Frequency-calibrated predictors calculated using 

             known domain marginal totals of auxiliary variables   29 

     3.6   Composite estimators        33 

     3.7   Simulation-based methods       36 

 

 



V 
 

 
© http://ameli.surveystatistics.net/ - 2011 

 

4 Estimators for poverty indicators and results 

   of Monte Carlo simulation experiments      38 

     4.1   Introduction         38 

     4.2   Experimental design        38 

 4.2.1   Register-based population from Western Finland   38 

 4.2.2   Amelia population       41 

 4.2.3   Quality measures       41 

 4.2.4   Contamination schemes      42 

 4.2.5   Estimators        43 

     4.3   At-risk-of poverty rate       44 

 4.3.1   HT-CDF estimator       45 

 4.3.2   Methods based on poverty indicators     45 

 4.3.3   Simulation results       47 

     4.4   The Gini coefficient        53 

     4.5   Poverty gap         58 

     4.6   Quintile share ratio S20/S80       63 

     4.7   Classifying domains by poverty      69 

 

5 Case study: Estimation of poverty rate and its variance   71 

     5.1   Introduction         71 

     5.2   Design         71 

     5.3   Estimators         74 

 5.3.1   Poverty rate estimators      74 

 5.3.2   Variance estimators       75 

     5.4   Results         78 

 5.4.1   Poverty rate estimators      78 

 5.4.2   Variance estimators       80 

 

6 Discussion of results        82 

     6.1   General         82 

     6.2   New predictors        82 

     6.3   Comparison of outlier and contamination mechanisms   84 

 

References            86 



VI 
 

  AMELI-WP2-D2.2 

 

 

Annex 1. Manual for R codes         93 

Annex 2. AMELI WP 2 Estimation: Summary of SAE methods     98 

Annex 3. Technical summary of selected estimator types    100 

 



1 
 

 
© http://ameli.surveystatistics.net/ - 2011 

 

1 Introduction  
 

1.1 Objectives 
 

There are increasing needs in the society for accurate statistics on poverty and social 

exclusion (poverty indicators for short) produced for different population subgroups 

or domains such as regional areas and demographic groups. One of the aims of the 

AMELI project was to investigate the current (standard) methods for domain and 

small area estimation of poverty indicators and develop new methods where 

appropriate. This report presents the methodological developments and summarizes 

our main findings on statistical properties of proposed estimators. 

 

Properties of estimators of selected poverty indicators (so-called Laeken indicators as 

agreed in Laeken European Council in December 2001) were studied by simulation 

experiments. The study had the following objectives:  

1. Investigation of statistical properties (bias and accuracy) of standard direct 

estimators of the selected poverty indicators for population domains and small 

areas. Standard estimators do not use auxiliary data or modelling. 

2. Introduction of alternative estimators, which use statistical models and 

auxiliary data at the unit level, and investigation of bias and accuracy of the 

new estimators. 

3. Introduction of estimators that use auxiliary data at an aggregated level and 

investigation of bias and accuracy of these estimators. 

4. Implementation of points 1 to 3 under equal and unequal probability sampling 

schemes. 

5. For studying robustness of methods, the implementation of points 1 to 4 under 

various outlier contamination schemes. 

6. Study of applicability of a method incorporating a novel transformation of 

predictions. 

7. Implementation of points 1 to 5 for populations from two different data 

sources, register-based data maintained by Statistics Finland (the Western 

Finland population) and sample survey data from EU-wide SILC survey (the 

Amelia population). 
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1.2 Basic approaches 
 

1.2.1 Estimation approaches 

 

This report presents the research done at University of Helsinki in the context of 

AMELI Work Package 2 on the estimation of selected indicators on poverty 

(monetary Laeken indicators) for domains and small areas. Domain estimation of 

poverty has been recently studied by D’Alo et al. (2006), Fabrizi et al. (2007a, 

2007b), Srivastava (2009), Molina and Rao (2010), and Haslett et al. (2010). Verma et 

al. (2010) reports empirical results for regional estimation using EU-SILC data. 

 

The indicators considered in this report are the following: 

• At-risk-of poverty rate 

• The Gini coefficient 

• Relative median at-risk-of poverty gap 

• Quintile share ratio (S20/S80 ratio). 

 

The indicators are typically nonlinear and are based on non-smooth functions such as 

medians and quintiles, which makes the estimation a non-trivial task. This holds 

especially for the estimation of the indicators for domains and small areas. 

 

In this report, both design-based and model-based or model-dependent methods are 

developed and investigated for the estimation of the selected poverty indicators for 

domains and small areas. Design-based methods are chosen because of the dominance 

of the framework in official statistics production. Model-based approaches are 

important to be covered because in many small area estimation situations, model-

based methods provide a realistic solution.  

 

Design-based estimation for finite population parameters refers to an estimation 

approach where the randomness is introduced by the sampling design. In design-based 

estimation, it is emphasized that estimators should be design consistent and, 

preferably, nearly design unbiased at least in domains with medium-sized samples (an 

estimator is nearly design unbiased if its bias ratio − bias divided by standard 
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deviation − approaches zero with order 1/ 2( )O n−  when the total sample size n tends to 

infinity (Estevao and Särndal, 2004)). For a nearly design unbiased estimator, the 

design bias is, under mild conditions, an asymptotically insignificant contribution to 

the estimator’s mean squared error (Särndal, 2007, p. 99). This property is 

independent of the choice of the assisting model. Generalized regression (GREG) type 

estimators and calibration type estimators are examples of nearly design unbiased 

estimators. Model-assisted GREG estimators are constructed such that they are robust 

against model mis-specification. 

 

GREG and model-free calibration are discussed in Särndal, Swensson and Wretman 

(1992) and Särndal (2007). Lehtonen and Veijanen (2009) discuss GREG and model-

free calibration in the context of domain estimation. In calibration, we concentrate on 

model calibration estimators, introduced in Wu and Sitter (2001). Model calibration 

has been developed for domain estimation in Lehtonen, Särndal and Veijanen (2009). 

In GREG and model calibration we often employ estimators that use nonlinear 

assisting models involving random effects in addition to the fixed effects. 

 

Design-based estimators for domains and small areas are usually constructed so that 

the complexities of the sampling design, such as stratification and unequal inclusion 

probabilities, are accounted for. For example, it is customary that design weights are 

incorporated in a design-based estimation procedure. This does not necessarily hold 

for model-based or model-dependent methods. In this respect, a conceptual separation 

of model-based and model-dependent methods can be helpful. In strict model-

dependent methods, the estimation is considered to rely exclusively on the statistical 

model adopted. For example, design weights do not play any role in a model-

dependent estimation procedure. For design consistency, variables that capture (at 

least some) of the sampling complexities, such as stratification variables and PPS size 

variable, can be included in the underlying model. In model-based methods, design 

weights can be incorporated in the estimation procedure to account for unequal 

probability sampling, leading to design consistent pseudo synthetic, pseudo EBLUP 

(empirical best linear unbiased predictor) and pseudo EBP (empirical best predictor) 

type approaches (see e.g. Rao, 2003; You and Rao, 2002; Jiang and Lahiri, 2006). The 

methods coincide under equal probability sampling. In this report, we use “model-
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based” as a general concept unless it is instructive to treat separately the two 

approaches. 

 

Model-based estimators can have desirable properties under the model but their 

design bias does not necessarily tend to zero with increasing domain sample size 

(Hansen, Hurvitz and Madow, 1978; Hansen, Madow, and Tepping, 1983; Särndal, 

1984, and Lehtonen, Särndal and Veijanen, 2003). Model-based methods for small 

area estimation include a variety of techniques such as synthetic (SYN) and composite 

estimators, EBLUP and EBP type estimators and various Bayesian techniques, such as 

empirical Bayes and hierarchical Bayes. The monograph by J.N.K. Rao (2003) 

provides a comprehensive treatment of model-based small area estimation (SAE). 

Mixed models that are commonly used in SAE are discussed for example in Jiang and 

Lahiri (2006).  

 

Model-based small area estimation methodology was extensively studied in the 

context of the EU’s FP6 research project EURAREA (Enhancing Small Area 

Estimation Techniques to meet European Needs, 2002-2004), see The EURAREA 

Consortium (2004). EURAREA concentrated mainly on the estimation of small area 

totals and means and recommended the model-based methods for official statistics 

production for small areas (e.g. area sizes below NUTS3). In AMELI we extend the 

SAE methodology to considerably more complex statistics including the Gini 

coefficient, relative median at-risk-of poverty gap and quintile share ratio. In addition 

to model-based methods, advanced design-based methods are developed. 

 

1.2.2 Report structure 

 

The report includes the description of the estimators developed for the selected 

poverty indicators and the results of the Monte Carlo simulation experiments on the 

statistical properties (bias and accuracy) of the estimators. The report is organized as 

follows. The remainder of this section covers the definition of the basic concepts and 

introduces the estimators of the poverty indicators to be examined as well as the role 

of models and auxiliary data in the construction of the estimators. Section 2 

summarizes the basic properties of the various estimator types for domains and small 

areas. A technical description of the models and estimators is inserted in Section 3. 
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Section 4 contains a detailed description of the specific estimators of the indicators 

and presents the results of Monte Carlo experiments. Section 5 is devoted to a case 

study on a model-assisted estimator of poverty rate; special attention is in the 

estimation of the variance of the estimator. Discussion is in Section 6. 

 

 

1.3 Planned and unplanned domain structures 
 

Different domain structures can appear in practical applications of domain estimation 

(Lehtonen and Veijanen, 2009). Sampling design may be based on knowledge of 

domain membership of units in population. If the sampling design is stratified, 

domains being the strata, the domains are called planned (Singh, Gambino and 

Mantel, 1994). For planned domain structures, the population domains can be 

regarded as separate subpopulations. Therefore, standard population estimators are 

applicable as such. The domain size in every domain is often assumed known and the 

sample size dn  in domain sample ds  is fixed in advance. Stratified sampling in 

connection to a suitable allocation scheme such as optimal (Neyman) or power 

(Bankier) allocation is often used in practical applications, in order to obtain control 

over domain sample sizes (e.g. Lehtonen and Pahkinen, 2004). Singh, Gambino and 

Mantel (1994) describe allocation strategies to attain reasonable accuracy for small 

domains, still retaining good accuracy for large domains. Falorsi, Orsini and Righi 

(2006) propose sample balancing and coordination techniques for cases with a large 

number of different stratification structures to be addressed in domain estimation.  

 

If the domain membership is not incorporated into the sampling design, the sizes 
dsn  

of domain samples will be random. The domains are then called unplanned. 

Unplanned domain structures typically cut across design strata. The property of 

random domain sample sizes introduces an increase in the variance of domain 

estimators. In addition, extremely small number (even zero) of sample elements in a 

domain can be realized, if the domain size in the population is small. Unplanned 

domain structures are commonly encountered in practice, because it is impossible to 

include all relevant domain structures into the sampling design of a given survey. 

Unplanned domain structures are often assumed in this report. 
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1.4 Direct and indirect estimators 
 

It is advisable to separate direct and indirect estimators for domains (Lehtonen and 

Veijanen, 2009). A direct estimator uses values of the variable of interest only from 

the time period of interest and only from units in the domain of interest (Federal 

Committee on Statistical Methodology, 1993). A Horvitz-Thompson (HT) type 

estimator provides a simple example of direct estimator. In model-assisted estimation, 

direct estimators are constructed by using models fitted separately in each domain. A 

direct domain estimator can still incorporate auxiliary data outside the domain of 

interest. This is relevant if accurate population data about the auxiliary x-variables are 

only available at a higher aggregate level. 

 

An indirect domain estimator uses values of the variable of interest from a domain 

and/or time period other than the domain and time period of interest (Federal 

Committee on Statistical Methodology, 1993). In general, indirect estimators are 

attempting to “borrow strength” from other domains and/or in a temporal dimension. 

Indirect model-assisted estimators for domains are discussed in the literature (e.g. 

Estevao and Särndal, 1999, Lehtonen, Särndal and Veijanen, 2003, 2005, and 

Hidiroglou and Patak, 2004). Indirect estimators are used extensively in this report; 

this especially holds for domains whose sample size is small. Direct estimators are 

occasionally used in cases where the domain sample sizes are large. Direct estimators 

also serve as reference or benchmark estimators when investigating the bias and 

accuracy of the proposed indirect estimators. 

 

 

1.5 Estimation of poverty indicators 
 

The poverty (Laeken) indicators discussed in this report can be divided into two 

groups with respect to the selected estimation approach. For the estimation of at-risk-

of poverty rate based on poverty indicators, we use GREG and model calibration type 

estimators (featuring design-based model assisted methods) and SYN and EBLUP or 

EBP type estimators (featuring model-based methods). In all these estimators, logistic 

models are used because the underlying study variable is binary. Direct estimators, 
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such as Horvitz-Thompson type estimators, are used as basic or reference estimators, 

sometimes also called “default” estimators in this report. 

 

In addition to the estimation of poverty rate for domains and small areas, we have 

examined methods for the identification of domains that can be characterized as 

“poor”, i.e. domains whose estimated poverty rate falls below a given threshold. 

Ranking of domains is part of so-called triple-goal estimation, where the goal is to 

obtain good ranks, good histogram and accurate domain estimates (Rao, 2003; Shen 

and Louis, 1998; Paddock et al., 2006). Judkins and Liu (2000) present methods for 

improving the estimated range of domain estimators.  

 

The equivalized income constitutes the key variable underlying the poverty (monetary 

Laeken) indicators. Equivalised income is defined as the household's total disposable 

income divided by its "equivalent size", to take account of the size and composition of 

the household, and is attributed to each household member (including children) 

(European Commission, 2006). Equivalization is made on the basis of the OECD 

modified scale, which assigns weight 1.0 for the first adult, 0.5 for every additional 

person aged 14 or over, and 0.3 for every child under 14. Relative median at-risk-of 

poverty gap (poverty gap for short) and quintile share ratio (S20/S80 ratio) are 

examples of indicators that rely on medians or quantiles of the cumulative distribution 

function (CDF) of the underlying continuous variable. For these indicators, HT type 

direct estimators, synthetic and composite estimators are developed. A composite 

estimator is constructed as a linear combination of a design-based direct estimator and 

a model-based SYN estimator. In addition, for poverty gap we have studied 

estimation of conditional expectations by simulation-based methods, resembling 

methods introduced in Molina and Rao (2010). In constructing the estimators, we use 

logarithmic transformation to correct for the skewness of the distribution of the study 

variable. In back-transformation we first tried the RAST (Ratio Adjusted by Sample 

Total; Chambers and Dorfman, 2003, Fabrizi et al., 2007b) type transformation, and 

later developed more elaborate transformations aimed at improving the histogram of 

transformed predictions. 

 

The statistical properties (design bias and accuracy) of the estimators of the selected 

poverty indicators are examined with Monte Carlo simulation experiments. Real data 
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taken from statistical registers of Statistics Finland are used in constructing the frame 

populations. We have made experiments also with the synthetic Amelia population 

(Alfons et al. 2011b). The populations contain a wide selection of socio-economic and 

demographic auxiliary variables. We have concentrated on design-based simulation 

settings.  

 

Programs written in R language have been produced for statistical computing of the 

selected poverty indicators for domains and small areas. The R codes are described in 

a separate supplemental deliverable Veijanen and Lehtonen (2011). 

 

 

1.6 The role of models and auxiliary data 
 

1.6.1 The role of models 

 

Choice of statistical model underlying an estimator of a poverty indicator constitutes 

an important phase of the estimation procedure for domains and small areas. In 

constructing model-assisted and model-based estimators, we use selected models from 

the family of generalized linear mixed models (GLMM, e.g. McCulloch and Searle, 

2003). Linear and logistic fixed-effects and mixed models are extensively used. 

Lehtonen, Särndal and Veijanen (2003, 2005) discuss the choice of the model in the 

context of GREG estimation. 

 

The rationale behind the choice of the assisting model for GREG is the following. In 

GREG estimation for domains, various types of study variables can be used. For 

example, a linear model formulation is appropriate for a continuous variable, and 

logistic models are usually chosen for binary or polytomous variables. We call 

“extended GREG family” the GREG estimators that use GLMM’s as assisting 

models.  

 

In the parametrization of the assisting model for an extended GREG family estimator, 

it is important for accurate domain estimation to account for the possible domain 

differences. Basically, domain differences can be accounted for either with a fixed-
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effects or a mixed model specification. A fixed-effects model is usually a default in 

GREG estimation. Mixed model specification offers a flexible approach for domain 

estimation (Lehtonen, Särndal and Veijanen, 2003, 2005) and is much used in our 

research. Because of this model choice, the resulting estimators for domains are in 

most cases of indirect type. 

 

1.6.2 The role of auxiliary information 

 

The availability of high-quality auxiliary information is crucial for reliable estimation 

for domains and small areas. Auxiliary information can be incorporated into the 

sampling design (e.g. stratified sampling, PPS sampling) or into the estimation 

procedure (or both). Stratified sampling is often used to obtain sufficient sample size 

for the most important domains of interest (leading to planned domains). In this report 

we concentrate on the use of auxiliary data in the estimation procedure. Both equal 

probability and unequal probability sampling design are discussed, under unplanned 

domain structures (referring to cases where the domains of interest are not defined as 

strata in the sampling design). 

 

The reason for incorporating auxiliary data in an estimation procedure is obvious: 

improved accuracy is attained if strong auxiliary data are available for domain 

estimation. Different types of auxiliary data can be used in estimation for domains and 

small areas. The auxiliary data can be aggregated at the population level or at the 

domain level, or at an intermediate level. Aggregates are often taken from reliable 

auxiliary sources such as population census or other official statistics; this case is 

common in many European countries and North America. If the auxiliary data are 

included in a sampling frame, as is the case in many European countries, notably in 

Scandinavia, the necessary auxiliary totals can be aggregated at the desired level from 

unit-level data sources.  

 

A rapidly progressing trend in official statistics production is the use of unit-level 

auxiliary data for domain and small area estimation. These data are incorporated in 

the estimation procedure by unit-level statistical models. Under this option, register 

data (such as population census register, different unit-level administrative and 

statistical registers) can be available as frame populations and sources of auxiliary 
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data. Moreover, the registers often contain unique identification keys that can be used 

in merging at micro level different register sources and data from registers and sample 

surveys. Known domain membership for all population elements is often assumed. 

Many countries, both in Europe and in the European Union, are progressing in the 

development of reliable population registers that can be accessed for statistical 

purposes. Good examples are Austria, Estonia, Finland and Slovenia, which have 

representation in the AMELI project. Obviously, access to micro-merged register and 

survey data provides great flexibility for the development of methods for domain 

estimation and in the domain estimation practice. 

 

All estimator types (except HT and related direct estimators) examined in this report 

aim at using information about auxiliary variables in the population. We have first 

assumed access to unit-level auxiliary information. The reason is that this option 

offers much flexibility for estimator construction. Under this option, a model is fitted 

to the sample data, predictions are calculated for all population elements using the 

estimated model parameters and the known values of the auxiliary variables, and the 

predictions in the population contribute to the estimation of the indicators of interest, 

such as poverty rate in the given domains and small areas.  

 

Because the option of the use of unit level auxiliary data for statistical purposes is not 

(yet) commonly available in statistical infrastructures within the EU, we extend the 

methodology to cases where only aggregate-level auxiliary data are available. In the 

method we only assume that the population totals of continuous auxiliary variables, or 

population frequencies of classes of discrete variables, are known. A calibration 

method is introduced to calculate the necessary predicted values. 

 

We have not applied Bayesian methods (e.g., Fabrizi et al., 2005) or models involving 

spatial or temporal correlations (Chandra et al., 2007). SAE methods that borrow 

strength in spatial or temporal dimension were developed and investigated to some 

extent in the context of the EU’s FP5 project EURAREA. 

 
1.6.3 Estimation under outlier contamination 
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In developing estimators that are robust against outlier contamination we discuss the 

contamination mechanisms and models proposed in the WP4 working document by 

Hulliger and Schoch (2010). Outlying mechanisms considered are OCAR (outlying 

completely at random) and OAR (outlying at random), and the contamination models 

are CCAR (contaminated completely at random), CAR (contaminated at random), and 

NCAR (not contaminated at random). The definitions of these concepts are given in 

the working document referred above.  

 

 

2 Basic properties of domain estimators 
 

Known design-based properties related to bias and accuracy of design-based model-

assisted estimators and model-dependent estimators for domains and small areas are 

summarized in Table 1 (Lehtonen and Veijanen, 2009). Model-assisted estimators 

such as GREG and calibration are design consistent or nearly design unbiased by 

definition, but their variance can become large in domains where the sample size is 

small. Model-dependent estimators such as synthetic and EBLUP estimators are 

design-biased: the bias can be large for domains where the model does not fit well. 

The variance of a model-dependent estimator can be small even for small domains, 

but the accuracy can be poor if the squared bias dominates the mean squared error 

(MSE), as shown for example by Lehtonen, Särndal and Veijanen (2003, 2005). 

 

For a model-dependent estimator, the dominance of the bias component together with 

a small variance can cause poor coverage rates and invalid design-based confidence 

intervals. For design-based estimators, on the other hand, valid confidence intervals 

can be constructed. Typically, model-assisted estimators are used for major or not-so-

small domains and model-dependent estimators are used for minor or small domains 

where model-assisted estimators can fail.  

Table 1 indicates that small domains present problems in the design-based approach. 

Purcell and Kish (1980) call domain a mini domain when its share of population is 

smaller than 1% . In so small domains, especially direct estimators can have large 

variance. Small domains are the main reason to prefer indirect model-based estimators 

to direct design-based estimators (Rao, 2003).  
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Table 1. Design-based properties of model-assisted and model-dependent estimators 

for domains and small areas 

 

 Design-based model-assisted 
methods 
GREG and calibration estimators 
 

Model-based and model-dependent 
methods 
Synthetic and EBLUP estimators 

Bias Design unbiased (approximately) by 
the construction principle 

Design biased 
Bias does not necessarily  
approach zero with increasing  
domain sample size 
 

Precision  
(Variance) 
 

Variance may be large for small 
domains 
Variance tends to decrease with 
increasing domain sample size 
 

Variance can be small even for small 
domains 
Variance tends to decrease with 
increasing domain sample size 

Accuracy  
(Mean Squared Error, 
MSE) 

MSE = Variance 
(or nearly so) 

MSE = Variance + squared Bias 
Accuracy can be poor if the bias is 
substantial 
 

Confidence  
intervals 

Valid design-based intervals can be 
constructed 

Valid design-based intervals not 
necessarily obtained 
 

 

 

In practice, there are two main approaches to design-based estimation for domains: 

direct estimators that are usually applied for planned domain structures (such as strata 

whose sample sizes dn  are fixed in the sampling design) and indirect estimators 

whose natural applications are for unplanned domains (whose domain sample sizes 

are random). In model-based or model-dependent SAE, indirect estimators that aim at 

“borrowing strength” are often used. 
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3 Models and estimators 
 

The fixed and finite population of interest is denoted {1,2,..., ,..., }U k N= , where k 

refers to the label of population element. A domain is a subset of population U such as 

a regional population in NUTS3 or NUTS4 region or a demographic subdivision 

within the regional areas. Poverty rate estimates, for example, are required not only 

for regions but also for classes defined by age and gender. Consider a region r and a 

class c. They define a domain d: in population U, a subset d r cU U U= ∩  contains 

people belonging to class c ( cU ) in region r ( rU ). The number of units in the domain 

in population is denoted by dN . In sample s, corresponding subsets are defined as 

d r cs s s= ∩  with dn  observations. Naturally, regions are special cases of domains. A 

small area is a domain whose realized sample size is small (even zero). 

 

Many poverty indicators are composed of domain totals, frequencies and medians. 

The domain total of the study variable y (equivalized incomes) is defined as 

 

d

d k
k U

t y
∈

= ∑ ,        (1) 

 

where ky  denotes the value of the study variable for element k. The frequency df  of a 

class C, such as the frequency of persons with income smaller than a threshold, is 

written as a sum of class indicators { }k kv I y C= ∈ : 

 

d

d k
k U

f v
∈

= ∑ .        (2) 

 

For a binary indicator, (1) and (2) obviously coincide. 
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3.1 Models and auxiliary data 
 

Auxiliary information is used in model-assisted and model-based methods. The 

available auxiliary information consists of an auxiliary x-vector and a domain 

membership specification 1dkI =  if dk U∈ , 0dkI =  otherwise, 1,...,  d D= , for every 

unit k U∈ . Letting kx  denote the value of the auxiliary vector for unit k, we thus 

assume that both kx  and domain membership dkI  is known for every k U∈ .  

 

Models are incorporated in model-assisted (GREG, model calibration) and model-

based (synthetic, EBLUP, EBP) methods. Consider a generalized linear fixed-effects 

model, ( ) ( ; )m k kE Y f= x β , for a given function ( ; )f ⋅ β , where β  requires estimation, 

and mE  refers to the expectation under the model (Lehtonen and Veijanen, 2009). 

Examples of ( ; )f ⋅ β  are a linear functional form and a logistic function. The model fit 

to the sample data { }( , );  k ky k s∈x  yields the estimate β̂  of β . Using the estimated 

parameter values, the vector value kx  and the domain membership of k, we compute 

the predicted value ˆˆ ( ; )= x βk ky f  for every k U∈ , which is possible under our 

assumptions.  

 

A similar reasoning applies to a generalized linear mixed model involving random 

effects in addition to the fixed effects. The model specification is 

( | ) ( ( ))′= +u x β um k d k dE Y f , where du  is a vector of random effects defined at the 

domain level. Using the estimated parameters, predicted values ˆˆ ˆ( ( ))′= +x β uk k dy f  

are computed for all k U∈ .  

 

Let us discuss linear models in more detail. For a linear fixed-effects model  

 

 ,  k k kY k Uε′= + ∈x β  

 

we derive two special cases, a common model formulation and a model formulation 

involving domain-specific intercepts. 
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Under the common model formulation, we have 1(1, ,..., )k k Jkx x ′=x , known for every 

k U∈ , and 0 1( , ,..., )  Jβ β β ′=β  where jβ  are fixed effects common for all domains, 

0,...,j J= . Under the model formulation with domain-specific intercepts, we have 

1 1( ,..., , ,..., )k k Dk k JkI I x x ′=x , 1dkI =  if dk U∈ , 0dkI =  otherwise, 1,...,  d D= , and 

01 0 1( ,..., , ,..., )D Jβ β β β ′=β , where 0dβ  are domain-specific intercepts and jβ  are 

common slopes, 1,...,j J= . In both special cases, predicted values ˆˆ yk k′= x β  are 

calculated for every k U∈ . 

 

The rationale behind the two special cases is the following. If a single (common) 

fixed-effects model is assumed to hold in all domains, possible differences between 

domains are not necessarily captured by the estimator, although in GREG the 

weighted sum of residuals corrects for design bias caused by the possible model 

misspecification. For fixed effects model, there is some theoretical support for using 

domain-specific intercepts, or at least regional indicators, to account for possible 

differences between regions. Then the beta parameters, or slopes, associated with 

explanatory x-variables are often specified common to all domains. The two special 

cases of models result in an indirect domain estimator.  

 

A direct estimator is obtained by using separate slopes for every domain in addition to 

the separate intercepts, that is, a model  ,  k k d k dY k Uε′= + ∈x β . This model would 

probably result in too unstable domain estimates, in particular if the domain sample 

size is small. On the other hand, a domain-specific model might be realistic for 

domains with a large sample size. 

 

In order to account for possible differences between regions, a linear mixed model 

incorporates domain-specific random effects 2~ (0, )d uu N σ  for domain dU , or 

regional random effects 2~ (0, )r uu N σ  for region rU , where d rU U⊂ . For domain-

specific random intercepts, a linear mixed model is given by 

 

 ,k k d k dY u k Uε′= + + ∈x β , 2~ (0, )k Nε σ ,  
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or, more generally, 

 

 ε= + +y Xβ Zu   

 

for a matrix Z . The parameters β , 2
uσ  and 2σ  are first estimated from the data, and 

the values of the random effects are then predicted. 

 

An example of a generalized linear mixed model formulation is a binomial logistic 

mixed model for a binary y-variable. We want to estimate the totals 
∈

=∑
d

d kk U
t y  for 

all domains dU . The logistic mixed model is of the form 

 

 exp( ( ))( | ) { 1| }
1 exp( ( )

′ +
= = =

′+ +
x β uu u

x β u
k d

m k d k d
k d

E y P y  

 

for dk U∈ , Dd ,...,1= , where kx  is a known vector value for every Uk ∈ , β  is a 

vector of fixed effects common for all domains, and ud  is a vector of domain-specific 

random effects. Here again, predictions  

 

ˆ ˆˆ ˆ ˆexp( ( )) /(1 exp( ( ))k k d k dy ′ ′= + + +x β u x β u   

 

are calculated for every k U∈ . Lehtonen, Särndal and Veijanen (2005) give several 

special cases of the model. An indirect estimator for domains is obtained with mixed 

model specification. 

 

We have fitted most of the mixed models with R function nlme. By default it uses the 

maximum likelihood method. In nlme, the design weights do not contribute to 

estimation. Design weights can be included in model fitting with R function glmer 

(package lme4). When fitting the fixed effects models, we have used design weights. 
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3.2 Design-based estimators 
 

3.2.1 Horvitz-Thompson estimator 

 

Horvitz-Thompson (HT) estimator of domain total (1) is a weighted sum of values in 

the sample: 

 

ˆ
d

d k k
k s

t a y
∈

= ∑ ,        (3) 

 

where the design weights ka are inverses of inclusion probabilities kπ ( 1/k ka π= ). An 

HT estimator is a direct estimator. It does not incorporate any model.  The estimator is 

design unbiased but it can have large variance, especially for small domains. HT 

estimator is often used under planned domain structures, where the domain sample 

sizes are sufficiently large. 

 

3.2.2 Generalized regression estimators 

 

Generalized regression (GREG) estimators (Särndal et al., 1992; Lehtonen and 

Veijanen, 2009) are assisted by a model fitted to the sample. By choosing different 

models we obtain a family of GREG estimators with same form but different 

predicted values (Lehtonen et al., 2003, 2005, 2007). 

 

Ordinary GREG estimator 

 

 ;
ˆ ˆ ˆ( )

d d

d GREG k k k k
k U k s

t y a y y
∈ ∈

= + −∑ ∑      (4) 

 

incorporating a linear regression model is used to estimate domain totals (1) of a 

continuous study variable. For a binary or polytomous response variable, a linear 

model formulation will not necessarily fit the data well. A logistic model formulation 

might be a more realistic choice. LGREG (logistic GREG; Lehtonen and Veijanen, 

1998) estimates the frequency df  of a class C in each domain. A logistic regression 
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model is fitted to the indicators { }k kv I y C= ∈ , k s∈ , using the design weights. The 

fitted model yields estimated probabilities ˆˆ { 1; , }k k kp P v= = x β . The LGREG estimator 

of the class frequency in dU  is 

 

 ;
ˆ ˆ ˆ( )

d d

d LGREG k k k k
k U k s

f p a v p
∈ ∈

= + −∑ ∑ .     (5) 

 

Here ˆ
d

kk U
p

∈∑  is the sum of predicted values in the population. Thus it is necessary 

to have access to unit level population information about the persons’ auxiliary 

variables. The last component of (5), i.e. an HT estimator of the residual total, aims at 

correcting the possible bias of the first (synthetic) part. It is obvious that for certain 

model choices, notably for a domain-specific model formulation, the last component 

vanishes. 

 

A so-called domain size correction (Lehtonen and Veijanen, 2009) is incorporated 

into an estimator defined as 

 

 ; (2)
ˆ ˆˆ ˆ( );ˆ

d d d

d
d LGREG k k k k d k

k U k s k sd

Nf p a v p N a
N∈ ∈ ∈

= + − =∑ ∑ ∑ .  (6) 

 

In the MLGREG estimator (Lehtonen and Veijanen, 1999, Lehtonen, Särndal and 

Veijanen, 2005, Torabi and Rao, 2008), an alternative logistic mixed model involving 

fitted values ˆˆ ˆ{ 1; , , }k k k dp P v= = x β u  is used instead of a fixed-effects logistic model. 

The random effects are associated with domains or with regions. This model 

formulation may be a realistic option for many situations in practice. 

 
3.2.3 Model calibration 

 

Calibration is typically used to construct an estimator as weighted sample sum with 

weights chosen so that the weighted sample sums of auxiliary variables are identical 

with known population totals (Estevao and Särndal, 2004; Kott, 2009). In model 

calibration introduced by Wu and Sitter (2001) and Wu (2003), predictions are used 

instead of auxiliary variables. We have generalized model calibration for domain 
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estimation (Lehtonen et al., 2009). A model is first fitted to the sample. We discuss 

only a logistic regression model, although any model could be applied. The estimator 

of the total frequency is a weighted sum of indicators over the whole sample, region 

or the domain. The weights are chosen so that the weighted sum of estimated 

probabilities over a subset of sample equals the sum of predicted probabilities over a 

corresponding subset of population. The sum of weights over the sample subset must 

equal the size of the population subset.  Moreover, the weights should be close to the 

design weights. The procedure of finding such weights is called calibration (e.g. 

Särndal, 2007). 

 

In population level calibration (Wu and Sitter, 2001), the weights must satisfy 

calibration equation 

 

 ˆ,i i i i
i s i U i U

w z z N p
∈ ∈ ∈

 = =  
 

∑ ∑ ∑ ,     (7) 

 

where ˆ(1, )i iz p= . Using the technique of Lagrange multiplier (λ ), we minimize  

 

 
2( )k k

i i i
k s i s i Uk

w a w z z
a

λ
∈ ∈ ∈

−  ′− − 
 

∑ ∑ ∑  

 

under the conditions (7). The first part of the equation is the distance between the 

weights kw  and the known design weights ka . The latter part corresponds to the 

constraints (7). The equation is minimized by weights 

 

 ; 1k k k k kw a g g zλ′= = + , 

 

where 

 

 
1

i i i i i i
i U i s i s

z a z a z zλ
−

∈ ∈ ∈

′   ′= −   
   
∑ ∑ ∑ . 
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The domain estimator is defined as a domain sum 

 

 ;
ˆ

d

d pop k k
k s

f w v
∈

= ∑ .       (8) 

 

In our experiments, this estimator has not performed well. 

 

The first choice for domain level calibration is equation  

 

 ˆ,
d d d

di i i d i
i s i U i U

w z z N p
∈ ∈ ∈

 
= =  

 
∑ ∑ ∑ ,     (9) 

 

where the weights diw  are specific to the domain. From (9) we see that the domain 

sizes must be known. We minimize 

 

 
2( )

d d d

dk k
d di i i

k s i s i Uk

w a w z z
a

λ
∈ ∈ ∈

 − ′− − 
 

∑ ∑ ∑  

 

under the calibration equations (9). The solution is  

 

 ; 1dk k dk dk d kw a g g zλ′= = + ,        

 

where 

 

 
1

d d d

d i i i i i i
i U i s i s

z a z a z zλ
−

∈ ∈ ∈

′   
′= −   

   
∑ ∑ ∑ . 

 

The frequency in the domain is estimated by a weighted sum of indicators over the 

domain: 

 

 ;
ˆ

d

d s dk k
k s

f w v
∈

= ∑ .       (10) 
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We call this estimator semi-direct, referring to the fact that the sum contains only 

observations from the domain. It is not direct, however, as the weights are determined 

by a fitted model that incorporates all sample values. Next we introduce some semi-

indirect estimators incorporating observations outside the domain. 

 

The first semi-indirect domain level calibration estimator is a sum over the whole 

sample with domain-specific weights dkw  that are close to weights ka in the domain 

and close to zero outside the domain. In other words, the weights should be close to 

{ }d k dk kI k s a I a∈ =  ( { }dk dI I k s= ∈ ). The calibration equation is  

 

 
d

di i i
i s i U

w z z
∈ ∈

=∑ ∑ .       (11) 

 

We minimize 

 

 
2( )

d

dk dk k
d di i i

k s i s i Uk

w I a w z z
a

λ
∈ ∈ ∈

 − ′− − 
 

∑ ∑ ∑ . 

 

The solution is  

 

 dk dk k d k kw I a a zλ′= + ; 

 

 
1

d

d i di i i i i i
i U i s i s

z I a z a z zλ
−

∈ ∈ ∈

′   ′= −   
  

∑ ∑ ∑ . 

 

The estimator is defined as a weighted sum over the whole sample: 

 

 ;d̂ s dk k
k s

f w v
∈

=∑ .       (12) 

 

Alternatively, the summation extends only over the domain. 

 

We have also considered a similar estimator defined as a regional sum: 
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 ;
ˆ

r

d s dk k
k s

f w ν
∈

= ∑ ,       (13) 

 

where the subset rs  of sample contains all the people in the same region r as the 

domain.  The calibration equation is 

 

 
r d

di i i
i s i U

w z z
∈ ∈

=∑ ∑ .        

 

We minimize 

 

 
2( )

r r d

dk dk k
di i i

k s i s i Uk

w I a w z z
a

λ
∈ ∈ ∈

 − ′− − 
 

∑ ∑ ∑  

 

obtaining 

 

 dk dk k d k kw I a a zλ′= + ; 

 

 
1

d r r

d i di i i i i i
i U i s i s

z I a z a z zλ
−

∈ ∈ ∈

′   
′= −   

  
∑ ∑ ∑ . 

 

This estimator apparently ”borrows strength” from other domains in same region. 

Estevao and Särndal (2004) have shown that borrowing strength is not always a good 

idea, but they consider a different class of calibration estimators. In contrast with their 

estimators, our estimator is a sum over a set larger than the domain, and the weights 

are close to zero outside the domain.  
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3.3 Model-based estimators 

 
3.3.1 Synthetic estimator 
 
Synthetic (SYN) estimator is typically a sum of predicted values over the population 

elements in a domain. In the case of a logistic model, synthetic estimator is the sum of 

predicted probabilities: 

 

 ;
ˆ ˆ

d

d LSYN k
k U

f p
∈

= ∑ .       (14) 

 

For logistic SYN (LSYN) estimator using a logistic fixed-effects model, the 

predictions are ˆˆ { 1; , }k k kp P v= = x β , and ˆˆ ˆ{ 1; , , }k k k dp P v= = x β u  for a MLSYN 

estimator using a logistic mixed model. Obviously, LSYN estimator (14) constitutes 

the first component of the LGREG estimator (5). 

 

3.3.2 EBLUP and EBP estimators 

 

The EBLUP estimator (empirical best linear unbiased estimator, e.g. Rao, 2003, p. 95) 

is used in the context of a linear mixed model  

 

 ,k k d k dY u k Uε′= + + ∈x β ,  

 

or, more generally, 

 
 ε= + +y Xβ Zu  

 

for a matrix Z . Under the first mixed model the domain total’s conditional 

expectation given the random effects u  is 

 

 
d d

k k d d
k U k U

E Y N u
∈ ∈

′   
= +   

   
∑ ∑u x β . 
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This would be an optimal predictor of the domain total in the sense of minimizing 

MSE. Its best linear unbiased predictor (BLUP) is 

 

 2 2 2 2ˆˆ ˆ( , ) ( , )
d

BLUP k u d d u
k U

t N uσ σ σ σ
∈

′ 
= + 
 
∑ x β , 

 

where the optimal estimators of β  and u  depend on unknown variance components 

2
uσ  and 2σ  as follows: For 2( ; )Cov ε σ=R , 2( ; )uCov σ=G u  and ′= +V R ZGZ , 

 

 2 2 1 1 1ˆ ( , ) ( ) ( )uσ σ − − −′ ′=β XV X XV y  and 

 

 2 2 1 ˆˆ ( , ) ( )d uu σ σ −′= −GZ V y Xβ . 

 

In EBLUP (empirical BLUP), the variances are estimated and plugged into the BLUP 

equation: 

 

 2 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , )
d

EBLUP k u d d u
k U

t N uσ σ σ σ
∈

′ 
= + 
 
∑ x β . 

 

Another kind of EBLUP, here called EBLUP(Y) (Saei and Chambers, 2004), contains 

the conditional expectation of only that part of sum which is not observed in sample, 

 

 ( )
d d d d

k k d d d
k U s k U s

E Y u N n u
∈ − ∈ −

′   
= + −   

   
∑ ∑ x β . 

 

The sample observations are included in the EBLUP(Y) estimator 

 

 2 2 2 2
( )

ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , )
d d d

EBLUP Y k u d d d u k
k U s k s

t N n u yσ σ σ σ
∈ − ∈

′ 
= + − + 
 
∑ ∑x β  
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EBLUP and EBLUP(Y) should have smaller MSE than GREG estimators, but they 

may have considerable design bias, especially if the design weights vary substantially. 

 

The EBLUP estimators can be written using the predicted values  

 

 ˆˆ ˆk k dy u′= +x β  

 

in forms resembling the synthetic estimator: 

 

 2 2
;

ˆ ˆ ˆ ˆ( , )
d

d EBLUP k u
k U

t y σ σ
∈

= ∑         

 

For a logistic mixed model the EBP (empirical best predictor, e.g. Jiang and Lahiri, 

2006) estimators are of the form 

 

 2 2
;

ˆ ˆ ˆ ˆ( , )
d d

d EBP k u
k U s

f p σ σ
∈ −

= ∑       (15) 

 2 2
; ( )

ˆ ˆ ˆ ˆ( , )
d d d

d EBP Y k u k
k U s k s

f p vσ σ
∈ − ∈

= +∑ ∑ ,    (16) 

 

where predictions are  

 

 ˆ ˆˆ ˆ ˆexp( ) /(1 exp( )k k d k dp u u′ ′= + + +x β x β . 

 

 

3.4 Transformations of predictions 

 
The synthetic estimator of a poverty indicator constructed from predictions is usually 

biased, in part due to the transformation of observations. As the income y is 

approximately distributed as lognormal, a model is fitted to log( 1)k kz y= + , and the 

fitted values ˆkz  are back-transformed to ˆ ˆexp( ) 1k ky z= − . This should be followed by 

a bias correction. A RAST bias correction term ,RAST dc  (Ratio Adjusted by Sample 
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Total; Chambers and Dorfman, 2003, Fabrizi et al., 2007b) would be chosen in each 

domain d so that the weighted sample sum of , ˆRAST d kc y  over the domain equals the 

weighted domain sample sum of the original incomes ky .  

 

However, RAST correction merely corrects the mean of predictions without affecting 

significantly their spread. It ignores the fact that the tails of the distribution of 

incomes usually contribute significantly to a poverty indicator. For example, the 

quintile share incorporates the first and last quintiles. Unfortunately, the distribution 

of predictions is concentrated around the average and the income distribution derived 

from the predictions is unrealistically even. Therefore, synthetic estimates of Gini 

coefficient and poverty gap tend to be too small and quintile share estimated from 

predictions is often too large. Moreover, the differences between synthetic domain 

estimates are too small. We introduce linear and non-linear transformations as 

generalizations of the RAST correction. 

 

We transform predictions so that they have similar histogram as the observed values. 

The transformation incorporates design weights even when they cannot be used in 

fitting the model, as is the case in many current R packages. This may reduce the 

design bias. 

 

Consider predictions ˆky  for units in population domain d ( dk U∈ ). We compare the 

distributions of predictions and sample values by differences of percentiles. The 

percentiles of the ˆky  ( dk U∈ ) are denoted by ˆcdp , 1 99c≤ ≤ . The corresponding 

percentiles of the sample values ky  ( dk s∈ ), denoted by cdp , are obtained from the 

HT estimate of the cumulative distribution function. Thus design weights contribute 

to the procedure. Our goal is to find a linear transformation defined by parameters da  

and db  so that the percentiles of “expanded predictions”  
* ˆk d d ky a b y= +  are close to 

corresponding percentiles cdp  of observations. Let *
cdp  denote the cth percentile of 

*
ky , dk U∈ . We minimize the differences between the percentiles *

cdp  and cdp : 
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 ( )2*
cd cd

c
S p p= −∑ . 

 

By noting that * ˆcd d d cdp a b p= +  we obtain  

 

 ( )2ˆd d cd cd
c

S a b p p= + −∑ . 

 

Obviously, S is minimized for parameters da  and db  by OLS corresponding to a 

linear regression model with ˆcdx p=  and cdy p= . The transformed domain 

predictions are  

 

 * ˆˆ ˆk ky a by= + .        (17) 

 

Weak auxiliary information may lead to negative transformed predictions (17). Here 

we outline a procedure for avoiding negative values. We derive non-linearly 

transformed predictions ky  with percentiles of ( )log ky , dk U∈ , close to 

corresponding percentiles of ( )log ky , dk s∈ . As the percentiles of log-transformed 

vectors are logarithms of the original percentiles (although this does not always hold 

for the median), we minimize  

 

( ) ( )( )2ˆlog logd d cd cd
c

a b p p+ −∑ . 

 

The parameters da  and db  are again found by OLS. Expanded predictions ky  are then 

defined by 

 

( ) ( )ˆˆ ˆlog logk d d ky a b y= + ,  

 

that is, 

 

( )( )ˆˆ ˆexp logk d d ky a b y= + .     (18) 
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These expanded predictions are never negative. The log-transformation appears more 

natural for log-normally distributed observations than (17). For practical purposes, 

function log( 1)x +  was applied instead of log( )x . However, the proportion of negative 

or zero incomes should not exceed 1%, to avoid undefined logarithms. 

 

In a small domain, there is not enough data for reliable estimation of the percentiles of 

observations, and consequently the estimated parameters in the transformation (18) 

are inaccurate. With the Finnish data set we decided to calculate the cdp  from the 

whole sample instead of each domain, but such a procedure may result in bias. With 

the Amelia data, we obtained better results by minimizing the following sum over 

domains d: 

 

( ) ( )( )2ˆlog logd cd cd
d c

a b p p+ −∑∑  

 

This amounts to fitting a linear fixed-effects model with domain-specific intercepts da  

and common slope b. The expansion transformation is then 

 

( )( )ˆˆ ˆexp logk d ky a b y= +
.
 

 

In the Amelia data, about 1.5% of the people had zero equivalized income (variable 

EDI2), and negative incomes did not occur. In order to take the zeroes into account, 

we incorporated zero predictions into the transformation as follows. Let 0p  denote the 

proportional frequency of zero among the equivalized incomes in the sample. In a 

sorted vector of dN  domain predictions, roughly 0dN p  smallest elements are replaced 

by zero. Then the percentiles ˆcdp  are calculated from the positive predictions and 

the cdp  are calculated from positive sample values. Transformation (18) is applied 

only to the positive predictions, and zero predictions are included in the estimator.  
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To account for negative income values, we propose that the log-transformation in (18) 

is performed by function log( 1)x c+ + , where c is the absolute value of the minimum 

over all observations and predictions, if negative observations or predictions occur 

and 0c =  otherwise. Zero observations are then not treated separately, and all 

observations and predictions contribute to the percentiles. Instead of function exp , we 

would apply ( ) exp( ) ( 1)f x x c= − +  in (18). This approach is adopted in the R 

algorithms, but it was not necessary in the simulation experiments, as negative 

incomes did not appear. 

 

The range of percentage points may have large impact on the estimator. The 

percentiles are calculated at c=1, 2,…,99 for quintile share and Gini coefficient. For 

poverty gap, we used c=1, 2,…,50 in Table 12 and with Amelia data, but in tables 13-

16 we used percentiles up to the poverty line. If the data are suspected of containing a 

lot of outliers, their effect is probably reduced by excluding some of the largest 

percentiles.  

 

If the model incorporates few auxiliary variables, the number of distinct predictions is 

small, and the histogram of expanded predictions will consist of few bars,  

representing a poor approximation of the true distribution. When some of the auxiliary 

variables also define the domains, this problem is pronounced. For example, if the 

domains are defined by country, gender and age class, then with x-variables gender, 

age class and urbanisation, predictions in each domain have only three distinct values 

corresponding to the classes of urbanisation. Then the predictor involving expanded 

predictions may not yield good results. 

 

 

3.5 Frequency-calibrated predictors calculated using known domain 

marginal totals of auxiliary variables 

 

We develop here a new method that may be feasible in situations where only 

aggregate-level auxiliary data are available. Suppose that only the totals of auxiliary 

variables are known in a domain of population. In the case of qualitative x-variables, 

this means that the domain sizes and domain frequencies of classes are known in the 



30 
 

  AMELI-WP2-D2.2 

 

population; in other words, the totals of class indicators are known. From 

demographical population registers, we probably obtain at least the domain 

frequencies of classes for each combination of gender and age class. To calculate a 

predictor of a poverty indicator, we seemingly need the predictions for all population 

units i.e. access to the population data at the unit level. But actually, it is enough to 

know the frequencies of distinct values of predictions in a domain. We pursue this 

goal.  

 

When a mixed model is fitted to log-transformed observations, the back-transformed 

predictions have the form 

 

( ) ( ) ( )0 1 1 0
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆexp ... 1 exp exp 1k k p pk d d i ik

i

y x x u u xβ β β β β= + + + + − = + −∏ , 

 

a nonlinear function of the values ikx . Therefore we cannot derive the frequencies of 

distinct values of ˆky  from the known marginal totals. It appears necessary to have 

access to the frequencies of distinct values of ( )1 2, ,...,k k k pkx x x=x  in each domain. 

We propose a method of estimating these frequencies using the design weights, the kx  

in the sample and the known marginal totals. 

 

Consider domain d. Denote the set of observed distinct values of kx , dk s∈ , by  

 

{ }1 2, ,...,d mX z z z= . 

 

A direct estimate of the domain frequency of dz X∈  is  

 

ˆ
k

d

z k x z
k s

n a I =
∈

= ∑ . 

 

These frequencies do not, in general, sum up to the known marginal totals. This 

requirement is formulated as a calibration equation 
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d d

k z d
k U z X

x n z t
∈ ∈

= =∑ ∑ . 

 

Calibration is used to obtain new frequencies ˆ zn∗  that are close to the ˆzn  and also 

satisfy the calibration equations. As a measure of distance of ˆ ˆ( ; )z dn n z X∗ ∗= ∈  to 

ˆ ˆ( ; )z dn n z X= ∈  we have used the chi-squared distance 

 

( )2*ˆ ˆ
ˆ

d

z z

z X z

n n
n∈

−
∑ . 

 

This distance is minimized subject to the calibration equations 

 

ˆ
d

z d
z X

n z t∗

∈

=∑  

 

by 

( )ˆ ˆ 1z z dn n zλ∗ ′= + ,       (19) 

 

where the Lagrange multiplier dλ  is  

 

 
1

ˆ ˆ
d d

d d z z
z X z X

t n z n zzλ
−

∈ ∈

  
′= −  

  
∑ ∑  

 

Unfortunately, some of the ˆzn∗  can be negative. In our simulations, the average 

proportion of negative estimates was smaller than 2% with the Finnish data set but 

about 10% in the Amelia data set. We replaced negative estimates by zero. After this, 

the calibration equations do not necessarily hold. 

 

Negative frequencies might be avoided by distance measure 

 

( )ˆ ˆ ˆ ˆ ˆlog /
d

z z z z z
z X

n n n n n∗ ∗ ∗

∈

− +∑ , 
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which is minimized under the calibration equations at 

 

( )ˆ ˆ expz zn n zλ∗ ′= . 

 

This solution is found by a fixed point iteration algorithm (Singh and Mohl, 1996) 

involving repeated iteration of 

 

( )( ) ( )1
1i i d i it b Aλ λ λ λ−
+ = + − ; 

( ) ( )ˆ expz
z

A n z zzλ λ′ ′=∑  

( ) ( )ˆ expz
z

b n z zλ λ′=∑  

 

However, this algorithm failed to converge too often, and was not applied in 

simulations. 

 

To avoid singular matrices, we excluded from each z the indicators of classes that did 

not appear in the sample domain. Moreover, if two auxiliary variables had identical 

values in a domain, the latter variable was removed. Corresponding modifications 

were made in the vector dt . If the algorithm still failed due to linear dependencies of 

auxiliary variables, for example, we used the initial estimates ˆzn . This occurred rarely. 

The vector of predictions in the domain is finally obtained by repeating the fitted 

value associated with each dz X∈  in the domain ˆzn∗  times (after rounding), and 

expansion by (18) is applied. We call the resulting predictor a frequency-calibrated, or 

an n-calibrated predictor. 

  

We have described the algorithm assuming that all the auxiliary variables are 

qualitative. It is possible to use the algorithm also when some of the x-variables are 

quantitative. However, it is probably necessary to transform a quantitative variable to 

have few distinct values. 

 

The algorithm can be applied even when some of the auxiliary totals are not known in 

the population. We have replaced unknown population marginals by their GREG 
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estimates. As an example, suppose the population frequencies of age classes, gender 

and labour force status classes are known but a better fitting model includes also the 

socio-economic status of the head of the household, which is unknown in the 

population. We substitute GREG estimates of the frequencies of socio-economic 

status classes for corresponding marginal totals in the algorithm. The frequency-

calibrated predictors have benefitted from the inclusion of a good auxiliary variable 

although its marginal totals are estimated. The GREG estimators were assisted by a 

multinomial logistic fixed effects model (R function multinom in package nnet). 

 

 
3.6 Composite estimators 
 

A composite (COMP) estimator is constructed from two estimators, one typically 

design unbiased ( 1̂θ ) and the other with small variance ( 2̂θ ). The composite is defined 

as a linear combination of the estimators: 

 

 1 2
ˆ ˆ ˆ(1 ) ; 0 1COMPθ λθ λ θ λ= + − ≤ ≤ .     (20) 

 

This is expected to combine the best properties of its components. The composite 

estimator should have small design bias and smaller variance than the unbiased 

component, over some usually unknown range of λ . The MSE of the composite 

estimator is minimized by  

 

 2

2 1

ˆ( )ˆ
ˆ ˆ( ) ( )

MSE
MSE MSE

θλ
θ θ

=
+

. 

 

In the case of an unbiased 1̂θ , the 1̂( )MSE θ  can be replaced by variance 1̂( )Var θ . If 1̂θ  

is not design unbiased, the equation is still applicable but the composite estimator may 

have significant design bias.  

 

In domain estimation, separate λ̂  are calculated for each domain d. As there is a lot of 

variability in the estimated d̂λ  values, Rao (2003, p. 59) recommends using the 
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average of d̂λ  over domains. We compared empirically some approaches to averaging 

the d̂λ  values over a subset of domains, such as domains in same region or domains 

with similar size, and chose to use average weights over domain size classes. The 

domain size classes were defined by expected sample size, the class boundaries being 

50 and 100 elements in our simulations. 

 

The default (direct) estimator of a poverty indicator is not necessarily nearly design 

unbiased in small domains as the indicator is a non-linear function of equivalized 

incomes. We still used the direct estimator as the design unbiased component 1̂θ  in 

the composite estimator (20). It is usually difficult to derive the theoretical variance of 

1̂θ , and therefore jackknife has been used (Leiten and Traat, 2006). We applied 

bootstrap variance estimation: An artificial population is generated by cloning each 

unit with frequency equal to rounded design weight. Bootstrap samples are drawn 

with the original sampling design from the artificial population. The variance of the 

default estimator is then estimated by the sample variance of estimates in the 

bootstrap samples. If the direct estimator has significant design bias, as in the case of 

poverty gap, a bootstrap MSE might be used instead. 

 

In small-area estimation, the second component of a composite estimator is often a 

synthetic estimator, which has small variance. The synthetic estimator of a poverty 

indicator is obtained by calculating the indicator’s value from predictions derived 

under the specified model. As the MSE of the synthetic estimator is unknown, it has 

been suggested (Rao, 2003, p. 52; Fabrizi et al., 2007a) that the MSE is estimated by 

 

 ( )2

2 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )MSE MSEθ θ θ θ= − − ,     (21) 

 

where ˆMSE  denotes the estimator of MSE. This is a somewhat crude method, and 

2
ˆ ˆ( )MSE θ  can even be negative. In simulations we have replaced negative estimates 

by 0; then the composite estimator equals the synthetic estimator. 

An alternative approach for estimating the mean squared errors of the synthetic 

estimators is based on parametric bootstrap with an algorithm similar to a 
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corresponding algorithm in Molina and Rao (2010). Our algorithm is the following: 

 

(1) Fit a mixed model m to the sample s from population U. The parameter β  is 

estimated by β̂ . The variance of random effects is estimated by 2ˆuσ  and the variance 

of errors is estimated by 2ˆeσ . 

 

(2) Generate a bootstrap population iU  by simulating the y values for the original 

population. Firstly, the random effects *
du  are simulated from 2ˆ(0, )uN σ  for each 

domain d. The y-values are generated from the model m: * * *
( )

ˆ
k k d k ky x uβ ε′= + + , where 

d(k) is the domain containing the unit k and *
kε  is simulated from 2ˆ(0, )eN σ . The y 

variable is the only difference between iU  and the original population U. All the other 

variables are identical in iU  and U.  

 

(3) Take a sample is  from iU , using the indices of the original sample s U⊂ . Then 

the x-variables of is  are identical with the x-variables of s. This means that the 

derived MSE can be regarded as conditional given the x-variables. 

 

(4) Fit a mixed model to is  with the structure of model m and calculate estimates îdθ  

in the domains. 

 

(5) Calculate the true values idθ  in the bootstrap population iU  and calculate the 

squared errors ( )2

îd idθ θ− . 

 

(6) Repeat steps 2-5 100 times and collect the squared errors ( )2

îd idθ θ− , i=1,2,...,100. 

Calculate MSE estimates as  

 

( )
100 2

1

1 ˆ
100 id id

i
θ θ

=

−∑        (22) 
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3.7 Simulation-based methods 
 

The conditional expectation ( | )sE t y  of a statistic t given observations 

{ ; }s ky y k s= ∈  has an important optimality property: it minimizes, in general, the 

MSE among functions of sy . In the case of poverty indicators, the conditional 

expectation is not necessarily tractable, but it can be approximated by simulation-

based methods. 

 

Molina and Rao (2010) have studied the estimation of poverty indicators by 

conditional expectations given ky ( k s∈ ). Suppose an indicator can be written as a 

sum of functions ( )kf y . If the conditional expectations ( )( ) | ;k s kE f y y x  were 

known, the indicator would be estimated by 

 

 ( )ˆ ( ) | ; ( )i s i k
i U s k s

t E f y y x f y
∈ − ∈

= +∑ ∑ . 

 

Molina and Rao (2010) approximate the conditional expectation ( )( ) | ;i s iE f y y x  by 

an average over simulations from the conditional distribution. As the income is 

approximately lognormally distributed, the ky  are transformed to 

( ) log( 1)k k kz g y y= = +  and the simulations are based on the conditional distribution 

of iz  given { ; }s kz z k s= ∈ : 

 

 ( )( ) ( )( ) ( )1 1

1

1| ; ( ) | ; ( )
K

i s i i s i it
t

E f y y x E f g z z x f g u
K

− −

=

= ≈ ∑ ; (23) 

 

itu  follows normal distribution given sz . The parameters of the conditional 

distribution are replaced by their estimates. 

 

When a poverty indicator 1( ,..., ) ( , )N r st f y y f y y= = , { ; }r ky y k U s= ∈ − , cannot be 

expressed as a sum, it is estimated by an average over *( , )rt sf y y  (t=1,...,K), where the 
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*
rty  are simulated from their conditional distribution given sy  and x (Molina and Rao, 

2010). This approach is applicable, for example, in estimation of poverty gap, which 

incorporates the median income of poor people.  

 

These simulation-based methods resemble imputation (e.g. Rubin, 1987, Schafer, 

1997, Münnich and Wiegert (2001) Laaksonen, 2002), where missing values for 

nonrespondents are replaced by values generated with the help of a model. In fact, any 

imputation method could be used to impute all values in the unknown part of the 

population, although this is not common practice. In conditional mean imputation, the 

unknown values are replaced by conditional expectations: predictions from the model 

are substituted for ky , k s∉ . We call such estimators "synthetic", although the term is 

usually reserved for the sum of predicted values. We also use term “predictor”. In 

random imputation, values are simulated from the distribution specified by the model. 

In imputation based on a regression model fitted to the kz ( k s∈ ), values of iz ( i s∉ ) 

are simulated from normal distributions 2ˆ ˆ( , )iN µ σ . In other words, a random error 

term distributed as 2ˆ(0, )N σ  is added to the prediction. Although it seems 

counterintuitive that adding random error could yield benefits over conditional mean 

imputation, the resulting estimator may have at least smaller bias. When a mixed 

model has been fitted, the values in domain d are simulated from 2ˆ ˆ ˆ( , )k dN u σ′ +x β . In 

the case of random imputation, it would be interesting to generate independent 

simulated *
rty -vectors (t = 1,…,K) as in multiple imputation (e.g. Rubin, 1987; 

Schafer, 1997; Bjornstad, 2007) and calculate the average of indicator values 
*( , )rt sf y y  over the simulations. 

 

We have investigated the applicability of the method of Molina and Rao by simulation 

experiments for the Finnish register data. To save time, we let the number of 

simulations to depend on domain sample size dn  as 2000 /d dK n= . In small domains, 

this choice reduces the variance of the average over simulations. 
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4 Estimators for poverty indicators and results of Monte     

   Carlo simulation experiments  
 

4.1 Introduction 
 

We introduce here the estimators of poverty indicators and present numerical results 

based on Monte Carlo simulation experiments. We use design-based simulation 

methods. Empirical data are based on statistical registers maintained by Statistics 

Finland and on Amelia population generated by Alfons et al. (2011b). We discuss 

poverty rate, poverty gap, Gini coefficient and quintile share. Empirical properties 

(design bias and accuracy) are evaluated.  

 

 

4.2 Experimental design 
 

Design bias and accuracy of estimators of the selected poverty indicators were 

examined by design-based simulation. We used two populations: a partially register-

based Finnish population and the synthetic Amelia population (Alfons et al., 2011b). 

 

4.2.1 Register-based population from Western Finland 

 

The artificial Finnish population of one million persons was constructed from income 

data of seven NUTS3 -regions in Western Finland. The household properties, such as 

demographic composition and equivalized income were obtained from registers. The 

values of auxiliary variables of the household heads were obtained from a household 

survey. Some personal auxiliary variables, most notably education level, had to be 

imputed for other members of each household; nonetheless, the population was 

realistic enough for a simulation study. Unless otherwise specified in a table caption, 

the tables present results for this population. 

 

In the simulations, K = 1000 samples of n = 5000 persons were drawn from the unit-

level population. We used unequal probability sampling in addition to equal 
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probability sampling. The sampling design was SRSWOR or PPS. For PPS, an 

artificial size variable was generated as a function of a qualitative variable. Then the 

PPS is approximately identical with stratified sampling. PPS was defined so that 

people with low income appear in samples with larger probability than people with 

large income. Therefore low education levels and certain socio-economic classes were 

given the largest inclusion probabilities.  

 

In PPS based on education level, the classes and relative inclusion probabilities are as 

follows (p is a constant depending on class frequencies): 

 
 

 
Education class 

 
Inclusion probability 

0 5p 
3 5p 
4 4p 
5 3p 
6 2p 
7 p 
8 p 

 

 

For PPS by socio-economic status (socstrat), inclusion probabilities were defined as 

follows:  

 

 
Socio-economic class 

 
Inclusion probability 

 
Mean income 

1 p/2 85069 
2 p/3 68328 
3 p/5 76491 
4 p 58520 
5 p 62448 
6 p 56862 
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The mean equivalized income varied quite a lot but not linearly as a function of the 

size variable. 

 

Our domains were 36 NUTS4 regions or 70 cells in the cross-classification of NUTS3 

region, gender and age class (0-15, 16-24, 25-49, 50-64, and 65- years). These 

domains were classified by the expected sample size to size-classes with class 

boundaries at 50 and 100.  

 

The following auxiliary variables were used: 

 
 
Variable 
 

 
Label 

 
Codes 

 
Age class 
 

 
Age 

 
0-15, 16-24, 25-49, 50-64, and 
65- years 
 

 
Gender 
 

 
Gender 

 
1 Males, 2 Females 

 
House 
ownership 
 

 
Indicator showing when the household owns the 
dwelling 

 
0 (No), 1 (Yes) 

 
Educ-thh 
 

 
The number of household members having tertiary 
educational level 
 

 
Count 

 
Education 
 

 
Education level of the household head 

 
0 (Lowest) to 8 (Highest) 

 
Empmohh 
 

 
The total number of months of all household 
members being employed 
 

 
Count 

 
Socstrat 

 
Socio-economic status of HH head  

 
1 Wage and salary earners 
2 Farmers 
3 Other entrepreneurs 
4 Pensioners 
5 Other categories 
6 Not specified 
 

 
Lfs-code 

 
Employment status of HH member 

 
1 Employed 
2 Unemployed 
3 Not in workforce 
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We created indicators for each class of a qualitative variable. The most commonly 

used model had auxiliary variables age and gender with interactions, socstrat and lfs-

code. The corresponding linear fixed-effects model fitted to logarithms of income in 

the population had coefficient of determination 2 0.101R = . When auxiliary variables 

house ownership and educ-thh were added to the model, the 2R increased to 0.164. 

 

4.2.2 Amelia population 

 

From the synthetic Amelia data set constructed using SILC data (Alfons et al., 

2011b), we drew samples with SRSWOR (n = 2000) and PPS (n = 6000) based on a 

size variable with value 3 for education levels (ISCED) 0-3 and 2 for others. Forty 

regions (variable DIS) were classified by expected sample size with class boundaries 

at 45 and 55.  Demographic domains were defined by age, gender and NUTS2 

regions. For poverty rate, these domains were classified by size with breakpoints 50 

and 100, for poverty gap with breakpoints 20 and 30. Our models fitted to the 

logarithm of the equivalized income variable EDI2 incorporated age class and gender 

with interactions, attained education level (ISCED), activity (working, unemployed, 

retired, or otherwise inactive) and degree of urbanisation (three classes). 

 

4.2.3 Quality measures  

 

From each simulation consisting of K=1000 samples, the following quality measures, 

among others, were calculated for each domain estimator: mean, bias 

 

 
1

1 ˆ( )
K

dk d
k

Bias
K

θ θ
=

= −∑ ,      (36) 

 

absolute relative bias  

 

 1

1 ˆ( )
K

dk d
k

d

KARB
θ θ

θ
=

−
=

∑
       (37) 
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and relative root mean squared error 

 

 

2

1

1 ˆ( )
K

dk d
k

d

KRRMSE
θ θ

θ
=

−
=

∑
.     (38) 

 

We present the averages of the quality measures over domain classes defined by 

domain size. 

 

4.2.4 Contamination schemes 

 

Outlier and contamination experiments were carried out as proposed in Hulliger and 

Schoch (2010), p. 7. In contamination experiments, outliers were created in each 

sample without modifying the population. Motivation for this choice is discussed in 

Alfons et al. (2011a). In OCAR (outlying completely at random), one percent of 

sampled persons were declared as outliers, chosen completely at random. In OAR 

(outlying at random), the probability of being an outlier varied as a function of labour 

force status and pensioner status (socstrat) as follows: 0.04 for employed people, 0.02 

for the unemployed, 0.03 for people not in workforce but 0.01 for pensioners. In the 

Finnish population, the equivalized income of the outlier’s household was the target 

of contamination, whereas in Amelia, the personal cash or near-cash income of an 

outlier was contaminated. Under CCAR contamination (contaminated completely at 

random), a normally distributed value from 2(500000,10000 )N  was added to the 

target income variable. Under NCAR (not contaminated at random), the outlier’s 

income value was multiplied by 1000. Under OAR, the expectations of contamination 
2( ,10000 )N µ  were 5,000,000 for the employed, 4000 for the unemployed, 90000 for 

people not in workforce but 200 for pensioners. In Amelia, the equivalized income in 

the outlier’s household was calculated anew using other personal components and 

household-level components of the disposable income of the household.  OAR 

contamination may sometimes result in negative incomes. In simulations these were 

unfortunately left out from model fitting, as R replaces logarithms of negative values 

by missing values. 
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4.2.5 Estimators 

 

Most of the mixed models were fitted by R package nlme using maximum likelihood. 

Design weights were then not used. For Tables 4 and 5, we incorporated design 

weights into model fitting by glmer function of R package lme4. The lme4 package 

fits mixed models by a penalized, iteratively reweighted, least squares algorithm 

(Bates, 2011). The linear and logistic fixed-effects models were fitted with GWLS 

and maximum pseudolikelihood methods incorporating design weights. 

 

In experiments with Gini coefficient, poverty gap and quintile share we compare the 

following estimators: 

 
Estimator Description Reference  

equations 
 
Default 
 

 
The default (direct) estimator of the poverty indicator 

 
(27), (30), (33) 

 
Model-based estimators 
 
 
Predictor 
 

 
Estimator calculated from predicted values 

 
(28), (31), (34) 

 
Expanded 
predictor 
 

 
Estimator (28), (31), or (34) from transformed 
predictions; used equation in parentheses 

 
(17) or (18) 

 
n-calibrated 
predictor 
 

 
Predictor type estimator based on calibrated frequencies 
of fitted values 

 
(18) and (19) 

 
Composite estimators 
 
 
Composite 
 

 
Composite estimator incorporating default estimator and 
expanded predictor 

 
(17) or (18), (20) 

 
n-calibrated 
composite 
 

 
Composite estimator incorporating default estimator and 
frequency-calibrated predictor 

 
(18), (19), (20) 

 

In the n-calibrated estimator, we treated socstrat as a variable unknown in the 

population. The marginal frequencies of socstrat classes were imputed by GREG 

assisted by multinomial logistic model (R module nnet). A more technical summary 

of the methods is given in Annex 2 and 3. 
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4.3 At-risk-of poverty rate 
 

At-risk-of-poverty threshold is 60 % of the median equivalized income of persons in 

the whole population or in a regional population. In experiments, we used the 

population median. People whose income is below or at the at-risk-of-poverty 

threshold are referred to as “poor”. At-risk-of-poverty rate is the proportion of poor 

people in a domain. 

 

To estimate the reference median income M , we first derive the HT estimator of the 

distribution function of equivalized income in the whole population. The distribution 

function of y in U is 

 

 
1( ) { }U k

k U
F t I y t

N ∈

= ≤∑  

 

This is estimated by HT: 

 

 
1ˆ ( ) { }ˆU k k

k s
F t a I y t

N ∈

= ≤∑ , 

 

where the estimated population size is ˆ
k

k s
N a

∈

=∑ . 

 

M̂ is obtained from ÛF  as the smallest ky ( k s∈ ) for which ˆ ( ) 0.5U kF y > . In the 

special case of ( )
ˆ ( ) 0.5U kF y =  for kth observation in sorted y, the median is the average 

of ( )ky  and ( 1)ky + . 

 

In poverty rate estimation, our goal is to estimate 

 

 
1 { 0.6 }

d

d k
k Ud

R I y M
N ∈

= ≤∑ . 
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4.3.1 HT-CDF estimator 
 

HT-CDF estimator of poverty rate is based on the HT estimator of the distribution 

function. The distribution function is defined in domain dU  as 

 

 
1( ) { }

d

d k
k Ud

F t I y t
N ∈

= ≤∑ . 

 

It is estimated by 

 

 
1ˆ ( ) { }ˆ

d

d k k
k sd

F t a I y t
N ∈

= ≤∑ , 

 

where ˆ
d

d k
k s

N a
∈

= ∑ . 

 

The poverty rate is then estimated by 

 

 ;
ˆ ˆˆ (0.6 )d HT dr F M= .       (24) 

 

Problems arise if empty domains ( 0dn = ) are common. Then ˆ ( )dF t  might be replaced 

by an average of ˆ ( )pF t  over domains p in neighbouring regions, but this would 

probably reduce differences between regions too much. 

 

4.3.2 Methods based on poverty indicators 

 

Poverty indicator ˆ{ 0.6 }k kv I y M= ≤  equals 1 for persons with income smaller than 

the estimated at-risk-of-poverty threshold and 0 for others. If M̂  equals the true 

median income, kv identifies the poor people. The poverty indicator is used in methods 

such as logistic GREG, model calibration, and EBP.  

 

The HT estimate of the number of poor people is  
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 ;
ˆ

d

d HT k k
k s

f a v
∈

= ∑  

 

and the share of persons at-risk-of poverty is estimated by 

 

 ;
;

ˆ
ˆ ˆ

d HT
d HT

d

f
r

N
=         (25) 

or 

 ;
;

ˆ
ˆ d HT
d HT

d

f
r

N
= . 

 

The form (25) is actually identical with HT-CDF. Corresponding LGREG estimators 

are 

 

 ;
;

ˆ
ˆ ˆ

d LGREG
d LGREG

d

f
r

N
=   

 

and  

 

 ;
;

ˆ
ˆ d LGREG
d LGREG

d

f
r

N
= .       (26) 

 

In the simulation experiments, the denominator was dN , and estimators (24) and (26) 

were used. 
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4.3.3 Simulation results 
 

In our Monte Carlo simulation experiments, we compared the following estimators: 
 

 

 
Estimator 
 

 
Description 

 
Equations 

 
Default 
 

 
The default (direct) estimator of the poverty rate 

 
(24) 

 
Design-based estimators 
 
 
GREG 
 

 
Generalized regression estimator assisted by a linear fixed-effects model 

 
(26) 

 
LGREG 
 

 
Logistic GREG estimator assisted by a logistic fixed-effects model 

 
(26) 

 
MLGREG 
 

 
GREG estimator (26) assisted by a logistic mixed model 

 
(26) 

 
MC 
 

 
Model calibration; equation in parentheses e.g.MC(10) 

 
(10), (12), (13) 

 
Model-based estimators 
 
 
LSYN 
 

 
Synthetic estimator based on a logistic fixed effects model 

 
(14) 

 
EBP 
 

 
Empirical Best Predictor type estimator based on a logistic mixed model 

 
(15) 

 
EBP(Y) 
 

 
Alternative EBP type estimator based on a logistic mixed model 

 
(16) 

 

 

Table 2 compares poverty rate estimators assisted by fixed effects models. Section a) 

shows results for a common model formulation where the model does not account for 

domain differences. NUTS3 indicators are included in Section b) to account for 

regional variation. Section c) includes domain-specific fixed effects. In this case the 

model-based LSYN and model-assisted LGREG coincide. Under SRSWOR, it was 

not necessary to include design weights in model fitting. 
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Table 2. Poverty rate estimators assisted by logistic and linear fixed effects models. 
Design: SRSWOR. 
Qualitative x: house ownership, age class, gender, lfs-code. 
Domains: NUTS3 by age by gender (D = 70 domains) 
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
a) Common model formulation 
Default  –0.04 0.03 –0.06  1.23 0.94 0.71  51.83 32.0 22.29  
LSYN  –1.11 –0.32 0.54  13.95 12.39 5.87  18.16 16.54 10.15  
LGREG  0.03 0.03 –0.05  0.68 0.87 0.65  48.55 30.55 20.66  
GREG  0.03 0.03 –0.05  0.76 0.88 0.65  48.89 30.86 20.89  
MC(12)  0.03 0.03 –0.05 0.68 0.86 0.65 48.56 30.55 20.65 
MC(13)  0.03 0.03 –0.05  0.75 0.85 0.67  48.39 30.51 20.63  
MC(10)  –0.12 0.01 –0.06  1.73 0.89 0.68  52.94 31.3 20.88  
b) NUTS3 indicators added to x-variables 
Default  –0.06 0.02 –0.07  1.21 0.93 0.73  51.82 31.98 22.29  
LSYN  –0.01 0.12 –0.14  7.98 8.05 4.9  19.35 15.99 11.41  
LGREG  0.02 0.02 –0.06  0.71 0.84 0.68  48.4 30.5 20.66  
GREG  0.02 0.02 –0.06  0.79 0.86 0.67  48.74 30.81 20.88  
MC(12)  0.02 0.02 –0.06  0.72 0.84 0.68  48.42 30.51 20.64  
MC(13)  0.02 0.02 –0.06  0.73 0.83 0.69  48.39 30.5 20.64  
MC(10)  –0.15 0.0 –0.07  1.83 0.89 0.7  52.85 31.29 20.88  
c) Domain indicators added to x-variables 

Default     1.21 0.93 0.73 51.82 31.98 22.29 

LSYN     1.18 0.83 0.7  50.98 30.9 20.81  
LGREG     1.18 0.83 0.7  50.98 30.9 20.81  
GREG     1.08 0.85 0.67  50.84 31.1 20.98  
MC(12)     1.15 0.82 0.7  51.04 30.93 20.81  
MC(13)     1.09 0.84 0.7  50.7 30.95 20.83  
MC(10)     1.89 0.88 0.7  52.45 31.26 20.88  

 

 

The default estimator, model calibration (MC), and GREG estimators are nearly 

design unbiased. Among these methods, model calibration based on (13) has the 

smallest RRMSE. In (13), the sums of fitted values were calibrated at NUTS3 level. 

Therefore there is not much difference between models (a) and (b). LSYN had the 

smallest RRMSE but it was design biased. 
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A logistic mixed model is used next to compare model-based EBP with model-

assisted MLGREG (Table 3). Domain differences are accounted for by regional-level 

(Section a) or domain-specific (Section b) random intercepts in the model. In both 

cases, the EBP estimator has large negative design bias, especially for small domains, 

and MLGREG appears nearly design unbiased as expected. However, EBP shows 

better accuracy than MLGREG and other nearly unbiased methods of Table 2. 

MLGREG has somewhat larger bias than LGREG. 

 

Table 3. Poverty rate estimators assisted by a logistic mixed model. 
Design: SRSWOR. 
Qualitative x: house ownership, lfs-code, age class, gender. 
Domains: NUTS3 by age by gender. 
Mixed model with NUTS3 random intercepts was fitted by nlme. 
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
a) NUTS 3 level random intercepts 
EBP(Y)  –1.47 –0.53 0.02  14.85 10.75 4.07  20.83 17.22 10.81  
MLGREG  0.01 0.03 –0.05  0.66 0.87 0.68  48.66 30.72 20.75  
b) Domain-specific random intercepts 
EBP(Y)  –1.43 –0.55 0.16  14.75 8.96 3.99  22.49 19.26 14.54  
MLGREG  0.28 0.13 –0.27  2.2 3.44 2.76  55.67 39.87 30.44  

 

From tables 2 and 3 we see that random intercepts or fixed effects associated with 

NUTS3 regions yield better results than domain-specific effects. 

 

Tables 4 and 5 show the effect of incorporating the design weights in fitting a mixed 

model. If the variable socstrat determining the size variable in PPS is not included in 

the model (Table 4), using design weights in fitting (EBP(Y)-W, no socstrat) results in 

smaller bias and RRMSE than model fitting without weights (EBP(Y), no socstrat). 

When socstrat was included in the model, EBP(Y)-W had smaller design bias than 

EBP(Y) but slightly larger RRMSE. MLGREG did not yield as small RRMSE as 

EBP(Y), but it had smaller bias. MLGREG-W benefitted slightly from using design 

weights in model fitting. We draw similar conclusions from Table 5. 
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Table 4. Poverty rate estimators with design weights incorporated in model fitting 
(lme4) in methods with suffix “W”. 
Design: PPS based on socstrat.  
Qualitative x: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS3 by age by gender 
Logistic mixed model with NUTS3 random intercepts was fitted by lme4. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
Default  1.60  1.13  0.54  1.17  54.18  30.21  20.95  36.79  
EBP(Y)  11.84  8.21  5.01  8.82 19.73  15.61  11.63  16.23 
EBP(Y), no socstrat 13.40 9.88 7.37 10.60 20.94 16.94 12.93 17.51 
EBP(Y)-W  9.33  8.04  5.57  7.97 20.00  16.23  12.39  16.76 
EBP(Y)-W, no socstrat 9.58  8.27  5.47  8.14 20.01  16.38  12.43  16.83 
MLGREG  1.56  1.13  0.59  1.17  53.95  30.22  20.89  36.69  
MLGREG-W  1.57  1.14  0.58  1.17  53.64  30.12  20.82  36.53  
 

 

Table 5. Poverty rate estimators in Amelia. Design weights are incorporated in model 
fitting (lme4) in methods with suffix “W”. 
Design: PPS based on ISCED.  
Qualitative x: age and gender with interactions, ISCED, activity, and degree of 
urbanisation. 
Domains: NUTS2 by age by gender. 
Logistic mixed model with NUTS2 random intercepts was fitted by lme4. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
Default  0.76  0.61  0.32  0.67  29.14  23.08  17.36  26.09  
EBP(Y)  8.29  9.25  7.78  8.56 13.50  13.77  10.92  13.36 
EBP(Y), no ISCED 8.67 10.01 7.88 9.04 13.98 14.52 11.51 13.93 
EBP(Y)-W  8.35  8.93  7.92  8.50 13.61  13.65  11.13  13.40 
EBP(Y)-W, no ISCED 8.30 8.96 7.77 8.47 13.68 13.69 11.02 13.44 
MLGREG  0.74  0.57  0.29  0.64  28.13  22.34  16.90  25.21  
MLGREG-W  0.74  0.57  0.29  0.64  28.12  22.34  16.89  25.21  

 

Table 6 shows how contamination affects poverty rate estimators. A robust method of 

fitting the logistic mixed model was not available. Nevertheless, the poverty rate 

estimators are fairly robust. Only when the proportion of outliers is 15%, bias 

especially is large.  EBP(Y) has the smallest RRMSE in this experiment. It was also 

least affected by contamination. 
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Table 6. Poverty rate in contaminated data. 
Design: SRSWOR.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS3 by gender and age class (70 domains).  
Logistic mixed model with NUTS3 random intercepts was fitted to log(income+1) by 
nlme. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
Baseline (no contamination) 
Default  1.11  1.04  0.50  0.94  51.94  31.79  22.04  36.76  
MLGREG  1.41  0.98  0.42  1.01  48.83  30.81  20.93  34.99  
EBP(Y)  9.00  8.21  5.36  7.84 19.91  17.51  12.51  17.23 
OCAR-CCAR 1% 
Default  1.69  1.29  0.50  1.25  52.13  31.93  22.11  36.90  
MLGREG  1.91  1.25  0.45  1.30  49.04  30.94  21.00  35.13  
EBP(Y)  8.47  8.52  5.33  7.77 19.68  17.73  12.54  17.24 
OCAR-NCAR 1% 
Default  1.65  1.31  0.50  1.25  52.16  31.91  22.11  36.90  
MLGREG  1.94  1.27  0.44  1.32  49.09  30.94  21.00  35.15  
EBP(Y)  8.48  8.53  5.34  7.78 19.77  17.76  12.54  17.28 
OAR-CAR  
Default  1.73  1.10  0.63  1.22  52.17  31.93  22.09  36.91  
MLGREG  1.88  1.10  0.58  1.26  49.06  30.93  20.95  35.12  
EBP(Y)  8.66  8.58  5.45  7.89 19.67  17.76  12.60  17.26 
OCAR-CCAR  15% 
Default  23.36  15.81  4.93  16.02  63.25  39.23  23.45  44.20  
MLGREG  23.72  15.84  4.92  16.16  60.43  38.25  22.46  42.56  
EBP(Y)  21.24  20.04  6.17  17.30 28.87  27.20  13.72  24.71 
 

 

Table 7 shows how contamination affects estimators under PPS. The bias of EBP(Y) 

is larger than in Table 6, with the exception of contamination of 15%. The RRMSE of 

other methods are larger than under SRSWOR. 
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Table 7. Poverty rate in contaminated data. 
Design: PPS by socio-economic status.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS3 by gender and age class (70 domains).  
Logistic mixed model with NUTS3 random intercepts was fitted to log(income+1) by 
nlme. 
 

Estimator 
ARB (%) RRMSE (%) 
minor  medium  major  all  minor  medium  major  all  

Baseline (no contamination) 
Default  1.60  1.13  0.54  1.17  54.18  30.21  20.95  36.79  
MLGREG  1.53  1.15  0.57  1.16  53.99  30.20  20.83  36.69  
EBP(Y)  11.85  8.76  6.97  9.48 20.26  16.20  12.76  16.91 
OCAR-CCAR 1% 
Default  2.04  1.39  0.63  1.46  54.33  30.28  20.94  36.87  
MLGREG  2.13  1.41  0.64  1.50  54.14  30.26  20.83  36.77  
EBP(Y)  11.41  8.68  7.24  9.35 20.01  16.15  12.92  16.84 
OCAR-NCAR 1% 
Default  2.01  1.37  0.68  1.45  54.38  30.29  20.97  36.90  
MLGREG  2.10  1.39  0.70  1.50  54.17  30.29  20.85  36.79  
EBP(Y)  11.41  8.71  7.26  9.36 20.04  16.21  12.96  16.88 
OAR-CAR  
Default  2.35  1.20  0.86  1.54  54.29  30.14  20.94  36.79  
MLGREG  2.33  1.23  0.81  1.53  54.04  30.13  20.82  36.67  
EBP(Y)  11.49  8.81  7.61  9.51 20.00  16.25  13.18  16.93 
OCAR-CCAR  15% 
Default  21.53  14.86  10.08  16.22  63.75  36.99  26.08  44.21  
MLGREG  21.97  14.78  10.16  16.36  63.66  36.94  25.99  44.14  
EBP(Y)  17.73  16.87  12.57  16.26 25.95  23.20  18.57  23.19 
 

 

Logistic mixed models are at least theoretically preferable to fixed effects models as 

they describe differences between domains parsimoniously. Model calibration (13) 

had small design bias and RRMSE with fixed effects models. Of all the poverty rate 

estimators, EBP might be the best choice unless it is important to avoid design bias.  

Our findings are similar to the conclusions of Fabrizi et al. (2007a) and Judkins and 

Liu (2000).  
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4.4 The Gini coefficient 
 

Consider a population domain dU  of size dN  where the equivalized incomes are 

ordered: (1) (2) ( )...
dNy y y≤ ≤ ≤ .  

 

The Lorenz curve (.)dL  in domain d is defined at points / dk N  for persons dk U∈  by 
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The x-coordinate represents the first k persons' numerical proportion of the population 

and y-coordinate represents their proportion of the total income. For practical 

purposes, we define the Lorenz curve as a piecewise linear function, approximated by 

a line between consecutive points for / dk N  and ( 1) / dk N+ . If the income were 

uniformly distributed, the curve would be a line from (0,0) to (1,1). In real data, the 

Lorenz curve is below this line.  

 

The Gini coefficient dG  in domain d is defined as 

 

 
1

0

1 2 ( )d dG L x dx= − ∫ . 

 

With uniform income distribution, 0dG = . Typical values for a country range from 

0.2 to 0.4. 

 

For a sample domain ds , an HT-based estimate of the Lorenz curve is defined by first 

ordering the persons in the sample by equivalized income, (1) (2) ( )...
dny y y≤ ≤ ≤ . The 

weights are correspondingly ordered by the income; the design weight of the 

observation at ith position in the ordered sample is denoted by s
ia . Consider k first 
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persons in the ordered sample. Their numerical proportion of the population is 

estimated by  
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The proportion of the first k incomes of the total income is estimated by a ratio of two 

HT estimates: 
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Thus, at a point for k, the Lorenz curve’s HT-type estimator is defined by 
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For integration, consecutive points are joined by lines. We have numerically verified 

that the default (direct) estimator ;HT dG  of the Gini coefficient for domain d is then 

equivalent to  

 

 
1

; ;
0

1 2 ( )HT d HT dG L x dx= − ∫ .      (27) 

 

For domains with a single observation, the estimates are obtained from the whole 

country instead. Another viable option might be the synthetic estimator discussed 

next. 

 

The synthetic estimator of the Lorenz curve is calculated using the ordered predicted 

incomes in population, (1) (2) ( )ˆ ˆ ˆ...
dNy y y≤ ≤ ≤ : 
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The synthetic estimator ;SYN dG  of the Gini coefficient for domain d is 

 

 
1

; ;
0

1 2 ( )SYN d SYN dG L x dx= − ∫       (28) 

 

We tried composite estimation of the Lorenz curve by a linear combination of ;HT dL  

and ;SYN dL  of type (20) but it did not yield as good results as composite estimators 

incorporating ;HT dG  and ;SYN dG . 

 

Table 8 shows an experimental comparison of the expanded predictor (17) of the Gini 

coefficient, the default estimator and the ordinary predictor (28). Benefits from the 

expansion (17) are obvious.  

 

Table 8. Estimators of Gini coefficient assisted by linear mixed model. 
Design: SRSWOR. 
Quantitative x: educ-thh, empmohh. 
Qualitative x: house ownership, lfs-code, socstrat. 
Domains: 36 NUTS4 regions. 
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme. 
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
Default  –.007 –0.004 –.002  2.92 1.57 0.66 14.09 11.42 7.66 
Predictor –.066 –0.066 –.063  27.96 28.14 26.18 28.12 28.30 26.34 
Expanded 
predictor 
(17) 

–.004 –0.003 –.005  3.97 3.04 3.44 4.43 3.56 3.86 

Composite –.005 0.001 –.004 3.46 2.11 2.56 5.79 4.29 3.91 

 

 

Tables 9 and 10 summarize experiments with contamination. The expanded predictor 

and frequency-calibrated predictor are better methods than the default one. They are 
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also fairly robust. Composite estimators have large design bias in the most 

contaminated data. In OCAR-NCAR, the bias and RRMSE of expanded predictor and 

frequency-calibrated estimator are larger under PPS than under SRSWOR. 

 

Table 9. Gini coefficient in contaminated data. 
Design: SRSWOR.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS4.  
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  3.27  1.74  0.66  1.56  14.28  11.36  7.57  10.40  
Expanded predictor (18) 4.55  6.37  3.12  4.94  5.10  6.68  3.72  5.39  
Composite 2.27  3.59  2.18  2.90  6.28  5.94  3.70  5.18  
Predictor 49.38  50.15  48.74  49.53  49.72  50.49  49.05  49.86  
n-calibrated predictor 3.06  4.64  2.95  3.81  5.06  5.64  3.70  4.86  
n-calibrated composite 2.46  2.84  2.09  2.51 6.09  5.37  3.64  4.85 
OCAR-CCAR 1% 
Default  14.76  17.67  17.64  17.26  33.52  29.92  22.66  27.80  
Expanded predictor (18) 13.15  14.98  9.38  12.70  13.34  15.14  9.63  12.90  
Composite  13.00  15.66  12.00  13.97  18.59  18.36  13.10  16.49  
Predictor  49.92  50.68  49.29  50.07  50.07  50.83  49.44  50.22  
n-calibrated predictor  8.93  12.59  8.83  10.73  10.23  13.15  9.20  11.32  
n-calibrated composite  10.50  14.11  11.66  12.72 16.53  16.95  12.84  15.41 
OCAR-NCAR 1% 
Default  98.84  151  231  173  173  212  254  223  
Expanded predictor (18)  15.31  17.08  11.26  14.73  15.73  17.49  11.77  15.18  
Composite  68.85  111  193  135  116  153  212  169  
Predictor  48.12  48.85  47.64  48.31  48.98  49.70  48.43  49.14  
n-calibrated predictor  10.78  14.53  10.67  12.61  12.27  15.34  11.30  13.45  
n-calibrated composite  63.22  107  192  131 108  148  211  165 
OAR-CAR   
Default  88.07  118  141  122  139  152  151  150.05  
Expanded predictor (18)  25.32  27.29  19.72  24.28  25.48  27.45  19.90  24.45  
Composite  68.17  91.56  113  96.21  102.31  114  122  115  
Predictor  32.54  33.10  31.96  32.61  34.44  34.99  33.66  34.43  
n-calibrated predictor  20.67  24.79  19.07  22.15  21.59  25.25  19.35  22.61  
n-calibrated composite  64.93  90.04  113  95.00 97.92  113  122  114 
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Table 10. Gini coefficient in contaminated data under PPS. 
Design: PPS by socio-economic status. 
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS4.  
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme 
without design weights. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  4.11  2.40  0.84  2.08  16.58  13.17  8.58  11.99  
Expanded predictor (18) 4.55  6.33  3.11  4.92  5.11  6.65  3.74  5.38  
Composite 1.88  3.19  2.15  2.63  7.55  6.33  3.96  5.64  
Predictor 47.58  48.22  47.04  47.70  47.65  48.29  47.11  47.77  
n-calibrated predictor 3.32  4.75  3.00  3.92  5.05  5.52  3.72  4.80  
n-calibrated composite 2.72  2.61  2.09  2.44 7.27  5.76  3.91  5.30 
OCAR-CCAR 1 % 
Default  13.37  17.00  17.37  16.63  33.59  30.93  23.34  28.56  
Expanded predictor (18) 12.48  14.18  8.76  11.99  12.73  14.42  9.11  12.26  
Composite  11.87  14.90  11.35  13.20  18.13  17.88  12.65  16.03  
Predictor  47.96  48.59  47.44  48.09  48.04  48.66  47.52  48.16  
n-calibrated predictor  7.90  12.01  8.48  10.17  9.38  12.50  8.91  10.77  
n-calibrated composite  9.21  13.44  11.17  12.03 16.06  16.57  12.52  15.04 
OCAR-NCAR 1 % 
Default  93.11  149.85  229.28  170.65  168.79  211.05  251.31  219.72  
Expanded predictor (18)  21.90  23.84  17.22  21.18  24.74  26.66  20.09  24.02  
Composite  69.35  113.65  194.25  136.60  120.81  157.17  212.86  172.23  
Predictor  46.54  47.11  46.19  46.70  46.68  47.25  46.33  46.84  
n-calibrated predictor  16.26  21.06  16.87  18.88  20.06  24.17  19.86  22.04  
n-calibrated composite  64.69  110.71  193.96  134.38 114.04  153.48  212.57  169.34 
OAR-CAR   
Default  69.91  100.96  132.73  108.12  127.63  144.19  148.67  143.51  
Expanded predictor (18)  24.46  26.30  19.01  23.41  24.63  26.47  19.20  23.59  
Composite  55.00  77.76  102.93  83.69  92.71  105.97  114.76  107.30  
Predictor  30.66  31.06  30.22  30.70  30.78  31.18  30.34  30.82  
n-calibrated predictor  19.27  23.86  18.62  21.33  20.29  24.28  18.89  21.78  
n-calibrated composite  51.80  76.02  102.87  82.35 87.90  103.80  114.71  105.53 
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Table 11 shows results with the Amelia dataset. Conclusions are similar as above. 

 

Table 11. Gini coefficient in contaminated Amelia data under SRSWOR. 
Qualitative x-variables: age and gender with interactions, ISCED, activity and degree 
of urbanisation. 
Domains: districts (DIS).  
Mixed model with DIS random intercepts was fitted to log(income+1) by lme without 
design weights. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  2.60  2.10  1.61  2.11  12.89  11.64  10.43  11.68  
Expanded predictor (18) 10.69  8.37  7.71  8.89  11.51  9.33  8.69  9.81  
Composite 5.46  4.21  4.01  4.53  8.05  6.76  6.14  6.98  
Predictor 21.75  23.27  23.74  22.94  22.59  24.00  24.44  23.70  
n-calibrated predictor 6.22  4.31  3.74  4.72  11.32  9.06  7.84  9.40  
n-calibrated composite 3.70  2.33  2.03  2.66 8.58  7.10  6.15  7.28 
OCAR-CCAR 1 % 
Default  7.77  8.75  9.79  8.74  21.48  20.63  19.94  20.70  
Expanded predictor (18) 12.65  10.29  9.63  10.81  13.38  11.12  10.50  11.63  
Composite  10.82  9.59  9.51  9.94  13.32  11.91  11.46  12.21  
Predictor  22.25  23.75  24.22  23.43  23.09  24.49  24.92  24.18  
n-calibrated predictor  7.80  6.00  5.53  6.41  12.46  10.09  8.96  10.49  
n-calibrated composite  7.66  6.71  6.70  6.99 12.13  10.67  9.99  10.92 

 

 

4.5 Poverty gap 
 

Relative median at-risk-of poverty gap, or poverty gap for short, in a region describes 

the difference between the poor people's median income and the at-risk-of-poverty 

threshold t. The threshold is usually estimated for the whole country. The poverty gap 

dg  in domain d is defined as a ratio  

 

 { ; ; }k k d
d

t Md y y t k Ug
t

− ≤ ∈
= .     (29) 
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The default (direct) estimator ˆdg  for domain d is calculated from the sample: 
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ˆ
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d
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t
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= .     (30) 

 

The synthetic estimator ;ˆd SYNg  of the poverty gap for domain d is calculated from the 

predicted values ˆky  after classifying people as poor when their predictions are below  

the estimated threshold t̂ : 
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=      (31) 

 

As the predictions vary less than the true incomes, the synthetic poverty gap estimate 

is usually too small.  

 

Composite estimator (20) of the poverty gap incorporates the default estimator and the 

synthetic estimator: 

 

 ; ,
ˆ ˆˆ ˆ ˆ(1 )d COMP d d d d SYNg g gλ λ= + − ,     (32) 

 

where d̂λ  is an average of 

 

 ,

,

ˆ ˆ( )
ˆ ˆˆ ˆ( ) ( )

d SYN

d SYN d

MSE g
MSE g MSE g+

 

 

over a domain size class. 

 

If there are no poor in a domain, the default estimator is calculated from the whole 

country, the synthetic estimator uses predictions from the country and composite 

estimator equals the synthetic one. 

 

Our experiments imply that poverty gap is the most difficult poverty indicator to 
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estimate, considering the large RRMSE of all estimators. Table 12 shows an 

experiment with a lot of auxiliary information. All poverty gap estimators, even the 

default estimator have design bias in small domains, probably due to the non-linear 

formulation of the indicator. The ordinary predictor (31) is far too biased to be useful. 

The expanded predictor and corresponding composite estimator are better than the 

default estimator especially in small domains. 

 

Table 12. Poverty gap estimators assisted by a linear mixed model. 
Design: SRSWOR 
Quantitative x: educ-thh, empmohh. 
Qualitative x: house ownership, lfs-code, socstrat. 
Domains: NUTS3 by age by gender (70 domains). 
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme.  
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
Default  2.1 0.9 0.4  12.14 4.37 1.78 65.85 43.58 27.26  
Predictor –6.8 –9.8 –14.6  40.09 43.36 57.47  61.49 57.09 62.09  
Expanded predictor (17)  –3.1 –3.0 –3.6  17.01 19.61 16.58  23.85 25.43 22.92  
Composite  –1.7 –2.1 –2.5 10.91 14.41 11.90 25.63 22.39 18.63 
 

The amount of auxiliary data seems to have an effect on the poverty gap estimation 

results: in Table 13 involving less auxiliary data than Table 12, the expanded 

predictor and the frequency-calibrated poverty gap estimator are significantly better 

than the default estimator only in the smallest domains (expected sample size smaller 

than 50). Moreover, they are severely biased. The corresponding composite estimators 

perform better, also in the large domains. Some composite estimators could not be 

calculated due to limited time. All estimators except the ordinary predictor are robust. 

Actually, contamination often seemingly improves the properties of estimators.   
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Table 13. Poverty gap in contaminated data. 
Design: SRSWOR or PPS by socio-economic status.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS3 by gender and age class (70 domains).   
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination, SRSWOR 
Default  13.15  5.14  2.07  7.30  66.91  44.17  27.57  48.50  
Expanded predictor (18) 45.85  40.04  44.42  43.11  51.91  43.92  47.69  47.64  
Composite 28.58  24.24  22.33  25.35  43.28  32.65  29.22  35.66  
Predictor 49.85  56.74  62.77  55.66  80.02  75.73  73.33  76.71  
n-calibrated predictor 42.42  36.58  39.13  39.25  64.08  48.56  48.45  54.08  
n-calibrated composite 23.34  21.74  19.72  21.85 47.37  34.83  29.17  38.02 
No contamination, PPS 
Default  13.54  7.66  2.30  8.61  69.74  45.85  28.18  50.60  
Expanded predictor (18) 45.03  40.06  45.92  43.09  52.50  45.41  48.96  48.70  
Predictor 52.61  52.73  53.76  52.91  67.09  63.09  64.83  64.89  
n-calibrated predictor 42.83  37.53  45.84  41.20 59.99  47.18  51.25  52.63 
OCAR-CCAR 1 %, PPS 
Default  13.11  7.50  2.06  8.34  69.24  45.68  28.17  50.34  
Expanded predictor (18) 44.83  39.87  45.99  42.95  52.62  45.43  48.97  48.76  
Predictor 55.16  56.38  57.39  56.16  69.04  66.34  67.88  67.64  
n-calibrated predictor 42.51  37.28  45.48  40.91 59.79  47.04  50.97  52.44 
OCAR-CCAR 15 %, SRSWOR 
Default  9.68  6.92  4.20  7.28  59.46  41.08  27.71  44.59  
Expanded predictor (18)  41.61  35.35  40.77  38.83  52.33  41.82  45.51  46.42  
Composite  25.59  20.18  19.37  21.93  41.75  30.27  27.26  33.68  
Predictor  92.76  94.22  95.28  93.94  103.19  101.02  99.66  101.49  
n-calibrated predictor  41.18  34.02  37.06  37.27  62.97  46.69  46.28  52.41  
n-calibrated composite 23.19  18.85  17.59  20.11 45.43  32.37  27.38  35.90 
OCAR-NCAR 15 %, PPS 
Default  10.57  6.82  5.48  7.87  64.08  42.27  27.75  46.95  
Expanded predictor (18) 34.45  30.56  36.93  33.31  53.01  43.52  46.25  47.50  
Predictor 99.27  99.38  99.42  99.35  99.52  99.55  99.58  99.55  
n-calibrated predictor 34.57  29.55  37.48  33.04 59.73  45.36  48.22  51.11 
 

Table 14 shows poverty gap estimation results in Amelia data. Here the expanded 

predictor yields better results than the default method in all domain size classes, since 

all domains are fairly small (n=2000). 
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Table 14. Poverty gap in contaminated Amelia data under SRSWOR. 
Qualitative x-variables: age and gender with interactions, ISCED, activity and degree 
of urbanisation. 
Domains: age by gender by NUTS2.  
Mixed model with NUTS2 random intercepts was fitted to log(income+1) by lme 
without design weights. 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  6.52  3.32  2.38  5.46  51.76  43.77  38.48  48.78  
Expanded predictor (18) 18.08  23.77  22.01  19.59  44.38  37.80  30.67  41.62  
Composite 10.84  13.83  13.02  11.65  35.84  30.65  25.57  33.73  
n-calibrated predictor 14.10  18.40  20.79  15.65  62.97  51.17  41.40  58.37  
n-calibrated composite 9.69  9.54  11.04  9.81 43.05  36.48  30.62  40.44 
OCAR-CCAR 1 % 
Default  6.24  3.00  2.39  5.20  51.60  43.69  38.44  48.66  
Expanded predictor (18) 17.12  23.00  21.29  18.69  44.44  37.58  30.41  41.60  
Composite  10.46  13.55  12.83  11.31  35.92  30.59  25.52  33.76  
n-calibrated predictor  14.34  17.89  20.08  15.65  63.33  51.27  41.48  58.64  
n-calibrated composite  9.89  9.43  11.04  9.93 43.25  36.50  30.73  40.59 

 

The simulation-based method (23) yields fairly good poverty gap estimates, although 

there seems to be systematic bias: estimates are too large in small domains and too 

small in large domains (Table 15). As a result, the poverty gap differences between 

domain size classes apparent in estimation by the default method are not seen in 

estimates based on the simulation-based method. 

 

Table 15. Poverty gap estimation by the method of Molina and Rao (2010). 
Design: SRSWOR. 
Quantitative x: educ-thh, empmohh. 
Qualitative x: house ownership, lfs-code, socstrat. 
Domains: NUTS3 by age by gender 
Mixed model with NUTS3 random intercepts was fitted by nlme. 
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
Simulation-based  2.42 –0.41 –3.59  35.96 19.14 13.51  41.28 24.96 17.77  
Default 0.72 1.02 0.37  10.09 4.82 1.85  69.66 44.18 27.54  

 

Although these results are promising, experiments with Gini coefficient and quintile 

share were disappointing due to large bias. The distribution of the equivalized 

incomes differs from assumed log-normal distribution: there are fewer rich people 
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than expected. As a consequence, some of the simulated incomes were unrealistically 

large.  However, in other countries, the distribution of equivalized incomes may be 

closer to log-normal, and then the method of Molina and Rao is probably the best 

method available, if minimization of MSE is required. Better results might also be 

obtained with a more realistic income distribution. 

 

Table 16 compares two bootstrap techniques used in estimating the MSE of the 

synthetic component in a composite estimator. K=500 samples were used in the 

bootstrap and RAST correction was applied. Estimating the MSE of the synthetic 

component in the composite estimator by parametric bootstrap may yield small 

benefits over the simple equation (21), but it requires much more computing time. 

 

Table 16. Composite estimates (32) of poverty gap with MSE of synthetic component 
estimated by ordinary bootstrap (21) or by parametric bootstrap (22). 
Design: PPS by education level. 
Quantitative x: educ-thh, empmohh. 
Qualitative x: house ownership, lfs-code, socstrat. 
Domains: NUTS3 by age by gender. 
A mixed model with NUTS3 random intercepts was fitted by nlme without using 
design weights. 
 

Bootstrap method 
ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  

ordinary bootstrap 11.30 14.76 12.22 25.65 22.64 18.63 

parametric bootstrap 11.25 13.98 12.56 25.22 22.60 18.69 

 

4.6 Quintile share ratio S20/S80 
 

S20/S80 ratio, or quintile share ratio, is the ratio of the average income of the poorest 

20% of people (first quintile) to the average income of the richest 20% of people (fifth 

quintile). To find the first quintile, we sort the persons by income. The first quintile 

,20dq  is the set of poorest people in domain d whose sum of weights is just below or at 

20% of the total sum of weights. The default (direct) estimator of S20 in domain d is 

the Hájek estimator ;
ˆ20d HTS  of the mean income in the first sample quintile, that is, 
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the HT estimate of the first quintile total income divided by the estimated population 

size of the quintile: 
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Similarly, the fifth quintile ,80dq  is the set of domain’s richest people with sum of 

weights just below or at 20% of the total of weights. The S80 estimate is defined as 
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and the direct quintile share estimate is 
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For the synthetic estimators of S20 and S80 in domain d, the quintiles ; ,20SYN dq  and 

; ,80SYN dq are defined in population domain as if the weights were constant. The 

synthetic estimator of S20 is the average of predictions ˆky over the first quintile 

; ,20SYN dq : 
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The synthetic quintile share estimator is 
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It is also possible to estimate the quintile share using an estimated Lorenz curve: 
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These estimators have yielded similar results as the estimators (32) and (33).  

 

Composite estimator (20) of the quintile share ratio for domain d is given by 

 

 ; ,
ˆ ˆˆ ˆ ˆ(1 )d COMP d d SYNq q qλ λ= + − ,                    (35) 

 

where λ̂  was constructed similarly as in (32). 

 

Default estimates from the smallest domains with at most one observation are 

replaced by default estimates from the whole country. 

 

Table 17 shows experimental results with quintile share estimators assisted by a linear 

fixed-effects model. The ordinary predictor (34) is definitely design biased. The 

expanded predictor yields much better results than the default estimator in all domain 

size classes. It does not have much design bias.  

 
Table 17. Quintile share estimators assisted by a linear fixed effects model. 
Design: SRSWOR. 
Quantitative x: educ-thh, empmohh. 
Qualitative x: house ownership, lfs-code, socstrat. 
Domains: 36 NUTS4 regions. 
Model was fitted to log(income+1). 
 

Estimator 
BIAS ARB (%) RRMSE (%) 

minor  medium  major  minor  medium  major  minor  medium  major  
Default estimator 0.6 0.3 0.2 1.88 1.12 0.59 18.01 13.80 9.19 
Predictor 13.2 13.5 12.8 44.63 45.47 45.49 44.95 45.78 45.81 
Expanded predictor (17) 0.8 –0.2 1.4 5.63 4.18 6.17 6.25 5.11 6.88 
Composite  0.7 0.0 1.0 4.57 3.22 4.27 7.22 5.53 6.14 
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Tables 18-20 summarize our experiments with contaminated data under SRSWOR. 

The expanded predictor and frequency-calibrated predictor have the smallest RRMSE 

and not too much design bias. Moreover, they are more robust than the default 

estimator. Composite estimators suffer from bias in contaminated data. 

 
Table 18. Quintile share in contaminated data (Finnish data set) 
Design: SRSWOR.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS4.  
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme.  
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  2.31  1.23  0.57  1.14  18.17  13.77  9.17  12.72  
Expanded predictor (18)  2.75  4.47  8.65  5.74  4.06  5.76  9.38  6.83  
Composite  2.23  3.48  5.51  4.04  6.03  5.87  7.35  6.43  
n-calibrated predictor  5.61  5.00  9.22  6.61  8.67  7.19  10.20  8.48  
n-calibrated composite  4.85  3.97  5.78  4.74 8.77  6.75  7.68  7.36 
OCAR-CCAR 1 % 
Default  11.33  13.96  15.12  14.02  27.92  24.41  19.55  23.14  
Expanded predictor (18)  8.52  10.25  4.63  7.98  9.06  10.79  5.99  8.82  
Composite  9.09  10.88  7.60  9.45  12.74  13.07  9.84  11.86  
n-calibrated predictor  3.67  7.93  4.31  6.03  7.89  9.58  6.23  8.14  
n-calibrated composite  5.86  9.03  7.41  8.01  11.69  12.01  9.82  11.17 
OCAR-NCAR 1 % 
Default  31.91  49.01  80.10  57.87  59.10  70.22  87.79  75.02  
Expanded predictor (18)  10.84  12.02  5.31  9.43  11.70  13.10  7.49  10.88  
Composite  20.69  32.47  62.62  41.72  32.01  43.09  68.66  50.79  
n-calibrated predictor  5.80  9.56  4.76  7.30  9.54  11.52  7.48  9.79  
n-calibrated composite  17.85  30.86  62.40  40.44 30.27  41.72  68.46  49.78 
OAR-CAR  
Default  35.59  50.82  67.85  54.85  58.37  65.41  71.64  66.68  
Expanded predictor (18)  17.08  18.09  9.31  14.78  17.39  18.44  10.21  15.32  
Composite  25.90  36.56  55.20  41.81  35.02  43.57  58.21  47.67  
n-calibrated predictor  12.27  15.47  8.65  12.56  14.46  16.69  10.00  13.97  
n-calibrated composite  23.45  35.40  55.16  40.88 33.33  42.68  58.20  46.98 
 

 



67 
 

 
© http://ameli.surveystatistics.net/ - 2011 

 

Table 19. Unit-level quintile share estimators in contaminated data (Amelia). 
Design: SRSWOR.  
Qualitative x-variables: age and gender with interactions, ISCED, activity and degree 
of urbanisation. 
Domains: DIS regions.  
Mixed model with DIS random intercepts was fitted to log(income+1) by nlme.  
 
Estimator and  
contamination model 

ARB (%) RRMSE (%) 
minor  medium  major  all  minor  medium  major  all  

No contamination 
Direct  4.9  4.6  3.4  4.4  43.5  41.7  38.5  41.3  
Expanded predictor  12.3  8.6  5.7  8.9  16.0  13.6  11.4  13.7  
Composite  9.8  7.1  4.7  7.2  16.0  14.6  12.6  14.5  
OCAR-CCAR 1%  
Direct  7.9  9.1  10.8  9.2  43.8  41.8  39.3  41.7  
Expanded predictor  14.3  8.5  5.7  9.5  18.1  14.2  12.2  14.8  
Composite  12.8  8.0  6.9  9.2  18.8  15.9  14.0  16.2  
OCAR-NCAR 1%  
Direct  9.1  12.3  16.7  12.6  53.3  53.2  53.2  53.2  
Expanded predictor  15.0  8.9  6.6  10.1  18.6  14.5  12.4  15.1  
Composite  13.4  9.4  9.3  10.6  21.3  19.3  18.6  19.7  
 

Table 20. Quintile share estimators with aggregated auxiliary data in contaminated 
data (Amelia). 
Design: SRSWOR.  
Qualitative x-variables: age and gender with interactions, ISCED, activity and degree 
of urbanisation. 
Domains: DIS regions.  
Mixed model with DIS random intercepts was fitted to log(income+1) by nlme.  
 
Estimator and  
contamination model 

ARB (%) RRMSE (%) 
minor  medium  major  all  minor  medium  major  all  

No contamination 
Direct  4.9  4.6  3.4  4.4  43.5  41.7  38.5  41.3  
n-calibrated predictor  11.1  13.3  10.6  11.9  31.3  29.6  25.9  29.1  
n-calibrated composite  8.8  10.8  8.9  9.7 27.9  26.6  23.5  26.1 
OCAR-CCAR 1%  
Direct  7.9  9.1  10.8  9.2  43.8  41.8  39.3  41.7  
n-calibrated predictor  10.9  10.3  7.0  9.6  30.6  27.7  23.7  27.5  
n-calibrated composite  9.0  7.0  4.9  7.0 27.2  24.5  21.1  24.4 
OCAR-NCAR 1%  
Direct  9.1  12.3  16.7  12.6  53.3  53.2  53.2  53.2  
n-calibrated predictor  11.0  9.6  6.3  9.1  30.3  27.1  23.0  26.9  
n-calibrated composite  9.4  6.4  4.3  6.7 28.5  26.0  23.3  26.0 
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Table 21 shows a contamination experiment with PPS. The PPS design seems to 

result in larger RRMSE of expanded predictor and frequency-calibrated estimator 

under OCAR-CCAR but other changes are small (compare to Table 18). 

 
Table 21. Quintile share in contaminated data under PPS. 
Design: PPS by socio-economic status.  
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS4.  
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme 
without using the design weights. 
 

Estimator 
ARB (%) RRMSE (%) 

minor  medium  major  all  minor  medium  major  all  
No contamination 
Default  3.13  1.69  0.66  1.52  20.66  15.58  9.86  14.22  
Expanded predictor (18)  2.86  4.57  8.71  5.83  3.96  5.71  9.34  6.78  
Composite  2.39  3.47  5.69  4.12  7.20  6.22  7.61  6.86  
n-calibrated predictor  6.27  5.06  9.07  6.68  9.27  6.88  9.96  8.32  
n-calibrated composite  5.43  3.99  5.86  4.86 9.95  6.86  7.87  7.65 
OCAR-CCAR 1 % 
Default  10.52  13.62  14.99  13.69  29.05  25.30  20.02  23.91  
Expanded predictor (18)  7.76  9.61  4.62  7.55  8.39  10.23  6.00  8.45  
Composite  8.18  10.20  7.06  8.78  13.01  12.68  9.69  11.65  
n-calibrated predictor  3.51  7.49  4.56  5.88  7.99  9.00  6.30  7.88  
n-calibrated composite  4.65  8.46  6.94  7.38 12.19  11.68  9.71  11.04 
OCAR-NCAR 1 % 
Default  29.55  49.00  80.02  57.50  58.55  70.38  87.64  74.97  
Expanded predictor (18)  16.80  17.99  9.87  14.89  19.85  21.12  15.06  18.75  
Composite  22.38  34.98  64.44  43.87  35.20  45.60  70.37  53.10  
n-calibrated predictor  10.81  15.20  9.47  12.52  16.27  19.05  14.94  17.18  
n-calibrated composite  19.52  33.57  64.40  42.75 33.24  44.39  70.35  52.22 
OAR-CAR  
Default  27.28  42.44  63.48  47.93  53.99  61.18  69.71  63.26  
Expanded predictor (18)  16.15  17.04  8.50  13.83  16.52  17.48  9.51  14.47  
Composite  21.04  30.21  48.92  35.69  31.39  38.28  53.48  42.81  
n-calibrated predictor  10.43  14.45  8.05  11.58  13.59  15.69  9.46  13.15  
n-calibrated composite  18.05  28.79  48.83  34.54 29.44  37.07  53.43  41.92 
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4.7 Classifying domains by poverty 

 
The estimated indicators are probably used in decision making. Thresholds for a 

poverty indicator have been used in regional allocation of resources (e.g. Zaslavsky 

and Schirm, 2002, and others in Journal of Official Statistics, vol. 18, no. 3). As an 

application of a poverty indicator, domains might be classified as poor (“positive”) 

and not poor (“negative”) using a threshold. Large values of poverty rate, poverty gap 

and Gini coefficient, or small values of quintile share imply poverty. Ranking 

domains by poverty indicator may identify domains with greatest problems. For 

example, we classify a domain as poor, if its rank by quintile share is small.  

 

In the classification terminology, a domain is called true positive if it is correctly 

classified as positive (poor), and true negative if it is correctly classified as negative. 

A truly positive domain is positive in truth. Precision (positive predictive value) is the 

ratio of the number of true positives to the number of all positive classifications. It 

estimates the probability that a domain classified as poor is poor in truth. Sensitivity 

(recall, true positive rate) is the ratio of the number of true positives to the number of 

truly positive domains. This can be interpreted as the probability of classifying 

correctly a truly poor domain. Accuracy is the proportion of correct classifications, 

composed of true positives and true negatives. These measures are calculated in 

separate size-classes, as averages over all simulations. For example, precision in the 

small size class in a single simulation is the proportion of true positive small domains 

of all positively classified small domains in the simulation. 

 

Table 22 compares poverty rate estimators' ability to classify domains to classes by 

poverty rate over 0.2 (positive domains) or under 0.2 (negative domains).  EBP(Y) 

seems to have the best overall accuracy but it does not identify well domains that are 

deemed positive by the fixed threshold.  
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Table 22. Success of poverty rate estimators in identifying 7 poorest domains.  
Design: PPS by socio-economic status. 
Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. 
Domains: NUTS3 by gender and age class.  
Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme 
without using design weights. 
 
 PRECISION (%) SENSITIVITY (%) ACCURACY (%) 

Estimator  minor  medium  major  minor  medium  major  minor  medium  major  

a) Classification by fixed threshold (0.2) 

Default   50.7 32.4 . 59.8 49.4 . 83.5 83.9 93.1 

MLGREG  50.0 32.6 . 59.7 50.4 . 83.3 83.7 93.0 

EBP(Y) 37.8 35.8 . 21.2 29.0 . 86.4 90.3 97.1 

b) Classification by rank 

Default   55.5 37.2 . 51.3 35.8 . 85.4 87.6 97.4 

MLGREG  55.8 37.2 . 51.0 36.1 . 85.3 87.7 97.4 

EBP(Y) 78.3 51.7 . 40.6 52.1 . 88.6 88.4 91.4 

 

 

In our experiments, the expanded predictors of quintile share, poverty gap and Gini 

coefficient had the best accuracy in classification of small domains by rank. However, 

the default estimator had the best overall accuracy in classification by rank. No clear 

picture emerged from classification by threshold under SRSWOR and OCAR-CCAR 

(1%): the best classifiers for each poverty indicator were EBP(Y) for poverty rate, 

frequency-calibrated estimator for quintile share, the default estimator for Gini 

coefficient and the expanded predictor for poverty gap.  

 

We expected that small design bias is important in identifying poor domains given a 

fixed threshold and small RRMSE is important in classification by rank. Table 22 

gives some support to these expectations. In our experiments, the good accuracy of 

classification by rank with EBP(Y), expanded predictor and the frequency-calibrated 

estimator in small domains is probably due to their small RRMSE. A more complete 

picture of the classification abilities of estimators would be obtained by studying 

accuracy over a range of thresholds and ranks. 
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5 Case study: Estimation of poverty rate and its variance 
 

5.1 Introduction 

 
This section: 

1) Compares model assisted generalized regression estimators (GREG), dampened 

regression estimator (DRE), and model dependent pseudo SYN and EBLUP 

estimators for poverty estimation in domains under stratified sampling, and 

2) Studies the goodness of the Sen-Yates-Grundy (SYG), bootstrap, and augmented 

SYG variance estimators for the above mentioned poverty rate estimators.  

 

5.2 Design 
 

Population 

SRSWOR sample of 20,000 subjects from population of N = 1,000,000 used in 

D2.1.A.  

 

Domains 

D = 30 domains constructed from age (3 categories), sex (2 categories), and NUTS3 

(5 categories). Domains are mutually exclusive and exhaustive, unplanned (that is 

domain sample sizes dn  are random), and may cut across the strata.  

 

Target variable 

Poverty rate in domains, defined as #poor/domain size. Poverty indicator is 1 if 

equivalized household income is less than 60% of the median of equivalized 

household income. The median is estimated for each sample, and the poverty 

indicator is based on the estimated median.  

 

Sampling design 

Stratified sampling with simple random sampling without replacement within strata; 

number of samples = 1,000. Table 23 shows the sample sizes by strata.  
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Table 23. Sampling scheme (Stratified, SRSWOR within strata)  
 

Education 

(stratum) N n 
Sampling fraction 

(%) 
0 (lowest) 11381 1419 12.5 
3 4246 353 8.3 
4 2633 164 6.2 
5 769 32 4.2 
6 340 11 3.2 
7 568 19 3.3 
8 (highest) 63 2 3.2 
Total 20000 2000 10.0 

 

 

The expected sample size per domain is 66.7, with minimum 18.5 and maximum 

121.7. Domains are categorized into minor, medium and major according to the 

expected sample size as shown in Table 24.  

 

Table 24. Expected sample size ( )dE n by domain type  

 

 

Minor domain 
( )dE n   

18.5-49 

Medium domain 
( )dE n  

50-99 

Major domain 
( )dE n  

100+ 
Number of domains 10 12 8 

Average E(nd) 27.3 69.2 112.1 

Min E(nd) 18.5 53.4 104.2 

Max E(nd) 38.9 92.8 121.7 

 

Mathematical notation 

 

Table 25 shows the notation used in this paper. With this notation, poverty rate in 

domain d  ( dP ) can be expressed in three convenient forms: 

 

 
7

1

1 1 1

d h

d i id id
U U h Ud d d

P y y y
N N N =

= = =∑ ∑ ∑∑ .    (36) 
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Table 25. Summary of notation  

 

Symbol Description 

, dU U  Population; population in domain d  

, dN N  Population size; population size in domain d  

, ds s  Sample set, sample set in domain d  

i  Index for an individual ( 1, 2,..., 20000i = ) 

h  Stratum index ( 1,2,...,7h = ) 

d  Domain index ( 1,2,...,30d = ) 

, dn n  Sample size; sample size in domain d 

iy  Poverty indicator for individual i : 1y =  if poor, 0 otherwise 

idy  Domain poverty indicator: id iy y=  in domain d , zero otherwise  

dT  Total of y  in domain d  

dP  Poverty rate in domain d  (the variable to be estimated) 

iw  Sampling weight 

 

We build the estimators on the right hand side expression of the poverty rate. The 

familiar Horwitz-Thompson ( ,d̂ HTP ) estimator for dP  is 

 

 

7

, , ,
1

1ˆ ˆ ˆ,    where    .
h

d HT h d h d i id
h i sd

P T T w y
N = ∈

= =∑ ∑
   (37)

 

 

In the Horvitz-Thompson estimator above, we first estimate the stratum totals for 

domain d , then sum these stratum totals, and finally divide by domain size to obtain 

the poverty estimate.   
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5.3 Estimators  

 
5.3.1 Poverty rate estimators 

 

We study the properties of four poverty rate estimators: the generalized regression 

estimator (GREG; Särndal et al. 1992; Lehtonen and Veijanen 1998), the dampened 

regression estimator (DRE; Särndal and Hidiroglou 1989); pseudo-synthetic estimator 

(SYN; You and Rao 2002) and pseudo-EBLUP estimator (EBLUP; You and Rao 

2002). The SYN and EBLUP estimators are called pseudo-SYN and pseudo-EBLUP 

as we use weights when estimating the models.  

 

All estimators are built using the principle shown in equation 36: first the stratum 

totals are estimated, then they are summed over strata, and finally divided by domain 

size. Thus all four estimators look like this: 

 
7

,
1

1ˆ ˆ
d h d

hd

P T
N =

= ∑
       (38) 

 

Only ,ĥ dT  (and the model) differentiate the estimators. Table 26 shows ,ĥ dT  for the 

four estimators considered, and Table 27 the models that are used in conjunction with 

the four estimators.  

 

Table 26. Summary of estimators 
Estimator 

,ĥ dT  

GREG  
 

( ),
ˆ ˆ ˆ

h h

GREG
h d id i id id

i U i s
T y w y y

∈ ∈

= + −∑ ∑  

DRE 
 
 
 

( ),
ˆˆ ˆ ˆ

h h

DRE
h d id d i id id

i U i s
T y w y yλ

∈ ∈

= + −∑ ∑ ,   ( ) 1 ˆ0  if  ˆ ˆ ,
ˆ2  if  .

c d d
d d d

d d

N N
N N c

N N
λ

−  ≥= = 
<

 

SYN 
 

,
ˆ ˆ

h

SYN
h d id

i U
T y

∈

= ∑  

EBLUP 
 

,
ˆ ˆ

h h h

EBLUP
h d id id

i U s i s
T y y

∈ − ∈

= +∑ ∑  
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Table 27. Models used in the estimators shown in Table 26  

 

Estimator  Model number and 

description 

Domain 

intercepts 

Intercepts 

random/fixed 

Variables used in 

all models 

GREG 1. Linear, no domain int. No - Sex  

Own house  

LFS status (3 cat) 

Age (5 cat) 

 2. Linear with domain int Yes Fixed 

 3. Logistic, no domain int. No - 

 4. Logistic with domain int. Yes Fixed 

 5. Linear random int. model Yes Random 

    

DRE 1. Linear, no domain int. No - 

 2. Linear with domain int Yes Fixed 

 3. Logistic, no domain int. No - 

 4. Logistic with domain int. Yes Fixed 

 5. Linear random int. model Yes Random 

    

SYN  5. Linear random int. model Yes Random 

EBLUP  5. Linear random int. model Yes Random 

 

 

5.3.2 Variance estimators 

 

As with the poverty rate, we estimate the variances by first estimating the stratum 

specific variance components, then summing these up, and finally scaling 

appropriately. The variance estimators we use are the SYG variance estimator; 

without replacement bootstrap; and augmented SYG variance estimator. These are 

implemented as follows.  

  

1. The standard Sen-Yates-Grundy (SYG) type variance estimator is based on the 

model residuals (Särndal et al. 1992). The variance is estimated for each strata and 

summed up to the population level. More specifically, the variance for d̂P  is estimated 

as  

 



76 
 

  AMELI-WP2-D2.2 

 

 ( ) ( )
2 7

,
1

1ˆ ˆ
SYG d h d

hd

V P V T
N =

 
=  
 

∑ ,      (39) 

 

where 

 

( ) ( )
2

2
,

1 1ˆ ˆ1 ,     ,   and   .
1

h h

SYG h d id dh id id id dh id
s sh

N nV T e e e y y e e
n N n n
 = − − = − =  − 

∑ ∑

          (40)
 

 

Note that ide  is zero outside the domain, and that sampling weights are not needed in 

(40) because the weights are constant within strata.   

 

2. Bootstrap without replacement (Efron 1979, Särndal et al. 1992; Booth et al. 

1994). The bootstrap procedure is implemented as follows.  

 

a. Generate a bootstrap population (N = 20,000) by drawing a stratified 

with replacement sample from the original sample using the inverses 

of the original sampling fractions. The bootstrap population has the 

same stratum sizes as the original population, and each unit in each 

stratum in the bootstrap population belongs to the same stratum in 

the original population.   

 

b. Use the original sampling scheme (without replacement stratified 

sampling) to draw a bootstrap sample from the bootstrap population 

 

c. Calculate the poverty estimates for each domain and for each 

estimator 

 

d. Repeat b.-c. 200 times, and calculate the variance estimate as the 

variance of the 200 pseudo-estimates  

 

3. Augmented SYG estimator (Myrskylä 2007). To appreciate this estimator, note 

first that in the SYG estimator the terms ˆe y y= −  (subscripts dropped for clarity) are 
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sample fit residuals which aim to estimate pE y y= − , the population fit residuals 

( py  denotes the prediction obtained using the whole population to estimate the 

model). The population fit residuals can be decomposed as  

 

( ) ( )ˆ ˆ ˆ ˆp p pE y y y y y y e e= − = − + − = + .    (41) 

 

Thus the sample fit residual in the SYG estimator estimates part of the population fit 

residual, but ignores the uncertainty that comes from the difference between the 

sample fit residuals and population fit residuals. This can be interpreted also so that 

the SYG estimator ignores the uncertainty which is due to the randomness in the 

model parameters.  

 

The augmented SYG estimator (AUG) takes the terms ˆ pe  into account using a 

bootstrap-like procedure. The AUG estimator for the stratum h total is 

 

 ( ) ( ) ( ), , ,
ˆ ˆ ˆ

AUG h d SYG h d A h dV T V T V T= + ,      (42) 

 

where ( )ˆ
A dV P  corrects for the error ˆ pe  and is estimated as follows: 

 

a. Generate a bootstrap population (N = 20,000) by drawing a stratified 

with replacement sample from the original sample using the inverses 

of the original sampling fractions. The bootstrap population has the 

same stratum sizes as the original population, and each unit in each 

stratum in the bootstrap population belongs to the same stratum in 

the original population.   

 

b. Calculate the population fit predictions for the bootstrap population 

 

c. Use the original sampling scheme (without replacement stratified 

sampling) to draw a bootstrap sample from the bootstrap population 

 



78 
 

  AMELI-WP2-D2.2 

 

d. Estimate the sample fit model; calculate ˆ ˆp pe y y= − ; and estimate 

the variance contribution due to ˆ pe  as  

 

( ) ( )
2 2*

,
1 1ˆ ˆ ˆ ˆ ˆ1 ,   where   .

1
h h

p p p p
A h d id dh ddhh id

s sh

N nV T e e e e
n N n n
 = − − =  − 

∑ ∑

         (43)
 

 

e. Repeat b.-d. 10 times, and calculate the variance contribution 

( ),
ˆ

A h dV T  as the average of the estimates (43).  

 

After obtaining the stratum-specific variance estimates for the stratum totals (42), the 

final variance estimate is obtained as in (39) by summing the variance components 

and dividing by the square of the domain size.  

 

 

5.4 Results 
 

5.4.1 Poverty rate estimators 

 

ARB (Absolute Relative Bias). GREG estimators are approximately unbiased (Table 

28). Composite estimators (DRE estimators) have slightly larger bias than GREG 

estimators, but the differences are small. For GREG and DRE estimators, the bias 

decreases with sample size. SYN and EBLUP estimators have large biases, and the 

bias does not decrease with domain sample size.  

 

RRMSE (Relative Root Mean Square Error). For GREG estimators, accuracy is 

almost the same for all models (Table 28). Domain intercepts do not improve 

accuracy, and GREG-log is not more accurate than GREG-lin.  

 



79 
 

 
© http://ameli.surveystatistics.net/ - 2011 

 

 
Table 28. Absolute relative bias and relative root mean square error for the poverty 

rate estimators in a Monte Carlo simulation with 1,000 replicates 

 
Absolute Relative Bias ARB (%)                     

 
Minor domains  

( )dE n  18.5-49 
Medium domains  

( )dE n  50-99 
Major domains  

( )dE n  100+ 
Model* GREG DRE SYN EBLUP GREG DRE SYN EBLUP GREG DRE SYN EBLUP 

1. Lin, no domain int. 2.7 3.5   1.3 1.5   0.9 1.7   

2. Lin with domain int 2.8 2.8   1.3 1.3   1.0 1.0   

3. Log, no domain int. 2.7 3.6   1.3 1.6   1.0 1.7   

4. Log with domain int. 2.9 2.9   1.4 1.4   0.9 0.9   

5. Lin random int. model 2.7 3.5 12.5 11.2 1.3 1.5 6.2 5.8 0.9 1.5 9.9 8.8 

             

RRMSE (%)                         

 
Minor domains  

( )dE n  18.5-49 
Medium domains  

( )dE n  50-99 
Major domains  

( )dE n  100+ 
Model* GREG DRE SYN EBLUP GREG DRE SYN EBLUP GREG DRE SYN EBLUP 

1. Lin, no domain int. 41.5 37.1   29.5 27.2   25.9 24.4   

2. Lin with domain int 42.2 42.2   29.7 29.7   26.1 26.1   

3. Log, no domain int. 41.4 37.0   29.0 26.7   25.4 23.9   

4. Log with domain int. 42.3 42.3   29.3 29.3   25.7 25.7   

5. Lin random int. model 41.4 37.3 21.1 21.3 29.5 27.5 14.0 14.5 25.9 24.8 17.6 17.3 

*The fixed effects part is "global intercept + house + lfs2 + lfs3 + age1 + age2 + age3 + age4 + sex" + domain 

intercepts for models 2, 4. Model 5 has random domain intercepts.  All models use sampling weights in estimation. 

 

For DRE composite estimators, accuracy improves if domain intercepts are not 

used, or if they are included as random effects (Table 28). If domain intercepts are 

included as fixed in the model, the estimator is equivalent to the GREG estimator. The 

fact that accuracy is gained if domain intercepts are not used can be explained as 

follows: the error correction term d
d

i is
w e∑ is approximately zero if domain intercepts 

are used. Then, the DRE estimator  

 

ˆˆ ˆ
d d d

d d d d
i i i iU s U

y w e yλ+ ≈∑ ∑ ∑ , 

 

so the DRE composite estimator is equivalent to the GREG estimator, and use of λ -

weighted error correction term has no effect on the estimator. If, however, domain 
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intercepts are not used, the error correction term is not zero, and the estimation error 

in ˆ
d

d d
i is

w eλ ∑  is negatively correlated with the estimation error in ˆ
d

d
iU

y∑ . The 

negative correlation between these variables results in improvement in accuracy.  

 

For SYN and EBLUP estimators the RRMSE is generally smaller than for DRE and 

GREG estimators (Table 28). This holds even in domains with expected sample size > 

100. SYN and EBLUP, however, are biased (see the ARB table).  

 

5.4.2 Variance estimators 

 

Table 29. Empirical coverage rates with nominal coverage level 95.0 for three 

variance estimators in a Monte Carlo simulation with 1,000 replicates 

 
Coverage Rate CR (%) by variance estimator 

  
( )dE n

 18.5-49  
( )dE n

  50-99  

 

( )dE n >= 100  

Estimator Model SYG BWO AUG SYG BWO AUG SYG BWO AUG 

GREG 1. Lin, no domain int. 92.5 92.7 93.9 93.4 93.6 94.8 93.7 93.8 95.3 

 2. Lin with domain int 89.7 90.3 92.8 92.1 92.3 94.4 92.7 92.9 94.8 

 3. Log, no domain int. 92.5 92.7 94.0 93.1 93.3 94.9 93.4 93.7 95.2 

 4. Log with domain int. 89.6 90.2 93.2 91.2 91.3 93.7 91.9 92.1 94.2 

 5. Lin random int. model 92.4 93.0 95.6 93.1 93.5 95.4 93.5 93.9 95.5 

                 

DRE  1. Lin, no domain int. 94.7 92.0 95.8 95.0 92.8 96.1 94.8 92.9 95.8 

 2. Lin with domain int 89.7 90.3 92.8 92.1 92.3 94.4 92.7 92.9 94.8 

 3. Log, no domain int. 94.8 92.1 96.0 94.7 92.5 95.8 94.6 92.6 95.9 

 4. Log with domain int. 89.6 90.2 93.2 91.2 91.3 93.7 91.9 92.1 94.2 

 5. Lin random int. model 94.4 92.1 96.9 94.5 92.7 96.5 94.4 93.0 96.2 

                 

SYN  5. Lin random int. model 95.7 95.7 95.7 97.6 97.6 97.6 85.7 85.7 85.7 

EBLUP  5. Lin random int. model 95.5 95.5 95.5 97.0 97.0 97.0 86.8 86.8 86.8 

 

 

GREG estimators. In minor, medium, and even large domains, both SYG and BWO 

(bootstrap without replacement) underestimate the variance (Table 29). The errors are 

larger for smaller domains and if the model has domain intercepts. The differences 

between SYG and BWO are small, although BWO performs slightly better in most 
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cases. AUG (Augmented SYG) is most accurate, giving coverage rates close to 95% 

in domains with expected sample size >= 50. In smaller domains, coverage rates are 

slightly too small for AUG, but markedly closer to 95.0 than they are for SYG or 

BWO.  

 

DRE (composite) estimators. For DRE estimators with models 2 and 4, the results 

are the same as they are with GREG estimators (Table 29). The similarity of the 

results follows from the fact that is the estimator has a fixed domain intercept, DRE 

estimator is almost equivalent to GREG estimator. So, for models 2 and 4, SYG and 

BWO underestimate the variance in all domains, AUG underestimates the variance 

only in smallest domains and even then the error is smaller than it is for SYG or 

BWO.  

 

For “true” DRE estimators which have models 1, 3 and 5, the SYG estimator 

performs very well, even better than BWO or AUG. This is due to errors that cancel 

each other: SYG underestimates the variance of GREG, but DRE estimator has 

slightly smaller variance than GREG. In this simulation, these errors happen to cancel 

out, resulting in coverage rates close to 95%. BWO consistently underestimates the 

variance, but the errors get smaller in larger domains. AUG performs quite well, but 

occasionally overestimates the variance. This is because the estimator is built for 

GREG, and estimates the variance for GREG quite well, but the DRE estimator has 

slightly smaller variance than GREG.  

 

(Pseudo) SYN and EBLUP estimators. All variance estimators deliver the same 

coverage rates for these estimators (Table 29). This is because whether or not the 

confidence interval captures the true value depends on the bias in the estimators, not 

on the relatively small differences in the variance estimators. On the surface, it looks 

as if the estimators did a good job in estimating the variance for small domains. This, 

however, is illusory, since the coverage rates are averaged over several domains, and 

domain-specific coverage rates range from 80.5 to 99.3% (for GREG and DRE 

estimators, the average coverage rates reflect accurately the average difference from 

95.0%). In medium domains, the coverage rates for SYN and EBLUP are on average 

too high, and in major domains, the coverage rates are too low. None of the three 

variance estimators should be recommended for SYN or EBLUP estimators.  
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6 Discussion of results  

 
6.1 General 
 

Domain size is the most important factor affecting accuracy of estimation in a 

domain. Absolute bias and RRMSE were largest in small domains. With direct 

estimators and small samples, the estimates vary greatly, and show too large 

disparities between domains. On the other hand, differences between synthetic 

estimates are too small.   

 

Sampling design does not seem to affect estimators much. EBP(Y) tended to have 

somewhat larger bias with varying probability sampling designs especially when the 

PPS size variable was not in the used model. 

 

In general, results are not improved by adding domain-specific terms to the used 

model. We obtained better estimates by including terms such as random intercepts 

associated with NUTS3 levels when domains were defined by NUTS4, for example. 

 

 

6.2 New predictors 
 

Use of predictors in estimation of poverty indicators is problematic, as the predictions 

are required for individuals, whereas the response is a household-level equivalized 

income and the auxiliary variables include both unit- and household-level variables. 

Models will not fit the data well, especially with apparently unsatisfactory auxiliary 

data, such as demographic information. If the poverty was measured differently, it 

might be easier to predict personal income or calculate household level poverty 

measures using only household-level auxiliary variables. 

 

Ordinary predictors involve predictions plugged into the default formula in place of 

genuine observations. These predictors are substantially biased: poverty gaps and Gini 
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coefficients were too small and quintile shares were too large. Due to the bias, the 

RRMSE of ordinary predictors were even greater than the RRMSE of corresponding 

default estimator.  

 

The expanded predictors benefit greatly from the transformation of predictions (Eqs. 

17 and 18) bringing the distribution of predictions closer to the distribution of 

observations. Both bias and RRMSE decreased due to the transformation, as 

compared with the ordinary predictors.  Inclusion of design weights in the technique 

probably reduced design bias in experiments with PPS. Moreover, the expanded 

quintile share and Gini predictors were more robust than the default method or the 

ordinary predictor. As the expansion incorporates percentiles of observations up to 

99th percentile, rare outliers occurring with frequency of 1 percent do not affect the 

expanded predictor too much. When the proportion of outliers was 15 percent, the 

expanded predictor failed but not as badly as the other estimators. The breakdown 

point of the estimator can probably be adjusted by changing the range of percentage 

points used in the transformation (17) or (18). In small domains, the expanded 

predictor usually had smaller RRMSE although larger bias than the default estimator.  

In the largest domains, the default estimator may be preferred to the expanded 

predictor if there are no outliers, but in contaminated data the expanded predictors 

appear to be better than the default estimator, although the poverty gap is an 

exception. 

 

In poverty gap estimation, only the left tail of the distribution of predictions 

contributes to estimates.  The expansion method does not seem to work as well as in 

quintile share and Gini coefficient, where most of the predictions are included in the 

estimators.  

 

The frequency-calibrated estimator (Eqs. 18 and 19) was not usually as accurate as the 

expanded predictor with same auxiliary variables. This was expected, as the 

frequency-calibrated predictor has access only to the domain frequencies of classes of 

auxiliary variables in the population, not to unit-level information. The estimator 

appears to have similar robustness properties as the expanded predictor.   However, in 

the case of the poverty gap, the frequency-calibrated method may perform poorly. 
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A composite estimator consists of a default estimator and corresponding expanded 

predictor.  In the case of no contamination, these estimators had smaller bias than the 

expanded predictors, but RRMSE was usually slightly larger. If contamination yields 

bias in the default estimator, composite estimators consequently suffer from bias. 

Composite estimators of quintile share or Gini coefficient may not be a good choice if 

some contamination is suspected. However, we might prefer composite poverty gap 

estimators over predictors.  

 

Variance and MSE estimation has been considered in selected cases only. 

Pseudoreplication methods such as bootstrap and jackknife provide applicable options 

for variance and MSE estimation of the alternative estimators of the poverty 

indicators discussed in this report. For example, bootstrap estimator of the MSE of an 

expanded predictor or a frequency-calibrated predictor should incorporate fitting a 

model to each bootstrap sample. A more extensive discussion on variance and MSE 

estimation is in Bruch, Münnich and Zins (2011). 

 

Modelling quantiles of equivalized income by quantile regression might be a useful 

component in an estimator of a poverty indicator. Some new theory is required, 

however. 

 

 

6.3 Comparison of outlier and contamination mechanisms 
 

Contamination experiments with a small proportion of outliers (1 % or OAR-CAR) 

are realistic for income data. In these experiments, the poverty rate estimators are 

fairly robust because outliers with large income do not affect much the median-based 

poverty threshold estimator. Outliers with large income yield too large Gini 

coefficients and too small quintile shares. The default estimator and the ordinary 

predictor of these indicators were sensitive to outliers. The expansion of predictions 

(Eqs. 17 and 18) reduced the effect of outliers. Contamination model NCAR yielded 

much larger bias than CCAR. The OAR outlier model had larger impact than OCAR 

perhaps because of the larger proportion of outliers and location parameter in the 

contamination of employed people. For some reason, the expanded predictor and 
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frequency-calibrated predictor of quintile share and Gini coefficient were most 

sensitive to OAR-CAR whereas the default estimator was most sensitive to OCAR-

NCAR. Perhaps the expansion technique (18) incorporating percentiles up to the 99th 

one provided robustness in the case of OCAR-NCAR with 1 % of outliers but 

suffered from contamination under OAR-CAR with a larger proportion (2 - 4 %) of 

outliers among people in workforce. 

 

In the most heavily contaminated data sets, the proportion of outliers was 15 %. All 

except the poverty gap estimators were then clearly affected. Even the poverty rate 

estimates were smaller, since the proportion of poor people decreased due to 

contamination. Poverty rate is somewhat sensitive to a large proportion of outliers. 

When the contamination is independent of income, the median income of poor people 

remaining in the contaminated data set does not necessarily deviate much from the 

median income of the poor in the original data set.  Therefore poverty gap estimators 

are not much affected by CCAR, but theoretically NCAR might cause more changes, 

although our experiments provided no such evidence. 
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Annex 1. Manual of R codes 
 

Introduction 

Domain estimators are implemented for at-risk-of-poverty rate, poverty gap, quintile 

share and Gini coefficient. For poverty rate, we have implemented HT-based equation 

(24), GREG estimator (26), which is assisted by a model provided by the user, and 

EBP(Y) estimator (16). Other indicators, such as the share of persons with low 

educational attainment, can be estimated with the estimators of poverty rate. Poverty 

gap, quintile share and Gini coefficient require special attention, as they cannot be 

estimated by methods designed for estimation of totals or shares. Their default 

estimators defined by equations (27), (30) and (33) are available.  

 

Predictors of poverty gap (31), quintile share (34) and Gini coefficient (28) are 

implemented. However, it is preferable to apply the expansion technique (18) with 

log-transformation log(x+c+1) taking negative incomes into account as explained on 

p. 31. It is available for each predictor. Zero incomes are not processed separately in 

contrast with our simulation experiments. If the user has no unit-level population 

information about auxiliary variables, it is possible to use a frequency-calibrated 

predictor (19). 

 

Composite estimators (Eqs. 20 and 21) are constructed from the default (direct) 

estimator and corresponding ordinary, expanded or frequency-calibrated predictor. 

The variance of the direct estimator is calculated by bootstrap.  

 

Implementation 

Our collection of R functions contains separate functions for default estimators (such 

as direct_gini) and predictors (e.g. predictor_quintile_share) in files gini.r, 

poverty_rate_estimator.r, poverty_gap_estimator.r and quintile_share.r, but the user 

does not have to call these directly (see next section for interface). Direct estimators 

and ordinary predictors are implemented by a call of function domain_estimators (in 

domain_estimators.r). Expanded predictors (Eq. 18) are implemented by a call of 

function expanded_domain_predictors (in domain_estimators.r) with the required 

predictor function as one of the arguments. The expanded predictions are calculated in 
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function log_expanded_predictions (expanded_predictions.r) A frequency-calibrated 

predictor is obtained by function calibrated_predictors (in calibrated_predictions.r), 

with predictor function as argument. A composite estimator is obtained by function 

composite_estimators (in composite_estimators.r), whose arguments include the direct 

estimator, the predictor, and the type of predictor (expanded, calibrated, or ordinary). 

 

To support domain estimation, class Domain (domain.r) has methods finding all 

domains in a data set, and methods calculating domain indicators or domain sums, for 

example. The file estimated_distribution_function.r contains functions for calculating 

percentiles, among others.  

 

Some special cases of data require somewhat arbitrary decisions. In the direct poverty 

gap estimator, all poor people of the sample are used if there are no poor in a domain. 

Similarly, the value of the poverty gap predictor is calculated from all predictions, if 

all predicted incomes in a domain exceed the poverty line. If a sample domain does 

not contain any observations, direct estimator is invalid, and the direct estimate is 

replaced by an estimate calculated with a predictor specified by the user.   

 

Bootstrap samples are drawn by SRSWOR (R function sample) from a bootstrap 

population. The bootstrap population can be regarded as created by cloning each 

observation in the original sample with frequency equal to downwards rounded design 

weight. The bootstrap variance of a domain estimator is calculated as sample variance 

over bootstrap samples. The final composite weights are equal to the median over all 

domain-specific composite weights, irrespective of domain size. 

 

Interface 

The complexities of the implementation are hidden from an ordinary user. All the 

estimators of poverty indicators can be invoked through a single function 

domain_estimate_data (in interface.r). It creates a data set (R data frame) containing 

domain estimates for each domain.  

 

The user has to fit a model to the sample and provide a function transforming the 

predictions to the original scale. Our R code assumes that the predicted values of a 

model can be obtained by calling generic R function predict with the model as the 
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first argument. This is possible with models fitted by lm, glm, lme and nlme (library 

nlme), but not necessarily with models of package lme4, for example.  

 

Our R functions do not perform classification of variables. As an example, age classes 

must be created prior to domain estimation. 

 

Poverty rate estimators are based on poverty indicators. They are first created by 

function create_poverty_indicator (in poverty_rate_estimator.r) which has the 

following arguments: sample, name of y variable, name of weights and the data set 

determining the poverty line (typically the sample). Then a logistic fixed-effects 

model is fitted by glm with option family=binomial or a logistic mixed model is fitted 

by nlme.  

 

In the case of poverty gap, quintile share and Gini coefficient, a mixed model is 

usually fitted to log-transformed equivalized incomes by lme, for example. For log-

transformation, the package includes functions logp and expm. logp(c) returns a 

function ( ) log( )f x x c= + , and expm(c) returns its inverse function 

1( ) exp( )f x x c− = − . If the model has been fitted to observations transformed by 

logp(c), then the corresponding back-transformation function is expm(c).  

 

The estimators are specified by a list of names (argument estimator_descriptions of 

domain_estimate_data). The name of an estimator consists of the name of the poverty 

indicator and the type of the estimator. Names of the poverty indicators are ”poverty 

rate”, ”gini”, ”poverty gap” and ”quintile share”. Default estimators are identified by 

”direct”, and predictors are identified by ”predictor”. Special cases of predictors are 

”expanded” for predictors incorporating expanded predictions (18) and ”calibrated” 

for predictors based on the frequency-calibration (n-calibration) technique (19). In the 

case of poverty rate, it is also possible to use “greg” for GREG or MLGREG 

estimation and “ebp” for EBP estimation. Examples of estimator names are ”direct 

poverty rate”, ”greg poverty rate”, ”ebp poverty rate”, ”expanded gini predictor”, 

”poverty gap predictor” and ”calibrated quintile share predictor”. The name of a 

composite estimator consists of the name of the unbiased component and the name of 
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the predictor, separated by a ”+”. An example is ”direct quintile share + expanded 

quintile share predictor”. 

 

The domains are defined by a cross-tabulation of variables. A list of variable names is 

provided (argument domain_variables). The list can contain a single name, if the 

values of a variable are interpreted as domains. The domain variables must be present 

both in sample and in population. 

 

If frequency-calibrated predictors are used, the population data set is still unit-level 

but one observation in each domain is chosen to contain the domain sums of those 

auxiliary variables that are used in calibration; the other observations of such auxiliary 

variables are zeroes. 

 

The arguments of the function domain_estimate_data are as follows. 

 

Argument Description 
estimator_descriptions List of names of estimators 
sample Sample data (data frame) 
population Population data (data frame) 
y Name of the y variable 
model Model object. Function calls predict(model, 

newdata=population)  and predict(model, 
newdata=sample) must work 

back_transformation Function back-transforming the predictions 
x_list List of names of quantitative x-variables 

used in n-calibration (or empty list) 
xq_list List of names of qualitative x-variables used 

in n-calibration (or empty list) 
unknown List of names of x-variables whose domain 

totals are estimated by GREG in n-
calibration (or empty list) 

domain_variables List of names of variables determining the 
domains (crosstabulation) 

weight Name of the design weight variable in 
sample 

reference_set Data set determining the poverty line, 
typically sample 

percentages Vector of percentage points used in the 
expansion of predictions (Eq. 18); default is 
1:99 

missing_handler Name of the type of predictor used to replace 
invalid direct estimates; examples: 
“expanded predictor”, “calibrated predictor”. 
Such a predictor is created for each poverty 
indicator. 
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Next excerpt of code is an example of poverty rate estimation by EBP based on a 

logistic mixed model (variable y is the equivalized income, w is the weight variable, x 

is an auxiliary variable and domain is the domain variable; pop is the population data 

set; invlogit is the function ( )exp( ) / 1 exp( )x x+ provided in the package). Note that 

the poverty indicator has to be created and added to the sample, and its name “ind” is 

used as argument y in the call of function domain_estimate_data. 

 
sample = data.frame(y,w,x,domain) 

ind = create_poverty_indicator(sample,"y","w",sample) 

data[["ind"]] = ind 

model <- nlme(ind ~ invlogit(fix+ran), fixed=fix~x, 

random=ran~1|domain, start=c(0,0)) 

 

back_transformation=identity 

 

estimator_data <- domain_estimate_data(list("ebp poverty rate"), 

sample=sample, population=pop, y="ind", model, back_transformation, 

domain_variables=list("domain"), weight="w", reference_set=sample) 

 

In the following example the resulting data set contains domain estimates by direct 

quintile share estimator, expanded quintile share predictor and their composite. The 

example presumes variables y, x and domain and data sets sample and pop as in 

previous example. 
 

logy <- logp(1)(y) 

model <- lme(logy ~ x, random=~1|domain) 

back_transformation=expm(1) 

 

estimator_data <- domain_estimate_data(list("direct quintile share”, 

"expanded quintile share predictor", ”direct quintile share + 

expanded quintile share predictor”), sample=sample, population=pop, 

y="y", model, back_transformation, domain_variables=list("domain"), 

weight="w", reference_set=sample, missing_handler = “expanded 

predictor”) 

 

More detailed description of R codes is in Veijanen and Lehtonen (2011).
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Annex 2. AMELI WP 2 Estimation: SUMMARY of SAE methods 
Estimators of poverty indicators examined in simulations with register data (Finland) 

Estimator Description Model Aux. info 
ESTIMATORS BASED ON INDICATOR VARIABLES 

At-risk-of poverty rate 
Design-based estimators 
1. DEFAULT Design-based direct Horvitz-Thompson estimator  None None 
2. HT-CDF Direct Horvitz-Thompson estimator based on cumulative 

distribution function 
None None 

3. GREG Generalized regression (GREG) estimator Linear fixed-effects model Area-level 
4. MC Model calibration estimator Logistic fixed-effects model Unit-level 
5. LGREG Logistic GREG estimator  Logistic fixed-effects model Unit-level 
6. MLGREG Mixed-model assisted logistic GREG estimator Logistic mixed model Unit-level 
Model-based estimators 
7. LSYN Logistic synthetic estimator  Logistic fixed-effects model Unit-level 
8. EBP Empirical best predictor incorporating predictions Logistic mixed model Unit-level 
9. EBP(Y) Empirical best predictor incorporating observations and 

predictions (EBLUP type) 
Logistic mixed model Unit-level 

ESTIMATORS BASED ON MEDIANS AND QUANTILES 
Relative median at-risk-of poverty gap 

Design-based estimators 
10. DEFAULT Design-based direct estimator  None None 
Model-based estimators 
11. SYN Synthetic estimator based on mixed model predictions in 

population domain 
Linear mixed model Unit-level 

12. SYN-EP Synthetic estimator based on expanded (transformed) mixed 
model predictions in population domain 

Linear mixed model Unit-level 

13. SYN-LOG Synthetic estimator based on log-expanded (transformed) 
mixed model predictions in population domain 

Linear mixed model Unit-level 

14. SYN-SIM Synthetic simulation-based estimator (Molina and Rao 2010) Linear mixed model Unit-level 
15. SYN-CAL Calibrated synthetic estimator based on log-expanded (trans-

formed) mixed model predictions in population domain 
Linear mixed model Area-level 

Composite estimators 
16. COMP Composite with DEFAULT and SYN-EP, MSE with 

nonparametric bootstrap 
Linear mixed model Unit-level 

17. COMP-PB Composite with DEFAULT and SYN-EP, MSE with 
parametric bootstrap 

Linear mixed model Unit-level 

18. COMP-L Composite with DEFAULT and SYN-LOG Linear mixed model Unit-level 
19. COMP-C Composite with DEFAULT and SYN-CAL Linear mixed model Area-level 

Quintile share ratio (S20/S80 ratio) 
Design-based estimators 
20. DEFAULT Design-based direct estimator  None None 
Model-based estimators 
21. SYN Synthetic estimator based on mixed model predictions in 

population domain 
Linear mixed model Unit-level 

22. SYN-EP Synthetic estimator based on expanded (transformed) mixed 
model predictions in population domain 

Linear mixed model Unit-level 

23. SYN-LOG Synthetic estimator based on log-expanded (transformed) 
mixed model predictions in population domain 

Linear mixed model Unit-level 

24. SYN-CAL Calibrated synthetic estimator based on log-expanded (trans-
formed) mixed model predictions in population domain 

Linear mixed model Area-level 

Composite estimators 
25. COMP Composite with DEFAULT and SYN-EP Linear mixed model Unit-level 
26. COMP-L Composite with DEFAULT and SYN-LOG Linear mixed model Unit-level 
27. COMP-C Composite with DEFAULT and SYN-CAL Linear mixed model Area-level 
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The Gini coefficient 

Design-based estimators 

28. DEFAULT Design-based direct estimator  None None 

Model-based estimators 

29. SYN Synthetic estimator based on mixed model predictions in 

population domain 

Linear mixed model Unit-level 

30. SYN-EP Synthetic estimator based on expanded (transformed) mixed 

model predictions in population domain 

Linear mixed model Unit-level 

Composite estimators 

31. COMP Composite with DEFAULT and SYN-EP Linear mixed model Unit-level 

Estimators proposed for further investigation are in red. 
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Technical SUMMARY of selected estimator types
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