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Chapter 1: Christian Bruch, Ralf Münnich and Stefan Zins, University of Trier.
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III

Aim and Objectives of Deliverable 3.1

Within the European Statistical System (ESS) more and more quality reports have to be
produced for the different surveys. One component of these reports contains information
on the accuracy of the estimates. In general, this information is based on variance com-
ponents which have to be estimated from the same sample. Hence, variance estimation
techniques play an important role in modern survey statistics.

Measuring the accuracy of estimates such as totals, means or proportions generally re-
quires to apply the appropriate variance estimation methodology. This allows for deriving
standard errors, confidence intervals and other similar measures as well as design effects
which help measuring the impact of sampling designs on the outcome of the estimates. In
general, two different methodologies can be applied for variance estimation of non-linear
estimators, linearization and resampling methods. The efficiency of the variance estim-
ators is mainly based on the properties of the point estimators as well as of the possible
skewness of the variable of interest. Further, complex sampling designs may question
the appropriateness of the variance estimation methodology and may lead to unusual
conclusions which are of major practical impact.

The methodology captured in work package 3 covers two of the most frequently en-
countered problems of variance estimation in modern sample surveys. The first one is
the presence of complex sampling designs, these issues are mainly dealt with in deliv-
erable 3.1. The second one is the necessity of using complex (point) estimators, e.g. if
poverty indicators need to be estimated or their change over time, which is the main focus
of deliverable 3.2 (see Münnich and Zins, 2011).

The aim of deliverable 3.1 is to give an overview of modern variance estimation meth-
ods. The efficiency of the variance estimation methods can only be tested in a practical
environment which is achieved within a large scale simulation study.

The deliverable is structured in the following way. The introduction provides a frame-
work with some much needed nomenclature and gives also a short summary on well known
variance estimators. Thereby elements of complex sample survey designs such as strati-
fication and multistage sampling are already introduced. Chapter 2 is dedicated to the
problem of variance estimator in the presence of unequal probability sampling. It is for
instance not uncommon in household surveys, such as in EU-SILC, to sample households
with probability proportional to size, i.e. the number of persons living in the particular
household. Chapter 3 gives an overview on the existing resampling methods and deals
with their implementation in the presence of complex sampling designs, in particular with
multi-stage sampling and unequal selection probabilities. Chapter 4 includes the results
from a small simulation study, which analyses explicitly the effects of the cluster sampling
at the first stage in two-stage sampling designs. That is, we examined the influence on
variance estimates of large variations in the size of the Primary Sampling Units (PSUs),
the mean value of the PSUs and the variance within the PSUs.
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Chapter 1

Introduction

In the European Statistical System quality reports gain increasingly in importance. Es-
pecially the accuracy measurement of point estimators like totals, means or ratios plays a
major role. This can be done by using measures like the root mean square error or provid-
ing confidence intervals for estimates. A central component of all criteria is the variance
of the point estimator which is also an accuracy criterion by itself (cf. Münnich, 2008,
p. 319 f.). In practice the true value of the variance is unknown and therefore has to be
estimated from the sample. The complexity of the variance estimation depends highly on
the sampling designs or parameters like the size of the Primary Sampling Units (PSUs) or
the homogeneity of the units within and between the PSUs. The aim of this deliverable is
to present different variance estimation methods which can be used for different sampling
designs and constellations of parameters.

First, we introduce a general framework which serves as the basis of our analysis. Let us
consider the finite population U of N identifiable units, so that they can be represented
by integers 1,2, . . . , N, U = {1, . . . , N}. Now we want to draw a sample of n units from
U by means of random sample without replacement. A sample s can be defined by the
following column vector (cf. Tillé, 2006, p. 8)

s = (I1, . . . , Ii, . . . , IN)T ∈ {0, 1}N , (1.1)

where

Ii =

{
1 if i ∈ s
0 if i /∈ s

.

Now a design specifies a probability distribution function p(.) on

Sn := {s ∈ {0, 1}n|
∑

i∈U Ii = n} ,

i.e on all non-empty subsets s of n distinct units from U , (cf. Tillé, 2006, p. 10 and 14)
hence, ∑

s∈Sn

p(s) = 1 and p(s) ≥ 0 ∀ s ∈ Sn .

If p(.) satisfies the above condition, we call it a fixed size sampling design without re-
placement, (cf. Berger, 1998a, p. 149f.). A sample S is then drawn by means of p(.)
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3

such that Pr(S = s) = p(s). The probability of inclusion for the i-th element in U is
denoted by πi, with πi =

∑
s3i p(s) and the second order inclusion probability πij, with

πij =
∑

s3{i,j} p(s). We can now use the Horvitz-Thompson estimator

τ̂ =
∑
i∈s

yi ·
1

πi
, (1.2)

to estimate the total τ =
∑

i∈U yi.

Two basic sampling designs of this paper are stratified random sampling and two stage
cluster sampling. Further sampling designs in this paper are mainly combinations of this
sampling designs. In case of stratified random sampling the population is divided into H
strata h (h = 1, . . . , H) of size Nh with N1 +N2 + ...+Nh = N . In each stratum a sample
of size nh is drawn. When the parameter of interest is a total value the variance of this
estimator is computed by:

V (τ̂StrRS) =
H∑
h=1

V (τ̂h) =
H∑
h=1

N2
h ·
(
Nh − nh
Nh

)
· σ

2
h

nh
, (1.3)

with

σ2
h =

1

Nh − 1
·
Nh∑
i=1

(yhi − yh)
2 .

This variance can be estimated by:

V̂ (τ̂StrRS) =
H∑
h=1

N2
h ·
(
Nh − nh
Nh

)
· s

2
h

nh
, (1.4)

with

s2
h =

1

nh − 1
·
nh∑
i=1

(yhi − yh)
2

(cf. Lohr, 1999, p. 99 ff.).

When a two stage cluster sampling is used the variance of the point estimator is defined
by

V
(
θ̂
)

= V1

[
E2

(
θ̂
)]

+ E1

[
V2

(
θ̂
)]

(1.5)
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4 Chapter 1. Introduction

where E1 indicates the expected value over all possible units of the first stage and E2 the
expected value over all possible units of the second stage for a given set of units of the first

stage. V1 is the variance over the drawn PSUs and V2

(
θ̂
)

the variance over all possible

Secondary Sampling Units (SSUs) for a given set of selected PSUs (cf. Cochran, 1977,
p. 275 f.).

Hence, in case of two stage cluster sampling the variance of a point estimator consists of
two components: the first component is the variance of the several units of the first stage
and the second component is the variance of the SSUs within the several PSUs (cf. Lohr,
1999, p. 147).

The variance of a total value can be estimated by

V̂ (τ̂2St) = N
′2 ·
(
N
′ − n′

N ′

)
· s

2
e

n′
+
N
′

n′
·
n
′∑

i=1

N
′′2
i ·

(
N
′′
i − n

′′
i

N
′′
i

)
· s

2
i

n
′′
i

(1.6)

with

s2
e =

1

n′ − 1
·
n
′∑

i=1

(
τ̂i −

τ̂

N ′

)2

(1.7)

and

s2
i =

1

n
′′
i − 1

·
n
′′
i∑

q=1

(yiq − yi)
2

(cf. Lohr, 1999, p. 147).

N
′

indicates the number of PSUs in the universe at stage 1 and n
′

their number in the
sample. N

′′
i indicates the number of SSUs in the universe in a certain PSU i at stage 2

and n
′′
i the number of drawn SSUs in the PSU i. This procedure can easily be extended

to sampling designs with more than two stages.

The direct variance estimator of both, a two stage design with stratification at the first
stage is given by:

V̂ (τ̂2St) =
H∑
h=1

N
′2
h ·
(
N
′

h − n
′

h

N
′
h

)
· s

2
e

n
′
h

+
H∑
h=1

N
′

h

n
′
h

·
n
′
h∑

i=1

N
′′2
hi ·

(
N
′′

hi − n
′′

hi

N
′′
hi

)
· s

2
hi

n
′′
hi

with
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5

s2
e =

1

n
′
h − 1

·
n
′
h∑

i=1

(
τ̂hi −

τ̂h
N
′
h

)2

and

s2
hi =

1

n
′′
hi − 1

·
n
′′
hi∑

q=1

(yhiq − yhi)
2

(cf. for an example of a stratified three stage design Preston, 2009, p. 228).
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Chapter 2

Variance Estimators and their
Approximation

2.1 Variance of the Horvitz-Thompson Estimator

The variance of τ̂ , as defined in (1.2), is calculated by

V (τ̂) =
∑
i∈U

πi(1− πi)
(
yi
πi

)2

+ 2 ·
N∑
i=1

N∑
j>i

(πij − πi · πj) ·
yi
πi
· yj
πj

. (2.1)

For the derivation of the above variance see Cochran (1977), p. 260. An unbiased
estimator for the variance in (2.1) is given by

V̂ (τ̂) =
∑
i∈s

(1− πi) ·
(
yi
πi

)2

+ 2 ·
n∑
i=1

n∑
j>i

(1− πi · πj
πij

) · yi
πi
· yj
πj

. (2.2)

The justification of the variance estimator in (2.2) can be found in Särndal et al. (1992),

p. 44. Although they use another notation for (2.2), V̂(τ̂) =
∑∑

s
1
πij
·
(

πij
πi·πj − 1

)
yiyj,

with
∑∑

s aij =
∑

i∈s aii +
∑

i∈s
∑

j∈s aij and i 6= j, which is equivalent to (2.2). In case
of fixed size designs Yates and Grundy (1953), p. 257, established an alternative to the
variance estimator in (2.2). Thereafter the variance in (2.1) can also be written as

V (τ̂) =− 1

2

N∑
i

N∑
j 6=i

(πij − πi · πj) ·
(
yi
πi
− yj
πj

)2

(2.3)

=
N∑
i=1

N∑
j<i

(πi · πj − πij) ·
(
yi
πi
− yj
πj

)2

,

and its unbiased estimate is given by

V̂ (τ̂) =
n∑
i=1

n∑
j<i

πi · πj − πij
πij

·
(
yi
πi
− yj
πj

)2

, (2.4)
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2.2 Variance Estimation when Sampling With Replacement 7

(cf. Cochran, 1977, p. 260f.). For (2.4) and (2.2) to be unbiased, a necessary and
sufficient condition is that πij > 0, ∀ i,l ∈ U . However, for both variance estimates to
be strictly non negative a sufficient condition is that πi · πj ≥ πij, ∀ i, j ∈ U , i 6= j, (cf.
Tillé, 1996, p. 179).

With the two variances estimators (2.4) and (2.2) it is possible to handle all common
sample designs. In practice, however, there are drawbacks with these estimators. First,
the double sum which appears in both formulas involves a fast growing mass of terms
which demands that these variance estimators be calculated recursively, (see, Deville,
1999, p. 194). Second, the second order inclusion probabilities πij are difficult to obtain
for most samples designs applied in practice. Only in rare cases with simple schemes they
are easily calulated, e.g. for a simple random sample (SRS) design without replacement
(WoR) the πijs are given by

πij =


n

N
i = j ∧ i, j ≤ N

n · (n− 1)

N · (N − 1)
else.

. (2.5)

The probabilities result from the hypergeometric distribution, i.e. the number of samples
including the i-th element

(
N−1
n−1

)
respectively the i-th and j-th element

(
N−2
n−2

)
divided by

the number of all possible samples
(
N
n

)
. Inserting the above inclusion probabilities into

(2.4) yields

V (τ̂) = N2 ·
N∑
i

N∑
j<i

(
n2

N2
− n · (n− 1)

N · (N − 1)

)
·
(

yi
n/N

− yj
n/N

)2

(2.6)

= N2 · N − n
N · n

· 1

N − 1
· 1

N
·
N∑
i

N∑
j<i

(yi − yj)2

= N2 ·
1
N
·
∑N

i=1(yi − 1
N
·
∑N

j=1 yj)
2

n
· N − n
N − 1

= N2 ·
σ2
y

n
· N − n
N − 1

,

where σ2
y denotes the variance of variable y, (cf. Münnich, 2005, p. 55). Substituting σ2

y

by a suitable estimate σ̂2
y, in case of SRS by 1

n−1
·
∑n

i=1(yi − 1
n
·
∑n

j=1 yj)
2, leads to the

variance estimate V̂ (τ̂).

2.2 Variance Estimation when Sampling With Re-

placement

To avoid the calculation of the double sum in (2.4) or (2.2) in the presence of more
complex designs different approximations can be found in the literature that only use
πi but dispense with the πij, (cf. Berger and Skinner, 2004). One way to evade
the computation of this large number of cross-products is to use variance estimation for

AMELI-WP3-D3.1



8 Chapter 2. Variance Estimators and their Approximation

samples drawn with replacement. Thus, we treat the sample as it would have been drawn
by more simple design than the true one. The estimation of τ from a sample drawn with
replacement can be done by the Hansen-Hurwitz estimator, (see Särndal et al., 1992,
p. 51f.).

τ̂HH =
1

n

n∑
i=1

Zi , (2.7)

where Zi is a random variable such that

Zi =
yk
pk

that is, if the k-th element is selected in the i-th draw and pk is the selection proability
of the k-th element. Further, we have the following relationship between the inclusion
probability πk and pk

πk = 1− (1− pk)n ,

= npk +
∞∑
l=2

(
n

k

)
(−pk)l ,

and if pk is small, which is reasonable if N is large, then πk
.
= npk. It follows that

∀ i = 1, . . . , n; Pr

(
Zi =

yk
pk

)
= pk; k = 1, . . . , N .

The estimator in (2.7) is unbiased for the population total τ , because
E(Zi) =

∑
k∈U

yk
pk
· pk = τ and its variance is

V (τ̂HH) =
∑
k∈U

(
yk
pk
− τ
)2

· pk ·
1

n
. (2.8)

An unbiased estimator of the variance in (2.8) is given by

V̂ (τ̂HH) =
1

n · (n− 1)

n∑
i=1

(Zi − τ̂HH)2 , (2.9)

the proof of (2.8) and (2.9) can be found in Särndal et al. (1992), p. 52. The variance
estimate in (2.9) can now be used to obtain a simplified variance estimation for (1.2), (cf.
Särndal et al., 1992, p. 422)

V̂0 (τ̂) =
1

n · (n− 1)
·
∑
k∈s

(
yk
pk
− τ̂
)2

, (2.10)

where pk is taken as pk = πk
n

for k ∈ s. By using (2.10) instead of (2.4) or (2.2) we
calculate the variance estimator as if the sample was drawn with replacement, whereas
it was actually drawn without replacement. But this computational simplification that
results from getting rid of the πij has the drawback that V̂0 will not be without bias for
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2.3 Variance Approximations 9

V (τ), (see Särndal et al., 1992, p. 422). However, this bias which is for any fixed sample
size design given by

E
(
V̂0(τ̂)

)
− V (τ̂) =

n

n− 1
· (V0(τ̂)− V (τ̂)) , (2.11)

with V (τ̂) given in (2.1) or (2.3), will be positive in cases where sampling without re-
placement results in a lower sampling variance than sampling with replacement, as it is
the case for SRS. Thus, the use of (2.10) will lead to the construction of over conservative
confidence intervals, whereas for unequal proability sampling this need not to be the case,
(cf. Gabler, 1990, p. 64f.). A sufficient conditon for V0(τ̂)− V (τ̂) to be nonnegative is

πij ≥ πi · πj · (1−
1

n
) , ∀ i,j ∈ U , i 6= j (2.12)

which can be seen from rewriting (2.8) in following way

V (τ̂HH) =
N∑
k=1

y2
k

npk
− τ 2

n
=

1

n

N∑
k=1

N∑
l<k

(
yk
pk
− yl
pl

)2

pk · pl , (2.13)

having in mind that pk = πk
n

it follows that (2.13) is always greater than (2.3) if condition
(2.12) is met, e.g. in cases of SRS WoR.

Although condition (2.12) is sufficient, it is not a necessary one. A weaker condition, yet
still not a necessary one, is given be Gabler (1990), p. 69f., which states that if

N∑
k=1

min
1≤l≤N

πkl
πl
≤ n− 1 ,

then V0(τ̂) ≥ V (τ̂), (see also Gabler, 1984, for another sufficient condition).

Thus, we conclude that in some cases (2.9) might serve as an easy to compute estimate
for an upper bound for the sampling variance when sampling without replacement. This
simplification is, however, limited by the fact that we need to know the πij’s to be sure
that (2.8) is greater than (2.1) or (2.3).

2.3 Variance Approximations

To begin of this section we start with an alternative formulation for the variance of the
Horvitz-Thompson estimator for fixed sample sizes (2.3), (cf. Brewer, 2003, p. 149).
This approch will lead to a first approximation of (2.3) and show to what extent approx-
imations of the second order inclusion probabilities are needed. First we begin with some
general properties of the inclusion probabilities, which should be respected by proposed
variance approximations, (cf. Tillé, 1996, p. 184):∑

i∈U
i 6=j

πij = πj · (n− 1) (2.14a)

AMELI-WP3-D3.1



10 Chapter 2. Variance Estimators and their Approximation∑
j∈U

∑
i∈U
i 6=j

πij = n · (n− 1) (2.14b)

∑
j∈U

∑
i∈U
i 6=j

πjπi = n2 −
∑
j∈U

π2
j (2.14c)

∑
i∈U
i 6=j

(πiπj − πij) = πj(1− πj) (2.14d)

Now we may rewrite (2.3) in the following way,

V (τ̂) =
1

2

N∑
i=1

N∑
j 6=i

(πi · πj − πij) ·
(
yi
πi
− τ

n

)2

−
(
yj
πj
− τ

n

)2

(2.15)

=
N∑
i=1

N∑
j 6=i

(πi · πj − πij) ·
(
yi
πi
− τ

n

)2

−
N∑
i=1

N∑
j 6=i

(πi · πj − πij)
(
yi
πi
− τ

n

)
·
(
yj
πj
− τ

n

)
,

and by relation (2.14d)

V (τ̂) =
N∑
i=1

πi(1− πi) ·
(
yi
πi
− τ

n

)2

(2.16)

−
N∑
i=1

N∑
j 6=i

(πi · πj − πij)
(
yi
πi
− τ

n

)
·
(
yj
πj
− τ

n

)
.

The first term in (2.16) equals (2.9) for pk = πk/n with a finite population correction term
(1−πi) and constitutes the major part of the variance of τ̂ (cf., Brewer, 2003, p. 149f.).
The importance of the second term in (2.16) depends on the sampling design p(.). For
the second term to be negligiable compared to the first term, p(.) must be of the form
that πij ≈ πi · πj. For example this is justifiable in case of SRS, (see (2.5)). However, if
the second term in (2.16) is expected to become important one can look for more suitable
approximations of πij, which lead to proxy variances of τ̂ having the simple form of the
first term in (2.16). This will be the main concern for rest of the section. To do so we
start by considering Poisson sampling.

Poisson sampling is a design for which the variance of (1.2) can be derived as easily as for
the Hansen-Hurwitz estimator, where only the πi’s have to be known. Because in Poisson
sample all elements of the random vector s in (1.1) are independent random variables.
Poisson sampling is defined by

ppoiss(s̃) =
∏
i∈s̃

pi
∏
U\s̃

1− pi ,

with numbers 0 ≤ pi ≤ 1∀ i ∈ U (see Hájek, 1981, p. 54). Poisson sampling has a
random sample size ñ, with E(ñ) =

∑N
i=1 pi and V(ñ) =

∑N
i=1 pi(1− pi). Further we have
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2.3 Variance Approximations 11

first-order inclusion probabilities, π̃i = pi ∀i ∈ U and second-order inclusion probabilities
π̃ij = pipj i, j ∈ U , i 6= j. Thus, if s̃ is a sample drawn after ppoiss(.), then

Vpoiss(τ̂) = Vpoiss

(∑
i∈s̃

yi
πi

)
=
∑
i∈U

y2
i

π2
i

· π̃i(1− π̃i) , (2.17)

where Vpoiss denotes the variance under the design ppoiss(.). Note that (2.17) contains
also πi because it is the variance of estimator (1.2) computed under Poisson sampling,
(cf. Deville and Tillé, 2005, p. 573). To have a fixed sample size we make ppoiss(.) a
conditional Poisson sampling design given that its sample size ñ is fixed to n. Heuristically
we can describe such a fix size Poisson sampling design as

ppoiss(s̃|ñ = n) =
ppoiss(s̃)

P (s̃ ∈ Sn)
,

where ppoiss(s̃|ñ = n) = 0 if s̃ /∈ Sn and P (s̃ ∈ Sn) denotes the probability under design
ppoiss that the size of s̃ is n (see Berger, 2004b, p. 454). The problem connected with
the conditioning on P (s̃ ∈ Sn) is to reevaluate the π̃i’s. They can be computed exactly
(see Hájek, 1981, chapter. 14), but in Hájek (1964, p. 1508ff) it is shown that we can
approximate π̃i by πi.

We may then write for the variance of τ̂

V(τ̂) = Vpoiss (τ̂ |ñ = n) ,

(cf. Matei and Tillé, 2005, p. 548). If we assume that through Poisson sampling the
couple {τ̂ , ñ} is bivariate normal distributed (cf. Deville and Tillé, 2005, p. 573) then,
by exploiting the linear relation between τ̂ and ñ, it is possible to write

Vpoiss (τ̂ |ñ = n) = Vpoiss(τ̂ + (n− ñ) · β) , (2.18)

where

β =
Covpoiss(ñ, τ̂)

Vpoiss(ñ)
,

and

Covpoiss(ñ, τ̂) =
∑
i∈U

π̃i(1− π̃i) ·
yi
πi
,

Vpoiss(ñ) =
∑
i∈U

π̃i(1− π̃i) .

If we define bi = π̃i(1− π̃i) we get the following variance approximation formula

Vapprox (τ̂) =
∑
i∈U

bi · ε2i , (2.19)

where

εi =
yi
πi
− β.
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12 Chapter 2. Variance Estimators and their Approximation

Approximation (2.19) is valid for the class of maximum entropy designs, which are designs
that maximise the quantity

−
∑
s∈S

p(s) log p(s) ,

under condition πi =
∑

s3i p(s), which is met by conditional Poisson samplign p̃(.) (cf.
Matei and Tillé, 2005).

Depending on the choice of bi there exist numerous variants of approximation (2.19). An
analysis of the literature on different values of bi can be found in Matei and Tillé (2005).

2.3.1 Hajek Approximation

Hájek (1964), p. 1509, proposed the following relation between the probabilities πi and
πij

πiπj − πij = d−1 · πi (1− πi) · πj · (1− πj) [1 + o(1)] , (2.20)

where d =
∑

i∈U πi · (1 − πi) and o(1) → 0 if d → ∞. The relation above is vaild
for rejective sampling, which he defines as a conditional Poisson sampling or conditional
sampling with replacement, (cf. Hájek, 1981, p. 66f.). Thus, we can write:

πij ≈ πiπj ·
(
1− (1− πi) · (1− πj) · d−1

)
1 ≤ i 6= j ≤ N . (2.21)

Inserting (2.21) into (2.3) gives the following approximation for V (τ̂)

VHaj(τ̂) =
∑
i∈U

πi(1− πi) ·
(
yi
πi
−B

)2

, (2.22)

where

B =

∑
i∈U

yi
πi
· πi(1− πi)∑

i∈U πi(1− πi)
.

Now the right-hand side of formula (2.20) may be approximated by the prodcut cicj where

ci = πi(1 − πi) ·
√
d
−1

. But because this does not satisfy the relation (2.14d) let ci be

set to ci = πi(1 − λi) ·
√
dλ
−1

and dλ =
∑N

j=1 πj(1 − λj). Hájek (1981), p. 27, gives an
approximation of the πi(1 − λi) terms, which can be described, in line with the general
approximation in (2.19), in the following way

HAJEKb
∗
i = πi(1− λi) = πi(1− πi) ·

[
1− πi(1− λi)

dλ

]−1

. (2.23)

A value for πi(1 − λi) is then obtained by iteration. For the first iteration inserting
πi(1− λi) = πi(1− πi) on the right hand side. The obtained value is then again insterted
on the right hand side of (2.23), this process is repeated until the results become stable
as πi(1− λi) converges to πi(1− πi) (cf. Hájek, 1981, p. 76). As a compromise between
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2.3 Variance Approximations 13

simplicity and precision Hájek (1981) proposed for small πi’s the following approximation
for bi

HAJEKbi = πi(1−
n− 1

n
πi) . (2.24)

For πi = n
N
∀i ∈ U (2.22) becomes the standard variance estimator (2.6), (cf. Berger,

2003, p. 9 ). Note that if
τ

n
is substituted by B in (2.22) equals the first term in (2.16).

Furthermore, Berger (1998a), showed that (2.21) can also be used for a class of highly
randomized or high entropy sampling designs (cf. Berger, 2004a, p. 307), which includes
amongst others the RaoSampford sampling design (see, Sampford, 1967).

Fixed-Point Approximation

Rewrite the general approximation in (2.19) as

Vapprox (τ̂) =
∑
i∈U

y2
i

π2
i

(
bi −

b2
i∑

j∈U bj

)
− 1∑

j∈U bj

∑
i∈U

∑
j 6=i

yiyj
πiπj

· bibj , (2.25)

Deville and Tillé (2005) proposed, by comparing (2.25) with (2.1), to obtain a most
accurate approximation of the variance of τ̂ by solving the following equation system to
find another approximation of bi,

bi −
b2
i∑

j∈U bj
= πi(1− πi) . (2.26)

Because (2.26) is a non linear equation system the bi can be approximated by iteration,
(see also Tillé, 2006, p. 139f.). To solve, (2.26) Deville and Tillé (2005) suggested a
fixed-point algorithm by using the recurrence equation until convergence

b
(k)
i =

[
b

(k−1)
i

]2∑
i∈Ub(k−1)

i

+ πi (1− πi) for k = 0, 1, 2, 3, . . . (2.27)

and as starting value b
(0)
i

b
(0)
i = πi(1− πi) ·

N

N − 1
.

Though there the following necessary conditon has to hold in order to find a unique
solution to (2.27),

max
1≤i≤N

πi(1− πi)∑
j∈U πj(1− πj)

<
1

2
,

(cf. Deville and Tillé, 2005, p. 575). If the process does not converge Tillé (2006),

suggestes to use the values b
(1)
i obtained after one iteration, where

b
(1)
i = πi(1− πi) ·

[
N · πi(1− πi)

(N − 1) ·
∑

j∈U πj(1− πj)
+ 1

]
.

Note that the proceeding described above is quite simular to Hájek (1981) iterative
approach to solving (2.23).
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14 Chapter 2. Variance Estimators and their Approximation

Adjustment on Marginal Totals

In order to find an approximation which respects the constraint (2.14a), Tillé (1996)
applies the Iterative Proportional Fitting Procedure to the matrix A = [aij], where

aij =

{
πiπj if i 6= j
0 if i = j

.

Matrix A is adjusted on the marginals totals τb = (τb1, . . . , τbi, . . . , τbN) and τ
′

b where
τbi = πi · (n− 1). This can be achieved be applying the following algorithm:

η
(0)
i = πi, ∀i ∈ U ,

η
(2k−1)
i =

(n− 1)πi

η(2k−2) − η(2k−2)
i

and

η
(2k)
i = η2k−1

i

[
n(n− 1)

(η2k−1)2 −
∑

i∈U
(
η2k−1
i

)2

]1/2

where

η(k) =
∑
i∈U

ηki , for k = 0, 1, 2, 3, . . . ,

(cf., Tillé, 1996, p. 185). Then the coefficients ηi are used to approximate the second
order inclusion probabilities, i.e. πij ≈ ηiηj.

2.3.2 Brewer Approximation

There exists another class of approximate expressions for the variance of τ̂ proposed by
Brewer (2003) and Brewer and Donadio (2003). They use an approximation for the
πij derived by Hartley and Rao (1962) for a randomized systematic sampling scheme
with unequal inclusion probabilities of the following form

πij ≈
1

2
πiπj

(
c∗i + c∗j

)
, (2.28)

where

c∗i =
(n− 1)

n

(
1− n−2

∑
i∈U

π2
i + 2

πi
n

)
.

An approximation for the variance in (2.3) is obtained by developing the second term in
(2.16) with (2.28), which yields

N∑
i=1

π2
i (1− c∗i ) ·

(
yi
πi
− τ

n

)2

. (2.29)

Adding to the term above the first term in (2.16) gives the following approximation

VBrew(τ̂) =
N∑
i

πi(1− c∗iπi) ·
(
yi
πi
− τ

n

)2

. (2.30)
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2.3.3 Estimators for Variance Approximations

Whereas the previews section gave an obverview of possible approximations to variance
(2.3), this section introduces some estimators for these approximations. Following the
typology of Matei and Tillé (2005) we will distinguish between two types of estimators
for variance approximations, estimators of type 1 that require knowledge of πi for all i ∈ s
and estimators of type 2 requiring knowledge of πi for all i ∈ U .

Type 1 Variances Estimates

From the general variance approximation (2.22) a plausible estimator can be written as

V̂approx (τ̂) =
∑
i∈s

b̂i
π2
i

· e2
i , (2.31)

where

ei = yi − B̂ (2.32)

and B̂ =

∑
j∈s

yj
πj
· b̂j∑

j∈s b̂j
· πi . (2.33)

Depending on the the choice of b̂i numerous estimates have been proposed in the literature,
(see, Matei and Tillé, 2005, Cap. 4). A simple value for b̂i could be

1b̂i = (1− πi)
n

n− 1
(2.34)

which lead for SRS to the standard variance estimator of (2.6). A more complex choice
of b̂i proposed by Deville, 1999 is given by

2b̂i = (1− πi)

[
1−

∑
j∈s

1− πk∑
j∈s 1− πj

]
. (2.35)

Also Fixed-Point Approximation can be used to obtain a value for b̂i. The same algorithm
is applied as described in section (2.3.1) except that the right hand side of equation (2.26)
and second term on right hand side of (2.27) are multiplied by π−1

i . The initial value for
the algoritm would be

3b̂
(0)
i = (1− πi) ·

n

n− 1
,

and a necessary conditon that a solution exists is

max
1≤i≤n

(1− πi)∑
j∈s(1− πj)

<
1

2
,

(cf. Tillé, 2006, p. 141f). If the process does not converge Tillé (2006) suggests to use

the values 3b̂
(1)
i obtained after one iteration:

3b̂
(1)
i = (1− πi) ·

[
n · (1− πi)

(n− 1) ·
∑

j∈s(1− πj)
+ 1

]
.
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16 Chapter 2. Variance Estimators and their Approximation

Rosén suggested an estimator (cf. Rosén, 1997, p. 167f.) with b̂i = 1b̂i, but substituting
B̂ in (2.32) by

rB̂ =

∑
j∈s

yj
πj
· 1−πj

πj
ln (1− πj)∑

j∈s
1−πj
πj

ln (1− πj)
· πi .

In accordance with variance approximation (2.30) Brewer (2003) and Brewer and
Donadio (2003) constructed a variance estimator which they claim to be design-unbiased
under SRS. This variance estimator is given by

V̂Brew(τ̂) =
n∑
i

[
1

c∗i
− 1

]
π2
i

·
(
yi −

τ̂

n
· πi
)2

, (2.36)

where (2.36) is the corresponding Horvitz-Thompson estimator to the sum in (2.30) correc-
ted by a factor c∗i

−1, (cf. Brewer and Donadio, 2003, p. 6). Brewer (2003) proposed
a selection of choices for ĉ∗i . One of them belongs to the category of Type 1 estimators:

1ĉ
∗
i =

n− 1

n− πi
.

The implicit motivation for the choice of 1ĉ
∗
i is given by the relation (2.14d), (see Brewer

and Donadio, 2003, p. 5).

Type 2 Variances Estimates

From the work of Berger (1998b) the following value of b̂i can be suggested, (see Matei
and Tillé, 2005, p. 554):

4b̂i = (1− πi)
n

n− 1

[ ∑
j∈s 1− πk∑

j∈U πk(1− πj)

]
. (2.37)

Till’s approach (cf. Tillé, 1996, p. 184f.) of approximating the πij’s as described in
section (2.3.1) can be used to derive an estimate of the form

V̂Tille(τ̂) =

[∑
j∈s

5b̂i

]∑
i∈s

5b̂i
π2
i

(
yi −

∑
j∈s

yj
πj
· 5b̂j∑

j∈s 5b̂j
· πi

)2

(2.38)

− n

π2
i

∑
i∈s

(
yi −

τ̂

n
· πi
)2

,

where

5b̂i =
πi
ηi
,

with ηi obtained by the alogrithm presented in section (2.3.1). Note that the second term
in (2.38) corresponds to the estimator in (2.31) with b̂i = 1 ∀ i ∈ U .
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2.3 Variance Approximations 17

Finally, there are three variants of estimate (2.36) which belong to category Type 2 es-
timators, (see Brewer, 2003, p. 152f and 156f.):

2ĉ
∗ =

n− 1

n−
∑

j∈U π
2
j

n

,

3ĉ
∗ =

n−1
n

1− 2πi
n

+
∑

j∈U π
2
j

n2

,

4ĉ
∗ =

n−1
n

1− (2n−1)πi
n(n−1)

+
∑

j∈U π
2
j

n(n−1)

.

The value 2ĉ
∗ is deduced by comparing relations (2.14b) and (2.14c). The more complex

estimator using 3ĉ
∗ and 4ĉ

∗ stem form c∗i used in approximation (2.28), where 4ĉ
∗ represents

a supposed improvement over 3ĉ
∗ in terms of unbiasedness for πi = n

N
∀ i ∈ U , that is

under SRS.
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Chapter 3

Resampling Methods

The resampling method of variance estimation requires to select two or more (sub-)samples
from a given population, or possibly a sample, and computing a separate estimate of the
population parameter of interest from each sample. Variance estimation is done from
the combination of all samples. The resampling methods differ in the way they generate
the subsamples and with that in the treatment of complex survey designs (cf. Münnich,
2005, p. 69).

3.1 Random Groups

The basic idea behind this method is to divide the sample into R groups which are
then randomly selected, usually using the same sampling design, (cf. Wolter, 2007, p.
21). An estimation of the population parameter of interest is carried out for each of the
subsamples and the whole sample as well. The variance estimation is based on these
repeated estimates. In the context of random groups we can differentiate between two
cases. In the first case, the subsamples are mutually independent, while in the second case
there is a dependency between random groups, (cf. Wolter, 2007, p. 21). A random
group variance estimator in case of independency can be derived as follows. Let τ be the
population parameter of interest and τ̂r its corresponding estimate on basis of the r-th
subsample. Then we can define the point estimator for τ using the method of random
groups by

τ̂RG =
1

R
·

R∑
r=1

τ̂r. (3.1)

An unbiased variance estimator for V (τ̂RG) is stated by

V̂ (τ̂RG) =
1

R
· 1

R− 1
·

R∑
r=1

(τ̂r − τ̂RG)2 . (3.2)
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Instead of computing τ̂ on the basis of the whole sample we take τ̂RG as a point estimator
and using V̂ (τ̂RG) as its corresponding variance estimator (cf. Wolter, 2007, p. 21 ff.,
Münnich, 2005, p. 70 f.). In case of nonindependent subsamples the random group es-
timator (3.1) produces biased estimates. An investigation of the magnitude and sign of
the bias is given in Wolter (2007, Section 2.4). In surveys the method of random groups
works well with respect to large samples of Primary Sampling Units (PSUs) (cf. Rust,
1985, p. 384). But as mentioned in Münnich (2005, p. 71) the method plays a minor part
in practice due to their lack of efficiency and the advancements which are described in the
following sections.

3.2 Balanced Repeated Replication

In presence of a stratified simple random sample (StrSRS) with two PSUs per stratum
the method of random groups leads to an unstable variance estimation in practice. For
such case balanced repeated replication (BRR) was developed (cf. Lohr, 1999, p. 298 f.,
Särndal et al., 1992, p. 430). This method allows a faster convergence than the method of
random groups. The procedure goes back to McCarthy (1966, 1969) and was originally
called balanced half samples (cf. Münnich, 2005, p. 71).

In the basic model each of the H strata consists of two PSUs. Only one element per
stratum is drawn, so we take a half sample. As a result 2H half samples are possible and
with a large number of strata this could lead to a huge computational effort. To reduce
the complexity we try to select a balanced set of half samples R with R � 2H . Now
let this set of R half samples by defined through a R ×H matrix RH with the (r,h)-th
element δrh = +1 or -1, indicating whether the PSU from the h-th stratum selected for
the r-th half sample is the first or the second PSU. Then the set of R half-samples is said
to be balanced if

R∑
r=1

δrhδrh′ = 0 ∀ h 6= h
′
, (3.3)

(cf. Shao et al., 1998, p. 822, Wolter, 2007, p. 107ff., Münnich, 2008, p. 325f.).
A balanced matrix RH can be obtained by using a R × R Hadamard matrix. The
rows of a Hadamard matrix denote the half samples and the columns the strata, where
H+1 ≤ R ≤ H+4, (cf. Münnich, 2008, p. 325 f., Shao et al., 1998, p. 822). Because its
rows and columns are mutually orthogonal it fulfills condition (3.3) hence the half samples
are drawn mutually independent. An example for an Hadamard matrix of dimension 8×8:

RH =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(3.4)
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20 Chapter 3. Resampling Methods

(cf. Davison and Sardy, 2004, p. 18).

The weights of the chosen elements have to be adjusted and multiplied by 2 (cf. Shao
et al., 1998, p. 822). As before by applying the method of random groups the population
parameter of interest τ̂r is computed on the base of each replication, here, by using bal-
anced repeated replication on each half sample. Then a standard BRR variance estimator
is given by

V̂BRR (τ̂) =
1

R
·

R∑
r=1

(τ̂r − τ̂StrRS)2 , (3.5)

where τ̂StrRS is the estimated total in case of stratified random sampling (StrRS) (cf.
Münnich, 2005, p. 74).

The basic model, as described before, doesn’t reflect a realistic scenario. In practice the
elements per stratum are larger than two (nh > 2) and associated with a smaller number
of strata. Therefore the basic model has to be extended. One possibility is to divide the
PSUs in a stratum h randomly into two groups of sizes nh,1 = bnh/2c and nh,2 = nh−nh,1.
For a possibility to handle the case when nh is odd see Kovacevic and Yung (1997,
p. 45). A set of R replicates continues to be balanced, if in any two strata, pairs of groups
have the same frequency of appearing in the R-replication (cf. Wolter, 2007, p. 128 ff.,
Davison and Sardy, 2004, p. 18 f., Rao and Shao, 1996, p. 343 f., Münnich, 2008,
p. 326, Münnich, 2005, p. 77, Shao et al., 1998, p. 824).

The weights of the r-th replicate have to be adjusted:

w
(r)
h,i :=


whi ·

[
1 +

{
nh,2 · (1− fh)

nh,1

}1/2
]
, δrh = 1,

whi ·

[
1−

{
nh,1 · (1− fh)

nh,2

}1/2
]
, δrh = −1,

(3.6)

where (1− fh) is a correction when the sampling design is without replacement (cf. Dav-
ison and Sardy, 2004, p. 18, Münnich, 2005, p. 77).

The variance estimator of the grouped balanced repeated replication (GBRR) is also
adequate to the basic model and unbiased:

V̂GBRR (τ̂) =
1

R
·

R∑
r=1

(τ̂r − τ̂)2 , (3.7)

(cf. Münnich, 2005, p. 77).
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The BRR variance estimator can lead to instable variance estimates for two reasons (cf.
e.g. Davison and Sardy, 2004, p. 19, Davison and Sardy, 2007, p. 375, Valliant,
1987, p. 80). The first reason results from (3.5) whose distribution is cχ2

R−1. Thus, the

coefficient of variation is roughly (2/R)1/2, where c is a constant and > 0. The coefficient
of variation increases in case of a small R or equivalently a small number of strata H. The
second reason is the high sensitivity of some statistics when the weights are perturbed.
Then the calculation of all the replicate estimates τ̂1, . . . , τ̂r can be impossible (cf. Davison
and Sardy, 2004, p. 19).

For that reason Fay (1989) suggests a scheme which makes the weighting milder by
choosing a factor ε, where 0 < ε ≤ 1. The weights result from:

w
(r)
h,i :=


whi ·

[
1 + ε ·

{
nh,2 · (1− fh)

nh,1

}1/2
]
, δrh = 1,

whi ·

[
1− ε ·

{
nh,1 · (1− fh)

nh,2

}1/2
]
, δrh = −1.

(3.8)

The resulting variance estimator is defined by

V̂GBRR,ε (τ̂) =
1

R · ε2
·

R∑
r=1

(τ̂r,ε − τ̂)2 , (3.9)

(cf. Davison and Sardy, 2004, p. 19, Münnich, 2005, p. 77 f.).

Another proposal is given by Rao and Shao (1996, p. 344). They suggest to repeat the
random grouping T times and to compute (3.7) or (3.9) each time and averaging over the
T repetitions:

V̂RG (τ̂) =
1

T
·

T∑
t=1

V̂GBRR (τ̂) , (3.10)

(cf. Rao and Shao, 1996, p. 344).

Wolter (2007, p. 130 f.) recommends to subdivide the real stratum h (for h = 1, , H)
into mh artificial strata with two elements per stratum and to apply the basic model of
balanced repeated replication (cf. Münnich, 2005, p. 78).

For stratified multistage designs half samples are often taken only at the first stage (for
more details see Shao et al., 1998, p. 822 ff., Shao and Tu, 1995, p. 241 ff., Rao et al.,
1992, p. 213 f., Rust and Rao, 1996, p. 289 ff., Rao and Shao, 1999, p. 405 ff.).
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22 Chapter 3. Resampling Methods

3.3 Jackknife

Another resampling method of great importance is the jackknife. This procedure was
first introduced by Quenouille (1949) as a technique which can reduce the estimation
bias of a serial correlation coefficient, but he generalized the method in his 1956 paper
(cf. Quenouille, 1956) with respect to an infinite population context. Tukey (1958)
proposed to treat this subsample estimator as an independent and identically distributed
random variable which can be used as a variance estimator (cf. Wolter, 2007, p. 151,
for the following explanations see Shao and Tu, 1995, p. 4 ff.). As mentioned before
τ̂ = τ̂ (Y1, . . . , Yn) describes an estimator of an unknown population parameter τ of interest
like total values. τ̂−i = τ̂ (Y1, . . . Yi−1, Yi+1, . . . , Yn) is the same statistic, but based on
observations by omitting one of the elements. The jackknife bias estimator of Quenouille
is defined by

b̂d1JK = (n− 1) ·

(
1

n
·

n∑
i=1

τ̂−i − τ̂

)
. (3.11)

The jackknife estimator of τ which reduces the bias results from

τ̂d1JK = τ̂ − b̂d1JK = n · τ̂ − (n− 1)

n
·

n∑
i=1

τ̂−i. (3.12)

This estimator can also be written as

τ̂d1JK =
1

n
·

n∑
i=1

τ̂ ′i . (3.13)

τ̂ ′i = n · τ̂ − (n− 1) · τ̂−i (where i = 1, . . . , n) are defined by Tukey as the jackknife
pseudovalues. He made the conjecture that the pseudovalues are nearly independent and
identically distributed and show approximately the same variance as

√
n · τ̂ . So V (

√
n · τ̂)

can be estimated by the sample variance on the basis of τ̂ ′1, . . . , τ̂
′
n and with that to estimate

V (τ̂) by

V̂d1JK (τ̂) =
1

n · (n− 1)
·

n∑
i=1

(
τ̂ ′i −

1

n
·

n∑
j=1

τ̂ ′j

)2

(3.14)

=
n− 1

n
·

n∑
i=1

(
τ̂−i −

1

n
·

n∑
j=1

τ̂−j

)2

.

This is called the (delete-1) jackknife variance estimator for τ̂ (cf. Shao and Tu, 1995,
p. 6). As shown in formula (3.14) the delete-1 jackknife estimates the variance by omitting
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one element of the observed sample in each replication and by computing the population
parameter of interest on the basis of these replications. Each element is deleted one time
and in doing so n replications result. This could lead to a huge computational effort with
an increasing sample size. In case of a stratified sampling design the sample weights have
to be adjusted (cf. Münnich, 2008, p. 326). When for example element i in stratum h is
omitted, then the weights for element j in stratum k also have to be recalculated:

w
(hi)
k,j :=


wkj, if k 6= h,
whj · nh/ (nh − 1) , if k = h, j 6= i,
0, k = h, j = i,

(3.15)

(cf. Davison and Sardy, 2004, p. 14).

In such sample designs the delete-1 jackknife variance estimator is defined as

V̂d1JK,strat (τ̂) =
H∑
h=1

(1− fh) · (nh − 1)

nh

nh∑
i=1

(
τ̂h,−i − τ̂h

)2
. (3.16)

As mentioned before −i implies that element i is omitted. fh is the sampling fraction in
the h-stratum when the sampling design is without replacement and τ̂h is the average of
the delete-1 jackknife estimator of the population parameter of interest in stratum h (cf.
Münnich, 2008, p. 326).

3.3.1 Delete-1 jackknife for complex survey designs

An example for a delete-1 jackknife for unistage stratified samples with unequal probab-
ilities is given in Berger (2007). In assuming that our interesting population parameter
θ is obtained by a function of means θ = g (µ1, . . . , µO), where O is the number of survey
variables. The estimation of θ is done by the substitution estimator θ̂ = g (µ̂1, . . . , µ̂O) and
for µ̂O =

∑
i∈sw

ha
i · yi the so called Hájek estimator is used with whai = 1/πi

(∑
v∈s 1/πv

)
.

A generalized jackknife which is applicable for unequal probability sampling and strati-
fication is given in Campbell (1980) and is defined by

V̂jack

(
θ̂
)

=
∑
i∈s

∑
j∈s

πij − πi · πj
πij

· ugi · u
g
j (3.17)

with ugi =
(
1− whai

)
·
(
θ̂ − θ̂−i

)
(cf. Berger, 2007, p. 955). According to Berger

(2007) this generalized jackknife shows some practical disadvantages as in the case of
the Horvitz-Thompson variance estimator (cf. chapter 2, p. 6). Therefore he proposes
another jackknife for stratified sampling with unequal probabilities by substituting the
second order inclusion probabilities by the Hájek approximation (see section 2.3.1). This
variance estimator is given by
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V̂jack

(
θ̂
)

=
H∑
h=1

∑
i∈sh

c̃hi ·

(
ugi −

∑
j∈sh

ν̃hj · ugi

)2

, (3.18)

where c̃hi = nh

(nh−1)
· (1− πi) , (i ∈ sh) and ν̃hi = λh · c̃hi · δhi. When i ∈ sh δhi is 1 and 0

otherwise. The quantity λh is chosen that
∑

i∈s ν̃hi = 1; thus λhi =
(∑

i∈sh c̃hi
)−1

, where
c̃hi consists of two terms. The first term nh/ (nh − 1) is a correction of the degrees of
freedom and the second term (1− πi) is the varying finite population correction which
is useful when the sampling fraction is large. The advantage of this jackknife estimator
is that the computation of the exact second order inclusion probabilities is not necessary
and the estimator has always positive values (cf. Berger, 2007, p. 955 f.). Under unequal
probability sampling Berger (2007) shows that his proposed jackknife variance estimator
is consistent under certain conditions (for more details see Berger, 2007, p. 956 ff.).

In case of multistage sampling the question is at which stage the unities should be deleted.
In the literature often the units at the first stage, so the PSUs, are omitted (cf. Rao et al.,
1992, p. 211 ff., Rust and Rao, 1996, p. 287 ff.). Then a single replication is obtained
by removing all units which belong to a certain PSU of the original sample. In case of
stratified two stage sampling the weights of the elements of the last stage of the remaining
PSUs in the stratum of the deleted PSUs have to be adjusted. By deleting PSU j in
stratum k the population parameter of interest in a certain replication is computed by:

τ̂(−j) =
∑

(hiq)∈s

whiq · yhiq +
∑

(kiq)∈s

{ n
′

k

n
′
k − 1

· wkiq} · ykiq,

where n
′

k is the number of PSUs in stratum k and h 6= k and i 6= j. whiq is the weight
of the element q in PSU i in stratum h. The first term refers to the elements which are
not in stratum k. The adjustment of the weights of the elements in stratum k is done in
the second term. Then a customary delete-1 cluster jackknife variance is applied with the
estimates of the several replications:

V̂d1JK(τ̂) =
H∑
k=1

(1− fk) · (n
′

k − 1)

n
′
k

n
′
k∑

j=1

(τ̂−j − τ̂)2

(cf. Rao et al., 1992, p. 211 ff., Rust and Rao, 1996, p. 287 ff.).

Another possibility is to apply the delete-1 jackknife at all stages and with that to delete
the elements at the several stages. In case of sampling designs with many stages this can
lead to a huge effort. Under certain conditions like small sampling fractions or homogen-
eous Ultimate Sampling Units (USUs) in the several unities, the exclusive consideration
of the first stage can be sufficient (cf. Särndal et al., 1992, p. 139 f. or Lohr, 1999,
p. 209 f. for the direct estimator).
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3.3.2 Extensions of the delete-1 jackknife method

Besides its possible computational effort the delete-1 jackknife variance estimator shows
another disadvantage. This method is asymptotically consistent, if the estimator is
smooth. But in case of nonlinear estimators, e.g. sample quantiles, the jackknife could
lead to inconsistent variance estimators (cf. Shao and Wu, 1989, p. 1176). The proof for
the inconsistent variance estimation of the median with the delete-1 jackknife method is
given in Efron (1982, p. 16). The delete-d jackknife can be used to solve this problem
(cf. Shao and Wu, 1989, p. 1176, for the following explanations to delete-d jackknife see
Shao and Tu, 1995, Section 2.3 and 5.2).

This extension of the ordinary jackknife is characterized by deleting more elements d from
the given sample with the size n. The population parameter of interest is computed by
the remaining values:

τ̂−su = τ̂−su (Yi, i ∈ scu) , (3.19)

where su describes a subset of {1, . . . , n} and has the size d. scu indicates the complement
of su. The delete-d jackknife variance estimator is defined by

V̂ddJK (τ̂) =
n− d
d ·D

·
D∑
u=1

(
τ̂−su −

1

D
·
D∑
v=1

τ̂−sv

)2

, (3.20)

where S contains all possible subsets of {1, . . . , n} with size d and D describes their total
number in S which is D =

(
n
d

)
. If d is large it may be very extensive to compute the

delete-d jackknife variance estimator. Then it is the best way to consider only a subset
of S. The question is how to choose these subsets. Shao and Tu (1995) suggest two
different methods. The first is called balanced subsampling. Here, the selection of the
subsets is systematic. M = {s1, . . . , sm} includes the m selected subsets in S satisfying
two assumptions which are essentially those for balanced repeated replication. At first,
it is necessary that the frequency of being in a subset in M is equal for all elements
(i = 1, . . . , n). The second assumption is that the frequency of being in a subset in M
is equal in respect of all pairs of elements (i, j), where 1 ≤ i < j ≤ n. Each subset can
be regarded as a block, so M is called a balanced incomplete block design (BIBD) (cf.
John, 1971). An approximation of the delete-d jackknife variance estimator on the base
of balanced subsampling is given by

V̂bddJK (τ̂) =
n− d
d ·m

·
m∑
u=1

(
τ̂−su −

1

m
·
m∑
v=1

τ̂−sv

)2

, (3.21)

where n ≤ m ≤ N .

The selection of subsets with balanced subsampling is still very extensive due to the
enumeration of balanced subsets. The second method has the advantage of being less
complex and is called random subsampling. Here, we draw {s1, . . . , sm} from S using
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simple random sampling with replacement and the variance is estimated by formula (3.21)
by omitting these subsets from the sample S.

Simple random sampling without replacement is also possible. If m is much smaller than
D, simple random sampling with replacement and without replacement leads to similar
results. Shao and Tu (1995) proposed to use simple random sampling with replacement,
because of its simplicity.

In case of a stratified random sampling design the delete-d jackknife variance estimator
can also be applied. But then it is necessary to delete d elements within the strata. The
several strata are divided into mh disjoint groups l of size d, where mh · d = nh. For the
replications these groups are systematically deleted and the delete-d jackknife variance
estimator is defined by

V̂ddJK,strat (τ̂) =
H∑
h=1

(1− fh) · (nh − d)

mh

·
mh∑
l=1

(
τ̂h,−l −

1

mh

·
mh∑
o=1

τ̂h,−o

)2

. (3.22)

τ̂h,−l is the estimator in stratum h which is calculated by deleting group l of size d from
the observation of the stratum h (cf. Münnich, 2005, p. 85). By omitting a block of
elements with indexes i ∈ K in stratum h the weights for element j in stratum k have to
be adjusted:

w
(hK)
k,j :=


wkj, if k 6= h,
whj · nh/ (nh − ‖K‖) , if k = h, j 6∈ K,
0, k = h, j ∈ K,

(3.23)

where ‖K‖ indicates the number of elements in K, with that ‖K‖ = d (cf. Davison and
Sardy, 2004, p. 15).

With respect to the consistency and asymptotic properties it can be said that, if an
estimator is less smooth, a large d is necessary. If the estimator is smooth, d can be small
(cf. Shao and Wu, 1989, p. 1176 and for the examination of consistency and asymptotic
properties of the delete-d jackknife see Chapter 3).

Another possibility to reduce the complexity is using the delete-a-group jackknife. Within
the scope of this method the obtained sample is divided into G groups. This can be done
randomly (cf. Shao and Tu, 1995, p. 195) or as described in Kott (2001b) and Kott
(2001a). Here, the PSUs are ordered an appropriate manner, for instance in case of
stratified random sampling by stratum (cf. Kott, 2001b, p. 3). Within a stratum the
units can be ordered randomly. Afterwards the PSUs are matched systematically to the
groups. For example the selection can be done by allocating the first, nineteenth, thirty-
seventh, . . . elements to group one, the second, twentieth, thirty-eighth, . . . elements to
group two and so on (cf. Kott, 2001b, p. 3, Kott, 2001a, p. 522). The groups should
have nearly the same size and be mutually exclusive (cf. Bienias et al., 2003, p. 539).
Instead of deleting one or d elements from the sample, one group g, (g = 1, . . . , G) in

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


3.3 Jackknife 27

each replication is omitted now. As before the statistic of interest is computed on each
replicate and the delete-a-group jackknife variance estimator is stated as follows:

V̂dgJK (τ̂) =
G− 1

G
·

G∑
g=1

(
τ̂−g −

1

G
·

G∑
l=1

τ̂−l

)2

, (3.24)

(cf. Shao and Tu, 1995, p. 195).

τ̂−g is an estimator, for example the total value, computed by the replication without the
elements corresponding to group g.

As before, in case of deleting one element i or d elements the weights have to be adjusted
as well when using the delete-a-group jackknife variance estimator. This is shown in Kott
(2001a) for a stratified single-phase sampling design. If τ̂ is a weighted estimator of the
form

∑n
i=1wi · yi, then the estimator τ̂−g is computed by τ̂−g =

∑n
i=1wi(−g) · yi. When the

PSU is in group g, then the weight wi(−g) of an element i takes the value zero. Otherwise
wi(−g) is computed by adjusting wi to consider that some wi(−g) are zero. These weights
are calculated by [nh/ (nh − nhg)] · wi, where nh is the number of PSUs in the stratum
h. nhg is the number of PSUs which are in the stratum h as well as in the group g (cf.
Kott, 2001a, p. 522). A wide discussion about the applicability of the delete-a-group
jackknife for different estimation strategies which include sampling designs like stratified
simple random sampling, systematic probability sampling or Poisson sampling is given in
Kott (2001b).

Another proposal to apply this method in case of a stratified design is given in Rust
(1985). Here, the construction of groups is done in each stratum. The delete-a-group
jackknife variance estimator is defined by

V̂dgJK,strat (τ̂) =
H∑
h=1

(lh − 1)

lh
·
lh∑
g=1

(τ̂−g − τ̂)2 , (3.25)

where lh is the number groups in stratum h (h = 1, . . . , H), τ̂ the estimated population
parameter of interest and τ̂−g the same statistic which is calculated by deleting group g in
stratum h. To generalize the estimator it is also possible to omit only a random selection
of lh which can be indicated as gh. Then the delete-a-group jackknife variance estimator
is stated by

V̂sdgJK,strat (τ̂) =
H∑
h=1

(lh − 1)

gh
·
gh∑
g=1

(τ̂−g − τ̂)2 , (3.26)

(cf. Rust, 1985, p. 387).

As said before the delete-a-group jackknife especially provides computational advantages
in comparison to the ordinary jackknife. In each replication a group of elements is omitted
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instead of only one observation. As a result the number of replications is reduced from n,
the number of observations in a sample, to the number of divided groups G (cf. Münnich,
2005, p. 82). A disadvantage is related to one requirement of the method. So it is necessary
that the sample size of the first-phase in each stratum is large. At least five units per
stratum are required. Otherwise the true variance is overestimated and leads to a bias
(cf. Kott, 2001b, p. 1 f., Kott, 2001a, p. 521 ff.). But in practice strata often have
sample sizes lower than five. For these scenarios Kott (2001a, p. 522) proposed an
extended version of the ordinary delete-a-group jackknife (for more details see Kott,
2001a, Chapter 3). As pointed out in Rust (1985, p. 387) the precision is maximized
when each omitted group is of size one and is deleted one time. The larger the number
of groups, the more precise is the estimation, but the more complex and extensive is the
computation. The optimal number of groups depends on the underlying conditions like
the complexity of the estimation (cf. Bienias et al., 2003, p. 542).

The delete-d jackknife, which was discussed before, can be regarded as a generalization
of the delete-a-group jackknife. The latter divides the sample into mutually exclusive
groups, whereas within the scope of the delete-d jackknife all groups of size d are possible
(cf. Münnich, 2005, p. 84).

3.4 Bootstrap

The last resampling method we discuss will be the bootstrap. Efron (1979) introduced
this method which in his opinion is more applicable and more dependable than the jack-
knife. Let X1, . . . , Xn describe an independent and identically distributed sample of n
observations from an unknown distribution F and τ̂ (X1, . . . , Xn) indicates a given stat-
istic. In case of non independent X1, . . . , Xn there are some problems by applying the
bootstrap method. These problems are explained in the next section. The estimation of
F is described as F̂ .

The bootstrap variance estimator results by substituting F in the theoretical formula of
the variance defined as

V (τ̂) =

∫ [
τ̂ (x)−

∫
τ̂ (y) d

n∏
i=1

F (yi)

]2

d
n∏
i=1

F (xi) (3.27)

by F̂ :

V̂boot (τ̂) =

∫ [
τ̂ (x)−

∫
τ̂ (y) d

n∏
i=1

F̂ (yi)

]2

d

n∏
i=1

F̂ (xi)

= V∗ [τ̂ (X∗1 , . . . , X
∗
n) |X1, . . . , Xn] , (3.28)

where x = (x1, . . . , xn) and y = (y1, . . . , y1) (cf. Shao and Tu, 1995, Section 1.2 and 1.4).
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Formula (3.28) is called the theoretical bootstrap. X∗1 , . . . , X
∗
n is a sample of independ-

ent and identically distributed elements and drawn from F̂ . This sample is denoted as
the bootstrap sample and V∗ [·|X1, . . . , Xn] indicates the conditional variance for given
X1, . . . , Xn (cf. Shao and Tu, 1995, Section 1.2 and 1.4). Is F̂ equal to F then

V (τ̂) = V∗ [τ̂ (X∗1 , . . . , X
∗
n) |X1, . . . , Xn] . (3.29)

When F̂ 6= F the equivalence of the variances is not given anymore. But the bootstrap
variance V̂boot (τ̂) can be taken as a variance estimator for τ̂ (cf. Shao, 2003, p. 380 f.,
Münnich, 2005, p. 88 f.).

3.4.1 The Monte Carlo bootstrap

Often in practice the theoretical bootstrap can not be written as an explicit function of
X1, . . . , Xn and as a result this approach is not applicable. To estimate the variance we
can make use of Monte Carlo methods and approximate V̂boot (τ̂) (cf. Shao and Tu, 1995,
p. 10 f.). This is done by the Monte Carlo bootstrap. Within the scope of this method
subsamples of size n are drawn from the original sample by simple random sampling with
replacement. Overall, B subsamples are drawn and the population parameter of interest
τ is calculated on these subsamples which is denoted by τ̂ ∗i . The Monte Carlo bootstrap
variance estimator results from

V̂boot,MC (τ̂) =
1

B − 1
·

B∑
i=1

(
τ̂ ∗i −

1

B
·

B∑
j=1

τ̂ ∗j

)2

, (3.30)

(cf. Münnich, 2008, p. 326).

Due to the law of large numbers is V̂boot (τ̂) = lim
B→∞

V̂boot,MC (τ̂) (cf. Shao and Tu, 1995,

p. 11).

In this context, an appropriate number of replications B must be chosen. With a larger
B the goodness of the approximation increases but the same applies for the complexity
and extent of the computation. The same statistic is evaluated B+1 times and this could
lead to a huge effort (cf. Münnich, 2005, p. 91). But in general the bootstrap variance
estimator doesn’t need a lot of replications. In many cases 100 resamples are sufficient
(cf. Münnich, 2008, p. 326).

Is the sampling design stratified, then a random subsample with replacement of size nh
is drawn in each stratum h (h = 1, . . . H) from the original sample. This has no impact
on the design weights because the drawing is independent between strata. As before an
estimator for stratified random sampling is computed at each replication (cf. Münnich,
2005, p. 92 f.).
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The bootstrap has a huge advantage in contrast to the ordinary delete-1 jackknife. Under
acceptable conditions with respect to the underlying distribution the bootstrap variance
estimator is consistent for nonlinear estimators (cf. Shao and Wu, 1989, p. 1176).

Otherwise, as mentioned above, the Monte Carlo bootstrap draws subsamples with re-
placement and requires an original sample whose observations are independent and identic-
ally distributed like they occur for SRS and StrSRS with replacement. But in surveys
often a probability sampling design or a without replacement sample design is used which
cause dependencies. When sampling without replacement, the Monte Carlo bootstrap
can lead to a biased variance estimator because of the missing finite sampling correction.
Furthermore, the approach has disadvantages in case of large sampling fractions and small
sample sizes. Then the bootstrap variance estimator can be inconsistent (cf. Davison
and Sardy, 2004, p. 21 f.). For that reason modified versions of the ordinary bootstrap
are given in the literature, which will be discussed briefly.

The first modification is the without replacement bootstrap.The intention of this approach
is to create a pseudopopulation by generating N/n replicates of the original sample. After-
wards B subsamples are drawn randomly from this population but without replacement.
In case of stratified samples the same is done, but with regard to the several strata. This
means that for each stratum the replication is done Nh/nh times and in each stratum
several samples are taken without replacement B times. In case of a noninteger Nh/nh,
the sizes of the pseudopopulations is randomly selected from:{bNhc, dNhe}. Furthermore,
a pseudopopulation for each stratum requires more storage, which is hardly manageable
when there are a lot of large strata (cf. Davison and Sardy, 2004, Section 6.1 and 6.2).
For that reason some other proposals are given in the literature.

McCarthy and Snowden (1985, p. 4) proposed the with-replacement bootstrap. Samples
are drawn in each stratum with replacement, where the sample size in each stratum vh is
calculated by

vh =
(nh − 1)

(1− fh)
. (3.31)

An advantage of this procedure is that it avoids creating a pseudopopulation which has to
be stored. Furthermore the resulting variance estimator is unbiased and consistent. But
if vh is noninteger a randomization is also needed. (cf. Davison and Sardy, 2004, p. 23).

Another kind of bootstrap is the rescaling bootstrap which was suggested by Rao and
Wu (1988). When it is possible to write an estimator as a function of means τ = g (y)
this method can be applied. Subsamples of size mh are sampled with replacement, but
the bootstrap sample is rescaled by

ỹ∗h = yh +

√
mh ·

(1− fh)
(nh − 1)

· (y∗h − yh) , (3.32)

where yh is the estimated mean in stratum h computed on the original sample and y∗h is
the estimated mean in stratum h calculated on the bootstrap sample. For mh Rao and
Wu (1988) proposed choosing
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mh =

⌊
(1− fh) · (nh − 2)2

(1− 2fh) · (nh − 1)

⌋
. (3.33)

Then the third order moments are matched and no problems arise when mh is not an
integer. The estimated population mean, which is computed on the rescaled bootstrap
sample, is given by

ỹ∗ =
H∑
h=1

Nh

N
· ỹ∗h, (3.34)

where Nh is the frequency of elements in the population in stratum h. Then the population
parameter of interest is computed by

τ̂ ∗ = g (ỹ∗) . (3.35)

The whole process is repeated B times and the variance estimation is based on the several
estimates τ̂ ∗i . An advantage of this approach is that it avoids generating and storing a
pseudopopulation (cf. Sitter, 1992b, p. 137, Davison and Sardy, 2004, p. 23).

Sitter (1992a) suggests the mirror-match bootstrap. This approach takes subsamples
without replacement in each stratum separately of size n∗h, where 1 ≤ n∗h < nh, altogether

kh =
nh·(1−f∗h)
n∗h·(1−fh)

times. Sitter (1992a) propose n∗h = fh ·nh. Then the third order moments

are matched. When the statistics of interest are linear the mirror-match bootstrap is
consistent. In case of a noninteger kh a randomization between the bracketing integers
is necessary (cf. Davison and Sardy, 2004, p. 23 Sitter, 1992a, p. 756 ff. Sitter,
1992b, p. 138).

The Monte Carlo bootstrap and the jackknife have in common that both procedures
permit the computation of the bias. Therefore we can use

b̂boot,MC =
1

B
·

B∑
i=1

τ̂ ∗i − τ̂ , (3.36)

(cf. Efron, 1982, p. 33).

Another application of the Monte Carlo bootstrap is to compute confidence intervals.
With recourse to the quantiles

z∗i =
τ̂ ∗1 − τ̂√

V̂boot,MC (τ̂ ∗1 )
, . . .

τ̂ ∗B − τ̂√
V̂boot,MC (τ̂ ∗B)

(3.37)
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we can ascertain the α/2- and (1− α/2) quantile z∗α/2 and z∗1−α/2. V̂boot,MC (τ̂) is defined
by (3.30). The studentized bootstrap confidence interval is given by[

τ̂ −
√

V̂boot,MC (τ̂) · z∗1−α/2; τ̂ −
√

V̂boot,MC (τ̂) · z∗α/2
]

(3.38)

(cf. Davison and Hinkley, 1997, p. 27 ff., Münnich, 2005, p. 92). In contrast to the
variance estimation more replications are needed. To receive a high accuracy Davison
and Hinkley (1997) suggest more than 1000 replications. The bootstrap method can also
be used for hypothesis testing with respect to unknown model parameters. A proposal
for this issue in case of a probability sampling design is given in Beaumont and Bocci
(2009).

3.4.2 Bootstrap with complex survey designs

An example of a more complex survey design, using unequal probability sampling without
replacement, is the Rao-Hartley-Cochran (RHC) sampling method (cf. Rao et al., 1962).
Here the population of size N is divided into L groups (Gg) of size Ng with g = 1, . . . , L.
Then from the several groups one unit is drawn with the probability zi/Zg for group Gg,

where zi = xi/X,Zg =
∑

i∈Gg
zi, xi describes some size measure of unit i andX =

∑N
i=1 xi.

An unbiased estimator of the population mean is given by ˆ̄Y =
∑L

g=1wg · yg/L, where
wg = f/πg and πg denotes the inclusion probability of an unit which is drawn from group
g and defined by zg/Zg. f indicates the inclusion probability in case of simple random
sampling without replacement and is defined by n/N . Where, yg and zg are values which

are chosen from group g, i.e. yg ∈ {yi}Gg

j=1 and zg ∈ {zj}Gg

j=1, with
∑L

g=1 Zg = 1. An

unbiased estimator for the variance of ˆ̄Y is given by

V̂
(

ˆ̄Y
)

=

∑L
g=1N

2
g −N

N2 −
∑L

g=1 N
2
g

·
L∑
g=1

Zg

(
yg

N · zg
− ˆ̄Y

)2

(3.39)

(cf. Sitter, 1992b, p. 142).

In general, it is possible to generate the subsamples by attaching to each unit from Gk

in the original sample the probability Pk and then select a sample {∗y, ∗ z} of size m
with replacement with probabilities Pk from the original sample (cf. Rao and Wu, 1988,
p. 237). But for our purposes we will refer to the bootstrap in case of unequal probability
sampling which is described in Sitter (1992b, p. 142) by generating a pseudopopulation
and drawing random samples without replacement.

Let Ŷ = N · ˆ̄Y =
∑L

g=1 Zg · yg/zg. First a replication for (zg, yg) is done kg = Zg/zg
times for g = 1, . . . , L to generate a pseudopopulation as described at p. 30. Afterwards
this pseudopopulation of size N∗ is randomly divided into L∗ groups

(
Γ∗g
)

of sizes N∗g . In
the next step one pair (z∗i , y

∗
i ) is chosen randomly from each group with the probability

z∗i /Z
∗
g , where Z∗g =

∑
i∈Γ∗g

z∗i . Then the population parameter of interest is computed by
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Θ̂∗ = Θ̂ (z∗,y∗). This process is repeated B times to get the estimates Θ̂∗1, ..., Θ̂
∗
B. As

before the variance estimation is calculated on the several estimates (cf. Sitter, 1992b,
p. 142). If the population parameter of interest is a total value instead of the mean, the
variance estimator of the form (3.30) shows a small bias. Then it is possible to correct the
variance estimate by an appropriate multiplicative factor or to choose appropriate values
of n∗ and N∗g (for more details see Sitter, 1992b, p. 142).

A bootstrap for two-stage cluster sampling is given in Wolter (2007, p. 211). This
bootstrap is applied at the first stage of the sampling design and when a PSU is drawn
with replacement from the original sample all units of the following stages are also included
in the bootstrap replicate (cf. Wolter, 2007, p. 211). A further proposal of a particular
bootstrap for multistage designs is an extension of the rescaling bootstrap which was
presented before and is given in Rao et al. (1992) or Rust and Rao (1996). In contrast
to this bootstrap, the rescaling of the extended bootstrap is done to the survey weights
rather than to the observed values. The extended bootstrap is appropriate for smooth
statistics as well as non-smooth statistics (cf. Preston, 2009, p. 228). In detail, the
approach can be described as follows: From the n

′

h PSUs of the original sample m
′

h PSUs
are drawn with replacement. But for each of the B repetitions the survey weights are
adjusted:

w∗hiq =

[(
1−

(
m
′

h

n
′
h − 1

)1/2
)

+

(
m
′

h

n
′
h − 1

)1/2

·
(
n
′

h

m
′
h

)
· rhi

]
· whiq, (3.40)

where rhi describes the number of times a certain PSU appears in the subsample. By using
these weights for the estimation of the population parameter of interest and repeating this
procedure B times, the variance estimation is done on the B estimates as before. The
value of m

′

h has to be determined. An appropriate choice with only a little, if any loss in
efficiency is m

′

h = (n
′

h − 1). Then the calculation of bootstrap weights reduces to:

w∗hiq = whiq ·
n
′

h(
n
′
h − 1

) · rhi
(cf. Rao et al., 1992, p. 214 f., Rust and Rao, 1996, p. 291 f. ).

Another modification of the rescaling bootstrap for multistage designs is the without re-
placement rescaling bootstrap which is presented in Chipperfield and Preston (2007,
p. 169 f.). An application of this bootstrap for stratified three stage sampling is given in
Preston (2009, p. 228 ff.). But an extension to more stages is possible. The without
replacement rescaling bootstrap is applied as follows: At the first stage m

′

h PSUs are
taken randomly without replacement from the n

′

h PSUs from the original sample. The
PSU bootstrap weights are computed by

w∗
′

hi =

(
1− λ′h + λ

′

h ·
n
′

h

m
′
h

· δ′hi
)
· w′hi, (3.41)
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where λ
′

h =

√
m
′
h ·

(
1− f ′h

)(
n
′
h −m

′
h

) , f
′

h =
n
′

hi

N
′
h

and δ
′

hi is 1 when PSU i in stratum h is drawn

and 0 otherwise.

At the second stage from the n
′′

hi SSUs within the PSUs m
′′

hi SSUs are taken randomly
without replacement. The SSU bootstrap weights are calculated by

w∗
′′

hiq = (1− λ′h + λ
′

h ·
n
′

h

m
′
h

· δ′hi

− λ
′′

hi ·

√
n
′

h

m
′
h

· δ′hi + λ
′′

hi ·

√
n
′

h

m
′
h

· δ′hi ·
n
′′

hi

m
′′
hi

· δ′′hiq) · w
′′

hiq ·
w
′

hi

w∗
′
hi

,

where λ
′′

hi =

√
m
′′
hi · f

′
h

(
1− f ′′hi

)(
n
′′
hi −m

′′
hi

) ,f
′′

h =
n
′′

hi

N
′′
h

and δ
′′

hiq is 1 when SSU q in PSU i in stratum

h is chosen and 0 otherwise.

Finally at the third stage from the n
′′′

hiq USUs within the SSUs m
′′′

hiq USUs are drawn
randomly without replacement. As before the USU bootstrap weights have to be adjusted:

w∗
′′′

hiqp = (1− λ′h + λ
′

h ·
n
′

h

m
′
h

· δ′hi − λ
′′

hi ·

√
n
′

h

m
′
h

· δ′hi + λ
′′

hi ·

√
n
′

h

m
′
h

· δ′hi ·
n
′′

hi

m
′′
hi

· δ′′hiq

− λ
′′′

hiq ·

√
n
′

h

m
′
h

· δ′hi ·

√
n
′′

hi

m
′′
hi

· δ′′hiq

+ λ
′′′

hiq ·

√
n
′

h

m
′
h

· δ′hi ·

√
n
′′

hi

m
′′
hi

· δ′′hiq ·
n
′′′

hiq

m
′′′
hiq

· δ′′′hiqp) · w
′′′

hiqp ·
w
′

hi

w∗
′
hi

·
w
′′

hiq

w∗
′′
hiq

,

where λ
′′′

hiq =

√
m
′′′
hiq · f

′
h · f

′′
hi ·

(
1− f ′′′hiq

)(
n
′′′
hiq −m

′′′
hiq

) , f
′′′

h =
n
′′′

hi

N
′′′
h

and δ
′′′

hiqp is 1 when USU p in SSU

q in PSU i in stratum h is chosen and 0 otherwise.

By using these weights at the several stages for the estimation of the population parameter
of interest the variance is calculated as above in case of the extended rescaling bootstrap
(cf. Preston, 2009, p. 228 ff.). Preston (2009, p. 229) proposed the selection of m

′

h =
bn′h/2c, m

′′

hi = bn′′hi/2c and m
′′′

hiq = bn′′′hiq/2c. This has the advantage that negative weights
are avoided.

Another interesting bootstrap for such sampling schemes is given in Funaoka et al. (2006,
p. 151 ff.) and is called the Bernoulli bootstrap. But this bootstrap is not presented in
our paper.
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3.4.3 Parametric bootstrap

Besides the Monte Carlo bootstrap there is another kind of bootstrap proposed in the
literature which is called the parametric bootstrap. Here, we assume that our sample
observations y1, . . . , yn follow a certain distribution Fψ which depends on a certain para-

meter ψ. First, the parameter ψ is estimated by ψ̂ on the basis of y1, . . . , yn (e.g. with
the maximum likelihood method). When this estimated parameter is substituted into
the model, the fitted model results, with F̂ = Fψ̂. The parametric bootstrap doesn’t es-
timate the variance by drawing subsamples from the sample itself, but by sampling from
the fitted distribution F̂ . So we get R replications and for each replication we estimate
the population parameter of interest τ̂ ∗r . The variance estimation with the parametric
bootstrap is given by

V̂boot,para (τ̂) =
1

R− 1
·

R∑
r=1

(
τ̂ ∗r −

1

R
·

R∑
j=1

τ̂ ∗r

)2

, (3.42)

(cf. Davison and Hinkley, 1997, p. 15 f.).

As mentioned in Efron and Tibshirani (1993, p. 55 f.), the parametric bootstrap is use-
ful in surveys where information about the underlying population is obtainable, especially
their distribution, and for making comparisons with the nonparametric bootstrap.

An interesting proposal to review the accuracy of bootstrap estimates is illustrated in
Efron (1992). Here, the jackknife is used to calculated standard errors for bootstrap
estimates. The jackknife is well-suited for such applications, because the standard error
estimated by the jackknife method can be computed immediately from the bootstrap
replications and a further resampling is not necessary (cf. Efron, 1992, p. 83).

3.5 Discussion

Table 3.1 shows a comparison of the different resampling methods that have been presented
in this section. It should give some recommendations of the suitability of the resampling
methods in different areas of applications.

The BRR (3.6), the delete-d jackknife, the delete-a-group jackknife, the rescaling boot-
strap (3.40) and the rescaling bootstrap without replacement (3.41) are not described
explicitly for unequal probability sampling. For that reason these methods are not con-
sidered for such sampling designs (see row four). Sampling WR/ WoR indicates if variance
estimation method is suitable for sampling with replacement (WR) or without replace-
ment (WoR). The last row indicates whether the variance estimation method considers a
finite population correction (FPC) or not. This is important when the samples are drawn
without replacement and the sampling fraction is large.

The delete-a-group jackknife as described in (3.24) does not include a FPC. However, the
FPC can be included in the same way as explained for the delete-1 jackknife in (3.16) or
the delete-d jackknife in (3.22).
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Chapter 4

Simulation Study

The purpose of this simulation study is to evaluate variance estimators, especially those
described in chapter (3). As a complex sampling design a two stage design is chosen.
The main focus of the simulation is put on the comparison of the accuracy of different
variance estimation methods with respect to the distribution of the study variable within
the PSUs. The simulation study should investigate the influence of different parameters
like the size of the PSUs or the homogeneity of the elements between and within the
PSUs on different variance estimation methods. The simulation should reveal in which
way specific parameter constellations affect the different variance estimation methods.
The sampling design is simple (without stratification and without unequal probabilities)
in order to isolate the effects of the clustering of sample elements in the PSUs.

The statistic of interest is the total. Samples are drawn by means of a two stage sampling
design, at the first stage PSUs are selected by SRS and at the second stage SSUs are
sampled by SRS within each PSU. Because of the absence of any stratification, the bal-
anced repeated replication method as described in section (3.2) is not included. The
same goes for the variance estimators and their approximations as described in chapter
(2), as all sampling units are selected with equal probability. The quality of the variance
estimation methods from chapter (2) and are investigated in Hulliger et al. (2011).

In the simulation study the direct estimation method as defined in formula (1.6), the
delete-1 jackknife (cf. section 3.3), an ordinary Monte Carlo bootstrap (cf. section 3.4.1),
the rescaling bootstrap and the rescaling bootstrap without replacement as described in
section (3.4.2) are considered. For the direct estimation, the jackknife and the Monte
Carlo bootstrap two versions are investigated. One version estimates the variance by
considering both stages of the sampling design whereas the other version uses the first
stage only. Under some conditions, such as a small variance at the second stage and
small sampling fraction at the first stage it is also possible to estimate the variance of a
two stage sampling design by only taking into account the variance due to the the first
stage of sampling (cf. Särndal et al., 1992, p. 139 f., Lohr, 1999, p. 209 f.). For that
reason, this version of the three methods is also considered to investigate the possibility
to ignore the resampling of SSUs. The rescaling bootstrap is done only at the first stage,
whereas the rescaling bootstrap without replacement includes both stages. To be sure that
our variance estimates are reliable we chose the rather prudent number of 450 bootstrap
replications.
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38 Chapter 4. Simulation Study

The study was preformed using R, (see R Development Core Team, 2010).
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Figure 4.1: Scenario 1-4

To investigate the influence of different circumstances seven scenarios with different com-
positions of the PSUs are considered. The values of the study variable populating each
PSU are generated from a log-normal distributions. The scenarios differ with respect to
the mean and the variance of these log-normal distributions and the PSU size. The dif-
ferent scenarios are displayed in figure (4.1) and (4.2). The x-axis indicates the PSU size
and the y-axis describes the PSU mean. The radii of the circles for the different PSUs
correspond to the coefficient of variation within the particular PSU.

Scenario 1 describes a situation where the PSUs are of equal size, the mean of the different
PSUs and the variances within the PSUs are similar. The other scenarios result by varying
the three parameters. First, in scenario 2, the variances within the PSUs differ significantly
and in scenario 3 the expected values vary between the PSUs. Scenario 4 constitutes a
situation where the size of the different PSUs is highly unequal. Furthermore, it is possible
to vary more than one parameter at a time. Hence, scenario 5 is characterized by different
expected values and unequal sizes and scenario 6 by different variances within the PSUs
and unequal sizes. In scenario 7 all three parameters vary greatly.

The observed values are generated using the rlnorm function in R. For scenario 1 the call
was:
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Figure 4.2: Scenario 5-7

income <-rlnorm (100000 , meanlog = 10, sdlog = 1)

In scenarios with different expected values and variances the second and third parameter
are varied between different PSUs. These different values are drawn from a normal dis-
tribution using the following R expressions:

EVPSU <- rnorm (50 ,10 ,0.5)

StDvPSU <- rnorm (50 ,1 ,0.25),

where the first parameter describes the number of PSU in the population. To indicate
the PSUs a PSU indicator variable is used. In case of equal PSUs sizes with 50 PSUs,
this variable is generated as follows:

psu <-rep(1:50 , each =2000).

But in case of unequal PSU sizes, the PSU indicator is constructed by:
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psugr <-c(rep (100 ,8),rep (2000 ,2),rep (1000 ,2),rep (500 ,5),

rep (1500 ,2),rep (2000 ,8),rep (2500 ,8),rep (3000 ,2),

rep (3500 ,1),rep (10000 ,2),rep (4000 ,2),rep (7000 ,1),

rep (5000 ,1),rep (200 ,4),rep (700 ,2))

psu <-rep(1:50 , psugr).

In the psugr vector the PSU size and the number of PSU with this particular size are
defined.

The population in all scenarios consists of 50 PSUs and 100,000 SSUs. In the simulation
study 10,000 samples of size 15 at the first stage and of size 1000 at the second stage are
drawn repeatedly. The sample size at the second stage is allocated proportionally to the
size of the PSUs. The variance estimators are computed for each sample to get information
about the distribution of the different variance estimators. Thus, reliable statements about
the quality of the different methods are possible. The relevant benchmark is the Monte
Carlo variance of the point estimator, which is computed as the empirical variance of the
10,000 point estimates. The relative bias is used to compare the quality of the variance
estimators in the different scenarios. This measure is defined as follows:

rel. Bias =
Estimated Value− Benchmark

Benchmark
. (4.1)

The sample process is with equal probabilities and with that the total value in the presence
of two sampling stages is estimated by:

τ̂2St =
N
′

n′
·
n
′∑

i=1

n
′′
i∑

q=1

N
′′
i

n
′′
i

· yiq (4.2)

(cf. Lohr, 1999, p. 147).

The point estimator in the seven scenarios are given in figure (4.3).

The figure shows that the point estimator is unbiased in all scenarios. The true values
of the different scenarios, indicated by the green lines, are equal between all scenarios.
This is because after generating these values, they are adjusted such that their total is
equal in all scenarios. In scenario 1 the point estimator has the lowest variance in contrast
to the other scenarios, as with the variation of the parameters the variance of the point
estimators increases. Another effect is the steady rise of the number of outliers.

The results of the different variance estimation methods are given in figure (4.4). The
Monte Carlo variance is displayed by the green lines.

The relative bias is shown in figure (4.5).

In scenario 1, when no parameter is changed, the direct estimator (Dir), jackknife (Jack)
and the rescaling bootstrap without replacement (RescWoR) lead to nearly unbiased
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Absolut Value of the Point Estimator
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Figure 4.3: Absolute Value of the Point Estimators in the different scenarios

variance estimates. In contrast to this result, the direct estimator and the jackknife
based on the first stage (Dir1 and Jack1) lead to a severe underestimation. The same
applies for the rescaling bootstrap (Resc) which does not include the second stage unlike
the rescaling bootstrap without replacement. This result may be attributed to the large
sampling fraction at the first stage and a comparatively large variance at second stage.
Here, the consideration of the second stage is necessary. The jackknife method and the
direct method lead to same results because the statistic of interest is linear. The Monte
Carlo bootstrap (MCBoot) leads to a huge overestimation as a result of the large sampling
fraction at the first stage and the missing finite population correction of the approach.
This method also underestimates the variance when only the first stage is considered
(MCBoot1).
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Absolute Value of the Variance Estimation
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Scenario 1

Figure 4.4: Absolute Value of the Variance Estimation Methods in the different scenarios

In scenario 2, the variance within the different PSUs is unequal. Due to high variances in
some PSUs (cf. 4.1) the variance at the second stage increases as opposed to scenario 1.
For that reason the methods without considering the second stage also show a significant
underestimation. But due to the generation process also the variability of the mean of the
PSUs rises and with that the variance at first stage opposite scenario 1. Thus, the relative
bias of these methods is smaller than in this situation. The methods which consider the
second stage lead to unbiased estimates. These methods yield, however, also a lot of
outliers through the high variance within some PSUs.

A converse effect appears when only the expected value between the PSUs varies. Hence,
in scenario 3, there is only a small difference between the methods which include all
stages and the methods which only consider the first stage. This is a result of the varying
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Figure 4.5: Relative Bias of the Variance Estimation Methods in the different scenarios

expected values between the PSUs which also increase the variance at the first stage.
Thus, it may be sufficient to estimate only the variance at the first stage. The same
applies for scenario 4 with unequal PSU sizes. But here the variance of the variances
increases dramatically as a result of the unequal sizes and the large benchmark.

In cases where more than one parameter varies, there is also a huge influence on the
variance of variances, especially in scenario 6. In scenario 7 contrary effects arise. The
variance at the second stage increases through the varied variance within some PSUs, but
also the variance at the first stage due to the unequal expected values between the PSUs.

Figure (4.6) and (4.7) shows the kernel density estimation of the relative bias of the
variance estimation methods for the different scenarios. The jackknife is not included
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44 Chapter 4. Simulation Study

because it yields the same results as the direct estimation methods. For the reason of
clarity the Monte Carlo bootstrap, which is only based on the first stage, is also left out.
In scenario 1 the distribution of the variance estimation methods is almost symmetric
with only a few outliers. For most methods the estimates are lower than the benchmark,
which is still represented by the green line. The shape of the distribution of the different
methods is quite similar, but the distribution of the methods which include all stages is
closer to the benchmark. As seen already in the boxplots above, the number of outliers
is increasing with a varying variance between the PSUs and the distribution becomes
flatter. The same applies for scenario 3 with unequal expected values between the PSUs.
But here the number of outliers decrease and the distribution of the variance estimation
methods except the Monte Carlo Bootstrap is quite similar. In scenarios with unequal
PSU sizes the distribution of the variance estimators has two local maxima, which are
dependent on the drawing of PSUs with large or low sizes. The shape of the distributions
of the variance estimators in scenarios where more than one parameter is changed are a
combination of these basic shapes. It seems that the effects of changing all parameters
offset each other such that the distribution is almost normally distributed.

Relative Bias of the Variance Estimation
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Figure 4.6: Kernel Density Estimation of the Relative Bias Of the Variance Estimation
Methods scenario 1-4
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Relative Bias of the Variance Estimation
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Figure 4.7: Kernel Density Estimation of the Relative Bias Of the Variance Estimation
Methods scenario 5-7
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Chapter 5

Summary and Outlook

The present work gives an overview of variance estimation in the presence of complex
survey designs. The presented instruments overs most features of samples survey designs
encountered in practice. However, to present a kind of cookbook approach to variance
estimation remains difficult, because for selecting the appropriate variance estimator it
also necessary to consider the properties of the statistic of interest. Resampling methods
are in general defined independently from the point estimators, which makes them more
suitable to set up a best-practice given the sampling design. Most direct variance estim-
ates are developed for linear point estimators only (e.g. estimated totals). For complex
estimators often approximate variance estimators were only developed, which is subject
to the methodology presented in Münnich and Zins (2011).

Although we treat the problem of complex statistics and survey designs mostly separated
from each other, there are of course interactions between them. A complex survey design
may render a variance estimator suitable for complex estimator inept, because of its
reliance on properties established by simple sampling design, e.g. iid observations of a
variable of interest. A synthesis of both methodological branches is made in form of a
large scale simulation study based on the AMELIA dataset (see Alfons et al., 2011),
whose results are analyzed in deliverable D7.1 (see Hulliger et al., 2011, chapter 9).
Also the simulation study in Chapter 4 highlights the problems of variance estimation in
case of a multistage sampling design, that are induced through cluster sampling cluster.

The practical relevance of variance estimation gains strongly in importance. This can
be seen due to the fact that in 2010, a Directors of Methodology Task Force on accuracy
measurement in household surveys was installed in order to elaborate recommendations on
the use of the different variance estimation methods. The report is going to be published
by Eurostat in 2011.

The deliverable shows a greater treatment of the topic variance estimation in the literature
but a wide range of issues is still not or not well covered. An example is the variance
estimation of change on the base of rotational panels. Another important application of
variance estimation is the area of design effects (for details on design effect see Kish,
1965 and for methods to estimate the design effect see for instance Gabler et al., 1999,
Gabler et al., 2006 or Ganninger, 2009) which is entirely based on variance estimation
methods.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


Bibliography

Alfons, A., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S., Münnich, R.
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