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Aim and Objectives of Deliverable
3.2

The main focus of this report is put on linearization methods to derive simple but still
reliable variance estimates for indicators of poverty and inequality. Linearization methods
enable estimating the variance of these statistics using standard variance estimation soft-
ware developed for linear estimators. The report covers two areas of variance estimation.
The first is the linearization of non-linear statistics, a general approach which allows also
for the linearization of non-smooth statistics. The second one is the measurment of change
in indicators values over time, which entails the need for variance estimation for measures
of change. Variance estimation for change is then also addressed through an application
of the already presented linearization methods to longitudinal data.

The results of a simulation study, where the linearization presented in this report have
been employed, can be found in (see Alfons et al., 2011, chapter 9). Results from
another, smaller simulation study, on the performance of variance estimation of change
are given within this report.
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Chapter 1

Introduction

In Bruch et al. (2011) the point estimator under consideration was the Horvitz-Thompson
estimator of a population total. A special attention was put on different variance estim-
ators and their expression for different sampling designs. However, in sample surveys it
is required or a necessarty to employ non-linear estimators to obtain the statistics of in-
terest. Unfortunatly, in most cases, the variance of non-linear estimators cannot be given
in closed form. Furthermore, unbiased estimates of variances of non-linear estimators do
not exist.

The two commonly used approaches to this problem are resampling and linearization
methods. Resampling methods comprise the jackknife, balanced repeated replication and
the bootstrap methods. The usage of resampling methods is more dependent on the
sampling design at hand than on the estimator itself. Their procedures and modifications
if applied in the presence of complex survey designs are subject of chapter 3 in Bruch
et al. (2011), thus the focus in this report is put on linearization methods.

Linearization methods approximate the non-linear estimator by a linear function after
which standard variance formulas for the given design can be applied to this linear ap-
proximation. This indirect approach estimates the asymptotic variance of an estimator
which results in biased but typically consistent variance estimators (see Wolter, 2007,
Chapter 6).

Suppose we have d different study variables and we want to estimate parameter θ of the
finite population U of size N , which has the following form

θ = f (τ ) , (1.1)

where τ = (τ1, . . . , τk, . . . , τd) and τk =
∑

i∈U yki, with yki as the observation of k-th
study variable of the i-th element in U . To estimate θ a sample s of size n is drawn from
U , according to a sampling design p(s) (see Bruch et al., 2011, Chapter 1). Then we
substitute the unknown τ in (1.1) by τ̂ = (τ̂1, . . . , τ̂k, . . . , τ̂d) which yields

θ̂ = f (τ̂ ) ,

with τ̂k =
∑

i∈s ykiwi as the estimated total of the k-th study variable and wi is the survey
weight of the i-th element in s. Further, it is assumed that τ̂k is a consistent esimator of
τk.
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First we examine the case of f being a linear function, because we will reduce the problem
of estimating the variance of θ̂ if f is non-linear to that of the linear case. If f is a linear
function we may write

θ̂ = f (τ̂ ) = a0 +
d∑

k=1

akτ̂k ,

where a0 and ak with k = 1, . . . , d are some constants. Then for the variance of θ̂ we have

V(θ̂) = f (τ ) =
d∑

k=1

a2
kV(τ̂k) + 2

d∑
k=1

d∑
l=1
k<l

akal Cov (τ̂k, τ̂l) . (1.2)

Expression (1.2) involves d variances and d(d − 1)2−1 covariances, that need to be es-
timated. If wi = π−1

i , i.e. the survey weight of the i-th element in s equals its inverse
inclusion probability, then we can estimate V(τ̂k) as described in Bruch et al. (2011,
chapter 2) and the covariance Cov(τ̂k, τ̂l) by

Ĉov(τ̂k, τ̂l) =
∑
i∈s

∑
j∈s

πij − πiπj
πij

yki
πi

ylj
πj

. (1.3)

We now turn to the case of f being non-linear. Our aim is to use also in this case an
expression for V (θ̂) that has the same form as in (1.2), which we know how to estimate.
To achieve this the well-known Taylor series method can be employed, which give us a
linear approximation of θ̂. The following theorm of the Taylor series can be found in
Serfling (1980, p. 43f).

Let the function g defined on Rd possess continuous partial derivatives of order m at each
point of an open set S ⊂ Rd. Let x ∈ S. For each point y, y 6= x, such that the line
segment L(x,y) joining x and y lies in S, there exists a point u in the interior of L(x,y)
such that

g(y) =g(x) (1.4)

+
m−1∑
k=1

1

k!

d∑
l1=1

. . .

d∑
lk=1

[
∂kg(p1, . . . , pd)

∂pl1 . . . ∂plk

]
p=x

(yl1 − xl1) . . . (ylk − xlk)

+
1

m!

d∑
l1=1

. . .

d∑
lm=1

[
∂mg(p1, . . . , pd)

∂pl1 . . . ∂plm

]
p=u

(yl1 − xl1) . . . (ylm − xlm)

where

[
∂kg(p1, . . . , pd)

∂p1 . . . ∂pk

]
p=x

is the k-th partial derivative of g(p) with respect to p1, p2, . . . ,

and pk evaluated at p = x.

If the function f is continuously differentiable up to order two at each point in the open
set S containing τ and τ̂ , then we can use the expansion in (1.4) and write

θ̂ − θ =
d∑

k=1

[
∂f(p1, . . . , pd)

∂τk

]
p=τ

(τ̂k − τk) +R(τ̂ ,τ ) , (1.5)

AMELI-WP3-D3.2



4 Chapter 1. Introduction

where

R(τ̂ ,τ ) =
1

2!

d∑
k=1

d∑
l=1

[
∂2f(p1, . . . , pd)

∂pk∂pl

]
p=τ̈

(τ̂k − τk)(τ̂l − τl)

and τ̈ is in the interior of line segment L(τ , τ̂ ) joining τ and τ̂ . For the remainder term
R we have R = Op(r

2
n), where rn → 0 as n→∞. Further, we have θ̂ − θ = Op(rn), thus,

in most applications it is common practice to regard R as negligible in (1.5) for sample
sizes large enough (see Wolter, 2007, p. 227ff). This justifies the use of the following
approximation

θ̂ − θ ≈
d∑

k=1

[
∂f(p1, . . . , pd)

∂τk

]
p=τ

(τ̂k − τk) , (1.6)

note that in expression (1.6) only the linear part of the Taylor series is kept. Now we can
use (1.6) to derive an approximation of the mean square error (MSE) of θ̂ which is given
by

MSE
(
θ̂
)
≈ V

(
d∑

k=1

[
∂f(p1, . . . , pd)

∂τk

]
p=τ

τ̂k

)
(1.7)

=
d∑

k=1

a2
kV(τ̂k) + 2

d∑
k=1

d∑
l=1
k<l

akal Cov (τ̂k, τ̂l) ,

where ak = [∂f(p1, ..., pd)
∂τk

]p=τ . Because, MSE(θ̂) = V(θ̂) + Bias(θ̂)2, where Bias(θ̂) = θ̂ − θ,
we can approximate the variance of θ̂ by MSE(θ̂) , since V(θ̂) is of higher order then
Bias(θ̂)2 for unbiased or at least consistent estimators (see Wolter, 2007, p. 232). Thus,
we can use (1.7) as an approximation to the design variance of θ̂.

To estimate (1.7) we could simply subsitute the variances and covariances with their
corresponding estimates. This however might become unpractical if d the number of
estimated totals in τ̂ becomes large. To evade this problem Woodruff (1971) suggested
the following transformation of yki

zi =
d∑

k=1

akyki , (1.8)

then we may write

MSE
(
θ̂
)
≈ V

(∑
i∈s

wizi

)
.

Transformation (1.8) is justified if the elementary estimates in τ are linear, as it is the
case for τ̂k, then it is possible to change the order of summation in (1.7) (see Andersson
and Nordberg, 1994). To estimate MSE(θ̂) we need to replace the unknown ak in (1.8)

by an estimator âk = [∂f(p1, ..., pd)
∂τk

]p=τ̂ which yields ẑi the sample estimate of zi. Finally we

can estimate the asymptotic variance of θ̂ by V̂(
∑

i∈swiẑi), which has in case of wi = π−1
i

a well known solution for most survey designs used in practice (see Bruch et al., 2011).
Thus, it is possible to reduce the problem of estimating the (asymptotic) variance of a
non-linear estimator to the one of estimating the variance of a single estimated total.
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Chapter 2

Variance Estimation of Non-linear
Statistics

2.1 Influence Functions

For variance estimation the Taylor method leads to proper results for statistics which
can be expressed by functions which are continuously differentiable up to order two and
are asymptotically normal. For statistics which do not meet these requirements, one
approach however, is the concept of influence functions, invented by Hampel (1974),
which up to now is widely used in the field of robust statistics. Heuristically spoken, an
influence function gives a picture of the infinitesimal behaviour of the asymptotic value
of a statistic. In other words, it measures the asymptotic bias caused by contamination
in the observations on whose basis the statistic is estimated.

In the context of this approach, first, the introduction of the concept of statistical func-
tionals is advisable. Most statistics of interest are parameters of an underlying cumulative
distribution function (cdf) F and most characteristics of F can be written as T (F ), where
T is a functional from F to Rd with F as the collection of all cdf’s on Rd. Thus, many
commonly used estimators can be defined as T (Fn), where Fn is the empirical distribution
function based on a sample vector (y1, . . . , yn), i.e.

Fn(y) =
1

n

n∑
i=1

1[yi ≤ y] .

Then estimator T (Fn) is called a statistical functional. For example, a sample moment
is related to functional T (F ) =

∫
f(y)dF (y) with f as an integrable function, and the

corresponding estimator would be T (Fn) =
∫
f(y)dFn(y) = n−1

∑n
i=1 f(yi) (see Shao,

2003, p. 338).

For the sample vector (y1, . . . , yn), whose elements are independent and identically dis-
tributed (iid), with distribution function F , the influence function of a statistic T = T (Fn)
at a point y is

IF (T, F, y) = lim
ε→0

T
(
(1− ε)F + εδ•y

)
− T (F )

ε
, (2.1)

AMELI-WP3-D3.2



6 Chapter 2. Variance Estimation of Non-linear Statistics

where δ•y = 1[y,∞) is a cumulative distribution function degenerated at point y (see Shao
(2003, p. 339 and 19)).

The derivation of influence functions requires differentials of T . There exist several ver-
sions of differentials, mainly the Gâteaux-differential, the d-Hadamard-differential and the
d-Fréchet-differential. They are defined in the following (for the following definitions see
Shao, 2003, p. 338f).

For all three definitions, let T : F0 → R be a real functional on a collection of all absolutely
continuous cumulative distribution functions F0 on Rd and letD := {c(F −G) : F,G ∈ F0, c ∈ R}.

T : F0 → R is Gâteaux-differentiable at F ∈ F0 if there is a linear functional LF : D → R
(i.e. LF (c1∆1 + c2∆2) = c1LF (∆1) + c2LF (∆2) ∀ ∆j ∈ D, cj ∈ R) such that for all ∆ ∈ D
and F + t∆ ∈ F0:

lim
t→0

(
T (F + t∆)− T (F )

t
− LF (∆)

)
= 0.

Let % be a distance on F0 that is induced by a norm ‖·‖ on D (i.e. d(F,G) = ‖F −G‖).
T : F0 → R is %-Hadamard-differentiable at F ∈ F0 if there is a linear functional LF :
D → R such that for any sequence tj → 0 (j → 0) and ∆j,∆ ∈ D with ‖∆j −∆‖ → 0,
F + tj∆j ∈ F0:

lim
j→∞

(
T (F + tj∆j)− T (F )

tj
− LF (∆j)

)
= 0.

Let % be a distance on F0. T : F0 → R is %-Fréchet-differentiable in F ∈ F0 if there exists
a linear functional LF : D → R such that for all {Fj} ⊂ F0 with d(Fj, F )→ 0 (j →∞):

lim
j→∞

(
T (Fj)− T (F )− LF (Fj − F )

d(Fj, F )

)
= 0.

For all three definitions, the functional LF is called differential of T at F . Now if we
define a function h : R→ R = T (F + t∆), then Gâteaux-differentiability is equivalent to
differentiability of the function h at t = 0, hence LF (∆) = h

′
(0) (see Shao, 2003, p. 339).

The influence function of T (F ) at y is given by LF (δ•y − F ) = IF (T, F, y). Now it is
possible to describe the asymptotic behaviour of T (Fn). If T is Gâteaux-differentiable in
F then for t = 1√

n
, and ∆ =

√
n (Fn − F )

√
n(T (Fn)− T (F )) = LF (

√
n(Fn − F )) +Rn , (2.2)

with Rn as some stochastic remainder. For n→∞ by the central limit theorem

LF (
√
n(Fn − F )) =

1√
n

n∑
i=1

IF (T, F, yi)
d→ N(0, σ2

F ) ,

if E (IF (T, F, yi)) = 0, and σ2
F = E (IF (T, F, yi)

2) < ∞. Thus, T (Fn) is asymptotically

normal if Rn = op(1), i.e. Rn
p→ 0, which is unfortunately not ensured by Gâteaux-

differentiability. Therefore, the %-Hadamard-differentiability or %-Fréchet-differentiability
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2.2 Estimating Equations 7

is required. This means that first, LF can be found by differentiating h(t) = T (F + t∆)
at t = 0 and then, it is checked whether T is %-Hadamard’ or %-Fréchet-differentiable with
a given distance % on F0 (see Shao, 2003, p.340).

Note that in case of sample moments, e.g. for T (G) =
∫
f(y)dF (G) with G ∈ F , func-

tional T is linear and therefore %-Fréchet-differentiable of any %. Further, it can be shown
that if F is one-dimensional and F (y)

′
> 0 for all y ∈ R, then the quantile functional

T (G) = G−1 is %∞-Hadamard-differentiable at F , where for F ∈ F

%∞ = ‖F1 − F2‖∞ = sup
t∈Rd
|F1(t)− F2(t)| ,

the distance induced by the sup-norm (see Shao, 2003, p. 321 and p. 341 and also Ser-
fling, 1980, p. 216). Finally, via the total of the influence values zi = IF (T, F, yi) it is
possible to approximate the variance of an estimator T (Fn).

2.2 Estimating Equations

Another approach to linearization is the usage of estimating equations. Estimating equa-
tions is a technique which can be used to derive both point estimates and their correspond-
ing linearized values zi used for variance estimation (see Binder and Patak, 1994). In
particular, Kovacevic and Binder (1997) and Binder and Kovacevic (1993) used the
method for estimating disparity and inequality measures and their corresponding sample
errors. In the following, a brief overview of the framework of estimating equations will
given firstly.

If we consider an infinite population and our variable of interest y has a continuous
distribution function F̃ (y, θ) and a differentiable density function f̃(y, θ) for all y ∈ R, it
is assumed that the parameter of interest θ is the solution, θ0 to

U(θ) =

∫
u(y, θ)dF̃ (y) = 0 , (2.3)

(see Binder and Patak, 1994). If we define u(y, θ) = g′(y, θ), and g(y, θ) = log f̃(y, θ)
then we have

u(y, θ) =
∂ log f̃(y, θ)

∂θ
,

where u is called estimation function. For instance, for the population mean θ =
∫
ydF̃ (x)

we have

u(y, θ) = y − θ ,

(see Binder and Patak, 1994). Whereas for a finite population, where θ can be expressed
as function of the N distinct population units, Binder and Kovacevic (1993) describe
θ as some solution, θ0 to the equation

U(θ) =
N∑
i=1

u(yi, θ) = 0 . (2.4)

AMELI-WP3-D3.2



8 Chapter 2. Variance Estimation of Non-linear Statistics

An estimator θ̂0 of θ0 is then the solution to the equation

Û(θ) =
∑
i∈s

wiu(yi, θ) = 0 ,

where wi is a weight for i ∈ s and zero elsewhere. If we use Horvitz-Thompson type
weights then wi = π−1

i , with πi as the probability including the i-th element into the

sample s (see Bruch et al., 2011). The variance of θ̂0 is estimated in the following way.
Let Û(θ̂0) =

∑n
i=1 u(yi, θ̂0) = 0, which can be rewritten as

Û(θ̂0) =
N∑
i=1

(
u(yi, θ̂0)− u(yi, θ0)

)
(2.5)

+
N∑
i=1

wiu(yi, θ0)

+
N∑
i=1

(
u(yi, θ̂0)− u(yi, θ0)

)
(wi − 1) .

As θ̂0 is a consistent estimator for θ0, i.e. θ̂0
p→ θ0 for n → ∞, the last term in (2.5)

becomes negligible for large samples (see Kovacevic and Binder, 1997). Furthermore,
by using Taylor expansions we have

u(yi, θ̂0)− u(yi, θ0) =
m∑
k=1

(
∂ku(yi, θ)

∂kθ

)
θ=θ0

(
θ̂0 − θ0

)m
+ o(|θ̂0 − θ0|m) ,

(see Serfling, 1980, p. 45). Thus we can approximate the first term in (2.5) by(
θ̂0 − θ0

) N∑
i=1

(
∂u(yi, θ)

∂θ

)
θ=θ0

+ o(|θ̂0 − θ0|) ,

and we have the following approximation for θ̂0 − θ0

θ̂0 − θ0 ≈
N∑
i=1

wizi , (2.6)

where

zi = −

[(
∂u(yi, θ)

∂θ

)
θ=θ0

]−1

u(yi, θ0) .

Finally, once the zi have been obtained, we can approximate the variance of θ̂0 by the
variance of the estimated population total of the zi, since

V(θ̂0 − θ0) = V(θ̂0) ≈ V

(
N∑
i=1

wizi

)
. (2.7)

Note that in the following we will refer to zi also as the linearized value, indicating that
they allow for the usage of variance estimators of linear statistics, when estimating the
variance of non-linear statistics.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


2.3 Linearization of Poverty and Inequality Measures 9

2.3 Linearization of Poverty and Inequality Measures

In this section the influence or linearized values for the different poverty and inequality
measures are derived. Therefore we follow first the approach of Deville (1999), where
he used influence functions which differ slightly from the one described in equation (2.1).
They are based on a measure M of the total mass N , the size of population, and not on
the distribution function F (see Deville, 1999, p. 692). Thus, we have

IT (M, y) = lim
ε→∞

T
(
M + εδ◦y

)
− T (M)

ε
, (2.8)

where δ◦y is the unit mass at point y ∈ R and M =
∑

i∈U δ
◦
yi

. For instance, an estimator

for the total τ of variable y can be defined through an estimator M̂ of M , since τ =∑
i∈U yi =

∫
ydM is a functional of M (see Goga et al., 2009). A natural estimator of

M would be M̂ =
∑N

i=1wiδ
◦
y , where M̂ is a measure allocating a weight wi to yi for all

i ∈ s and zero elsewhere (see Deville, 1999).

For example, the influence function of R =
∫
ydM∫
xdM

= τy
τx

, the ratio between the total of

variables y and x, with y, x ∈ R, can be obtained by (see rule 2 in Deville, 1999):

ITR (M, (yi, xi)) =
1

τx
IT (τy, yi) + τyIT (

1

τx
, xi)

=
yi
τx
−Rxi

τx
.

In practice it is often not necessary to compose an influence function by applying (2.8)
directly, which possibly requires rather complex limit calculations. This is due to the
fact that there exist rules for deriving influence functions of different statistics which are
essentially those for computing the derivative of a differentiable function (see Deville,
1999, p. 197).

2.3.1 The At-risk-of-poverty Rate

This subsection presents the linearization of the at-risk-of-poverty rate (ARPR). The
following exposure harkens back to Osier (2009), where the influence functions for the
different statistics are derived from the rule of derivation stated by Deville (1999). Since
the indicator ARPR is directly connected with the at-risk-of-poverty threshold (ARPT),
we firstly derive the influence function of the ARPT and then the influence function of
the ARPR. The ARPT is defined as 60% of the median income

ARPT = 0.6 MED(M) = T (M) ,

where MED(M) is the median income and F the cumulative income distribution, F (M, y) =
1
N

∑
i∈U 1(yi ≤ y), with yi as the income of the i-th element in U . By definition F (M,MED(M)) =

0.5, thus the respective influence function ITF (M,MED(M)) is equal to 0 for all i ∈ U .

In general, for a functional of the form F (M,MED(M)) one can apply rule 7 given by
Deville (1999) to obtain its influence function. Because of the significance of this rule

AMELI-WP3-D3.2



10 Chapter 2. Variance Estimation of Non-linear Statistics

in the context of our applications, we will state it here explicitly. If S(M) is a functional
in Rd and T (M,λ(M)) is a family of functionals with λ(M) ∈ Rd the influence function
of TS = T (M,S(M)) is given by

ITTS = ITTS(M,S(M)|S(M)fixed) +

(
∂T (M)

∂λ

)
λ=S(M)

ITS(M, yi) . (2.9)

Now using (2.9) we may write

0 =ITF (M,MED(M)|MED(M)fixed) (2.10)

+

[(
∂F (M, y)

∂y

)
y=MED(M)

]
ITMED(M, yi) .

The first term in (2.10) is the influence function of F (M,MED(M)) with respect to M
holding MED(M) constant. The second term accounts for the influence of MED(M).
Thus, the first term in (2.10) is given with

ITF (M,MED(M)|MED(M)fixed) =
1

N
(1[yi ≤ MED(M)]− 0.5) .

Hence, the influence function of the median is

ITMED (M, yi) = − 1

NF ′[MED(M)]
(1[yi ≤ MED(M)]− 0.5) , (2.11)

where F ′ is the derivative of F . It follows from this result that the influence function of
the ARPT is given by, ITARPT = 0.6 ITMED (MED(M), yi), which can be written as

ITARPT (M, yi) = − 0.6

NF ′(MED(M))
(1[yi ≤ MED(M)]− 0.5) . (2.12)

After these preparations for the ARPT, we can go on to the ARPR. The ARPR is defined
as the share of persons with an income below the at-risk-of-poverty threshold ARPT(M),

ARPR = F (M,ARPT(M)) .

Its influence function can be obtained by applying the rule in (2.9), hence

ITARPR (M, yi) = ITF (M,ARPT(M)|ARPT(M)fixed)

+

[
dF (M, y)

dy
|y=ARPR(M)

]
ITARPR(M).

Furthermore, the influence function of F with respect to M holding ARPT(M) constant
is given by

ITF (M,ARPT(M)|ARPT (M)fixed) =
1[yi ≤ ARPT(M)]− ARPR(M)

N
.

In analogy to the influence function of the ARPT, this formula can be expanded to

ITARPT (M, yi) = − 0.6

F ′[MED(M)]

(
1[yi ≤ MED(M)]− 0.5

N

)
.

With F ′(y) strictly non-negative for all y, we have

ITARPR(M, yi) =
1

N
(1[yi ≤ ARPT(M)]− ARPR(M)) (2.13)

− 0.6F ′[ARPT(M)]

F ′[MED(M)]

(
1[yi ≤ MED(M)]− 0.5

N

)
.
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2.3 Linearization of Poverty and Inequality Measures 11

2.3.2 The Relative Median Poverty Gap

The relative median poverty gap (RMPG) is defined as the difference between the ARPT
and the median income MEDp of the persons whose income is lower than the ARPT, the
difference being expressed relatively to the ARPT:

RMPG =
ARPT−MEDp

ARPT
= 1− MEDp

ARPT
.

Because the indicators ARPR and RMPG are connected with each other via the ARPT
the following explanations also rely on the ones made by Osier (2009).

The influence function of the RMPG can be written as

ITRMPG (M, yi) = −
ITMEDp(M, yi)

ARPT(M)
− MEDp(M)

ARPT(M)2
ITARPT(M, yi). (2.14)

Since the influence function of the ARPT has already been derived, the last remaining
issue is the derivation of ITMEDp(M), the influence function of the median income for
persons who are below 60% of the median income. By definition F (M,MEDp(M)) =
1
2
F [M,ARPT(M)], thus we can conclude that the corresponding influence functions for

all i ∈ U is

ITF (M,MEDp(M)) =
1

2
ITARPR(M, yi) ,

with ITARPR(M, yi) given in (2.13). Rearranging the above expression yields

ITMEDp,yi(M) =
1

2
(ITARPR(M, yi)) (2.15)

− 1[yi ≤ MEDp(M)]− F (M,MEDp(M))

NF ′[MEDp(M)]
.

Finally, the influence function for the RMPG can be obtained by substituting (2.15) and
(2.12) into (2.14).

2.3.3 The Quintile Share Ratio

The quintile share ratio (QSR) is a simple inequality measure. It denotes the ratio between
the total income of the richest 20% and the poorest 20% of a population. A formal
expression of the QSR would be

QSR =

∑
i∈U
(
yi − yi · 1[yi ≤ q0.8]

)∑
i∈U yi1[yi ≤ q0.2]

=

∫
ydM −

∫
y1[y ≤ q0.8]dM∫

y1[y ≤ q0.2]dM
,

where qα = F−1(α) and α ∈ [0, 1]. An alternative is to define the QSR as the ratio
between the mean income of richest 20%, µR and the the poorest 20%, µP, where

µr =
∑
i∈U

(
yi − yi · 1[yi ≤ q0.8]

)/∑
i∈U

(1− 0.8) and
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12 Chapter 2. Variance Estimation of Non-linear Statistics

µp =
∑
i∈U

yi1[yi ≤ q0.2]
/∑

i∈U

0.2 ,

(see Hulliger and Münnich, 2006). This may in turn be defined as a function of four
totals

QSR =
µr

µp

=
τ1

τ2

/τ3

τ4

, (2.16)

where τ1 and τ3 correspond to the nominator and τ2 and τ4 to the denominator in µr

and µp, respectively. The influence function for the QSR can now be obtained by first
deriving the influence functions of each of the four totals in (2.16). For τ2 and τ4 this
is straightforward if we assume τ1 = τ2 =

∫
0.2dM , and accordingly ITτk(M, yi) = 0.2,

∀i ∈ U and k ∈ {2, 3}. Total τ1 is given by

τ1 =

∫
ydM −

∫
y1[y ≤ q0.8]dM .

For τ =
∫
ydM we have ITτ (M, yi) = yi and by defining Y (M, y) =

∫
yi1[yi ≤ y]dM and

using inference rule (2.9) we have

ITY (qα)(M, yi) =ITY (qα) (M, qα(M)|qα(M)fixed) (2.17)

+

[
dY (M, y)

dy
|y=qα(M)

]
ITqα(M, yi) .

From (2.11) it is clear that

ITqα(M, yi) = − 1

NF ′[qα(M)]
(1[yi ≤ qα(M)]− α) (2.18)

and for the first term in (2.17) Osier (2009, p. 184f) shows that

ITY (qα) (M, qα(M)|qα(M)fixed) = yi1[yi ≤ qα(M)] . (2.19)

Inserting (2.18) and (2.19) into (2.17) yields the influence function of Y (qα). However,
this approach requires the derivatives of two discontinuous step functions F and Y , which
can be avoided as Langel and Tillé (2011) show. They propose the following influence
function

ITY (qα)(M, yi) = (yi − qα)1[yi ≤ qα] + αqα , (2.20)

(see also Hulliger and Münnich, 2006). Now we are able to give the influence functions
of the four totals in (2.16)

ITτ1(M, yi) = yi −
(
(yi − q0.8)1[yi ≤ q0.8] + 0.8q0.8

)
,

ITτ2(M, yi) = 0.2 ,

ITτ3(M, yi) = (yi − q0.2)1[yi ≤ q0.2] + 0.2q0.2 ,

ITτ4(M, yi) = 0.2 ,

which are used to compose the influence functions of µr and µp

ITµr(M, yi) = (ITτ1(M, yi)− µr0.2)
1

τ2

,

ITµp(M, yi) = (ITτ3(M, yi)− µp0.2)
1

τ4

.

Finally, we have

ITQSR = (ITµr(M, yi)−QSR · ITµp(M, yi))
τ4

τ3

.
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2.3 Linearization of Poverty and Inequality Measures 13

2.3.4 The Gini Coefficient

The last indicator which we consider is the Gini coefficient. However, to linearize the Gini
coefficient we use the estimating equations approach, in contrast to the influence function
which we used until now. The Gini coefficient (GINI) can be defined as

GINI =
1

µ

∞∫
0

(2F (y)− 1) ydF (y) . (2.21)

The estimation function for the GINI is given by

u(y,GINI) = (2F (y)− 1) y −GINI y .

Let J be a function with J(p) = 2p-1, then we can write the estimation equation

Û(ĜINI) =

∫ (
J [F̂ (y)]y −Gy

)
dF̂

≈
∫ (

J [F̂ (y)]− J [F (y)]
)
ydF (y)− (ĜINI)

∫
ydF (y)

+

∫ (
J [F̂ (y)]y −GINIy

)
dF̂ (y) ,

where F̂ (y) =
∑n

i=1wi
1[yi ≤ y]∑n

i=1wi
. Using the approximation

(
J [F̂ (y)]− J [F (y)]

)
ydF (y) ≈

∫ (
F̂ (y)− F (y)

)
J ′[F (y)]ydF (y)

=

∫
F̂ (y)J ′[F (y)]ydF (y) + E (F (y)J ′[F (y)]y) ,

and letting

∫
F̂ (y)J ′[F (y)]ydF (y) =

∫ y∫
0

J ′[F (y)]ydF̂ (x)dF (y)

=

∫  ∞∫
y

J ′[F (x)]xdF (x)

 dF (y) ,

we see that

ĜINI−GINI ≈
∫
zidF̂ (y) , (2.22)

with

zi =
1∫

ydF (y)

 1∫
F (y)

J ′[p]F−1dp+ J [F (y)]y −GINIy − E (F (y)J ′[F (y)]y)

 .
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14 Chapter 2. Variance Estimation of Non-linear Statistics

Using the sum notation, zi equals

zi =
1

yN

(
N∑
i=1

2
1(yi ≥ y)

N
+ (2F (yi)− 1−GINI)yi −

2F (yi)yi
N

)
,

with GINI =
1

yN

∑N
i=1 (2F (yi)− 1) yi and y = 1

N

∑N
i=1 yi, thus we can write 2F (yi)yi

N
=

y(GINI + 1), which leads to

zi =
2

yN

(
N∑
i=1

1(yi ≥ y)

N
+

(
F (yi)−

GINI + 1

2

)
yi −

y

2
(GINI + 1)

)
.

The same result can be found in Kovacevic and Binder (1997) but with the use of a
more general and flexible framework.

2.4 Variance Estimators for Poverty and Inequality

Measures

After deriving in section 2.3 the influence function or linearized values zi for the indicators
ARPR, RMPG, QSR, and GINI, this section gives an oveview on how to estimate the
variance for this indicators. We consider variance estimator of the following kind

V̂

(∑
i∈s

wizi

)
, (2.23)

where the exact form of V̂(.) depends on the sampling design but it has a well known
solution for most sampling designs used in practice. The case of wi = π−1

i is treated in
Bruch et al. (2011, chapter 2). If the survey weights wi are calibrated on some auxiliary
information,

V̂

(∑
i∈s

wiei

)
, (2.24)

where ei = zi − xTi β, further xi is a vector of auxiliary variables observed for the i-th
sampling element and β is the vector of regression coefficients from the regression of z
on x (on the use of calibration weights see Deville and Särndal, 1992; Särndal,
2007). Variance estimator (2.24), which can also be derived through linearization, is well
known for estimating the variance for the general regression or calibration estimators.
But Deville (1999) noted that if a non-linear statistic θ, that allows for the derivation
of a linearized value zi, is estimated using calibrated weights wi, then ei is the linearized
value for θ̂.

However, before it is possible to compute either (2.23) or (2.24), the zi’s or ei’s have to
be replaced by sample estimates ẑi or êi, because they involve some unknown quantities.
Table 2.1 gives an overview on the point estimators and their corresponding ẑi values. To
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2.4 Variance Estimators for Poverty and Inequality Measures 15

obtain the sample residuals êi = ẑi−xTi β̂ an estimator β̂ for β has to be calculated, which
can be done by a weighted least square estimator (see Deville and Särndal, 1992).

Further, as table 2.1 shows, for some of the indicators we need F̂ ′ an estimator of the
derivative of the estimated cumulative distribution function F̂ , which is unfortunately in

this case always 0 or not defined. This problem can be circumvented by using
˜̂
F
′

instead,

which is the derivative of
˜̂
F , a smooth function of F̂

′
. We suggest to use kernel density

estimators, with a Gaussian kernel, then we have for all y ∈ R:

˜̂
F
′
=

1

N̂h
√

2π

∑
i∈s

wi exp

[
−(y − yi)2

2h2

]
, (2.25)

which is strictly non-negative. The choice of bandwith parameter h in (2.25) is crucial for

the accuracy of
˜̂
F
′
(y) in terms of its mean integrated squared error

E

∫
(
˜̂
F
′ − F ′(y))2 dy .

Traditionally the choice of smoothing parameter, including the bandwidth h, remains with
the applicant who can examine the outcome with graphical tools. However, various ways
of data-based choices of h have been proposed in the literature. See e.g. Jones et al.
(1996) for an overview of these methods. There are some data-based bandwidth selectors
for gaussian kernels implemented in R (cf. R Development Core Team, 2010), see
for instance the function bw.nrd.
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16 Chapter 2. Variance Estimation of Non-linear Statistics

Table 2.1: Summary of Point Estimators and Linearized Values for Variance Estimation

Indicator θ Point Estimator θ̂ Estimated linearized value θ̂ ẑi

ARPT 0.6 F̂−1(0.5) − 0.6

N̂ F̂ ′(F̂−1(0.5))

(
1[yi ≤ F̂−1(0.5)]− 0.5

)

ARPR F̂ (ÂRPT)
1

N

(
1[yi ≤ ÂRPT]− ÂRPT

)
−

0.6F̂ ′[ÂRPR]

F̂ ′(F̂−1(0.5))

(
1[yi ≤ F̂−1(0.5)]− 0.5

N̂

)

MEDp F̂−1(0.5 ÂRPR)
1

2

[
ÂRPR

ẑi
]
− 1[yi ≤ M̂EDp]− F (M̂EDp)

N̂F ′(M̂EDp)

RMPG 1− M̂EDp

ÂRPT
−

ÂRPT
M̂EDp

ẑi − M̂EDp ÂRPT
ẑi

ÂRPT
2

QSR
µ̂r

µ̂p

yi −
[
(yi − F̂−1(0.8))1[yi ≤ F̂−1(0.8)] + 0.8F̂−1(0.8)

]
∑
i∈s wiyi1[yi ≤ F̂−1(0.2)]

−

Q̂SR
[
(yi − F̂−1(0.2))1[yi ≤ F̂−1(0.2)] + 0.2F̂−1(0.2)

]
∑
i∈s wiyi1[yi ≤ F̂−1(0.2)]

GINI
1

N̂ µ̂

∑
i∈s wi(2 F̂ (yi)− 1)yi

2

[∑
i∈s

wi1(yi ≥ y)
N̂

+

(
F̂ (yi)−

ĜINI + 1

2

)
yi

]
yN

−

ĜINI + 1

N̂

F̂ (y) =
∑
i∈s

wi1(yi ≤ y)(
∑
i∈s

wi)
−1 µ̂p =

∑
i∈s

wiyi1[yi ≤ F̂−1(0.2)]
1∑

i∈s wi0.2

F̂−1(p) = inf
{
y ∈ R : p ≤ F̂ (y)

}
µ̂r =

∑
i∈s

wi
(
yi − yi · 1[yi ≤ F̂−1(0.8)]

) 1∑
i∈s wi(1− 0.8)

N̂ =
∑
i∈s

wi
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Chapter 3

Measures of a Change in Indicators
of Poverty and Social Exclusion

3.1 Introduction

This chapter deals with the topic of estimating a change in time between measurements
of indicators for poverty and social cohesion. The consideration of this topic is linked to
one of the main purposes of the EU-SILC as a tool to monitor the process towards agreed
policy goals. Indicator values, which are annually published, are usually estimated from
the cross-sectional data sets of the EU-SILC survey. However, the EU-SILC survey also
has a longitudinal aspect, as it is set up as a rotational sampling scheme. This permits
the analysis of individual level changes over time, but it also introduces a dependency
between estimated indicator values.

Source: Eurostat, 2009, http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
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Figure 3.1: Values of Indicators ARPR, GINI and QSR from 1998 to 2007

Figure 3.1 shows the development of the poverty indicator ARPR and the income inequal-
ity measures GINI and QSR for the groups of the EU25, EU15, and EA12 (EU25: EU
member states in 2004, EU15: EU member states in 1995, EA12: Euro area from 2001 -
2006). Reading the point estimator naively may lead to an over-interpretation of the data.
The question is to what extent observed changes over time are due to actual differences
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18 Chapter 3. Measures of Change

in the indicator values and not sampling errors. Thus, rather than only observing the
absolute change in the measurement of an indicator from one time point to another it is
of interest to test whether the observed changes are significant in the statistical sense. For
this reason, variance estimation for measures of change is required. This would allow to
conduct a statistical test on which basis a null hypothesis, which for instance claims that
no change has occurred at all, may be rejected or not on a certain confidence level.

There are mainly two problems which arise when trying to estimate the variance for
measures of change in two indicator estimates.

1. The statistics in question are highly non-linear. Thus, as it has been outlined in
chapter 2, basic variance estimation formulas cannot be applied directly.

2. The EU-SILC survey used to estimate the indicator values has a longitudinal aspect.
Hence, correlation through time between indicators has to be taken into account.

This means that the covariance between two non-linear, and non-smooth statistics, has
to be estimated. This chapter is structured according to these tasks. Section 3.2 in-
troduces a framework for two-dimensional samples. Section 3.2.1 presents a methodology
for estimating the covariance between cross-sectional estimates obtained from overlapping
samples which focuses more on design aspects. Section 3.2.2 gives a brief description on
how the method of linearization can also be used to approximate the variance of measures
of change between poverty and inequality indicators. Finally, section 3.2.3 presents some
results from a simulation study based on the EU-SILC longitudinal data set.

3.2 Variance Estimation in Overlapping Samples

In our framework change is estimated by differences in cross-sectional estimates, hence
there is a need to estimate the covariance between estimators which are based on samples
with a partial overlap. Therefore, we first extend our framework of sampling on one
occasion to a two-dimensional sampling design. Let y0 and y1 be variables of interest
measured on two different occasions by samples s0 and s1, respectively. Samples s0 and
s1 are selected by sampling designs p0(.) and p1(.) from population U , which for now is
assumed to be composed of the same elements {1, . . . , i, . . . , N} at both occasions. Both
designs p0(.) and p1(.) are of fixed size n0 and n1, respectively, and without replacement
(cf. Bruch et al., 2011, Section 2.1). Further let the matched sample s01 = s0 ∩ s1 be
non-empty and of size n01. In additon, we denote s0\1 = s0\s1 and s1\0 = s1\s0. Thus,
we have three disjoint samples s0\1, s01, and s1\0 which are of size n0\1, n01 and n1\0,
respectively (cf. Goga et al., 2009, p. 694).

A two-dimensional sampling design can then be defined as a probability distribution
function p(.) on selecting a sample s = (s0, s1) ∈ {P(U)2, s0 ⊂ P(U), s1 ⊂ P(U)} (cf.
Goga et al., 2009, p. 696), satisfying the following properties:∑

s∈{P(U)2}

p(s) = 1 and p(s) ≥ 0 ∀ s ∈ P(U)2 .
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For a more general approach to multidimensional sampling see Goga (2003), Chapter
2. Now we can distinguish between cross-sectional inclusion probabilities, which give the
probabilities of an element being included in one of the samples s0 or s1 and longitudinal
inclusion probabilities, which give the probabilities of elements of being jointly in s0 and
s1.

Let π0i and π1j be the probabilities of including the i-th and j-th element in sample s0 and
s1, respectively. Further, let π0ij and π1ij denote the probabilities of including element i
and j jointly in sample s0, and elements i and j jointly in sample s1, respectively. For the
longitudinal inclusion probabilities, let π01i denote the probability for including element
i both in sample s0 and s1 and π01ij denote the joint probability of including the i-th
element in sample s0 and the j-th element in s1 (cf. Tam, 1984).

A simple example of a two-dimensional sampling design can be made by assuming that
samples s0\1, s01, s1\0 are selected by a simple random sample (SRS) without replacement
(WoR). Such a design could be implemented by first selecting sample s0 by SRS WoR
from U and sample s01 from s0 also by SRS WoR. Then s1\0 is selecting from U\s0 through
SRS WoR (see sampling plan A, Tam, 1984). The inclusion probabilities for such a design
are given by

πtij =



n0

N
i = j ∧ i, j ≤ N, t = 0

n0 · (n0 − 1)

N · (N − 1)
i 6= j ∧ i, j ≤ N, t = 0

n1

N
i = j ∧ i, j ≤ N, t = 1

n1 · (n1 − 1)

N · (N − 1)
i 6= j ∧ i, j ≤ N, t = 1

, (3.1)

and

π01ij =


n01

N
i = j ∧ i, j ≤ N

n0n1 − n01

N · (N − 1)
i 6= j ∧ i, j ≤ N,

, (3.2)

(cf. Tam, 1984).

3.2.1 Variance Estimation of Measures of a Change

A straightforward measure of change from time t = 0 to t = 1 can be a difference or
the ratio between two estimators θ0 and θ1, where θ0 corresponds to the characteristic of
interest at base time t = 0 and θ1 the value of the same characteristic but at time t = 1.
If we wish to estimate the absolute change

θ∆ = θ1 − θ0 (3.3)

a natural estimator would be

θ̂∆ = θ̂1 − θ̂0 . (3.4)
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20 Chapter 3. Measures of Change

The variance of θ̂∆ is given by

V(θ∆) = V(θ̂1) + V(θ̂0)− 2Cov(θ̂0 , θ̂1) . (3.5)

If we aim to estimate the difference between totals of study variable y0 and y1, i.e. θ1 =
τ1 =

∑
i∈U y1i and θ0 = τ0 =

∑
i∈U y0i, estimator (3.4) would be calculated through

cross-sectional estimators

θ̂1 = τ̂1 =
∑
i∈s1

y1i

π1i

and θ̂0 = τ̂0 =
∑
i∈s0

y0i

π0i

, (3.6)

thus we have

τ̂∆ = τ̂1 − τ̂0 . (3.7)

The variance of estimator (3.7) is given by

V(τ̂∆) =V(τ̂1) + V(τ̂0)− 2Cov(τ̂0 , τ̂1) (3.8a)

=
∑
i∈U

π1i(1− π1i)

(
yi
π1i

)2

+
∑
i∈U

∑
j∈U
j 6=i

(
π1ij

π1iπ1j

− 1

)
y1iy1j (3.8b)

+
∑
i∈U

π0i(1− π0i)

(
yi
π0i

)2

+
∑
i∈U

∑
j∈U
j 6=i

(
π0ij

π1iπ1j

− 1

)
y0iy0j (3.8c)

−2

∑
i∈U

(
π01i

π0iπ1i

− 1

)
y0iy1i −

∑
i∈U

∑
j∈U
j 6=i

(
π01ij

π0iπ1j

− 1

)
y0iy1j

 . (3.8d)

Terms (3.8b) and (3.8c) correspond to the variance of the Horwitz-Thompson estimators
τ̂1, and τ̂0, respectively (see Särndal et al., 1992, p. 44). However, term (3.8d) equals
2Cov(τ̂0, τ̂1) = 2E (τ̂0 − τ0) (τ̂1 − τ1), two times the covariance between estimators τ̂0 and
τ̂1. Term (3.8d) can be directly derived form Tam (1984), where he gives the covariance
between two sample means.

For designs, where samples s0, s01 and s1 have been selected by SRS WoR ,Qualité and
Tillé (2008) gave, conditional on n01, an unbiased variance estimator for (3.8a) of the
following form:

V̂(τ̂∆) =N2
(

1− n1

N

) σ̂2
y1

n1

+N2
(

1− n0

N

) σ̂2
y0

n0

−2N2

(
1− n0n1

NE(n01)

)
σ̂2
y01E(n01)

n0n1

, (3.9)

where

σ̂2
y1 =

1

n1 − 1

n1∑
i=1

(y1i −
1

n1

n1∑
j=1

y1j)
2
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σ̂2
y0 =

1

n0 − 1

n0∑
i=1

(y0i −
1

n0

n0∑
j=1

y0j)
2

σ̂2
y01 =

1

n01 − 1

n01∑
i=1

(y0i −
1

n01

n01∑
j=1

y0j)(y1i −
1

n01

·
n01∑
j=1

y1j)

Variance estimator (3.9) can be applied to designs where E(n01) depends only on n1, n0

and N or if n01 is not a random number (e.g. sampling plan A in Tam, 1984). It may
be interesting to note that if s01 = ∅, i.e there is no overlap between samples s0 and s1,
Cov(τ̂0 , τ̂1) = −Nσy01, with σy01 = 1

N−1

∑N
i=1(y0i − 1

N

∑N
j=1 y1j)(y1i − 1

N

∑N
j=1 y1j). Thus,

in this case a positive correlation between τ1 and τ0 will inflate the variance of τ̂∆.

Another approach was given by Berger (2004), which allows for a more general form
of estimator (3.4) by assuming that θ1 and θ0 are functions of a finite number of totals,
that is θ0 = f (τ01, . . . , τ0P0) and θ1 = f (τ11, . . . , τ1P1) (see also Nordberg, 2000). The
variance of estimator (3.4) can be approximated through its first order Taylor series:

θ̂∆ − θ∆ ≈
P0+P1∑
k=1

∂f(τ)

∂τk
(τ̂k − τk) , (3.10)

where τ = (τ01, . . . , τ0P0 , τ11, . . . , τ1P1) (see Andersson and Nordberg, 1994). Then
the variance of (3.4) is approximated by

V(θ̂∆) ≈
P0+P1∑
k=1

(
∂f(τ )

∂τk

)2

V(τ̂k) +

P0+P1∑
k=1

P0+P1∑
l=1
k 6=l

∂f(τ )

∂τj

∂f(τ )

∂τl
Cov(τ̂k , τ̂l) , (3.11)

which can be estimated by

V̂(θ̂∆) ≈
P0+P1∑
k=1

(
∂f(τ̂ )

∂τ̂k

)2

V̂(τ̂k) +

P0+P1∑
k=1

P0+P1∑
l=1
k 6=l

∂f(τ̂)

∂τ̂j

∂f(τ̂)

∂τ̂l
Ĉov(τ̂k , τ̂l) , (3.12)

with τ̂ = (τ̂01, . . . , τ̂0P0 , τ̂11, . . . , τ̂1P1).

The following sampling procedure was considered by Berger (2004): First, select sample
s0 by unequal probability from U and s01 by SRS WoR from s0, and sample s1\0 of size n1\0
is drawn from U\s0 by SRS WoR. Then, we have π0i =

∑
s03i p0(s0) and the probability

of selecting the i-th element into s1 given s0 is π1|0i = n01

n0
I0,i +

n1\0
N−n0

(1− I0,i), where I0,i

= 1 if i ∈ s0 and I0,i = 0 else. Finally, π1i = E(π1|0i) = n01

n0

n1\0
N−n0

π0i +
n1\0
N−n0

(1− π0i).

Term (3.12) involves the estimation of P0 +P1 variances and (P0+P1)(P0+P1−1)
2

covariances.
Berger (2004) does this by extending his approach of estimating variances for max-
imum entropy sampling schemes to two-dimensional samples, which makes it possible to
incorporate unequal probability sampling into the design. The actual two-dimensional
sampling design is approximated by a design, where p0(s0), p1\0(s1\0) and p01(s01) are of
fixed size and p0(s0) and p1(s1|s0) are conditional Poisson sampling schemes, given n0,
n1 and n01, respectively (cf. Berger, 2004, p. 454f). It is then assumed that, under the
Poisson sampling scheme, vector t = (τ , n0, n1, n01)T ∼ N(E(t),Σt), i.e. t is multivariate
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22 Chapter 3. Measures of Change

normally distributed with mean E(t) and covariance matrix Σt (see also Bruch et al.,
2011, section 2.3). Thus, the covariance matrix of vector τ under the Poisson sampling
scheme is given by

Στ |n = Στ − ΣτnΣn
−1Στn , (3.13)

where n = (n0, n1, n01)T , Στn denotes the covariance matrix between τ and n, and Σn the
covariance matrix of n. Estimates for the terms in (3.13) can be obtained by estimating
matrix Σt, which is composed of four submatrices, with

Σt =

[
Στ Στn

Σnτ Σn

]
(3.14)

= ATV (I) A , (3.15)

where I = (IT0 , IT1 , IT01)T with I0 = (I0,1, . . . , I0,N), I1 = (I1,1, . . . , I1,N) and I01 =
(I0,1I1,1, . . . , I0,NI1,N) , and I1,i = 1 if i ∈ s1 and I1,i = 0 otherwise. So I is a matrix of
dimension N × 3 with the sample indicators of s0, s1 and s01 as column vectors. Under
Poisson sampling the covariance matrix V (I) can be shown to be composed of six different
N × N diagonal matrices (see Berger, 2004, p. 464f.). This is due to the property of
Poisson sampling that elements within and between samples s0, s1 and s01 are drawn
independently from each other. This allows to write Σt as a matrix of population totals
which can then be estimated by their corresponding Horvitz-Thompson estimators (see
Berger, 2004, p. 465).

If we consider the special case of P0 = P1 = 1, then matrix A is given by

A =

y∗0 0 1N 0 0
0 y∗1 0 1N 0
0 0 0 0 1N

 ,

with y∗0 = ( y01
π01
, . . . , y0i

π0i
, . . . , y0N

π0N
)T , y∗1 = ( y11

π11
, . . . , y1i

π1i
, . . . , y1N

π1N
)T , and 1N a vector of

N × 1 ones. Matrix Σt has then the dimension 5 × 5. Note that for P0 > 1 and P1 > 1
y∗0 and y∗1 would be replaced by accordant matrices of dimension N × P0 and N × P1,
respectively.

An estimator of (3.14) would then be

Σ̂t =

[
Σ̂τ Σ̂τn

Σ̂nτ Σ̂n

]
, (3.16)

where

Σ̂τ =


∑
i∈s0

(1−π0)y20i
π2
0

∑
i∈s01

(1−π1
g )y0iy1i
π0π1

. . .
∑
i∈s1

(1−π1)(y1)2i
π2
1

 ,

Σ̂τn =


∑
i∈s0

(1−π0)y0i
π0

∑
i∈s01

(1−π1
g )y0i
π0

∑
i∈s01

(1−π0)y0i
π0∑

i∈s01

(1−π1
g )y1i
π1

∑
i∈s1

(1−π1)y1i
π1

∑
i∈s01

(1−π1)y1i
π1

 ,
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Σ̂n =

 n0(1− π0) n01(1− π1
g

) n01(1− π0)

. . . n1(1− π1) n01(1− π1)

. . . . . . n01(1− gπ0)

 ,

and g = n01

n0
. Finally, we can estimate Στ |n , the covariance matrix between estimates τ01

and τ11, via

Σ̂τ |n = Σ̂τ − Σ̂τnΣ̂−1
n Σ̂τn .

The explicit expression for the covariance between τ01 and τ11 is omitted here because it
is lengthy and of little value for general applications.

3.2.2 Linearization of Bivariate Statistical Functionals

The aim of this subsection is to show how linearization is used to approximate the variance
of estimators depending on two-dimensional samples. For this purpose the concept of
influence functions, as presented in section 2.1, is extended to the case of statistical
functionals depending on a multi-dimensional measure M. Thus, we introduce a two-
variate functional T(M) with M = (M0,M1), where in analogy to the one-sample case,
M0 =

∑N
i=1 δ

◦
y0i

and δ◦y0i denotes a measure taking mass one for each y0i with i ∈ U and
zero elsewhere, with M1 defined in a similar way (see Goga et al., 2009, p. 694). As for
the one-dimensional case in section 2.3, an intuitive estimator of M0 can be defined as
M̂0 =

∑N
i=1 w0iδ

◦
u0i

, where w0i is the survey weight associated with the i-th element for

i ∈ s0 and zero elsewhere. To estimate M1 an estimator M̂1 is defined in analogy to M̂0.
Note that we do not consider the case of any composite estimator which requires knowledge
of the matched sample s01. In other words there is no interaction between M0 and M1,
estimator T(M̂) consists of cross-sectional T (M̂0) and T (M̂1), which are constants with
respect to M̂0 and M̂1, respectively (on the variance of composite estimators see Goga
et al., 2009). This limitation is justified by the fact that change in an indicator value is
often simply measured by the difference or ratio between two cross-section estimates.

The variance of an estimator of the form T(M̂) = T
(
M̂0, M̂1

)
can be approximated by

its associated partial influence functions (see Pires and Branco, 2002), which equal
the linearized variables and, as in the one-sample case, the variance of T(M̂) equals the
variance of their estimated total. Hence, the asymptotic variance of T(M̂) equals

V

(
1∑
t=0

∑
i∈st

wtizti

)
, (3.17)

where zti is the partial Gâteaux derivative of T with respect to Mt, i.e

zti = ITt (M,gti) = lim
ε→∞

T (M0 + εδu0 ,M1)−T(M0, M1)

ε
,

with gti ∈ Rd as the variable of interest measured at time t of the i-th unit in U (for the
proof see Goga et al., 2009).
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24 Chapter 3. Measures of Change

To illustrate the approach, we consider the following example of a change in a ratio (see
also Goga et al., 2009, p. 694). The variable of interest g is bivariate with gti = (yti, xti)

T (M) = R∆ = R1 −R0 =
τ3

τ4

− τ1

τ2

=

∫
y1dM1∫
x1dM1

−
∫
y0dM0∫
x0dM0

(3.18)

The values of partial influence functions of R∆ are given by

IT0 (M, (y0i, x0i)) = z0i = − 1

τ2

(y0i −R0x0i)

IT1 (M, (y1i, x1i)) = z1i =
1

τ4

(y1i −R1x1i) ,

the linearized variables of R0 and R1 (see also Goga et al., 2009, p. 695). If we substitute
M0 and M1 by their estimators M̂0 and M̂1 in equation (3.18), we obtain an estimator
R̂∆ for R∆. Now, the variance of R̂∆ can be approximated by

V

(∑
i∈s1

z1iw1i +
∑
i∈s0

z0iw0i

)
. (3.19)

3.2.3 Rotational Samples: An Application to the EU-SILC Sur-
vey

The Monte-Carlo study is a design-based simulation which aims to evaluate empirically
the accuracy of the proposed variance estimators for a nonlinear functional T (M̂0, M̂1).
Estimator T (M̂0, M̂1) is based on a two-dimensional sample s = (s0, s1). The study was
set up following the rotational sampling scheme used in the EU-SILC survey. Figure 3.2
illustrates the rotational pattern used in the simulation. A more detailed description of
the rotational scheme of EU-SILC can be found in Verma et al., 2007. The survey has

Survey Year

Y − 1

Y − 0

Selection Year

Y − 4 Y − 3 Y − 2 Y − 1 Y − 0

S4
Y−4 S3

Y−3 S2
Y−2 S1

Y−1

S4
Y−3 S3

Y−2 S2
Y−1 S1

Y−0

Figure 3.2: Rotational samples in EU-SILC

four rotational groups, all households in one group are surveyed over four successive years
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which adds the longitudinal dimension to the dataset. In figure 3.2 sY−3
3 represents a

sample of households drawn in year Y − 3 and surveyed for 3 successive years, where
Y indicates the present year. The observation period includes years Y − 1 and Y − 0
and the two cross-sectional samples available for Y − 1 and Y − 0 are s0 = {sY−tt } and
s1 = {sY−t+1

t }, respectively, with t = {1, 2, 3, 4}. Elements in sY−4
4 have stayed over

four years in the survey and are replaced by the newly drawn sample sY−0
1 . Hence, the

rotational pattern produces an overlap between s0 and s1 of 75%.

For the simulation study EU-SILC longitudinal data was chosen as a finite population.
The data includes observations from all EU member states excluding Bulgaria, Romania,
and Malta and plus Iceland and Norway. The annual equivalized disposable household
income was selected as the variable of interest y. The data was then preperated that the
simulation incorporates following assumptions:

1. A stable population over time

2. No outliers in the population

3. The rotational groups are independent of each other.

The population is be stable over time, i.e. there are no death and births in the population,
because only those households were included that have been present at all considered
years. Further, only those households have been considered with 0 ≤ y < 150, 000. The
truncation of the income distribution was done for two reasons. First, the GINI, as given
in formula (2.21), is not defined for negative incomes and second, the QSR should not
have been subject to the effects of outliers, which are present in the original EU-SILC
data set. In preparation of the sampling process the eligible households where randomly
allocated into four rotational groups UY−4, UY−3, UY−2, and UY−1.

The actual sampling plan consists of two steps:

1. s0 is drawn by selecting four stratified random samples of households {sY−tt } with
equal size independently from groups UY−t

2. For the rotational part a stratified random sample of households {sY−0
1 } with the

same size as sY−4
4 is selected from UY−4

Stratification is done after countries with proportional allocation of the samples sizes and
households are selected without replacement. Note that sY−4

4 and sY−0
1 are bothe selected

from UY−4, i.e. the no overlapping parts of s1 and s0 are independent of each other.
Because the population is stationary we have sY−3

3 = sY−3
4 , sY−2

2 = sY−2
3 , and sY−1

1 = sY
1

2 ,
thus we may drop suffix t and denote the matched sample by s01 = {sY−t} for t = {1, 2, 3}.

The boxplots in figure 3.3 show the distribution of the relative bias of 10000 variance
estimates of measures of change. The data set used in the simulation was the EU-SILC
2006 longitudinal data and the change is estimated for the indicators QSR, GINI and
ARPR for 2005 to 2006. The upper half refers to the results for a sample fraction of 1%
and the lower for 10%. The left half of the figure shows the results for the difference and
the right one for ratio as a measure of change. Further, HT over a panel denotes the use of
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26 Chapter 3. Measures of Change

Horvitz-Thompson weights and CAL the use of calibration weights for point estimation.
The calibration was done on person level using the age and sex variable.

The asymptotic variance for the difference, as given in 3.17, is estimated by its equivalent
for stratified random samples. To simplify the notation, rotational groups are treated like
strata. Set H denotes the cross-classification of rotational groups and strata (countries)
and set H01 is the same but without rotational group UY−4. Thus, we us the following
variance estimator for θ̂∆

V̂(θ̂∆) =
∑
h∈H

N2
h

(
1− nh

Nh

)
σ̂2

0h

nh
(3.20)

+
∑
h∈H

N2
h

(
1− nh

Nh

)
σ̂2

1h

nh

+
∑
h∈H01

2N2
h

(
1− n01h

Nh

)
σ̂2

01h

n01h

,

where

σ̂2
0h

=
1

nh

∑
i∈s0h

(zhi − z0h)2 ,

σ̂2
1h

=
1

nh

∑
i∈s1h

(zhi − z1h)2 ,

σ̂2
01h

=
1

n01h

∑
i∈s01h

(zhi − z0h) (zhi − z1h) ,

and

z0h =
1

n0h

∑
i∈s0h

zhi ,

z1h =
1

n1h

∑
i∈s1h

zhi .

The asymptotic variance of the ratio θ̂1θ̂
−1
0 is estimated by

1

θ̂2
0

V̂1 +

(
θ̂1

θ̂0

)2

V̂0 − 2
θ̂1

θ̂0

Ĉov01 ,

where V̂0 equals the first term in (3.20), V̂1 the second and Ĉov01 the third. In case of
the calibration estimators for variance estimation not the linearized variable z was used
but e, the residual of the regression z on x, where x are is the auxiliary information used
for calibration (see section 2.4).

Figure 3.3 reveals that the variance estimators work well. The black cross, which indicates
the mean value of over the 10,000 estimates, is always well within the interval [−0.1, 0.1].
As one would expect, the variance estimates become more accurate with increasing sample
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size. In general, there is no big difference in accuracy of variance estimators neither with
respect to the statistic nor the usage of Horvitz-Thompson or calibration weights. The
only exception are the variance estimates from the ARPR, which seem to suffer from a
bias if the sampling fraction is high.

Figure 3.4 shows the confidence interval (CI) coverage rates for the 10,000 variance estim-
ates, again for sampling fractions of 1% and 10%. For all indicators CIs have been created
with 90% and 95% confidence level. The two red horizontal lines, at 0.9 and 0.95 are the
benchmarks for the coverage rates and the black lines build a bandwidth of ±0.1 around
them. The figure shows that almost all variance estimators result in CI with coverage
rates well within the bandwidth around the benchmark. Further there is no big difference
between the estimators using Horvitz-Thompson and calibration weights.

Figure 3.5 shows so called funnel plots (see Hulliger and Pooda, 2010; Templ et al.,
2011, section 2.9), which are a possible application of variance estimates of a change in
indicator values. They visualise the test decision if the null hypothesis, that no change
has occurred at all, i.e. H0 := ∆ = ∆0 = 0, can be rejected or not. Each of the three
plots show the time line, in solid black, that connects the estimates θ̂t of the ARPR, the
GINI, or the QSR for four consecutive years. The funnel between two adjacent years can
be interpreted in the following way. The vertical line of the three triangles or funnels in
each plot correspond to a CI build around estimate θ̂1 but using a variance estimate V̂(∆̂).
The dashed horizontal line corresponds to estimate θ̂0, if it is outside the CI around θ̂1,
H0 can be rejected and vice versa. In the example in Figure 3.5 it is the case that albeit
all indicator estimates decrease over time none of the changes between one year and the
next is regarded as significant.

Relative Bias of Variance Estimates for Measures of Change
Difference: I_2006 − I_2005 Ratio: I_2006 / I_2005

Sampling Fraction: 1%

Sampling Fraction: 10%

−0.1 0.0 0.1

ARPR

GINI

QSR

● ●●● ●●●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●●●●● ●●● ● ●●●● ●● ●● ●● ●● ●●● ●●●● ●●● ●● ●
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Figure 3.3: Relative Bias of Variance Estimates for Measures of Change
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Figure 3.5: Funnel Plot; Test of Significant Change: H0 := ∆ = ∆0 = 0
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Chapter 4

Summary and Outlook

In the following we draw some conclusions from the application of the presented meth-
odology, as well as giving an outlook and adding a few thoughts on how the presented
methods can be extended to account for more problems encountered in the practice of
estimating from samples surveys.

The availability of linear variance estimators for indicators of poverty and inequality can be
of great value because its simplifies the computation of standard sample errors, because
it allows for the use of variance estimators for linear statistics, which can be derived
for sampling designs of nearly arbitrary complexity. Thus, they have the potential to
facilitate the use of statistical inference not only when producing official statistics but
also in the area of economic and social sciences, when analyses are based on sample data.
But it should be mentioned that linearization can also be problematic. To apply the
linearized values for variance estimation we need that the remainder term R in expansion
2.2 converges in probability to zero. This is ensured, as Demnati and Rao (2004) noted,
if we have iid sample data, which would be reasonable to assume for simple random
sampling or simple stratified sampling where we have iid observation within each strata.
Serfling (1980, section 6.2.2) gave some advice on how to handle the remainder term R.
But for more complex survey design, like multi-stage sampling involving cluster sampling
at higher stages the iid assumption might not be sustainable. This would especially be
true if there is a large cluster effect. Wolter (2007) also notes that one should be
cautious if using approximations in the presence of highly skewed populations, although
he does this in the context of the Taylor series. Experience with linearization have shown
that in general for samples sizes large enough first-order approximations (as (1.5)) deliver
variance estimates that allow for the construction of valued confidence intervals. However,
even if the population itself is not highly skewed certain sampling designs might have a
similar effect by creating highly skewed sample distributions of observations. This might
render a (first-order) approximation, like the one in (1.6), inadequate.

For estimation of change in indicator values, linearization provides a convenient approach
to estimate the variance of a change, especially if variance estimates for cross-sectional
have already been obtained by linearization. However, in practice rotational sampling
schemes are often somewhat more complex. For instance, in the simulation study presen-
ted in section 3.2.3 the rotational parts of the two-dimensional sample are constructed
to be independent of each other. This is a simplification that might not be applicable
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to most rotational schemes, as it conceivable that sample elements that dropped out of
the survey are excluded from being selected into the replacement sample. Tam (1984)
already considered sampling plans where the rotational parts are not selected independ-
ently of each other. By using the results from Tam (1984) variance estimators (3.20) can
be readily adjusted to account for such sample schemes.

Another degree of complexity found in many rotational samples applied in practice is
multi-stage sampling (e.g. the French Labour Force Survey, see Place, 2008). For in-
stance, if PSUs are selected at an earlier stage and rotation is then carried out within PSU,
then the rotational parts can be a source of a secondary correlation between estimates,
assuming a certain degree of similarity between elements in a common PSU (see Steel
and McLaren, 2009, section 3). This raises the question of how to estimate covariances
from a part of the sample that have no elements in common. A possible approach to this
matter is to treat it as a problem of missing data, appearing in the non-overlapping part
of the sample (see Place (2008)). In this case missing observations would be determined
by the rotational scheme, thus, the unobserved values could be regarded as missing at
random , given the duration how long a element stays in the sample.

Finally, there is the problem that the population under consideration may not be stable
over time, as assumed in section 3.2.3. There are elements that depart from the population
(deaths) or appear new (births). There are a number of authors that accommodated this
fact in their analysis. Laniel (1987) generalised the results of Tam (1984) by removing
the assumption of a stable population, (on this matter see also Nordberg (2000); Wood
(2008)). The problem can in part be described as estimation in a dual frame survey, i.e.
the non-rotational part of sample is drawn from one frame and the rotational part from
another. Both frames overlap and together they cover the population of interest, however,
this does not consider the attrition within the non-rotational part.
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