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IV

Aim and Objectives of Deliverable 7.1

Deliverable 7.1 of the AMELI project brings together the results of the various simulations
under Workpackage 7 into one reference document. All research partners of the AMELI
project have contributed with methods, simulations and a corresponding chapter. NSI
partners of the AMELI project have contributed through evaluation of the results and of
the deliverable. Workpackage 7 and Deliverable D7.1 were coordinated by FHNW.

The Deliverable was split into the main deliverable D7.1 and the Appendix, called D7.1-
Appendix. The main deliverable gives an overview over the simulation setup in Part I.
The reports on the simulations and recommendations can be found in Part II. The main
deliverable is well suited for printing. It is a reference source for the results in the form
of tables and graphs and contains R-code used for specific tasks in the simulations.

The chapters and sometimes the sections of the deliverable mention the names of the
responsible authors. This reflects the heterogeneity of the simulations and methods well.
Chapters also contain chapter bibliographies specific to the chapter.
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Simulation Setup
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Chapter 1

Introduction

1.1 Overview

The methods to be evaluated with the simulations have been developed under workpack-
ages 2, 3 and 4 of the AMELI project. The corresponding deliverables (Graf et al., 2011),
(Lehtonen et al., 2011), (Bruch et al., 2011) and (Hulliger et al., 2011b) describe
the methods and preliminary simulations in detail.

The construction of the universes AMELIA and AAT-SILC for the simulations are de-
scribed in (Alfons et al., 2011). These universes themselves use the real data sets
EU-SILC, which is a collection of the European Statistics on Income and Living Condi-
tions Databases maintained by Eurostat, and AT-SILC, which is the Austrian version of
the SILC data.

Four simulation environments have been used for the simulations of the AMELI project:
The simulation environment of the University of Trier (UT) based on the system Condor,
the simulation environment of the University of Helsinki (UH), a new R-based simulation
environment from University of Vienna (TUW), and a database-simulation environment
built on top of simFrame by University of Applied Sciences Northwestern Switzerland
(FHNW).

In this deliverable neither the simulation universes AMELIA nor the simulation envir-
onments are described. The specification of the simulation bed, sometimes called the
scenarios, are described in the first part of the deliverable. In particular Chapter 2 ex-
plains the sample designs, Chapter 3 gives a proposal for domains which might be useful
for the simulations, Chapter 4 discusses the contamination mechanisms and introduces
the corresponding nomenclature, Chapter 5 introduces the missingness mechanisms and
Chapter 6 defines the criteria for the analysis of results for later reference. The methods
are shortly summarized in the corresponding chapters in Part II. These chapters deal
with parametric estimation in Chapter 7, small area estimation in Chapter 8, variance
estimation in Chapter 9 and univariate as well as multivariate robustness in Chapter 10.

AMELI-WP7-D7.1



1.2 Workflow and Metadata 4

1.2 Workflow and Metadata

The simulations of the AMELI project have used several simulation environments, several
hardware platform and a range of methods. Nevertheless the coordination of the simu-
lation set up and an overview of the simulation results was ensured. To understand the
coordination process and the gathering of the information about the analysis carried out
by the different partners the workflow of the information and the format of the resulting
metadata is explained in this chapter.

Figure 1.1 describes the analysis process for the AMELI Results. Each simulation partner
is responsible for maintaining the data of its simulations and for delivering a report.
Simulation partners are UT, UH, TUW, Swiss Federal Statistical Office (SFSO) and
FHNW. Each simulation which is used in the analysis must be accompanied by the Form
AMELI Simulation Metadata. This form will give an overview over the simulations and
permits to identify where the simulation data actually can be obtained. Each partner
holds his own data and he is capable to provide simulation data as a simFrame R-object
or in an object which inherits from it, such that the extractor functions of simFrame work.

For his simulations each partner delivers one metadata simulation form per simulation
run. Metadata for a simulation run contains compulsory and voluntary metadata and
voluntary results. The AMELI project has set up an SVN server for data management
and exchange (http://svn.uni-trier.de/AMELI). Each metadata form is uploaded into the
partner directory on the AMELI SVN server. A metalist is maintained which lists all
existing metadata forms. Figure 1.2 shows where the different elements of the simulation
results will be stored. Note that some of the data is stored both centrally on the SVN-
Server and locally by each partner.

FHNW maintains a list with the metadata (Metalist, see Figure 1.3) of the uploaded files
and a link to each metadata simulation form. If a partner wants to obtain data from
another partner he must require it using the metadata identification (id) and it will be
sent in simFrame format. Thus partners are responsible for archiving their data and for
ensuring access.

The metalist is a compilation of all compulsory metadata (Figure 1.4). A metadata
simulation form contains compulsory and any voluntary metadata from one simulation
run, voluntary simulation results and any text a partner deems necessary to explain
the simulation run. The part with the voluntary metadata, the results and text has no
specification and can be filled out arbitrary. The compulsory metadata-part has to respect
specifications in order to allow automatic transfer into the metalist. The content of the
compulsory metadata is explained in detail in Table 1.1 and shown in Figure 1.4. Only
the compulsory metadata have to be delivered obligatory, every other data is optional.
Finally there will be one metalist linked to numerous metadata simulation forms. The
metalist is reproduced in (Hulliger et al., 2011a, chap. 1).

The metadata simulation form can be delivered in a text file format (.csv) which could
afterwards be imported in an Excel-sheet. Figure 1.5 shows how the text file could look
like.

The reports on the simulation runs of a simulation partner are adapted to the needs of the
methods and the simulations run by that partner. However, every report should contain
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recommendations for the applications of the methods. The reports are collected in Part
II of this deliverable.
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Figure 1.3: Metalist

Compulsory metadata Version 30.11.2010
Metadata-Label Values Name Remarks
Identification id author can find the data in his database with identifier (e.g. N0001)
Author/Institution author
Date date Finishing date of simulation (yyyymmdd)
Mean mean 1=used, 0=not used
ARPR arpr 1=used, 0=not used
RMPG rmpg 1=used, 0=not used
QSR qsr 1=used, 0=not used
Gini gini 1=used, 0=not used
Other other 1=used, 0=not used; to be documented in voluntary part
Universe universe AMELIA, AAT-SILC, OTHER
Domain(s) domain laf, 22, n4f, OTHER
Sample design design 1.2, 1.4a, 1.5a, 2.6, 2.7, OTHER
Sample size (nbr households) size
Outlier and cont. mechanism oc OCAR-CCAR, OCAR-NCAR, OAR-CCAR, OAR-NCAR, OTHER
Parameters outliers/contam. ocpar Free text
Nonresponse mechanism nr MCAR, MAR, OTHER
Parameters NR-mechanism nrpar Free text
Number of replicates nrep
Simulation environment sw simFrame, Dbsim, condor, OTHER

Figure 1.4: Compulsory metadata
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Table 1.1: Description of compulsory metadata
Name Description
id the identification must contain a capital letter for each partner (see be-

low) followed by a sequence number (4 digits). The sequence number has
to be assigned and administered by the partner. Capital letters for the id:
H = University of Helsinki, N = University of Applied Sciences North-
western Switzerland, S = Swiss Federal Statistical Office, T = University
of Trier, W = Vienna University of Technology

author the author/institution of a simulation run can be UT, UH, TUW, SFSO
or FHNW

date means the finishing date of simulation run. Format: yyyymmdd
mean,
arpr,
rmpg,
gsr,
gini

the used indicators must be binary coded (1=used, 0=not used)

other if there were other indicators used than the listed ones, it is possible
to add other indicators by using the label öthersänd defining it in the
voluntary part of the metatdata (1=used, 0=not used)

universe the universe is either AMELIA, AAT-SILC or OTHER. If there was used
another universe than AMELIA or AAT-SILC it can be defined in the
voluntary part of the metadata

domain possible analysis domains: laf, 22, n4f, OTHER (see specifications in
chapter 3). If there was used another domain than laf, 22 or n4f it can
be defined in the voluntary part of the metadata

design possible sample designs: 1.2, 1.4a, 1.5a, 2.6, 2.7, OTHER (see table
2.1 ). Another used sample design can be documented in the voluntary
metadata part.

size the sample size is counted by households and is absolute (not counted as
sampling fraction)

oc possible outlier and contamination mechanisms: OCAR-CCAR, OCAR-
NCAR, CAR-CCAR, OAR-NCAR, OTHER; the first part of the refer-
ence (e.g. OCAR) defines the outlier model (see 4.2.1) and the second
part (e.g. CCAR) indicates the contamination model (see 4.2.4).

ocpar the parameters for outliers and contamination can be described by using
free text

nr the references for the missing data mechanisms are: MCAR, MAR,
OTHER (see specifications in chapter 5.2).

nrpar parameters for nonresponse-mechanism can be described by using free
text

nrep number of replicates
sw the simulation environment can be simFrame, Dbsim, Condor or OTHER

(other simulation environments can be described in the voluntary
metadata part)

© http://ameli.surveystatistics.net/ - 2011
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Chapter 2

Sampling Designs

In the following the five core sampling designs are shown in Table 2.1. Table 2.2 indicates
the possible sampling fractions for a fix sample size of n = 6000. All sampling fractions
refer to the AMELIA data set. The variable sample sizes are reported here for coordination
purposes and as a proposal. The basic design for the AMELI simulations will use the fixed
sample size sampling fractions with 6000 households.

Table 2.1: Sample designs
p1(·) p2(·)

ID PSU Strata πiI SM Alloc. SSU Strata πiII SM Alloc.

1.2 HID – srs 1 – – – – – –
1.4a HID NUTS2 srs 1 prop – – – – –
1.5a HID NUTS2 pps HHG prop – – – – –
2.6 CIT NUTS2*DOU srs 1 prop HID – pps HHG –
2.7 CIT NUTS2*DOU srs 1 prop HID – srs – –
Notes: SM: measure of size; Alloc: allocation; prop.: proportional; srs: simple random sampling without
replacement; pps: sampling proportional to size (Midzuno); pk(·): sampling design at the kth stage; πiI

and πiII : sample inclusion probability at the first and second stage; Variables: HID: household identifier;
HHG: household size; CIT: municipality identifier (LAU1); DOU: degree of urbanization.

Table 2.2: Sampling fractions
variable sample size fixed sample size, n = 6000

ID(s) fI fII f fI fII f

1.2 / 1.4a / 1.5a 1%; 5% – 1%; 5% 0.16% – 0.16%
2.7 / 2.6 5%; 1.25% 20%; 80% 1% 16% 0.1% 0.16%
2.7 / 2.6 25%; 6.25% 20%; 80% 5% – – –
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Chapter 3

Analysis Domains

In order to evaluate simulation results not only on the level of the whole population but
also on the level of domains for both universes two similar domains are proposed.

The two proposed domains of analysis with AAT-SILC are

1. dom.laf<-db040 == ”Lower Austria“ AND rb090== ”female“

2. dom.22<-hsize==4 AND eqSS==2.1

The first domain consists of the women in Lower Austria. It has a size of ND = 77 0367 or
9.4% of the total population in the universe. It should be rather homogenous in terms of
income distributions and could be an aggregate of domains used in Small Area Estimation
(SAE)

The second domain consists of persons in households with 2 adults and 2 children. It
has a size of ND = 78 4944 or 9.6% of the total population. This domain may cut across
the SAE domains. The size of both domains is large enough that a direct estimation is
reasonable.

Two domains of analysis for AMELIA are

1. dom.n4f<-NUTS2==4 AND SEX=2

2. dom.22<-HHG==4 AND children==2

The first domain, women in the fourth simulated NUTS2 region, has size ND = 694 837
or 6.9% of the total AMELIA population. The second domain has size ND = 459 504 or
4.6%.
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Chapter 4

Outlier and Contamination Settings

4.1 Introduction

We attempt to describe the contamination set-up for simulation bed derived from our
needs. The notation and set-up described here follows the Milestone M4.2 description.
The ingredients of the mechanisms we investigate are the following:

• U is the set of elements in the population of size N . We usually use the index i to
indicate the elements of U .

• Y ∗i the true, complete data. For the description of the mechanisms, we think of
the true Y ∗i as of random variables, which follow a superpopulation model. In the
survey context we will fix them as one realisation from a superpopulation model.
Any finite population characteristics would be a function of Y ∗.

• Yi is the observable data for unit i.

• Rij denotes a response indicator for the i th observation of variable j. Given the
vector Ri· we can split the observable data Yi into an observed part Yio and a missing
part Yim, which in turn may be composed as Yi = (Yio, Yim).

• Yic is the contaminated data for unit i.

• Oi is an outlier indicator. For those observations with Oi = 1 the observable data
Yi is replaced by the contaminated data Yic. Thus the observed data Yio actually
consists of Yico. An important difference to R is that O is not directly observable.
The outlier indicator thus is a latent variable.

• Si is the sample indicator.

• Xi denotes covariables which are fully observed.

• Zi denotes unobserved covariables.

• Ŷi is imputed data, possibly after detection of outliers and imputation for outliers,
i.e. Ŷ = I(Yo, X|D).
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4.1 Introduction 12
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Figure 4.1: A model for the simulations

4.1.1 Setup

We will not consider here a process for representative outliers. In other words we consider
Y ∗i as our starting point and assume therefore that representative outliers have been
created already before and integrated into Y ∗i . Thus the outlier indicator Oi refers to
non-representative outliers only. In Figure 4.1 the representative outliers are created by
the process Oir while the non-representative outliers are created by Oin. More so, we
assume that the sampling mechanism is ignorable and we suppress it in the notation in
this section. However, the models we are referring to, always pertain to the population
and the sample design should be taken into account when estimating and testing the
model parameters.

Furthermore, we assume that the observable data is not subject to other error mechanisms
than the outlier process. In Figure 4.1, we show the relationship among the mechanisms
and the process of estimation. Note that the exact sequence between the processes may be
different. For instance, the response may depend on the sample and then in the process R
would follow S. A scheme (scenario) consists of a complete description of all the elements
in Figure 4.1. We consider both populations AMELIA and AAT-SILC. The units of
the population are persons, which are grouped in households. For outlier schemes, the
following variables are needed for each person.

1. Equivalized disposable income

2. Total personal income (i.e., aggregated persons income components).

3. Components of personal income:

• income from employment (employed and self-employed)
• income from transfers
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4.1 Introduction 13

4. Household income per capita (i.e., aggregated household-income components, di-
vided by the size of the household; not equivalization size).

5. Components of household income per capita (i.e., aggregated and uniformly distrib-
uted over all household members):

• income from employment (of children or not attributed)
• income from capital
• income from transfers

The outlier/contamination mechanism can be split up into two parts: in the first part, an
observation is declared as an outlier. The second part is concerned with the contamination
mechanism that creates the contamination. The outlier mechanism should be OCAR
(outlying completely at random) and OAR (outlying at random) and non-ignorable, for
example depending on the level of income.

The contamination may be created at the population level, i.e. Yci, i ∈ U if we assume that
there is no dependence of the contamination on the response, sampling and outlyingness
mechanisms R, S and O. Further, the number of outliers in a sample is fixed. Therefore
the outlier mechanism depends on the sampling mechanism and it can be simulated only
after the sample has been drawn.

When it comes to detection, imputation or estimation two schemes should be considered
for robust estimators:

1. The number of outliers is assumed known and therefore can be used for the determ-
ination of tuning constants. This may be useful in order to determine the relative
properties of procedures conditional on the choice of the tuning constant.

2. The number of outliers is assumed not to be known and can thus not be used for
the determination of tuning constants. This may be the more realistic scheme in
practice but may entail problems when comparing the relative merits of procedures
due to the additional effect of having to choose the tuning constant.

It may be argued that the second proposal is not realistic in a situation where a survey
is repeated frequently and very good past knowledge about the amount of contamination
is available.

4.1.2 Outlyingness- and Contamination Typology/Nomenclatura

As to outlyingness mechanism, we confine ourselves to study the OCAR- and the OAR-
mechanism (see Table 4.1.2). Concerning contamination mechanisms, we consider the
mechanisms: CCAR, CAR, and NCAR (see Table 4.1.2).
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4.2 Univariate Outlyingness/Contamination 14

Table 4.1: Outlyingness Mechanisms

Outlying completely at random Outlying at random

Description distribution of outliers is determined
completely at random

distribution of outliers depends on
covariates

OType OCAR OAR
OTypeSpec [NULL] outlier-determining variable and a

corresponding outlier-probability
vector

OTypeEpsilon 0.001, 0.02 0.001, 0.02
OTypeEpsilon denotes the number of outliers. These numbers correspond to 0.01% and 0.1% outliers in
relative terms. OTypeSpec defines the mechanism.

Table 4.2: Contamination Mechanisms

Contaminated
completely at
random

Contaminated at ran-
dom

Not contaminated at
random

Description all observations
are identically
contaminated

the contamination dis-
tribution depends on
observable covariates

the contamination dis-
tribution depends on
the variable to be con-
taminated (and/or un-
observed covariates)

CType CCAR CAR NCAR
CTypeMech f(x) f(x|θ) contamination distribu-

tion depends on x
CTypeMechSpec specification of f specification of f and θ [e.g., scale·x]

4.2 Univariate Outlyingness/Contamination

For all univariate methods (whether direct-, model-assisted-, or model-based estimation)
we consider outliers exclusively in the (univariate) equivalized disposable income. The
treatment of genuinely multivariate outliers, that is, jointly outlying observations in in-
come components are to be destined only for the multivariate outlier-detection and im-
putation methods.

Moreover, both the outlyingness- and contamination mechanims operate on variables
with data at individual level. Upon having declared observations as outliers and having
contaminated them conformably, these contaminated observations are then re-distributed
among the household members.1 In particular, each household member with at least one

1Since outlyingness is defined on individual level, it may occur that several individuals of the same
households have been declared as outliers. Moreso, the probability of multiple outlying persons per
household depends on the household size. We confine ourselves to consider each household only once
(even if more than one household member have been declared as outlier). As a result, the number of
outlying households is not constant. This in turn may introduce some variability due to the variable
number of outlying household. On the other hand, this outylingess schemes assures consisteny at the
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4.2 Univariate Outlyingness/Contamination 15

öutlying individualïs assigned the outlying income divided by the household equivalization
scale (i.e., modified OECD scale). Therefore, we can assure that all household members
have the same equivalized disposable income; and thus the data are in line with the
EUROSTAT definition. On the other, we note that the equivalization operation leads to
treating outliers differently for different household sizes. Most notably, outliers that may
be considered as far from the bulk of data in the case of one-person households may be
rendered ßmallfor huge households.

4.2.1 Outlier Models

We consider only the outlier mechanisms OCAR (outlying completely at random) and
OAR (outlying at random). The inverse-probability weights associated with the contam-
inated observations are obtained from the original, uncontaminated observations.

4.2.2 OCAR: Outlying Completely at Random

The OCAR outlyingness mechanism randomly assigns Oi = 1 for outlying observations
and Oi = 0 otherwise, according to amount of outliers ε. The simplest OCAR function takes
the observation vector x and ε (e.g., 1% or 10%) as arguments and returns a vector of
logicals (TRUE, FALSE). In fact only the size of the sample is derived from the observation
vector.

4.2.3 OAR: Outlying at Random

As to the OARmechanisms, we consider the strategy: suppose the variables main activity
status is categorized into four groups. Each attribute has been allocated a different
outlyingness-probabilty based on subject matter knowledge. Next, one declares observa-
tions as outliers conditional on the assigned probabilities.
In particular, the outlyingness probabilites for the OAR-mechanism are defined according
to the variable main activity status (i.e., variable RB210 in AMELIA and RB170 in
AATSILC) (see Table 4.3). Thus, by means of the tabulated values, the outlying indicators
Oi are obtained using an OCAR mechanism for each cell separately; note that the OAR-
mechanism can be seen as an analogon to stratified sampling. Moreover, we normed the
OAR-determining probabilities such that they sum up to one. Thus, the group-specific
relative number of outliers follows from OTypeEpsilon · (0.7, 0.1, 0.15, 0.05)T . Due to the
discretization (i.e, distributing the number of outliers to a small number of levels), the
outlyingness probability may not be exactly proportional (rounding errors). Thus, the
remaining number of outliers that has not been assigned to a certrain level due to the
discretization are assigned to the level with the largest number of outliers (Hulliger
et al., 2011, Chapter G). Alternatively, one may use the functions (due to Stefan Zins)
that assign the level-specific outliers using a pps-type algorithm (Hulliger et al., 2011,
Chapter G).
individual level. Alternatively, one may draw the outyling households w.r.t the household size (i.e. pps);
this methods ensures a constant number of outlying households. An implementation of this scheme is
displayed in (Hulliger et al., 2011).
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4.2 Univariate Outlyingness/Contamination 16

Table 4.3: Probability distribution of OAR mechanism: Main activity status during the
income reference period (EU-SILC User Data Base, variable: RB210; and RB170 in AAT-
SILC)
At work Unemployed In retirement Other inactive per-

son
0.7 0.1 0.15 0.05
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4.2 Univariate Outlyingness/Contamination 17

4.2.4 Contamination Models

Upon having declared some observations as outliers, these observations Y ∗i are replaced
by the contaminated data Yci. Note that Yci may be simulated for each sample or it may
be fixed at the population level, if it does not depend on other mechanisms.
For the univariate methods acting on the equivalized disposable income (i.e., no income
components), we consider all three contamination set-ups.

4.2.5 CCAR: Contamination Completely at Random

Suppose the following CCAR contamination process for the equivalized disposable income:
let the contamination distribution be defined as Yc ∼ N(µ, σ2). Thus, the overall data,
consisting of a fraction of (1− OTypeEpsilon) good data (i.e., uncontaminated data) and
a fraction OTypeEpsilon drawn according to the law of Yc.

4.2.6 CAR: Contamination at Random

For the contamination at random mechanism we consider the following set-up: let the
contamination distribution be defined as Yc ∼ N(µa, σ2) for a = {1, . . . , 4}, where a
denotes the categories of a covariate, namely main activity status. Contrary to the CCAR
setting, the location µa of the contaminated data in the CAR set-up is not the same for all
Oi = 1, but it is defined conditional on the auxiliary variable main activity status (i.e.,
variable RB2010 in AMELIA and variable RB170 in AAT-SILC). The location parameters
are shown in Tables 4.5 and 4.4 for AMELIA and AAT-SILC, respectively. By means
of the tabulated location parameters and the contamination distribution, the bad data
are obtained as in the case of the CCAR mechanism. (Similarly, we could also define a
group-specific scale σa)

Table 4.4: Setup for the AMELIA data set: Location parameters µa (a = {1, . . . , 4}) for
the CAR mechanism conditional on the main activity status during the income reference
period (variable RB210 in AMELIA)
At work Unemployed In retirement Other inactive per-

son
3 · 105 1 · 105 2 · 105 1 · 105

4.2.7 NCAR: Non-Ignorable Contamination

As a set up of practical interest which is non-ignorable (NCAR= not contaminated at
random), we consider that the bad data follows by multiplying the true observation, Y ∗i ,
by a factor of 12. We may think of this type of contamination as of individuals reporting
(approximately) their annual income when in actual fact they were asked to report the
monthly income. Clearly, this operation acts differently on the observations, depending
on the true value (thus the non-randomness of the contamination mechanism).
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4.2 Univariate Outlyingness/Contamination 18

Table 4.5: Setup for the AAT-SILC data set: Location parameters µa (a = {1, . . . , 4}) for
the CAR mechanism conditional on the main activity status during the income reference
period for variable: RB170 in AAT-SILC.
At work Unemployed In retirement Other inactive per-

son
5 · 105 2 · 105 3 · 105 2 · 105

4.2.8 Proposed Setup

In particular, we recommend the following combinations of outlyingness/contamination
settings. The following snippets give a specification for the corresponding objects used by
the simulation environment simFrame. An example call using these specifications follows
in Subsection 4.2.14.

4.2.9 OCAR-CCAR-0.01

OCAR.CCAR <- list ( OTypeEpsilon =0.01 ,
OType ="OCAR",
OTypeSpec =NULL ,
CType ="CCAR",
CTypeMech =" rnorm ",
CTypeMechSpec = list ( mean =5e05 , sd =2 e04))

Note that for the AAT-SILC data set, you may set mean=3e05 in CTypeMechSpec be-
cause the equivalized disposable income features less representative outliers (i.e., extreme
observations that are already in the data).

4.2.10 OCAR-CCAR-0.001

OCAR.CCAR <- list ( OTypeEpsilon =0.001 ,
OType ="OCAR",
OTypeSpec =NULL ,
CType ="CCAR",
CTypeMech =" rnorm ",
CTypeMechSpec = list ( mean =5e05 , sd =2 e04))

Note that for the AAT-SILC data set, you may set mean=3e05 in CTypeMechSpec because
the equivalized disposable income features less representative outliers.

4.2.11 OCAR-NCAR

OCAR.NCAR <- list ( OTypeEpsilon =0.001 ,
OType ="OCAR",
OTypeSpec =NULL ,
CType ="NCAR",
CTypeMech =NULL ,
CTypeMechSpec = list ( scale =12))
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4.2 Univariate Outlyingness/Contamination 19

4.2.12 OAR-CCAR

OAR.CCAR <- list ( OTypeEpsilon =0.01 ,
OType ="OAR",
OTypeSpec = list (var=" RB210 ", prob=c(0.7 , 0.1 , 0.15 , 0.05) ),
CType ="CCAR",
CTypeMech =" rnorm ",
CTypeMechSpec = list ( mean =5e05 , sd =2 e04))

Again, note that for the AAT-SILC data set, you may set mean=3e05 in CTypeMechSpec
because the equivalized disposable income features less representative outliers.

Moreover, you must change the element var from RB210 to rb170 in the OTypeSpec object
for the AAT-SILC data because of different naming.

4.2.13 OAR-NCAR

OAR.NCAR <- list ( OTypeEpsilon =0.01 ,
OType ="OAR",
OTypeSpec = list (var=" RB210 ", prob=c(0.7 , 0.1 , 0.15 , 0.05) ),
CType ="NCAR",
CTypeMech =NULL ,
CTypeMechSpec = list ( scale =12))

Again, note that you must change the element var from RB210 to rb170 in the OTypeSpec
object for the AAT-SILC data because of different naming.

4.2.14 An Example

You may find the specifications in the R-code snippets as list-objects that serves as argu-
ment for the makeoutliers-function (see Appendix). Here is an example,

Define the following OCAR-NCAR setup

setupOCAR .CCAR <- list ( OTypeEpsilon =0.01 ,
OType ="OCAR",
OTypeSpec =NULL ,
CType ="CCAR",
CTypeMech =" rnorm ",
CTypeMechSpec = list ( mean =1e05 , sd =2 e04))

On grounds of the defined OCAR-NCAR setup, one may generate outliers with the
function-call of makeoutliers

dataOCAR .CCAR = makeoutliers ( setupOCAR .CCAR , data , hid=" db030 ", eqSS="eqSS", eqIncome ="
eqIncome ",flag="TRUE")

where data denotes a data.frame that should be contaminated; hid specifies the variable
name in data with the household-identification number; eqSS defines the name of the
variable containing the equivalized household size; eqIncome denotes the variable name
of the equivalized household income in data; by default flag=TRUE, which generates a
new variable in data as flag of the outliers (1=outlier; 0=non-outlier).
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4.3 Multivariate Outlyingness/Contamination 20

4.3 Multivariate Outlyingness/Contamination

We start with some notation. Let Σ0 denote a positive definite symmetric (p× p) covari-
ance matrix of good data (i.e., majority of observations from a well-behaved population;
usually we assume that the good data are a fraction 0 < 1 − ε < 1 of the overall data).
Similarly, let µ0 be the (p × 1)-dimensional location associated with the good data. Ac-
cordingly, we sometimes call the remaining observations (i.e., the fraction ε of the overall
data) bad data. There is supposed to be no implication that the bad data are necessarily
errors – they may just arise from a distinct subpopulation. Moreover, and because we
confine ourselves to methods that are affine equivariant (with certain exceptions), Ma-
halanobis distances play a key role. Thus, the Mahalanobis distance between points y
and x in Rp w.r.t. Σ0 will be denoted by dΣ0(x,y).

For the multivariate outlier detection task, we consider only contaminated completely at
random (CCAR) mechanisms (though our final proposal lets depend the contamination
weakly on the true data for practical reasons). According to Rocke and Woodruff
(1996), the hardest kind of outliers to find (for Mahalanobis-distance based methods), is
the kind that has a covariance matrix, Ω, with the same shape as the good data (i.e.,
Ω = λΣ0, for λ ∈ R1). This follows from the fact that dΣ0(x, µ0) is least for a bad point,
x, from µ0 for Ω = λΣ0. If this kind of outlier can be detected, then other kinds should
be as well. Thus, we intend to focus on a situation in which the bad data are drawn from
the same distribution as the good data and then displaced (shift outliers). That is, the
location of the bad data is shifted by µ, where |µ| = η. In particular, we first consider
some CCAR set-ups: let the bad data comprise a fraction of ε of the overall data and let
these be distributed according to the following laws,

1. Np(µ0 + µ,Ω), where Ω = λΣ0, and 0 < λ � 1. For η large, and the extreme
case when λ = 0 (the contamination forms a point mass), then E[dΣ0(x, µ0 + εη)]
is less for a bad point than a good point whenever ε > 1/(p + 1) (Rocke and
Woodruff, 1996). As a result, the detection of a bad point becomes very difficult
(if not infeasible) for Mahalanobis-distance based methods.

2. Np(µ0 + µ,Ω), where Ω = λΣ0, λ = 1 (i.e., pure shift outliers) and µ0, Ω are
the same as before. Altough bad data might seem to be easily detectable under
this contamination scheme, no method is known to find the outliers with complete
assurance. This is because the overlap of the distributions of distances can be very
substantial.

3. Np(µ + µ0,Ω), where (in this case) µ0 := median(y), and µ = λ · median(y) ·
mad(y), where λ = 1.5, and Ω = diag(max[0.5 min(µ),median(µ)]) (Hulliger and
Schoch, 2009).

4. Let the bad data be defined as ỹc = (y∗ − µ0)λ + µ0 + µ, where λ = 0.1, and µ
is the location shift parameter. The ith contaminated observation is obtained from
yic = ỹic ·1{y∗i 6= 0}. (The second operation replaces the contaminated observation
by a zero if the true value was zero). Strictly speaking the contamination is not
at random because it depends on Y ∗, in particular the knowledge of the zero’s.
However, the dependence on the true data Y ∗ is weak when λ << 1. We propose to
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use λ = 0.1 to obtain a scattered contamination with the same actual form of the
original data but more concentrated. The advantage is that the original scatter Σ0
must not be known.

The last two contamination set-ups are more data-driven.

In all of the above models the choice of the shift µ is crucial. We propose to choose as the
contamination shift direction the eigenvector of Σ0 corresponding to a small eigenvalue.
To avoid computational problems with eigenvalues close to zero it may be wise not to
use the smallest eigenvalue. The length of the contamination shift should be chosen such
that the location of the center of the contamination µ0 + µ lies on a high quantile of the
original distribution (e.g. 99%).

We propose to use only contamination 4 in the simulations. The contamination direction
and the length of the shift will have to be defined in a later version of this proposal.

4.4 Schemes

In an earlier version of this paper (June 3, 2010), we have proposed 5 OC-Schemes in first
priority (see Table 4.6).

Univariate Multivariate
Propensity CCAR CAR NCAR CCAR*

OCAR ε = 0.01 1 2 1
OCAR ε = 0.15 1 3 3
OAR α = 1 2 1 3 1
OAR α = 2 2 2 2 2

Table 4.6: Outlier and contamination schemes: 1 indicates first priority, 2 second, 3 third

In connection with the discussion during the AMELI consortium meeting in Trier (October
4 and 5, 2010), we recommend the following scenarios

• Univariate setup

– OCAR-CCAR-0.01
– OCAR-CCAR-0.001
– OCAR-NCAR
– OAR-CCAR
– OAR-NCAR

• multivariate setup

– OCAR-CCAR
– OAR-CCAR

AMELI-WP7-D7.1
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It goes without saying that one may simulate all other settings from Table 4.6 (e.g., one
may simulate the OCAR-CCAR setting with ε = OTypeEpsilon = 0.15, which then may
serve as an absolutely extreme case because of the exceptionally heavy number of outliers).
However, the relevant scenarios are included in the above list.
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Chapter 5

Missing Data Models for Simulation

5.1 Introduction

This is a short description of the missing data scenarios for the simulations, including
R (R Development Core Team, 2010) code specification for simulation studies using
package simFrame (Alfons, 2010; Alfons et al., 2010b). From exploring the Austrian
EU-SILC data with R package VIM (Templ et al., 2010) we derived simple rules for setting
missing values (see also Templ et al., 2009). The purpose of this set of rules is to insert
missing values into income components in order to be able to evaluate imputation and
outlier detection methods. As discussed in the Trier meeting, missing values will only
be treated in a multivariate setting, setting missing values in the equivalized household
income directly is not considered.

To simplify the multivariate setting for the simulations, the derived rules are based on
aggregated income components. More precisely, 4 income components are considered:

• Personal income from employment (employed and self-employed)

• Personal income from transfers

• Household income from capital

• Household income from employment (of children or not attributed) and transfers

In the case of the AAT-SILC population, which has been generated with the data simu-
lation framework described in Alfons et al. (2010a) and implemented in the R package
simPopulation (Alfons and Kraft, 2010), 16 income components are originally avail-
able. These income components are listed in Table 5.1. More information on the income
components in EU-SILC can be found in Eurostat (2004). For most components, it is
clear to which of the aggregated components mentioned above they should be assigned.
Nevertheless, it is not completely clear in the following case:
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5.1 Introduction 24

Table 5.1: Variables selected for the simulation of the Austrian EU-SILC population data.
Name Variable

py010n Employee cash or near cash income
py050n Cash benefits or losses from self-employment
py090n Unemployment benefits
py100n Old-age benefits
py110n Survivor’s benefits
py120n Sickness benefits
py130n Disability benefits
py140n Education-related allowances
hy040n Income from rental of a property or land
hy050n Family/children related allowances
hy070n Housing allowances
hy080n Regular inter-household cash transfer received
hy090n Interest, dividends, profit from capital investments in unincorporated

business
hy110n Income received by people aged under 16
hy130n Regular inter-household cash transfer paid
hy145n Repayment/receipts for tax adjustment

• hy145n (repayment/receipts for tax adjustment): Taxes are collected for both in-
come and capital, therefore it is in principle not clear to which aggregated compon-
ent it should be assigned. However, we propose to include it in the income from
employment and transfers.

In short, this is our proposal for computing the aggregated income components from the
components available in AAT-SILC:

• Personal income from employment: pye <- py010n + py050n

• Personal income from transfers:
pyt <- py090n + py100n + py110n + py120n + py130n + py140n

• Household income from capital: hyc <- hy040n + hy090n

• Household income from employment and transfers:
hyet <- hy050n + hy070n + hy080n + hy110n - hy130n - hy145n

The aggregated components pye, pyt, hye, hyc and hyt have been added to the AAT-SILC
population data available in the AMELI svn repository (http://svn.uni-trier.de/
AMELI/WORK_PACKAGES/WP6/general/aatsilc.zip).

The rest of the paper is organized as follows. Chapter 5.2 discusses different missing data
mechanisms for the simulation study. The missing value rates to be used in the simulation
study are then presented in Chapter 5.3. However, to obtain the missing value rates we

© http://ameli.surveystatistics.net/ - 2011

http://svn.uni-trier.de/AMELI/WORK_PACKAGES/WP6/general/aatsilc.zip
http://svn.uni-trier.de/AMELI/WORK_PACKAGES/WP6/general/aatsilc.zip
http://ameli.surveystatistics.net/


5.1 Introduction 25

investigated different EU-SILC data sets from Austria: the public use data from 2004 (a
subsample released by Statistics Austria for research purposes), and the data as reported
to Eurostat from 2004, 2005 and 2006. All these data sets contain flags that indicate
missing values for each income component (more precisely, fully or partially imputed
values are flagged). While the public use data set indicates rather low proportions of
missingness, the other data sets indicate very high proportions of imputed values. We
discussed this with subject matter specialists, who believe that the high proportions of
imputed values may be artefacts resulting from technical issues. A thorough analysis
of the missing value rates is thus difficult and we propose to investigate three different
scenarios.

5.1.1 Missing data mechanisms

In the missing data literature, three important cases of processes generating missing val-
ues are commonly distinguished, based on ideas by Rubin (1976). For a more detailed
discussion on these missing data mechanisms, the reader is referred to Little and Rubin
(2002).

Let X = (xij)1≤i≤n,1≤j≤p denote the data, where n is the number of observations and
p the number of variables, and let M = (Mij)1≤i≤n,1≤j≤p be an indicator whether an
observation is missing (Mij = 1) or not (Mij = 0). Furthermore, let the observed and
missing parts of the data be denoted by Xobs and Xmiss, respectively. The missing data
mechanism is then characterized by the conditional distribution of M given X, denoted
by f(M |X, φ), where φ denotes unknown parameters (see Little and Rubin, 2002).

The missing values are missing completely at random (MCAR) if the missingness does
not depend on the data X, i.e., if

f(M |X, φ) = f(M |φ). (5.1)

Note that there may still be a certain pattern in the missing values, depending on the
unknown parameters φ, but such a pattern will be independent of the actual data. A more
general scenario is given if the missingness depends on the observed information Xobs.
In this case, the missing values are missing at random (MAR), which translates to the
equation

f(M |X, φ) = f(M |Xobs, φ). (5.2)

On the other hand, the missing values are said to be missing not at random (MNAR) if
Equation (5.2) is violated. This can be written as

f(M |X, φ) = f(M |(Xobs,Xmiss), φ). (5.3)

Hence, in the latter case, the missing values cannot be fully explained by the observed
part of the data.
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5.2 Missing Values in Aggregated Income Compon-
ents

Since the evaluation of imputation methods or outlier dectection for incomplete data is
not the major task in the AMELI project, we propose to consider only two missing data
mechanisms: MCAR and MAR. In general, missing values are generated on the personal
level. For the household income components, however, it does not make sense to set the
value of only some persons in a household to NA. Consequently, missing values should then
be set in a second step for all persons in a household that contain NAs in the respective
household income component. For this second step, the function collectNA() has been
implemented. The R code of collectNA() along with a short description of its arguments
is given in(Hulliger et al., 2011, Chapter G).

5.2.1 Setup for MCAR

The code for generating a control object for the insertion of missing values on the personal
level that corresponds to an MCAR situation in simulations using simFrame is given
in Listing 5.1. Please note that the choice for the missing value rates is discussed in
Chapter 5.3.

NArate <- matrix (c(0.1 , 0.1 , 0.3 , 0.025 , 0.1 , 0.3 ,
0.15 , 0.1 , 0.3 , 0.025 , 0.1 , 0.3) , 3, 4)

nc <- NAControl ( target = c("pye", "pyt", "hyc", "hyet"),
NArate = NArate )

Listing 5.1: Code listing for an MCAR situation.

5.2.2 Setup for MAR

A graphical exploration of the public use EU-SILC data from 2004 using the R package
VIM showed a strong dependecy of the missing values on the variables r007000 (main
activity status) and age.

Figure 5.1 contains spine plots of the variable r007000 (main activity status) with missing
values in pye (personal income from employment; top left), pyt (personal income from
transfers; top right), hyc (household income from capital; bottom left) and hyet (house-
hold income from employment and transfers; bottom right) highlighted in red. In addition,
Figure 5.2 shows parallel boxplots of the variable age grouped according to observed and
missing data in each of the aggregated income components.

We thus propose to construct a MAR situation as described in the following. For each
income component, a vector of probability weights for each individual is computed. The
selection of persons whose values are set to NA is then based on those probability weights.
It should in particular be noted that we do not consider a stratified design for selecting
the individuals, as proposed by Hulliger and Schoch (2010) for the selection of obser-
vations to be contaminated, due to the more complex dependencies on the two auxiliary
variables.
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Figure 5.1: Spine plots of the variable r007000 (main activity status) in the Austrian
public use EU-SILC data from 2004, with missing values in pye (personal income from
employment; top left), pyt (personal income from transfers; top right), hyc (household
income from capital; bottom left) and hyet (household income from employment and
transfers; bottom right) highlighted in red.
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Figure 5.2: Parallel boxplots of the variable age in the Austrian public use EU-SILC data
from 2004, grouped according to observed and missing data in each of the aggregated
income components.

In any case, the proposed vectors of probability weights are constructed in the following
manner:

• For each category of main activity status, the percentages of missing values in the
four aggregated income components (with respect to the total number of missing val-
ues in the corresponding component) have been determined for the public use data
set from 2004 and the data sets reported to Eurostat. Note that for the household
income components, these percentages correspond to the percentages of households
rather than individuals, since NAs always occur for all household members. From
this analysis, we propose the probability weights listed in Table 5.2 for observations
of the four possible outcomes of main activity status (rb170 in AAT-SILC, RB210
in AMELIA).

• Age is divided into five categories: [−1, 16), [16, 25), [25, 50), [50, 65) and [65, 96] (cf.
Eurostat, 2004). Based on a similar analysis of the percentages of missing values
in the four aggregated income components, we propose the probability weights listed
in Table 5.3 for observations in the five age categories.

• Final probability weights should then be derived by combining the two vectors of
weights for each of the four components. Economic status is considered to be more
important, therefore a coefficient 2/3 is used, while 1/3 is used for the probability
weights corresponding to age category.

For the AAT-SILC data, the resulting probability weights for the four components are
available as variables pMARpye, pMARpyt, pMARhyc and pMARhyet. With simFrame, a
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Table 5.2: Proposed probability weights by income component for observations of the four
possible outcomes of main activity status (rb170 in AAT-SILC, RB210 in AMELIA).

Probability weight
Category Description pye pyt hyc hyet

1 At work 0.85 0.20 0.45 0.45
2 Unemployed 0.05 0.10 0.05 0.05
3 Retired 0.05 0.65 0.20 0.10
4 Other 0.05 0.05 0.15 0.15

NA 0 0 0.15 0.25

Table 5.3: Proposed probability weights by income component for observations in the five
age categories.

Probability weight
Age category pye pyt hyc hyet

[−1, 16) 0 0 0.20 0.25
[16, 25) 0.15 0.10 0.10 0.15
[25, 50) 0.60 0.15 0.35 0.40
[50, 65) 0.20 0.40 0.20 0.15
[65, 96] 0.05 0.35 0.15 0.05

control class for missing values can then be defined as follows:1

NArate <- matrix (c(0.1 , 0.1 , 0.3 , 0.025 , 0.1 , 0.3 ,
0.15 , 0.1 , 0.3 , 0.025 , 0.1 , 0.3) , 3, 4)

nc <- NAControl ( target = c("pye", "pyt", "hyc", "hyet"),
NArate =NArate ,
aux = c(" pMARpye ", " pMARpyt ", " pMARhyc ", " pMARhyet "))

Listing 5.2: Code listing for MAR situation

This MAR scenario is based on simplified rules, but those are determined by an extensive
data analysis of different EU-SILC samples from Austria.

5.3 Missing value rates

As mentioned in Chapter 1, the flag variables for missing values in the public use data
and in the data submitted to Eurostat draw a very different picture of the missing value
rates. In particular the flags from the data submitted to Eurostat are rather cryptic. We
discussed this issue with the subject matter specialists from Statistics Austria in order
to determine suitable missing value rates for the simulation study. The subject matter

1The functionality to specify an auxiliary variable with probability weights for each target variable
was added in simFrame version 0.3.
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specialists believe that the high proportions of imputed values in the data sets reported
to Eurostat may be artefacts resulting from technical issues.

We propose to investigate three scenarios: one with realistic proportions of missing values
(as in the public use data), one with rather low proportions of missing values (equal pro-
portions in all components), and one with rather high proportions of missing values (equal
proportions in all components). The proposed missing value rates and their priorities for
the simulation study are listed in Table 5.4.

Table 5.4: Missing value rates for the insertion of missing values into the aggregated
income components.

Missing value rate
Scenario pye pyt hyc hyet Priority

1 10% 2.5% 15% 2.5% 1
2 10% 10% 10% 10% 2
3 30% 30% 30% 30% 2
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Chapter 6

Simulation Criteria

6.1 Introduction

The criteria that will be used to compare settings and methods are listed in this chapter.
It is based on the criteria in Milestone 4.2 and in Deliverable D6.1 and additional criteria
developed during the analysis. Not all criteria will be calculated in every simulation.
However, if a criteria is used the notation and definition in this chapter is applied.

6.2 Criteria

Let θ∗ be the parameter to estimate, usually a Laeken indicator, evaluated at the true,
complete population where no additional contamination has been added, y∗. Let θ̂k denote
the kth estimate of θ∗, for k = 1, . . . , r replications. Similarly, let V̂ (θ̂k) denote the
variance estimate, k = 1 . . . , r. The variance to estimate is determined by the simulation
variance of the point estimator. This is a deviation from D6.1 where the variance of the
point estimator at the true data is taken as the estimand.

6.2.1 Univariate Criteria

6.2.2 Point estimator

1. average of the point-estimates,

avgT := (1/r)
r∑

k=1
θ̂k (6.1)

2. variance of the point-estimates,

varT := 1/(r − 1)
r∑

k=1
(θ̂k − avgT )2 (6.2)
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3. bias of the point estimates,

biasT := (1/r)
r∑

k=1
(θ̂k − θ∗) (6.3)

or relative bias

relbiasT% := 100 · biasT/θ∗ (6.4)

4. median point-estimate,

medT := med{θ̂k; k = 1, . . . , r} (6.5)

5. median absolute deviation about the median point-estimate (Rousseeuw and Croux,
1993, p.1273),

madT := b ·medk{|θ̂k −medT}|}, where j, k = 1, . . . , r; b = 1.4826 (6.6)

6. median error of point estimates, (cf. Richardson and Welsh, 1995, p.1436),

medeT := medk(θ̂k − θ∗), k = 1, . . . , r (6.7)

7. root mean square error of the point estimates,

rmseT :=
√√√√(1/r)

r∑
k=1

(θ̂k − θ∗)2 (6.8)

or relative root mean square error of the point-estimates,

relrmseT% := 100 · rmseT/θ∗ (6.9)

8. median absolute error of the point estimates (analog to MSE; Richardson and
Welsh (1995, p.1436)),

medaeT := 1.4826 ·medk|θ̂k − θ∗| (6.10)

9. maximum absolute relative error, (This measure may be useful to assess the sensit-
ivity of an estimator to the presence of influential units in the sample; Beaumont
and Alavi (2004, p.12)),

relmaxeT := max
k
|(θ̂k − θ∗)/θ∗| (6.11)
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6.2.3 Variance estimator

We write V̂k as a shorthand for V̂ (θ̂k).

1. average of the variance-estimates

avgV := (1/r)
r∑

k=1
V̂k (6.12)

2. variance of the variance-estimates

varV := (1/r)
r∑

k=1
(V̂k − avgV )2 (6.13)

3. bias of the variance estimates:

biasV := (1/r)
r∑

k=1
(V̂k − varT ) (6.14)

or relative bias of the variance estimates:

relbiasV% := 100 · biasV/varT (6.15)

4. median of the variance-estimates,

medV := medkV̂k (6.16)

5. median absolute deviation about the median variance-estimate (Rousseeuw and
Croux, 1993, p.1273),

madV := 1.4826 ·medk|V̂k −medV | (6.17)

6. median error of the variance estimates:

medeV := med(V̂k − varT ) (6.18)

7. root mean squared error of the variance estimates

rmseV :=
√√√√(1/r)

r∑
k=1

(V̂k − varT )2 (6.19)

or relative root mean squared error of the variance estimates

relrmseV% := 100 · rmseV/varT (6.20)

8. median absolute error of the variance estimates

medaeV := medk|V̂k − varT | (6.21)

9. maximum absolute relative error of the variance estimates

relmaxeV := max
k
|V̂k − varT |/varT (6.22)
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6.3 Confidence interval

Confidence level is fixed at 0.95.

Confidence intervals may be defined explicitely for certain procedures by upper and lower
limit: Lk and Uk. Or the limits are derived by a normal approxiamtion as Lk = θ̂k −
1.96

√
V̂k and accordingly Uk.

1. average half length of confidence interval I:

avglCI = (1/r)
r∑

k=1
(Uk − Lk) (6.23)

2. Coverage probability:

covprobCI = (1/r)
r∑

k=1
1{Lk ≤ θ̂k ≤ Uk} (6.24)

6.4 Outlier Criteria

Detection: False negatives and false positives.

Outlier detection is assumed to result in an indicator ui which is 0 when observation i is
an outlier and 1 if not.

Assume the outlier mechanism creates an outlier indicator vector oi where oi = 1 if
observation i is an outlier and oi = 0 if not. The sampling weight is wi.

1. average proportion of false negatives (undetected outliers):

avepfn = (1/r)
r∑

k=1

∑
i∈Sk

wioiui∑
i∈Sk

wioi
(6.25)

2. average proportion of false positives (nominated non-outliers):

avepfp = (1/r)
r∑

k=1

∑
i∈Sk

wi(1− oi)(1− ui)∑
i∈Sk

wi(1− oi)
(6.26)

6.5 Multivariate Criteria

Outliers are detected in p-dimensional raw data yij, i = 1, . . . , n and j = 1, . . . , p. The true
complete data is denoted y∗ij. The true population mean of variable j is µ∗j = ∑

i∈U y
∗
ij/N .

The true population standard deviation of variable j is σ∗2j = ∑
i∈U(y∗ij − µ∗j)2/(N − 1).

Assume that together with an imputed value ŷij a flag is created with vij = 1 if yij
has been imputed and vij = 0 otherwise. Let vi = 1 − ∏p

j=1(1 − vij) indicate imputed
observations.
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1. average of the absolute relative error of detection (similar to (EUREDIT, 2003,
Measure 13) and corresponding to the continuous case of the distance measure in
Section 3.5.4 of D6.1)

avgare = (1/r)
r∑

k=1
(1/p)

p∑
j=1

(1/σ∗j )
∣∣∣∣∣
∑
i∈Sk

wiuiyij/
∑
i∈Sk

wiui
µ∗j

− 1
∣∣∣∣∣ (6.27)

Note: Only applicable for yij > 0 and y∗ij > 0.

2. average mean squared error of mean of imputed data

avgmse = (1/r)
r∑

k=1

[∑
i∈Sk

wi(ŷi −mSk
(ŷ))>C∗−1(ŷi −mSk

(ŷ))∑
i∈S wi

∑
i∈S wi(1− vi)

]
(6.28)

+(1/r)
r∑

k=1

[
(mSk

(ŷ)− θ∗)>C∗−1(mSk
(ŷ)− θ∗)

]
,

where yi = (yi1, . . . , yip)> and mS(ŷ) = ∑
i∈S wiŷi/

∑
i∈S wi and θ∗ is the vector of

true population means and where C∗ is the covariance of the true data y∗ in the
population.

3. average difference in variation between true and imputed data:

avgdv := (1/r)
r∑

k=1

2
p(p− 1)

p−1∑
h=1

p∑
j=h+1

|Ĉhj,k − C∗hj|, (6.29)

where Ĉhj,k is element h, j of the covariance matrix of ŷ of Sk.

4. average Mahalanobis distance between imputed and true data

avgmd := (1/r)
r∑

k=1

∑
i∈Sk

wivi(ŷi − y∗i )>C∗−1(ŷi − y∗i )∑
i∈Sk

wivi
(6.30)

The criteria 1, 2 and 3 are formulated such that it is not necessary to maintain the true
data of the replicate samples at the same time as the resulting data ŷ. Criterion avgmd
needs the true and the resulting (imputed) data for the sample.
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Chapter 7

WP2: Parametric Estimation

7.1 Parametric Estimation of Income Distributions
and Derived Indicators Using the GB2 Distribu-
tion

We present methodologies for the parametric estimation of a certain set of indicators of
poverty and social exclusion computed within the EU-SILC survey, and in particular the
median, the at-risk-of-poverty rate (ARPR), the relative median poverty gap (RMPG),
the quintile share ratio (QSR) and the Gini index.

We are interested in fitting the GB2 distribution on the variable ëquivalized incomeüsing
different methods of estimation, estimating the variance of the fitted parameters and of the
fitted indicators, which are expressed as functions of the parameters of the distribution,
whenever this is possible.

The methods of parametric estimation of the GB2 distribution, developed in the AMELI
project, are described in Deliverable D2.1 (Graf et al., 2011).

7.1.1 Simulation setup

The simulations use the AMELIA universe. Simulations are run using the sampling
designs described in Section 2 and are processed at the global level as well as for the 4
AMELIA regions.

Data source: AMELIA income data set

Study variable: Equivalized disposable income

Sample Size: 6,000 households

Number of samples: 1,000 per design

Indicators: median, ARPR, RMPG, QSR, Gini index, GB2 parameters
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Estimation techniques: Estimation of indicators directly from the sample (empirical

estimation), pseudo maximum likelihood estimation and method of non-linear fit
for indicators (see Graf et al., 2011, chap. 2), left tail decomposition (see Graf
et al., 2011, chap. 5)

Estimation level: Households and Persons

There are two general schemes.

• Estimation of the GB2 parameters and derived indicators.

• Variance estimation of the fitted parameters and indicators.

7.1.2 Simulation objectives

Our simulations have for objectives to

1. study the efficiency and the bias of the indicators’ estimators under the different
methods of estimation on the global and regional level. Efficiency and bias are
compared with the standard empirical estimators.

2. study the effect of the robustification of the sampling weights on the indicators.

3. study the effect of the sample design on the estimators.

4. study the quality of the variance estimators for the cases where variance estimators
are possible.

For description of the methods of estimation, the procedure of robustification of the
sampling weights and the variance estimation (see Graf et al., 2011, chap. 4 and 5)

7.1.3 Simulation bed

The first type of simulations we have performed are on the global level (samples from the
whole AMELIA universe). For each sample, drawn by one of the five sampling designs
described in Section 2, we have done the following:

1. Fit the GB2 distribution on the variable equivalized income on the personal level
(only positive values) using the method of ML estimation based on the full pseudo
log-likelihood. The original and robustified sampling weights are applied.

2. Calculate the empirical estimates and the GB2 estimates of the indicators.

3. Calculate variance estimates of the GB2 parameters and indicators through ML
estimation, either using the sampling weights only, or using the full design inform-
ation.
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4. Estimate the GB2 parameters and the indicators using the method of non-linear fit
for indicators.

The second type of simulations focus on the behaviour of the estimates on the regional
level. Samples were drawn from AMELIA universe. For each sample, drawn by one of
the five sampling designs described in Chapter 3, we have done the following:

1. Fit the GB2 distribution on the variable equivalized income on the personal level
(only positive values) using the method of ML estimation based on the profile pseudo
log-likelihood. The used sampling weights are robustified. Parameters are estimated
on the global and on the regional level.

2. Calculate the empirical estimates and the GB2 estimates of the indicators on the
global level and for each region.

3. Calculate variance estimates of the GB2 parameters and indicators obtained through
ML estimation, either using the sampling weights only, or using the full design
information. Again, variance estimates are calculated on the global level and on the
regional level.

4. Estimate the GB2 parameters and the indicators using the method of non-linear fit
for indicators on the global and on the regional level.

5. Only on the regional level, fit the left tail decomposition of the GB2 (see Graf
et al., 2011, chap. 5)

A summary is presented in Table 7.1.

Table 7.1: Summary of the different simulations
Method of estimation Sampling weights AMELIA level

Original Robust Global Regional
1 ML full + + + -
2 ML prof - + + +
3 NLS + - + +
4 Compound - + - +

7.1.4 Analysis of the simulation results

The main results of the simulations with the GB2 distribution are tabulated in Appendix
(Hulliger et al., 2011).

In this section we will comment on the different aspects of the results of our simulation
study, i.e. quality of the GB2 model fitted on the AMELIA universe and comparison with
the EU-SILC data, quality of the variance estimation, quality of the estimation of the
indicators.
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The GB2 model for simulated data

On Figure 7.1 we can see the cumulative distribution plot for a sample drawn using
the sampling design 1.4a of the AMELIA universe (see Table 2.1 for description of the
sampling designs). A comparison can be made with the GB2 fit on real data (see Graf
et al., 2011, Figure 4.6.2). We can see that the GB2 is capable to adapt to various income
distributions.
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Figure 7.1: GB2 distribution and density plots, 1st sample of design d1.4a
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Estimation of the GB2 parameters

On Figure 7.2 is presented a boxplot of the fitted GB2 parameters of the 26 participating
countries in the EU-SILC survey, 2006. On Figure 7.3 is the corresponding plot for the
simulated data set (AMELIA sampling design d1.4a, simulation type 1 of Table 7.1). On
both figures we can see that the parameters obtained using the full or the profile log-
likelihood are really close to each other. We can also see that the parameters p and q
governing the left and right tale of the distribution, respectively, have much higher values
for the EU-SILC survey.
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Figure 7.2: Fitted parameters af, bf, pf, qf (ML full log-likelihood on the left) and
ap, bp, pp, qp (ML profile log-likelihhod on the right), robustified weights, EU-SILC coun-
tries 2006
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Effect of the robustification on the GB2 parameters, AMELIA sample d1.4a

On Figure 7.4 we can see what the effect of the robustification of the sampling weights is
on the fitted GB2 parameters with the method of maximum likelihood estimation using
the full log-likelihood. The parameters calculated with the robustified (adjusted) weights
are denoted by the suffix adj. Only converging samples have been taken for producing
the boxplots.

We can note that the scale parameter b is almost not affected by the adjustment. The
asymptotic behaviour of the GB2 when the income tends to 0 is similar to a Pareto
distribution with parameter ap, and to a Pareto distribution with parameter aq, when
the income tends to infinity. On the bottom of the figure we observe the two products
of parameters ap and aq, respectively. Note that the notation ap used here is different
from the notation used on Figures 7.2 and 7.3. These plots show that, in the case of the
AMELIA data set, our adjustment affects essentially the left tail of the distribution.
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Figure 7.4: Fitted parameters, ML full, d1.4a, global level
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Estimation of the derived indicators

Table 7.2 presents the simulation results for the GB2 estimate of the RMPG as well as
for its empirical estimate, denoted eRMPG. The used notation is as follows:

T: point estimator of the fitted GB2 indicator,

adj: if the weights were robustified (yes) or not (no),

design: the used sampling design for the sample drawn from the AMELIA universe,

cvsT: coefficient of variation of the fitted parameter over the 1000 simulations,

cvT: mean over all simulations of the coefficient of variation, calculated using the variance
estimator with sampling weights only,

cvdT: mean over all simulations of the coefficient of variation, calculated using the vari-
ance estimator with the full design information .

Remark: Details on the variance estimators can be found in Deliverable D2.1 (see Graf
et al., 2011, sec. 4.4).

Effect of the robustification on the derived indicators, AMELIA sample d1.4a

Table 7.2 shows that, for all sampling designs, the GB2 estimate of RMPG has larger
values than the empirical estimate. However, the adjustment of the sampling weights
tends to reduce the value of the estimator. It is also interesting to notice that, in general,
our estimates have smaller variance than the empirical estimate. Another advantage
of the weight adjustment is that, in all cases, it reduces significantly the relative root
mean squared error (RRMSE) of our estimates. For RMPG, we see that the RRMSE of
the estimator using the robustified weights is smaller than the RRMSE of the empirical
estimator. Corresponding tables for the median, ARPR, QSR and Gini can be found in
the Appendix.

On Figure 7.5 the fitted indicators with robustified weights (adj) and original weights
are compared with the empirical estimates (first in the plot) and the estimates obtained
with the method of non-linear fit for indicators (the last in the plot). We can see that
the adjustment of the sampling weights improves considerably the quality of estimation.
It gives best results for the RMPG, and we can see that for QSR the adjustment was
probably too strong. As described in our procedure (see Graf et al., 2011, sec. 4.3),
we can modify the value of the constant for the correction factor and choose different
quantiles. The plot shows also that, as expected, the indicators’ estimates by the method
of non-linear fit for indicators are close to the empirical estimates of the indicators.
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Figure 7.5: Fitted indicators, ML full, d1.4a, global level
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Variance estimation of the GB2 parameters and derived indicators

The variance of the fitted GB2 parameters is calculated by linearization and using the
so-called sandwich variance estimator (see Graf et al., 2011, sec. 4.4). The middle term
of the sandwich variance estimator, i. e. the variance of the scores (the first derivatives
of the pseudo log-likelihood), in our simulation study is calculated in two ways:

• In the first case, all the information we need is the income variable and the sampling
weights.

• In the second case, inclusion probabilities, sample strata sizes can be considered
when calculating the variance of the scores, through the design definition (using the
R package survey, Lumley (2010)).

For example, for design d1.4a, we have the following definition:

dsktr = svydesign(id=~HID, strata=~NUTS2, fpc=NULL, weights=~aw, data=sktr),

where sktr denotes the sample of positive income values, id specifies the cluster ID (in
our case the household id), strata defines the stratification variable and weights are the
sampling weights. Then the variance of the scores is easily calculated on this design using
the command vcov:

DV2 <- vcov(svytotal(~scores[,1]+scores[,2]+scores[,3]+scores[,4], design=dsktr))

We have implemented this second formula in our simulation study with success, except
for the design d2.6, which is a two stage design with pps-sampling on the second stage
and for which the survey formula was not adaptable. We have seen that our variance
estimate using the sampling weights only (def = 1) is close or equal to the design variance
calculated with the package survey for the one-stage sampling designs (def = 2) (see
Table 7.3). For design d2.7 however, the bias in the variance is divided by a factor
ranging from 2 to 100 (with def=2).

The variance of the derived indicators being calculated using the variance-covariance
matrix of the scores and the first derivatives of the indicators with respect to the fitted
parameters, the effect of the two different formulas can also be observed for the derived
indicators (see e.g. Table 7.4).

Effect of the different variance formulae and of robustification of the sampling
weights on the variance estimate of ARPR

From Table 7.4 we can learn that there is almost no difference between the two variance
formulae (def = 1 and def = 2) for the one-stage designs. For all sampling designs, the
use of the robustified weights reduces, but also underestimates, the variance of ARPR. In
fact, we should take into account in the calculation of our variance estimate the additional
variance due to the adjustment of the sampling weights.
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Table 7.3: Variance estimator of a

V def adj design avgV biasV relbiasV%
a 1 no d1.2 1.972e-01 1.744e-02 9.703e+00
a 2 no d1.2 1.971e-01 1.740e-02 9.680e+00
a 1 yes d1.2 2.039e-01 8.355e-02 6.943e+01
a 2 yes d1.2 2.039e-01 8.356e-02 6.944e+01
a 1 no d1.4a 3.326e-01 1.526e-01 8.480e+01
a 2 no d1.4a 3.313e-01 1.514e-01 8.410e+01
a 1 yes d1.4a 1.328e-01 1.168e-02 9.651e+00
a 2 yes d1.4a 1.320e-01 1.096e-02 9.049e+00
a 1 no d1.5a 1.528e-01 -1.017e-02 -6.241e+00
a 2 no d1.5a 1.517e-01 -1.134e-02 -6.954e+00
a 1 yes d1.5a 1.078e-01 -9.880e-03 -8.391e+00
a 2 yes d1.5a 1.069e-01 -1.083e-02 -9.197e+00
a 1 no d2.6 1.462e-01 -6.517e-02 -3.082e+01
a 1 yes d2.6 1.345e-01 -1.933e-02 -1.257e+01
a 1 no d2.7 1.707e-01 -7.311e-02 -2.998e+01
a 2 no d2.7 2.172e-01 -2.661e-02 -1.091e+01
a 1 yes d2.7 1.253e-01 -4.230e-02 -2.525e+01
a 2 yes d2.7 1.671e-01 -4.200e-04 -2.500e-01

Table 7.4: Variance estimator of the ARPR

V def adj design avgV biasV relbiasV%
ARPR 1 no d1.2 7.664e-02 1.170e-03 1.546e+00
ARPR 2 no d1.2 7.665e-02 1.180e-03 1.562e+00
ARPR 1 yes d1.2 6.540e-02 -2.003e-02 -2.344e+01
ARPR 2 yes d1.2 6.541e-02 -2.002e-02 -2.343e+01
ARPR 1 no d1.4a 7.859e-02 1.001e-02 1.459e+01
ARPR 2 no d1.4a 7.760e-02 9.020e-03 1.315e+01
ARPR 1 yes d1.4a 6.564e-02 -1.063e-02 -1.393e+01
ARPR 2 yes d1.4a 6.460e-02 -1.167e-02 -1.530e+01
ARPR 1 no d1.5a 8.620e-02 1.900e-04 2.188e-01
ARPR 2 no d1.5a 8.506e-02 -9.500e-04 -1.108e+00
ARPR 1 yes d1.5a 6.581e-02 -2.369e-02 -2.647e+01
ARPR 2 yes d1.5a 6.465e-02 -2.485e-02 -2.776e+01
ARPR 1 no d2.6 8.701e-02 -8.009e-02 -4.793e+01
ARPR 1 yes d2.6 6.663e-02 -1.241e-01 -6.506e+01
ARPR 1 no d2.7 7.744e-02 -7.368e-02 -4.876e+01
ARPR 2 no d2.7 1.313e-01 -1.984e-02 -1.313e+01
ARPR 1 yes d2.7 6.633e-02 -1.239e-01 -6.514e+01
ARPR 2 yes d2.7 1.220e-01 -6.829e-02 -3.589e+01
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AMELIA regions

This section gives an overview of the simulation results for region 1 of the AMELIA
samples drawn with design d1.4a, simulation types 2, 3 and 4 of Table 7.1. For the
simulations on the regional level we have used only the robustified weights.

On Figure 7.6 are shown the GB2 parameters for region 1 obtained through ML estim-
ation, denotes respectively amr1, bmr1, pmr1 and qmr1 and NLS estimation. For the
method of non-linear fit for indicators (NLS) we have used the 2-step estimation proced-
ure, based on two different sets of initial values - ML fitted parameters on the one side and
a = 1/Gini, b = empiricalmedian, p = q = 1 on the other side (see Section 4.5 of Deliv-
erable 2.1). The obtained parameters are denoted respectively by, anr1, bnr1, pnr1, qnr1
and an3r1, bn3r1, pn3r1, qn3r1. We can see that all methods give similar results for the
parameters’ estimates, but the third method is more unstable. On Figure 7.7 we can
compare the empirical indicators (denoted e.g. eARPR) with the indicators’ estimators
obtained through ML (e.g. mlARPR), NLS estimation two-step procedure with initial
values from the ML fit (e.g. nlsARPR) and the method of decomposition of the GB2 (e.g.
compARPR). We can see that all three methods of estimation give rather good results.
The method of decomposition of the GB2 (GB2 compound) has not been developed for
the estimation of the Gini, but, as seen on the plot, works well for the other indicators.

Non-convergence rate by regions

Table 7.5 shows, for each sampling design and for four methods of estimation, the number
of samples per AMELIA region which have not converged. We can see that:

1. The method of ML estimation using the profile log-likelihood has a good convergence
rate for all regions (there is only a small number of non-convergent samples for region
3);

2. the method of non-linear fit for indicators with initial values for the parameters
coming from the ML fit gives the best convergence rate;

3. the compound fit with initial pl = (0.1, 0.7, 0.2) does not at all work for region 1,
but the other partition seems to be a good compromise.
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Figure 7.6: Fitted parameters, ML prof, d1.4a, region 1 (r1)
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Figure 7.7: Fitted indicators, ML prof, d1.4a, region 1 (r1)
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Discussion

Our simulations show that the GB2 model fits successfully various empirical income distri-
butions, as is the case for the AMELIA synthetic universe, which is a very heterogeneous
population.

We have developed various methods of estimation of the model parameters. The sim-
ulations clearly show the method of pseudo maximum likelihood estimation using the
profile log-likelihood fits good both model parameters and derived indicators (except for
the ARPR) on the global and regional level. However, we have seen that if the sampling
weights are robustified using the ad-hoc procedure we have developed, this improves con-
siderably the quality of the estimation. Variance estimation using the sampling weights
only and the full design information is applicable for this method. Thus, we can recom-
mend its use for the calculations of selected indicators as for the RMPG.

The method of non-linear fit for indicators gives good results in reproducing the empirical
estimates of the derived indicators, however for the moment, no variance estimation of the
obtained estimates is developed and for that matter the method of maximum likelihood
estimation is preferable

For sub-populations, the decomposition of the GB2 seems to give promising results, based
on the simulations with the AMELIA regions. It also gives various possibilities for ad-
apting to the data, in choosing different partitions and different fitted parameters for the
initial decomposition, i.e. left or right tail decomposition. We have seen that for certain
regions in our simulation study it works better than for others. Thus it still needs to be
tested and developed, e.g. for the calculation of the Gini.
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7.1.5 Recommendations

Full and profile likelihood Quality of results is the same for full and profile likeli-
hood. However, the profile likelihood algorithm converges faster. So, we recom-
mend to fit the GB2 using the profile likelihood algorithm.

Variance estimation by linearization The sandwich variance estimator using the
linearization of the indirect indicators works well. With one-stage designs, the
simplified formula involving only the sample weights gives good results and can
be used with a sample size in the order of magnitude of the EU-SILC country
level. With two-stage designs (like design 2.7) the full design information should
be included, in the lines of (Graf et al., 2011, ch.4).

Robustified weights Comparison between the results with the survey weights and
the robustified weights shows that the bias in the indirect (GB2) indicators’ es-
timates using the GB2 fit is greatly reduced when the weights are robustified. The
variance estimation however underestimates the true variance when the weights
are robustified. The additional variability due to the weight adjustment should
be taken into account, but has not been developed yet.

Left and right tail decomposition of the GB2 When applying a compound fit,
one has to choose between the left tail or the right tail decomposition (Deliverable
2.1, Chapter 5). The left tail decomposition is appropriate when the focus is
on the group differences in the distribution of the poor. If the study aims at
comparing the rich, the right tail decomposition is a better tool. For the analysis
of indicators of poverty, the first is preferred. Indicators of inequality can be
scrutinized by the use of both.

Weights of the components in the mixture In our developments, the compon-
ents in a GB2 decomposition are given in advance. With the Amelia universe,
when there is a large discrepancy between the regions, it seems preferable to
evenly distribute the components, which amounts to specify equal initial prob-
abilities pl. On the contrary, our tests with the Austrian data, taking the four
NUTS1 as regions, showed better results with an uneven distribution of compon-
ents, with one component for the very poor (p1 = 0.1), a large middle component
(p2 = 0.7) and a third component for the rich (p3 = 0.2).

7.2 Parametric Estimation Using Dagum Distribu-
tions

This section presents the results of the simulation study regarding a mixture of two Dagum
distributions (TCD), presented in deliverable 2.1 chapter 6 (see Graf et al. (2011)). The
denotations and abbreviation are also the same as in the cited deliverable. Subsection
7.2.1 describes the analysis of the distribution parameters. The results of the indicator
estimation is the subject of subsection 7.2.2. The final subsection concludes the section.
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7.2.1 Analysis of the Distribution Parameter

The fitting of the TCD is a highly non-trivial process. The resulting distribution para-
meters of some samples suggest that very different distribution parameters can still lead
to similar estimators of the povery and inequality measures. Table 7.6 demonstrates this
observation. It shows the parameters and indicators of two different samples (denoted
as sample A and B), both taken according to design 1.2. It can be seen that the shape

sample a b p a2 b2 p2 α QSR ARPR Gini
A 5.22 63402 0.137 3.84 35353 0.484 0.389 10.09 0.269 0.381
B 66.0 70629 0.0088 3.57 37969 0.459 0.225 10.01 0.270 0.381

Table 7.6: Parameters and Measures of two Different Samples

parameters of the first component as well as the mixture parameter differ a lot between
these two samples. On the other hand, the estimators for all three poverty/inequality
measures are very close for the two samples. Figure 7.8 illustrates the density of sample
A (red curve) and sample B (green curve). The two curves have very similar shapes
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Figure 7.8: Two TCDs with Different Parameters

and therefore the indicator values do not vary much. This may also indicate that the

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


7.2 Parametric Estimation Using Dagum Distributions 59

log-likelihood function of a TCD might have several local maxima in its parameter space.
Because of this is seems reasonable to conduct further analysis on the fitting method.

7.2.2 Results of the Indicator Estimation

This subsection presents the estimation results of the QSR, the ARPR and the Gini. Due
to numerical problems of the variance estimation of the indirect approach, the number of
evaluated samples had to be reduced to 699. Figure 7.9 shows the results for the point
estimators of the QSR. The figure includes histograms of the estimators, the estimated
densities (black curves) of their distributions and the denity of a normal distributions with
mean and standard deviation as the empirical values from the simulation (green curves).
Its legends provide the mean values of the distributions, the true value of the universe
(TV) and the 95% confidence interval coverage rates (CR).
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Figure 7.9: Point Estimators of the QSR

As a matter of fact the indirect estimation is biased, with a relative bias of 1.3% for
D 1.2 and 1.6% for D 1.4a, whereas the direct estimation (with standard design-based
estimators) can be interpreted as unbiased. In addition to that, the coverage rates are
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considerably lower for the indirect estimation for both designs. The variance estimators of
the QSR are diagrammed in figure 7.10. One key observation is that the benchmark (i.e.
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Figure 7.10: Variance Estimators of the QSR

the variance of the point estimators) is lower than the mean of the variance estimators,
independent of design and estimation method. Although benchmark and mean of the
variance estimator are lower for the indirect estimation for both designs, the Monte Carlo
mean squared error (MC-MSE) signals that it cannot compensate the bias. Thus, one
could conclude that the estimation of the QSR is better done directly.

The results for the ARPR give a very different impression. They are presented in figure
7.11 (point estimators) and figure 7.12.

Regardless of the design, all estimators seem to be unbiased and the indirect estimator
leads to clearly more efficient results. This is backed up by the MC-MSE criterion which
is far lower for the indirect method. For the ARPR the indirect estimation method is
very recommendable. One possible trade-off is the high Monte Carlo variance of the
distribution of variance estimators. Some samples yield variance estimators of double
the mean of all variance estimators. On that account it seems reasonable to aspire the
development of linearization methods also for the TCD.
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Figure 7.11: Point estimators of the ARPR

The third and final indicator investigated in the study is the Gini. Its estimation results
are illustrated in figures 7.13 and 7.14.

The point estimators seem to be unbiased for both methods and both designs. Aside
from that, the variance of the point estimator distribution of the indirect estimation is
lower than the respective value of the direct method. Nevertheless, a few samples produce
extremely high variance estimators for the indirect procedure for both designs. Some of
the outliers are up to 16 times higher than the mean of the respective distribution. As
already mentioned before, the variance estimation method for the indirect estimation has
to be rethought.
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Figure 7.12: Variance estimators of the ARPR
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Figure 7.13: Point estimators of the Gini
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Figure 7.14: Variance estimators of the Gini
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7.2.3 Conclusions and recommendations

All in all, the indirect estimation with a TCD provides decent estimation results, but
cannot outperform the much faster direct estimation on all accounts. Due to this,
it seems reasonable to enhance the fitting methodology of the TCD in the future,
especially to tackle the global optimization problem. Furthermore, the need for the
development of linearization methods for the variance estimation of the indirect method
can be confirmed. With respect to the poverty- and inequality measures, the indirect
method seems to be better for the ARPR, while the direct way of estimation seems to
be beneficial for the QSR. The results for the Gini coefficient are rather ambiguous,
but tend to favor the indirect estimation. In summary it can be said that the usage of
a mixture of two Dagum components in this field looks promising but requires further
investigation.
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Chapter 8

WP2: Small Area Estimation

8.1 Simulation objectives

There are increasing demands for accurate statistics on poverty and social exclusion
(poverty indicators for short) calculated for different population subgroups such as re-
gional areas and demographic groups. One of the aims of the AMELI project was to
investigate the current (standard) methods and develop new methods where appropriate.
Estimators of selected poverty indicators (so-called Laeken indicators) for population
subgroups or domains and small areas developed in the AMELI project are described
in Deliverable 2.2 of Work Package 2 (Estimation). The simulation experiments with
domain and small area estimation methods had the following objectives:

1. Investigation of the statistical properties (bias and accuracy) of the standard direct
estimators of the selected poverty indicators for population domains and small areas.
The standard estimators do not use auxiliary data or modelling.

2. Investigation of bias and accuracy of the new estimators, which use statistical models
and auxiliary data at the unit level.

3. Investigation of bias and accuracy of the new estimators, which use statistical models
and auxiliary data at an aggregated level.

4. Implementation of points 1 to 3 under equal and unequal probability sampling
schemes.

5. For studying robustness of methods, the implementation of points 1 to 4 under
various outlier contamination schemes.

6. Study of applicability of method incorporating a novel transformation of predictions.

7. Implementation of points 1 to 5 for two different populations, the register-based
Finnish population and the more artificial Amelia population.

The indicators considered are the following:
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• At-risk-of poverty rate

• The Gini coefficient

• Relative median at-risk-of poverty gap

• Quintile share ratio (S20/S80 ratio).

The indicators are nonlinear and are constructed using non-smooth functions such as
medians and quintiles. They can be divided into two groups with respect to the selected
estimation approach. For the estimation of at-risk-of poverty rate (poverty rate for short),
we used generalized regression (GREG) and model calibration (MC) type estimators (as
examples of design-based model assisted methods) and synthetic (SYN) and empirical
best prediction (EBP) type estimators (featuring model-based methods). In all these
estimators, logistic models were used because the underlying study variable is binary.
Direct estimators, such as Horvitz-Thompson (HT) type estimators, were used as standard
(“default”) estimators.

Relative median at-risk-of poverty gap (poverty gap) and quintile share ratio (S20/S80
ratio) are examples of indicators that rely on medians or quantiles of the cumulative dis-
tribution function (CDF) of the underlying continuous equivalized income variable. For
these indicators, direct design-based estimators were used as the standard estimators. The
more advanced model-based indirect synthetic estimators use predictions calculated by
using linear mixed models and auxiliary data at the unit level. In constructing the estim-
ators, we use logarithmic transformation to correct for the skewness of the distribution of
the study variable. Simple predictors were deemed substantially biased, so we developed
more elaborate transformations aimed at improving the histogram of transformed predic-
tions. Composite estimators were constructed as a linear combination of a design-based
direct estimator and a model-based indirect estimator. In addition, for poverty gap we
have studied the estimation of conditional expectations by simulation-based methods,
resembling methods introduced in Molina and Rao (2010).

In many cases we assumed an access to unit-level auxiliary data on population elements,
which is becoming an increasingly realistic assumption in statistical infrastructures of the
EU countries. In addition, we developed frequency-calibrated prediction estimators that
use aggregated auxiliary data. With our frequency-calibrated predictors, it is possible to
use predictors when unit-level auxiliary information is not available. We also examine
the properties of the estimators under different equal and unequal sampling designs and
under outlier contamination. The underlying theory and derivations are presented in the
Deliverable 2.2.

8.2 Simulation bed

Design bias and accuracy of estimators were examined by design-based simulation ex-
periments. We used two populations: partially register-based Finnish population and
synthetic Amelia population (Alfons et al., 2011, Deliverable 6.2, Report on Outcome of
Simulation Study, March 2011). Programs written in R language have been supplied to
apply the methods in practice.
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8.2.1 Finnish population

The artificial Finnish population of one million persons was constructed from income
data of seven NUTS3 -regions in Western Finland. The household properties, such as
demographic composition and equivalized income were obtained from registers. Values of
auxiliary variables of the household head were obtained from a household survey. Some
personal auxiliary variables, most notably education level, had to be imputed for members
other than household head, but the population was realistic enough for our simulation
study.

In the simulations, K = 1000 samples of n = 5000 persons were drawn from the unit-
level population. The sampling design was simple random sampling without replacement
(SRSWOR) or PPS. For PPS, an artificial size variable was generated as a function of a
qualitative variable. Then the PPS is approximately identical with stratified sampling.
PPS was defined so that people with low income appear in samples with larger probability
than people with large income. Therefore low education levels and certain socio-economic
classes were given the largest inclusion probabilities. In PPS based on education level,
the classes and relative inclusion probabilities are as follows (p is a constant depending
on class frequencies):

Table 8.1: Education-class-specific inclusion probabilities
Education class 0 3 4 5 6 7 8

Inclusion probability 5p 5p 4p 3p 2p p p

Table 8.2: Socioeconomic-class-specific inclusion probabilities for PPS (by socstrat)
Socioeconomic class 1 2 3 4 5 6

Inclusion probability p/2 p/3 p/5 p p p

Mean income 85069 68328 76491 58520 62448 56862

Our domains were 36 NUTS4 regions or 70 cells in the cross-classification of NUTS3
region, gender and age class (0-15, 16-24, 25-49, 50-64, and 65- years). These domains
were classified by the expected sample size to size-classes with class boundaries at 50 and
100.

We created indicators for each class of a qualitative variable. The most commonly used
model had auxiliary variables age and gender with interactions, socstrat and lfs-code. The
corresponding linear fixed-effects model fitted to logarithms of income in the population
had coefficient of determination R2 = 0.101. When auxiliary variables house ownership
and educ-thh were added to the model, the R2 increased to 0.164.

8.2.2 Amelia population

From the synthetic Amelia data set constructed using SILC data (Alfons et al., 2011), we
drew samples with SRSWOR (n = 2000) and PPS (n = 6000) based on a size variable with
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Table 8.3: Specifcation of the auxiliary variables
Variable Label Codes

Age class Age 0-15, 16-24, 25-49, 50-64, and 65-
years

Gender Gender 1 Males, 2 Females
House ownership Indicator showing when the household 0 (No), 1 (Yes)

owns the dwelling
Educ-thh The number of household members Count

having tertiary educational level
Education Education level of the household head 0 (Lowest) to 8 (Highest)
Empmohh The total number of months of Count

all household members being employed
Socstrat Socio-economic status of HH head 1 Wage and salary earners; 2 Farm-

ers; 3 Other entrepreneurs; 4 Pen-
sioners; 5 Other categories; 6 Not
specified

Lfs-code Employment status of HH member 1 Employed; 3 Unemployed; 3 Not
in workforce
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value 3 for education levels (ISCED) 0-3 and 2 for others. Forty regions (variable DIS)
were classified by expected sample size with class boundaries at 45 and 55. Demographic
domains were defined by age, gender and NUTS2 regions. For poverty rate, these domains
were classified by size with breakpoints 50 and 100, for poverty gap with breakpoints 20
and 30. Our models fitted to the logarithm of the equivalized income variable EDI2
incorporated age class and gender with interactions, attained education level (ISCED),
activity (working, unemployed, retired, or otherwise inactive) and degree of urbanisation
(three classes).

8.3 Methods

We estimated the indicators by methods shown in Tables 8.4 and 8.5. The equations are
in Deliverable 2.2.

Table 8.4: Poverty rate estimators.
Estimator Description Equations

Default The default (direct) estimator of the poverty rate (24)

Design-based estimators

GREG Generalized regression estimator assisted by a linear fixed-effects
model

(26)

LGREG Logistic GREG estimator assisted by a logistic fixed-effects model (26)
MLGREG GREG estimator (26) assisted by a logistic mixed model (26)
MC Model calibration; equation in parentheses e.g. MC(10) (10), (12), (13)

Model-based estimators

LSYN Synthetic estimator based on a logistic fixed effects model (14)
EBP Empirical Best Predictor type estimator based on a logistic mixed

model
(15)

EBP(Y) Alternative EBP type estimator based on a logistic mixed model (16)

8.4 Report on Simulations

From each sample, the following quality indicators were calculated for each domain es-
timator: mean, bias

Bias = 1
K

K∑
k=1

(θ̂dk − θd),

absolute relative bias

ARB =
| 1
K

∑K
k=1(θ̂dk − θd)|

θd
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Table 8.5: Estimators used in Gini coefficient, poverty gap and quintile share.
Estimator Description Equations

Default The default (direct) estimator of the Laeken indic-
ator

(27), (30), (33)

Model-based estimators

Predictor Estimator calculated from predicted values (28), (31), (34)
Expanded predictor Estimator (28), (31), or (34) from transformed pre-

dictions; used equation in parentheses
(17) or (18)

n-calibrated predictor Predictor type estimator based on calibrated fre-
quencies of fitted values

(18) and (19)

Composite estimators

Composite Composite estimator incorporating default estimator
and expanded predictor

(17) or (18), (20)

n-calibrated composite Composite estimator incorporating default estimator
and frequency-calibrated predictor

(18), (19), (20)

and relative root mean squared error

RRMSE =

√
1
K

∑K
k=1(θ̂dk − θd)2

θd
.

We present their averages over domain classes defined by domain size.

Outlier and contamination experiments were carried out as proposed in Hulliger and
Schoch (2010), p. 7. Outliers were created in each sample without modifying the pop-
ulation. In OCAR, one percent of sampled persons were declared as outliers, chosen
completely at random. In OAR, the probability of being an outlier varied as a func-
tion of labour force status and pensioner status as follows: 0.04 for employed people,
0.02 for the unemployed, 0.03 for people not in workforce but 0.01 for pensioners. In
the Finnish population, the equivalized income of the outlier’s household was the target
of contamination, whereas in Amelia, the personal cash or near-cash income of an out-
lier was contaminated. Under CCAR contamination, a normally distributed value from
N(500000, 100002) was added to the target income variable. Under NCAR, the outlier’s
income value was multiplied by 1000. Under OAR, the expectations of contamination
N(µ, 100002) were 5,000,000 for the employed, 4000 for the unemployed, 90000 for people
not in workforce but 200 for pensioners. In Amelia, the equivalized income in the outlier’s
household was calculated anew using other personal and household-level income compon-
ents. OAR contamination may sometimes result in a negative income when the original
income is small. In simulations these were unfortunately left out from model fitting, as R
replaces logarithms of negative values by missing values.

Most of the mixed models were fitted by R package nlme using maximum likelihood.
Design weights were then not used. For Tables 8.8 and 8.9, we incorporated design
weights into model fitting by glmer function of R package lme4. The linear and logistic
fixed-effects models were fitted with GWLS and maximum pseudolikelihood methods
incorporating design weights.
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In the n-calibrated estimator, we treated socstrat as a variable unknown in the popula-
tion. The marginal frequencies of socstrat classes were imputed with GREG assisted by
multinomial logistic model (R module nnet).

8.5 Results

8.5.1 Poverty rate

Table 8.6 compares poverty rate estimators assisted by fixed effects models. Section a)
shows results for a common model formulation where the model does not account for
domain differences. NUTS3 indicators are included in Section b) to account for regional
variation. Section c) includes domain-specific fixed effects. In this case the model-based
LSYN and model-assisted LGREG coincide. Under SRSWOR, it was not necessary to
include design weights in model fitting.

The default estimator, model calibration (MC), and GREG estimators are nearly design
unbiased. Among these methods, model calibration based on (13) has the smallest
RRMSE. In (13), the sums of fitted values were calibrated at NUTS3 level. Therefore
there is not much difference between models (a) and (b). LSYN had the smallest RRMSE
but it was design biased.

A logistic mixed model is used next to compare model-based EBP with model-assisted
MLGREG (Table 8.7). Domain differences are accounted for by regional-level (Section a)
or domain-specific (Section b) random intercepts in the model. In both cases, the EBP
estimator has large negative design bias, especially for small domains, and MLGREG
appears nearly design unbiased as expected. However, EBP shows better accuracy than
MLGREG and other nearly unbiased methods of Table 8.6. MLGREG has somewhat
larger bias than LGREG.

From tables 2 and 3 we see that random intercepts or fixed effects associated with NUTS3
regions yield better results than domain-specific effects.

Tables 8.8 and 8.9 show the effect of incorporating the design weights in fitting a mixed
model. If the variable socstrat determining the size variable in PPS is not included in the
model (Table 8.8), using design weights in fitting (EBP(Y)-W, no socstrat) results in smal-
ler bias and RRMSE than model fitting without weights (EBP(Y), no socstrat). When
socstrat was included in the model, EBP(Y)-W had smaller design bias than EBP(Y) but
slightly larger RRMSE. MLGREG did not yield as small RRMSE as EBP(Y), but it had
smaller bias. MLGREG-W benefitted slightly from using design weights in model fitting.
We draw similar conclusions from Table 8.9.

Table 8.10 shows how contamination affects poverty rate estimators. A robust method
of fitting the logistic mixed model was not available. Nevertheless, the poverty rate
estimators are fairly robust. Only when the proportion of outliers is 15%, bias especially
is large. EBP(Y) has the smallest RRMSE in this experiment. It was also least affected
by contamination.
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Table 8.6: Poverty rate estimators assisted by logistic and linear fixed effects models
(Finnish data set).
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

a) Common model formulation

Default −0.04 0.03 -0.06 1.23 0.94 0.71 51.83 32.0 22.9
LSYN -1.11 -0.32 0.54 13.95 12.39 5.87 18.16 16.54 10.15
LGREG 0.03 0.03 -0.05 0.68 0.87 0.65 48.55 30.55 20.66
GREG 0.03 0.03 -0.05 0.76 0.88 0.65 48.89 30.86 20.89
MC(12) 0.03 0.03 -0.05 0.68 0.86 0.65 48.56 30.55 20.65
MC(13) 0.03 0.03 -0.05 0.75 0.85 0.67 48.39 30.51 20.63
MC(10) -0.12 0.01 -0.06 1.73 0.89 0.68 52.94 31.3 20.88

b) NUTS3 indicators added to x-variables

Default -0.06 0.02 -0.07 1.21 0.93 0.73 51.82 31.98 22.29
LSYN -0.01 0.12 -0.14 7.98 8.05 4.9 19.35 15.99 11.41
LGREG 0.02 0.02 -0.06 0.71 0.84 0.68 48.4 30.5 20.66
GREG 0.02 0.02 -0.06 0.79 0.86 0.67 48.74 30.81 20.88
MC(12) 0.02 0.02 -0.06 0.72 0.84 0.68 48.42 30.51 20.64
MC(13) 0.02 0.02 -0.06 0.73 0.83 0.69 48.39 30.5 20.64
MC(10) -0.15 0.0 -0.07 1.83 0.89 0.7 52.85 31.29 20.88

c) Domain indicators added to x-variables

Default – – – 1.21 0.93 0.73 51.82 31.98 22.29
LSYN – – – 1.18 0.83 0.7 50.98 30.9 20.81
LGREG – – – 1.18 0.83 0.7 50.98 30.9 20.81
GREG – – – 1.08 0.85 0.67 50.84 31.1 20.98
MC(12) – – – 1.15 0.82 0.7 51.04 30.93 20.81
MC(13) – – – 1.09 0.84 0.7 50.7 30.95 20.83
MC(10) – – – 1.89 0.88 0.7 52.45 31.26 20.88
Design: SRSWOR. Qualitative x: house ownership, age class, gender, lfs-code. Domains: NUTS3 by age
by gender (D = 70 domains)

Table 8.11 shows how contamination affects estimators under PPS. The bias of EBP(Y)
is larger than in Table 8.10, with the exception of contamination of 15%. The RRMSE of
other methods are larger than under SRSWOR.
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Table 8.7: Poverty rate estimators assisted by a logistic mixed model (Finnish data set).
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

a) NUTS 3 level random intercepts

EBP(Y) -1.47 -0.53 0.02 14.85 10.75 4.07 20.83 17.22 10.81
MLGREG 0.01 0.03 -0.05 0.66 0.87 0.68 48.66 30.72 20.75

b) Domain-specific random intercepts

EBP(Y) -1.43 -0.55 0.16 14.75 8.96 3.99 22.49 19.26 14.54
MLGREG 0.28 0.13 -0.27 2.2 3.44 2.76 55.67 39.87 40.44
Design: SRSWOR. Qualitative x: house ownership, lfs-code, age class, gender. Domains: NUTS3 by age
by gender. Mixed model with NUTS3 random intercepts was fitted by nlme.

Table 8.8: Poverty rate estimators with design weights incorporated in model fitting
(lme4) in methods with suffix “W”. (Finnish data set)
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

Default 1.60 1.13 0.54 1.17 54.18 30.21 20.95 36.79
EBP(Y) 11.84 8.21 5.01 8.82 19.73 15.61 11.63 16.23
EBP(Y), no socstrat 13.40 9.88 7.37 10.60 20.94 16.94 12.93 17.51
EBP(Y)-W 9.33 8.04 5.57 7.97 20.00 16.23 12.39 16.76
EBP(Y)-W, no socstrat 9.58 8.27 5.47 8.14 20.01 16.38 12.43 16.83
MLGREG 1.56 1.13 0.59 1.17 53.95 30.22 20.89 36.69
MLGREG-W 1.57 1.14 0.58 1.17 53.64 30.12 20.82 36.53
Design: PPS based on socstrat. Qualitative x: age and gender with interactions, lfs-code and socstrat.
Domains: NUTS3 by age by gender. Logistic mixed model with NUTS3 random intercepts was fitted by
lme4.

Table 8.9: Poverty rate estimators in Amelia. Design weights are incorporated in model
fitting (lme4) in methods with suffix “W”.
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

Default 0.76 0.61 0.32 0.67 29.14 23.08 17.36 26.09
EBP(Y) 8.29 9.25 7.78 8.56 13.50 13.77 10.92 13.36
EBP(Y), no ISCED 8.67 10.01 7.88 9.04 13.98 14.52 11.51 13.93
EBP(Y)-W 8.35 8.93 7.92 8.50 13.61 13.65 11.13 14.40
EBP(Y)-W, no ISCED 8.30 8.96 7.77 8.47 13.68 13.69 11.02 13.44
MLGREG 0.74 0.57 0.29 0.64 28.13 22.34 16.90 25.21
MLGREG-W 0.74 0.57 0.29 0.64 28.12 22.34 16.89 25.21
Design: PPS based on ISCED. Qualitative x: age and gender with interactions, ISCED, activity, and degree
of urbanisation. Domains: NUTS2 by age by gender. Logistic mixed model with NUTS2 random intercepts
was fitted by lme4.
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Table 8.10: Poverty rate in contaminated Finnish data.
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

Baseline (no contamination)
Default 1.11 1.04 0.50 0.94 51.94 31.79 22.04 36.76
MLGREG 1.41 0.98 0.42 1.01 48.83 30.81 20.93 34.99
EBP(Y) 9.00 8.21 5.36 7.84 19.91 17.51 12.51 17.23

OCAR-CCAR 1%

Default 1.69 1.29 0.50 1.25 52.13 31.93 22.11 36.90
MLGREG 1.91 1.25 0.45 1.30 49.04 30.94 21.00 35.13
EBP(Y) 8.47 8.52 5.33 7.77 19.68 17.73 12.54 17.28

OCAR-NCAR 1%

Default 1.65 1.31 0.50 1.25 52.16 31.91 22.11 36.90
MLGREG 1.94 1.27 0.44 1.32 49.09 30.94 21.00 35.15
EBP(Y) 8.48 8.53 5.34 7.78 19.77 17.76 12.54 17.28

OAR-CAR

Default 1.73 1.10 0.63 1.22 52.17 31.93 22.09 36.91
MLGREG 1.88 1.10 0.58 1.26 49.06 30.93 20.95 35.12
EBP(Y) 8.66 8.58 5.45 7.89 19.67 17.76 12.60 17.26

OCAR-CCAR 15%

Default 23.36 15.81 4.93 16.02 63.25 39.23 23.45 44.20
MLGREG 23.72 15.84 4.92 16.16 60.43 38.25 22.46 42.56
EBP(Y) 21.24 20.04 6.17 17.30 28.87 27.20 13.72 24.71
Design: SRSWOR. Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. Domains:
NUTS3 by gender and age class (70 domains). Logistic mixed model with NUTS3 random intercepts was
fitted to log(income+1) by nlme.
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Table 8.11: Poverty rate in contaminated data (Finnish data set).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

Baseline (no contamination)

Default 1.60 1.13 0.54 1.17 54.18 30.21 20.95 36.79
MLGREG 1.53 1.15 0.57 1.16 53.99 30.20 20.83 36.69
EBP(Y) 11.85 8.76 6.97 9.48 20.26 16.20 12.76 16.91

OCAR-CCAR 1%

Default 2.04 1.39 0.63 1.46 54.33 30.28 20.94 36.87
MLGREG 2.13 1.41 0.64 1.50 54.14 30.26 20.83 36.77
EBP(Y) 11.41 8.68 7.24 9.35 20.01 16.15 12.92 16.84

OCAR-NCAR 1%

Default 2.01 1.37 0.68 1.45 54.38 30.29 20.97 36.90
MLGREG 2.10 1.39 0.70 1.50 54.17 30.29 20.85 36.79
EBP(Y) 11.41 8.71 7.26 9.36 20.04 16.21 12.96 16.88

OAR-CAR

Default 2.35 1.20 0.86 1.54 54.29 30.14 20.94 36.79
MLGREG 2.33 1.23 0.81 1.53 54.04 30.13 20.82 36.67
EBP(Y) 11.49 8.81 7.61 9.51 20.00 16.25 13.18 16.93

OCAR-CCAR 15%

Default 21.53 14.86 10.08 16.22 63.75 36.99 26.08 44.21
MLGREG 21.97 14.78 10.16 16.36 63.66 36.94 25.99 44.14
EBP(Y) 17.73 16.87 12.57 16.26 25.95 23.20 18.57 23.19
Design: PPS by socio-economic status. Qualitative x-variables: age and gender with interactions, lfs-code
and socstrat. Domains: NUTS3 by gender and age class (70 domains). Logistic mixed model with NUTS3
random intercepts was fitted to log(income+1) by nlme.
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8.5.2 The Gini coefficient

Table 8.12 shows an experimental comparison of the expanded predictor (17) of the Gini
coefficient, the default estimator and the ordinary predictor (28). Benefits from the ex-
pansion (17) are obvious.

Table 8.12: Estimators of Gini coefficient assisted by linear mixed model (Finnish data
set).
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

Default -.007 -0.004 -.002 2.92 1.57 0.66 14.09 11.42 7.66
Predictor -.066 -0.066 -.063 27.96 28.14 26.18 28.12 28.30 26.34
Expanded pre-
dictor (17)

-.004 -0.003 -.005 3.97 3.04 3.44 4.43 3.56 3.86

Composite -.005 0.001 -.004 3.46 2.11 2.56 5.79 4.29 3.91
Design: SRSWOR. Quantitative x: educ-thh, empmohh. Qualitative x: house ownership, lfs-code, socstrat.
Domains: 36 NUTS4 regions. Mixed model with NUTS3 random intercepts was fitted to log(income+1)
by nlme.

Tables 8.13 and 8.14 summarize experiments with contamination. The expanded predictor
and frequency-calibrated predictor are better methods than the default one. They are also
fairly robust. Composite estimators have large design bias in the most contaminated data.
In OCAR-NCAR, the bias and RRMSE of expanded predictor and frequency-calibrated
estimator are larger under PPS than under SRSWOR.
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Table 8.13: Gini coefficient in contaminated data (Finnish data set).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Default 3.27 1.74 0.66 1.56 14.28 11.36 7.57 10.40
Expanded predictor (18) 4.55 6.37 3.12 4.94 5.10 6.68 3.72 5.39
Composite 2.27 3.59 2.18 2.90 6.28 5.94 3.70 5.18
Predictor 49.38 50.15 48.74 49.53 49.72 50.49 49.05 49.86
n-calibrated predictor 3.06 4.64 2.95 3.81 5.06 5.64 3.70 5.18
n-calibrated composite 2.46 2.84 2.09 2.51 6.09 5.37 3.64 4.85

OCAR-CCAR 1%

Default 14.76 17.67 17.64 17.26 33.52 29.92 22.66 27.80
Expanded predictor (18) 13.15 14.98 9.38 12.70 13.34 15.14 9.63 12.90
Composite 13.00 15.66 12.00 13.97 18.59 18.36 13.10 16.49
Predictor 49.92 50.68 49.29 50.07 50.07 50.83 49.44 50.22
n-calibrated predictor 8.93 12.59 8.83 10.73 10.23 13.15 9.20 11.32
n-calibrated composite 10.50 14.11 11.66 12.72 16.53 16.95 12.84 15.41

OCAR-NCAR 1%

Default 98.84 151 231 173 173 212 254 223
Expanded predictor (18) 15.31 17.08 11.26 14.73 15.73 17.49 11.77 15.18
Composite 68.85 111 193 135 116 153 212 169
Predictor 48.12 48.85 47.64 48.31 48.98 49.70 48.43 49.14
n-calibrated predictor 10.78 14.53 10.67 12.61 12.27 15.34 11.30 13.45
n-calibrated composite 63.22 107 192 131 108 148 211 165

OAR-CAR

Default 88.07 118 141 122 139 152 151 150.05
Expanded predictor (18) 25.32 27.29 19.72 24.28 25.48 27.45 19.90 24.45
Composite 68.17 91.56 113 96.21 102.31 114 122 115
Predictor 32.54 33.10 31.96 32.61 34.44 34.99 33.66 34.43
n-calibrated predictor 20.67 24.79 19.07 22.15 21.59 25.25 19.35 22.61
n-calibrated composite 64.93 90.04 113 95.00 97.92 113 122 114
Design: SRSWOR. Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. Domains:
NUTS4. Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme.
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Table 8.14: Gini coefficient in contaminated data under PPS (Finnish data set).
.

Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Default 4.11 2.40 0.84 2.08 16.58 13.17 8.58 11.99
Expanded predictor
(18)

4.55 6.33 3.11 4.92 5.11 6.65 3.74 5.38

Composite 1.88 3.19 2.15 2.63 7.55 6.33 3.96 5.64
Predictor 47.58 48.22 47.04 47.70 47.65 48.29 47.11 47.77
n-calibrated predictor 3.32 4.75 3.00 3.92 5.05 5.52 3.72 4.80
n-calibrated compos-
ite

2.72 2.61 2.09 2.44 7.27 5.76 3.91 5.30

OCAR-CCAR 1 %

Default 13.37 17.00 17.37 16.63 33.59 30.93 23.34 28.56
Expanded predictor
(18)

12.48 14.18 8.76 11.99 12.73 14.42 9.11 12.26

Composite 11.87 14.90 11.35 13.20 18.13 17.88 12.65 16.03
Predictor 47.96 48.59 47.44 48.09 48.04 48.66 47.52 48.16
n-calibrated predictor 7.90 12.01 8.48 10.17 9.38 12.50 8.91 10.77
n-calibrated compos-
ite

9.21 13.44 11.17 12.03 16.06 16.57 12.52 15.04

OCAR-NCAR 1 %

Default 93.11 149.85 229.28 170.65 168.79 211.05 251.31 219.72
Expanded predictor
(18)

21.90 23.84 17.22 21.18 24.74 26.66 20.09 24.02

Composite 69.35 113.65 194.25 136.60 120.81 157.17 212.86 172.23
Predictor 46.54 47.11 46.19 46.70 46.68 47.25 46.33 46.84
n-calibrated predictor 16.26 21.06 16.87 18.88 20.06 24.17 19.86 22.04
n-calibrated compos-
ite

64.69 110.71 193.96 134.38 114.04 153.48 212.57 169.34

OAR-CAR

Default 69.91 100.96 132.73 108.12 127.63 144.19 148.67 143.51
Expanded predictor
(18)

24.46 26.30 19.01 23.41 24.63 26.47 19.20 23.59

Composite 55.00 77.76 102.93 83.69 92.71 105.97 114.76 107.30
Predictor 30.66 31.06 30.22 30.70 30.78 31.18 30.34 30.82
n-calibrated predictor 19.27 23.86 18.62 21.33 20.29 24.28 18.89 21.78
n-calibrated compos-
ite

51.80 76.02 102.87 82.35 87.90 103.80 114.71 105.53

Design: PPS by socio-economic status. Qualitative x-variables: age and gender with interactions, lfs-code
and socstrat. Domains: NUTS4. Mixed model with NUTS3 random intercepts was fitted to log(income+1)
by nlme without design weights.
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Table 8.15: Gini coefficient in contaminated Amelia data under SRSWOR.
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Default 2.60 2.10 1.61 2.11 12.89 11.64 10.43 11.68
Expanded predictor (18) 10.69 8.37 7.71 8.89 11.51 9.33 8.69 9.81
Composite 5.46 4.21 4.01 4.53 8.05 6.76 6.14 6.98
Predictor 21.75 23.27 23.74 22.94 22.59 24.00 24.44 23.70
n-calibrated predictor 6.22 4.31 3.74 4.72 11.32 9.06 7.84 9.40
n-calibrated composite 3.70 2.33 2.03 2.66 8.58 7.10 6.15 7.28

OCAR-CCAR 1%

Default 7.77 8.75 9.79 8.74 21.48 20.63 19.94 20.70
Expanded predictor (18) 12.65 10.29 9.63 10.81 13.38 11.12 10.50 11.63
Composite 10.82 9.59 9.51 9.94 13.32 11.91 11.46 12.21
Predictor 22.25 23.75 24.22 23.43 23.09 24.49 24.92 24.18
n-calibrated predictor 7.80 6.00 5.53 6.41 12.46 10.09 8.96 10.49
n-calibrated composite 7.66 6.71 6.70 6.99 12.13 10.67 9.99 10.92
Qualitative x-variables: age and gender with interactions, ISCED, activity and degree of urbanisation. Do-
mains: districts (DIS). Mixed model with DIS random intercepts was fitted to log(income+1) by lme without
design weights.
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8.5.3 Poverty gap

Our experiments imply that poverty gap is the most difficult Laeken indicator to estimate,
considering the large RRMSE of all estimators. Table 8.16 shows an experiment with a
lot of auxiliary information. All poverty gap estimators, even the default estimator have
design bias in small domains, probably due to the non-linear formulation of the indicator.
The ordinary predictor (31) is far too biased to be useful. The expanded predictor and
corresponding composite estimator are better than the default estimator especially in
small domains.

Table 8.16: Poverty gap estimators assisted by a linear mixed model (Finnish data set).
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

Default 2.1 0.9 0.4 12.14 4.37 1.78 65.85 43.58 27.26
Predictor -6.8 -9.8 -14.6 40.09 43.36 57.47 61.49 57.09 62.09
Expanded pre-
dictor (17)

-3.1 -3.0 -3.6 17.01 19.61 16.58 23.85 25.43 22.92

Composite -1.7 -2.1 -2.5 10.91 14.41 11.90 25.63 22.39 18.63
Design: SRSWOR Quantitative x: educ-thh, empmohh. Qualitative x: house ownership, lfs-code, socstrat.
Domains: NUTS3 by age by gender (70 domains). Mixed model with NUTS3 random intercepts was fitted
to log(income+1) by nlme.

The amount of auxiliary data seems to have an effect on the poverty gap estimation results:
in Table 8.17 involving less auxiliary data than Table 8.16, the expanded predictor and
the frequency-calibrated poverty gap estimator are significantly better than the default
estimator only in the smallest domains (expected sample size smaller than 50). Moreover,
they are severely biased. The corresponding composite estimators perform better, also
in the large domains. Some composite estimators could not be calculated due to limited
time. All estimators except the ordinary predictor are robust. Actually, contamination
often seemingly improves the properties of estimators.
The simulation-based method (23) yields fairly good poverty gap estimates, although
there seems to be systematic bias: estimates are too large in small domains and too small
in large domains (Table 8.18). As a result, the poverty gap differences between domain
size classes apparent in estimation by the default method are not seen in estimates based
on the simulation-based method.
Although these results are promising, experiments with Gini coefficient and quintile share
were disappointing due to large bias. The distribution of the equivalized incomes differs
from assumed log-normal distribution: there are fewer rich people than expected. As a
consequence, some of the simulated incomes were unrealistically large. However, in other
countries, the distribution of equivalized incomes may be closer to log-normal, and then
the method of Molina and Rao is probably the best method available, if minimization
of MSE is required. Better results might also be obtained with a more realistic income
distribution.
Table 8.19 compares two bootstrap techniques used in estimating the MSE of the synthetic
component in a composite estimator. K=500 samples were used in the bootstrap and
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Table 8.17: Poverty gap in contaminated data (Finnish data set).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination, SRSWOR

Default 13.15 5.14 2.07 7.30 66.91 44.17 27.57 48.50
Expanded predictor (18) 45.85 40.04 44.42 43.11 51.91 43.92 47.69 47.64
Composite 28.58 24.24 22.33 25.35 43.28 32.65 29.22 35.66
Predictor 49.85 56.74 62.77 55.66 80.02 75.73 73.33 76.71
n-calibrated predictor 42.42 36.58 39.13 39.25 64.08 48.56 48.45 54.08
n-calibrated composite 23.34 21.74 19.72 21.85 47.37 34.83 29.17 38.02

No contamination, PPS

Default 13.54 7.66 2.30 8.61 69.74 45.85 28.18 50.60
Expanded predictor (18) 45.03 40.06 45.92 43.09 52.50 45.41 48.96 48.70
Predictor 52.61 52.73 53.76 52.91 67.09 63.09 64.83 64.89
n-calibrated predictor 42.83 37.53 45.84 41.20 59.99 47.18 51.25 52.63

OCAR-CCAR 1%, PPS

Default 13.11 7.50 2.06 8.34 69.24 45.68 28.17 50.34
Expanded predictor (18) 44.83 39.87 45.99 42.95 52.62 45.43 48.97 48.76
Predictor 55.16 56.38 57.39 56.16 69.04 66.34 67.88 67.64
n-calibrated predictor 42.51 37.28 45.48 40.91 59.79 47.04 50.97 52.44

OCAR-CCAR 15%, SRSWOR

Default 9.68 6.92 4.20 7.28 59.46 41.08 27.71 44.59
Expanded predictor (18) 41.61 35.35 40.77 38.83 52.33 41.82 45.51 46.42
Composite 25.59 20.18 19.37 21.93 41.75 30.27 27.26 33.68
Predictor 92.76 94.22 95.28 93.94 103.19 101.02 99.66 101.49
n-calibrated predictor 41.18 34.02 37.06 37.27 62.97 46.69 46.28 52.41
n-calibrated composite 23.19 18.85 17.59 20.11 45.43 32.37 27.38 35.90

OCAR-NCAR 15%, PPS

Default 10.57 6.82 5.48 7.87 64.08 42.27 27.75 46.95
Expanded predictor (18) 34.45 30.56 36.93 33.31 53.01 43.52 46.25 47.50
Predictor 99.27 99.38 99.42 99.35 99.52 99.55 99.58 99.55
n-calibrated predictor 34.57 29.55 37.48 33.04 59.73 45.36 48.22 51.11
Design: SRSWOR or PPS by socio-economic status. Qualitative x-variables: age and gender with interac-
tions, lfs-code and socstrat. Domains: NUTS3 by gender and age class (70 domains). Mixed model with
NUTS3 random intercepts was fitted to log(income+1) by nlme.

RAST correction was applied. Estimating the MSE of the synthetic component in the
composite estimator by parametric bootstrap may yield small benefits over the simple
equation (21), but it requires much more computing time.
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Table 8.18: Poverty gap estimation by the simulation-based method of Molina and Rao
(2010). (Finnish data set.)
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

Simulation-
based

2.42 -0.41 -3.59 35.96 19.14 13.51 41.28 24.96 17.77

Default 0.72 1.02 0.37 10.09 4.82 1.85 69.66 44.18 27.54
Design: SRSWOR. Quantitative x: educ-thh, empmohh. Qualitative x: house ownership, lfs-code, socstrat.
Domains: NUTS3 by age by gender Mixed model with NUTS3 random intercepts was fitted by nlme.

Table 8.19: Composite estimates (32) of poverty gap with MSE of synthetic component
estimated by ordinary bootstrap (21) or by parametric bootstrap (22) (Finnish data).
Estimator ARB(%) RRMSE(%)

minor medium major minor medium major

ordinary bootstrap 11.30 14.76 12.22 25.65 22.64 18.63
parametric bootstrap 11.25 13.98 12.56 25.22 22.60 18.69
Design: PPS by education level. Quantitative x: educ-thh, empmohh.Qualitative x: house ownership, lfs-
code, socstrat. Domains: NUTS3 by age by gender. A mixed model with NUTS3 random intercepts was
fitted by nlme without using design weights.
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8.5.4 Quintile share

Table 8.20 shows experimental results with quintile share estimators assisted by a linear
fixed-effects model. The ordinary predictor (34) is definitely design biased. The expanded
predictor yields much better results than the default estimator in all domain size classes.
It does not have much design bias.

Table 8.20: Quintile share estimators assisted by a linear fixed effects model (Finnish data
set).
Estimator BIAS ARB(%) RRMSE(%)

minor medium major minor medium major minor medium major

Default estim-
ator

0.6 0.3 0.2 1.88 1.12 0.59 18.01 13.80 9.19

Predictor 13.2 13.5 12.8 44.63 45.47 45.49 44.95 45.78 45.81
Expanded pre-
dictor (17)

0.8 -0.2 1.4 5.63 4.18 6.17 6.25 5.11 6.88

Composite 0.7 0.0 1.0 4.57 3.22 4.27 7.22 5.53 6.14
Design: SRSWOR. Quantitative x: educ-thh, empmohh. Qualitative x: house ownership, lfs-code, socstrat.
Domains: 36 NUTS4 regions. Model was fitted to log(income+1).

Tables 8.21-8.23 summarize our experiments with contaminated data under SRSWOR.
The expanded predictor and frequency-calibrated predictor have the smallest RRMSE and
not too much design bias. Moreover, they are more robust than the default estimator.
Composite estimators suffer from bias in contaminated data.

Table 8.24 shows a contamination experiment with PPS. The PPS design seems to result
in larger RRMSE of expanded predictor and frequency-calibrated estimator under OCAR-
CCAR but other changes are small (compare to Table 8.21).
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Table 8.21: Quintile share in contaminated data (Finnish data set)
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Default 2.31 1.23 0.57 1.14 18.17 13.77 9.17 12.72
Expanded predictor (18) 2.75 4.47 8.65 5.74 4.06 5.76 9.38 6.83
Composite 2.23 3.48 5.51 4.04 6.03 5.87 7.35 6.43
n-calibrated predictor 5.61 5.00 9.22 6.61 8.67 7.19 10.20 8.48
n-calibrated composite 4.85 3.97 5.78 4.74 8.77 6.75 7.68 7.36

OCAR-CCAR 1%

Default 11.33 13.96 15.12 14.02 27.92 24.41 19.55 23.14
Expanded predictor (18) 8.52 10.25 4.63 7.98 9.06 10.79 5.99 8.82
Composite 9.09 10.88 7.60 9.45 12.74 13.07 9.84 11.86
n-calibrated predictor 3.67 7.93 4.31 6.03 7.89 9.58 6.23 8.14
n-calibrated composite 5.86 9.03 7.41 8.01 11.69 12.01 9.82 11.17

OCAR-NCAR 1%

Default 31.91 49.01 80.10 57.87 59.10 70.22 87.79 75.02
Expanded predictor (18) 10.84 12.02 5.31 9.43 11.70 13.10 7.49 10.88
Composite 20.69 32.47 62.62 41.72 32.01 43.09 68.66 50.79
n-calibrated predictor 5.80 9.56 4.76 7.30 9.54 11.52 7.48 9.79
n-calibrated composite 17.85 30.86 62.40 40.44 30.27 41.72 68.46 49.78

OAR-CAR

Default 35.59 50.82 67.85 54.85 58.37 65.41 71.64 66.68
Expanded predictor (18) 17.08 18.09 9.31 14.78 17.39 18.44 10.21 15.32
Composite 25.90 36.56 55.20 41.81 35.02 43.57 58.21 47.67
n-calibrated predictor 12.27 15.47 8.65 12.56 14.46 16.69 10.00 13.97
n-calibrated composite 23.45 35.40 55.16 40.88 33.33 42.68 58.20 46.98
Design: SRSWOR. Qualitative x-variables: age and gender with interactions, lfs-code and socstrat. Domains:
NUTS4. Mixed model with NUTS3 random intercepts was fitted to log(income+1) by nlme.
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Table 8.22: Unit-level quintile share estimators in contaminated data (Amelia).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Direct 4.9 4.6 3.4 4.4 43.5 41.7 38.5 41.3
Expanded predictor 12.3 8.6 5.7 8.9 16.0 13.6 11.4 13.7
Composite 9.8 7.1 4.7 7.2 16.0 14.6 12.6 14.5

OCAR-CCAR 1%

Direct 7.9 9.1 10.8 9.2 43.8 41.8 39.3 41.7
Expanded predictor 14.3 8.5 5.7 9.5 18.1 14.2 12.2 14.8
Composite 12.8 8.0 6.9 9.2 18.8 15.9 14.0 16.2

OCAR-NCAR 1%

Direct 9.1 12.3 16.7 12.6 53.3 53.2 53.2 53.2
Expanded predictor 15.0 8.9 6.6 10.1 18.6 14.5 12.4 15.1
Composite 13.4 9.4 9.3 10.6 21.3 19.3 18.6 19.7
Design: SRSWOR. Qualitative x-variables: age and gender with interactions, ISCED, activity and degree of
urbanisation. Domains: DIS regions. Mixed model with DIS random intercepts was fitted to log(income+1)
by nlme.

Table 8.23: Quintile share estimators with aggregated auxiliary data in contaminated
data (Amelia).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Direct 4.9 4.6 3.4 4.4 43.5 41.7 38.5 41.3
n-calibrated predictor 11.1 13.3 10.6 11.9 31.3 29.6 25.9 29.1
n-calibrated composite 8.8 10.8 8.9 9.7 27.9 26.6 23.5 26.1

OCAR-CCAR 1%

Direct 7.9 9.1 10.8 9.2 43.8 41.8 39.3 41.7
n-calibrated predictor 10.9 10.3 7.0 9.6 30.6 27.7 23.7 27.5
n-calibrated composite 9.0 7.0 4.9 7.0 27.2 24.5 21.1 24.4

OCAR-NCAR 1%

Direct 9.1 12.3 16.7 12.6 53.3 53.2 53.2 53.2
n-calibrated predictor 11.0 9.6 6.3 9.1 30.3 27.1 23.0 26.9
n-calibrated composite 9.4 6.4 4.3 6.7 28.5 26.0 23.3 26.0
Design: SRSWOR. Qualitative x-variables: age and gender with interactions, ISCED, activity and degree of
urbanisation. Domains: DIS regions. Mixed model with DIS random intercepts was fitted to log(income+1)
by nlme.
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Table 8.24: Quintile share in contaminated data under PPS (Finnish data set).
Estimator ARB(%) RRMSE(%)

minor medium major all minor medium major all

No contamination

Default 3.13 1.69 0.66 1.52 20.66 15.58 9.86 14.22
Expanded predictor (18) 2.86 4.57 8.71 5.83 3.96 5.71 9.34 6.78
Composite 2.39 3.47 5.69 4.12 7.20 6.22 7.61 6.86
n-calibrated predictor 6.27 5.06 9.07 6.68 9.27 6.88 9.96 8.32
n-calibrated composite 5.43 3.99 5.86 4.86 9.95 6.86 7.87 7.65

OCAR-CCAR 1%

Default 10.52 13.62 14.99 13.69 29.05 25.30 20.02 23.91
Expanded predictor (18) 7.76 9.61 4.62 7.55 8.39 10.23 6.00 8.45
Composite 8.18 10.20 7.06 8.78 13.01 12.68 9.69 11.65
n-calibrated predictor 3.51 7.49 4.56 5.88 7.99 9.00 6.30 7.88
n-calibrated composite 4.65 8.46 6.94 7.38 12.19 11.68 9.71 11.04

OCAR-NCAR 1%

Default 29.55 49.00 80.02 57.50 58.55 70.38 87.64 74.97
Expanded predictor (18) 16.80 17.99 9.87 14.89 19.85 21.12 15.06 18.75
Composite 22.38 34.98 64.44 43.87 35.20 45.60 70.37 53.10
n-calibrated predictor 10.81 15.20 9.47 12.52 16.27 19.05 14.94 17.18
n-calibrated composite 19.52 33.57 64.40 42.75 33.24 44.39 70.35 52.22

OAR-CAR

Default 27.28 42.44 63.48 47.93 53.99 61.18 69.71 63.26
Expanded predictor (18) 16.15 17.04 8.50 13.83 16.52 17.48 9.51 14.47
Composite 21.04 30.21 48.92 35.69 31.39 38.28 53.48 42.81
n-calibrated predictor 10.43 14.45 8.05 11.58 13.59 15.69 9.46 13.15
n-calibrated composite 18.05 28.79 48.83 34.54 29.44 37.07 53.43 41.92
Design: PPS by socio-economic status. Qualitative x-variables: age and gender with interactions, lfs-code
and socstrat. Domains: NUTS4. Mixed model with NUTS3 random intercepts was fitted to log(income+1)
by nlme without using the design weights.
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8.6 Recommendations
In general, results are not improved by adding domain-specific terms to the used model.
We obtained better estimates by including terms such as random intercepts associated
with NUTS3 levels when domains were defined by NUTS4, for example.

In estimation of the poverty rate, logistic mixed models are at least theoretically prefer-
able to fixed effects models as they describe differences between domains parsimoni-
ously. Of all the poverty rate estimators, EBP might be the best choice unless it is
important to avoid design bias. Our findings are similar to the conclusions of Fabrizi
et al. (2007) and Judkins and Liu (2000).

Ordinary predictors are substantially biased: poverty gaps and Gini coefficients were
too small and quintile shares were too large. The expanded predictors of quintile share
and Gini predictors had much smaller RRMSE. They were also more robust than the
default method or the ordinary predictor. In small domains, the expanded predictor was
nearly always better than the default estimator. In the largest domains, the default
estimator may be preferred to the expanded predictor unless there are outliers. In
contaminated data the expanded predictors of quintile share and Gini coefficient appear
to be better than the default estimator in all domain size classes.

In poverty gap estimation, the expansion technique does not seem to work as well as in
the case of quintile share and Gini coefficient. We might prefer composite poverty gap
estimators over predictors. As only modest improvements were obtained with elaborate
techniques, the default poverty gap estimator appears good enough.

The frequency-calibrated estimators (Eqs. 18 and 19) have similar robustness properties
as the expanded predictor. However, in the case of the poverty gap, the frequency-
calibrated method may perform poorly. The frequency-calibrated estimators should be
used only if unit-level population data is not available.

A composite estimator consists of a default estimator and a corresponding expanded
predictor. In the case of no contamination, these estimators had smaller bias than
the expanded predictors, but RRMSE was usually slightly larger. If contamination
yields bias in the default estimator, composite estimators consequently suffer from
bias. Composite estimators of quintile share or Gini coefficient may not be a good
choice if some contamination is suspected.
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Chapter 9

WP3: Variance Estimation

9.1 Design-based Simulation Study on the Amelia
Dataset

Variance estimation in survey sampling is essential for statistical inference. For indicators
of poverty and social exclusion estimated from sample survey data it gives much needed
information on the accuracy of the estimators. Further, it enables the statistician to
construced valid confidence intervals (CI) for the estimated indicators θ̂. The two main
problems in this context are

(i) that due to complex survey designs (unequal probability sampling) it is not practicable
to estimate Var(θ̂) directly,

(ii) calculating θ̂ involves the estimation of non-smooth statistics.

The goal of the simulation study in WP3 is to study the properties of different variance
estimation techniques, namely approximative variance based on linearization techniques
and resampling methods (for details on the relevant methodology see Bruch et al., 2011
for resampling methods and Münnich and Zins, 2011 for linearization methods).

The study includes three one-stage designs, 1.2, 1.4a, and 1.5a, and two two-stage designs,
2.6 and 2.7 (see table 2.1). It is based on 10,000 samples drawn from the Amelia synthetic
dataset (see Alfons et al., 2011, chapter 4).

Sampling with equal probabilities within the designs 1.2, 1.4a and 2.7 is done via the
sample function in R (cf. R Development Core Team, 2010). When sampling ele-
ments with unequal probabilities, as in design 1.5a and design 2.6, Midzuno sampling (cf.
Tillé, 2006, p. 117) is applied using the midzuno function from the simFrame package
(cf. Alfons, 2011; Alfons et al., 2010). For two-stage design 2.6 the sample function is
used at the first stage to select primary sampling units (PSUs), and the midzuno function
at the second stage to select secondary sampling units (SSUs) with unequal probabilities.

Following the terminology of the survey package (cf. Tillé and Matei, 2011), survey.design
objects for the five designs can be specified in the following way.
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# ====================================================================
# Specification of survey . design objects
# for designs 1.2 , 1.4a, 1.5a, 2.6 , and 2.7.
#
# --------------------------------------------------------------------
# X data.frame , Sample from Amelia on personal level
# N integer , Number of persons in Amelia
# HID Amelia variable , Household id
# CIT Amelia variable , LAU2 id
# NUTS2 Amelia variable , NUTS2 id
# DOU Amelia variable , Degree of urbanisation
# SIND Cross classification between NUTS2 and DOU
# HHG Amelia variable , Household size
# -------------------------------------------------------------
# Each person belongs to one HID only and each HID belongs to
# one CIT only. Further , each CIT belongs to one NUTS2 area
# and one SIND class only.
# With respect to this nested structure the following variables
# have to be included into X for each sampled person .
# -------------------------------------------------------------
# fpc1 _I Number of households in the corresponding NUTS2 area
# pik1 _II Inclusion probability of HID proportional
# to HHG within the corresponding NUTS2 area
# fpc1 _II Number of CITs in the corresponding SIND class
# fpc2 _II Number of HIDs in the corresponding CIT
# pik1 _II Inclusion probability of CIT in the corresponding
# SIND class
# pik2 _II Inclusion probability of HID proportional
# to HHG within the corresponding CIT area

# Relevant R packages
library ( survey )

# Design 1.2
d1 .2 <- svydesign (id=~HID , fpc=~ rep(N, nrow (X)), data =X)
# Design 1.4a
d1 .4a <- svydesign (id=~HID , strata =~NUTS2 , fpc=~ fpc1 _I, data =X)
# Design 1.5a
d1 .5a <- svydesign (id=~HID , strata =~NUTS2 , fpc=~ pik1 _I, pps=" brewer ", data =X)
# Design 2.6
d2 .6 <- svydesign (id=~CIT+HID , strata =~SIND , fpc=~ pik1 _II+pik2 _II , pps=" brewer ", data =X)
# Design 2.7
d2 .7 <- svydesign (id=~CIT+HID , strata =~SIND , fpc=~ fpc1 _II+fpc2 _II , data =X)

In the simulation study, variance estimators for the design-based estimators of the follow-
ing five indicators are evaluated:

ARPR the At-risk-of-poverty Rate,

RMPG the Relative Median Poverty Gap,

QSR the Quintile Share Ratio,

GINI the Gini coefficient,

MEAN and the Income Mean. The functions used to compute both point and variance
estimates for those five estimators are in the Appendix Volume Hulliger et al.
(2011).

All indicators are estimated for the equivalised disposable income of each person in the
sample. The definition of estimatiors of ARPR, RMPG, QSR and GINI and the equi-
valised disposable can be found in Eurostat (2009), whereas in this simulation we used
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only the inverse inclusion probabilities as weights. The income mean was estimated via

MEAN =
∑
i∈s

yi
1
πi

1
πi

,

where yi is the equivalised disposable income of the i-th person and πi is the inclusion
probability of the i-th person into sample s (see Särndal et al., 1992, p. 182).

Figure 9.1: Distribution of PSUs for Designs 2.6 and 2.7

Because of their significance for the variance of point estimators from the two-stage
samples, figure 9.1 displays the size, the mean and the standard deviation of the equival-
ised disposable income within each PSU (see also Bruch et al., 2011, chapter 4). The
mean is displayed on the y-axis, the size on the x-axis and the radii of the circels corres-
pond to the standard diviations. The left side of the graph includes all PSUs, whereas on
the right side the three PSUs with the biggest size are not shown to have a more balanced
overview. Different colours and plotting symbols indicate together the membership of a
PSU to a certain stratum. The three plotting symbols correspond to the three denomin-
ations of DOU and the colours to the eleven categories of NUTS2. The figure shows that
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the size of the PSUs, appart from the three biggest ones, seems to follow an uniform dis-
tribution over the range of 2 to 12,000 households. Further, it is visible from the values of
the means and standard deviations that there are groups of two to three strata which are
largely overlapping, whereas others appear to be separated. This is due to the grouping
of the means and, compared to the range of the means, a moderate variance within PSUs.

9.2 Variance Approximation

Linearization

Here, the variance of an estimator θ̂ is approximated by the variance of the estimated
total of the linearized or influence values zi ∀ i ∈ s, so that

Var
(∑
i∈s

zi
πi

)
≈ Var(θ̂) . (9.1)

The zi corresponding to estimators ARPR, RMPG, QSR, GINI are given in Münnich
and Zins (2011). For estimator MEAN zi is given by zi = (yi − MEAN)N̂−1, where
N̂ = ∑

i∈s π
−1
i .

For the equal probability designs 1.2, 1.4a and 2.7 following standard variance estimators
for the estimated total Z = ∑

i∈s
zi

πi
are applied.

V̂ar1.2 (Z) = N2
(
N − n
N

)
S2

n
(9.2a)

V̂ar1.4a (Z) =
H∑
h=1

N2
h

(
Nh − nh
Nh

)
S2
h

nh
(9.2b)

V̂ar2.7 (Z) =
H∑
h=1

N
′2
h

(
N

′
h − n

′
h

N
′
h

)
S2
he

n
′
h

+
H∑
h=1

N
′
h

n
′
h

n
′
h∑

q=1
V̂ar (Zhq) , (9.2c)

where

S2 = 1
n− 1

n∑
i=1

(
zi −

∑n
i=1 zi
n

)2

,

S2
h = 1

nh − 1

nh∑
i=1

(
zhi −

∑nh
i=1 zhi
nh

)2

,

S2
he = 1

n
′
h − 1

n
′
h∑

q=1

(
Zhq −

Zh
N

′
h

)2

,

V̂ar (Zhq) = N
′′2
h

n
′′
h

(
N

′′
h − n

′′
h

N
′′
h

)
1

n
′′
hq − 1

n
′′
hq∑
i=1

zhqi − ∑n
′′
hq

i=1 zhqi
n

′′
hq


2

,

with Zhq = N
′′
hq

n
′′
hq

∑n
′′
hq

i=1 zhqi and Zh = N
′
h

n
′
h

∑n
′
h
q=1 Zhq (see Chapter 1 in Bruch et al. (2011)).

In equations 9.2b and 9.2c H refers to the number of different classes of NUTS2 and SIND,
respectively. Tables 9.1 and 9.2 contain the relative bias and the coverage probability of
CI (see section 6.2), corresponding to these variance estimators.
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Table 9.1: Relative Bias (in %) of Direct Variance Estimators for Designs 1.2, 1.4a, and
2.7

1.2 1.4a 2.7
ARPR −3.0305e−01∗ −1.8197e+ 00 −1.5225e+ 01
RMPG −2.7191e+ 00 −7.3391e−01∗ −1.0303e+ 01
QSR −9.2006e− 01 9.0976e−01∗ −1.1714e+ 01
GINI −1.7382e+ 00 6.6028e−01∗ −1.8795e+ 01
MEAN −1.1183e+00∗ 1.2522e+ 00 −1.7069e+ 01

stars (i.e., *) denote the closest value to zero in each row

Table 9.2: Coverage Probability of CI constructed with Direct Variance Estimators for
Designs 1.2, 1.4a, and 2.7

1.2 1.4a 2.7
ARPR 9.5070e+ 01 9.4700e+ 01 9.0640e+ 01
RMPG 9.4640e+ 01 9.4790e+ 01 9.2650e+ 01
QSR 9.4620e+ 01 9.5260e+ 01 8.3690e+ 01
GINI 9.4440e+ 01 9.5090e+ 01 8.5550e+ 01
MEAN 9.4850e+ 01 9.5070e+ 01 7.9960e+ 01

9.3 Approximation of Design Variance

For designs 1.5a and 2.6 the application of a direct estimator for 9.1 of kind (2.2) or
(2.4) in Bruch et al. (2011) was, although theoretically possible, not workable because
of excessive long computational times, (for the computation of second-order inclusion
probabilities of Midzuno sampling see Tillé, 2006, p. 117). Thus, approximations for
design variances are used, not only because of their computational simplicity but also
because of their relevance in practice. A general approximation of variance 9.1 is given
by

V̂arapprox
(
θ̂
)

=
∑
i∈s

b̂i
π2
i

· e2
i , (9.3)

with e2
i as defined in formula (2.32) in Bruch et al. (2011).

Two broad classes of variance estimators are considered: type 1 estimators that require
knowledge about the first-order inclusion probabilities for the sampled elements only, and
type 2 estimators requiring knowledge about the first-order inclusion probabilities for
all the elements in the universe.

The first two type 1 estimators, deville1 and deville2, are special cases of the variance
estimator 9.3, also described by Matei and Tillé (2005). They differ only in terms of
the value chosen for b̂i. Obtaining the value of b̂i by means of fixed-point approximation
yields the fix estimator (see Bruch et al., 2011). Two further type 1 estimators, rose and
deville3, are given in Matei and Tillé (2005). The brewer2 estimator, which is the only
estimator of the Brewer family on sample length, completes the list of type 1 estimators
considered in the study (see Matei and Tillé (2005)).
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The estimators berger, brewer1, brewer3, brewer4, approx2, approx3, approx4 belong to
the category of type 2 estimators. Matei and Tillé (2005) proposed the five variance
estimators to which we will refer to as approx2 to approx4 (for the brewer estimators see
also Bruch et al., 2011).

Design 1.5a

The results of our simulation study for design 1.5a with respect to the criterion relative
bias of the variance estimators relbiasV are given in table 9.3. Although estimator ap-
prox4 has the smallest bias the differences between the variance estimators are negligible.
Furthermore, noteworthy discrepancies between type 1 estimators on sample length and
type 2 estimators on universe length cannot be detected.

Table 9.3: Relative Bias (in %) of Direct Variance Estimator for Design 1.5a
approx2 approx3 approx4

ARPR 4.4605e− 01 4.4605e− 01 4.4597e−01∗
RMPG −2.4094e+ 00 −2.4094e+ 00 −2.4095e+ 00
QSR 1.3490e+ 00 1.3490e+ 00 1.3489e+00∗
GINI 7.5450e− 01 7.5450e− 01 7.5441e−01∗
MEAN 3.5557e+00∗ 3.5557e+00∗ 3.5557e+00∗

berger brewer1 brewer2 brewer3 brewer4

ARPR 4.4621e− 01 4.4604e− 01 4.4605e− 01 4.4607e− 01 4.4607e− 01
RMPG −2.4092e+00∗ −2.4095e+ 00 −2.4094e+ 00 −2.4093e+ 00 −2.4093e+ 00
QSR 1.3492e+ 00 1.3489e+00∗ 1.3490e+ 00 1.3491e+ 00 1.3491e+ 00
GINI 7.5469e− 01 7.5444e− 01 7.5450e− 01 7.5456e− 01 7.5456e− 01
MEAN 3.5559e+ 00 3.5557e+00∗ 3.5557e+00∗ 3.5558e+ 00 3.5558e+ 00

deville1 deville2 deville3 fix rose

ARPR 4.4605e− 01 4.4605e− 01 4.4605e− 01 4.4606e− 01 4.4605e− 01
RMPG −2.4094e+ 00 −2.4094e+ 00 −2.4094e+ 00 −2.4093e+ 00 −2.4094e+ 00
QSR 1.3490e+ 00 1.3490e+ 00 1.3490e+ 00 1.3491e+ 00 1.3490e+ 00
GINI 7.5450e− 01 7.5450e− 01 7.5450e− 01 7.5455e− 01 7.5450e− 01
MEAN 3.5557e+00∗ 3.5557e+00∗ 3.5557e+00∗ 3.5558e+ 00 3.5557e+00∗

stars (i.e., *) denote the closest value to zero in each row
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Design 2.6

The variance of Z estimated with the πi’s from design 2.6 can by the following expression:

V̂ar2.6(Z) =
H∑
h=1

N
′2
h ·

(
N

′
h − n

′
h

N
′
h

)
S2
he

n
′
h

+
H∑
h=1

N
′
h

n
′
h

n
′
h∑

q=1
V̂ar(Zhq) , (9.4)

where

V̂ar(Zhq) =
n

′′
hq∑
i=1

n
′′
hq∑

j=1

πi j|hq − πi|hqπj|hq
πi j|hq

zhqi
πi|hq

zhqj
πj|hq

. (9.5)

The variance esitmator in 9.5 is approximated by one of the estimators mentioned in
section 9.3. The results of the simulations regarding design 2.6 are given in table 9.4. A
comparison of the different approximation methods reveals hardly any differences. The
reason for the indifference between the approximation estimator is due to the fact that the
variance attribute to the first stage of sampling is the dominant part of 9.4. This is a result
of the huge difference of the means beween the PSUs and the strong varying PSU sizes,
as displayed 9.1. Thus, the contribution of 9.5 to the variance of Z is negligible. Table
9.5 contains the coverage probability of CI constructed with using the approx4 variance
estimator for designs 1.5a and 2.6.

Table 9.4: Relative Bias (in %) of Direct Variance Estimates for Designs 2.6
approx2 approx3 approx4

ARPR −1.7307e+ 01 −1.7307e+ 01 −1.7308e+ 01
RMPG −9.3250e+ 00 −9.3250e+ 00 −9.3268e+ 00
QSR −1.1956e+ 01 −1.1956e+ 01 −1.1956e+ 01
GINI −2.0504e+ 01 −2.0504e+ 01 −2.0505e+ 01
MEAN −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01

berger brewer1 brewer2 brewer3 brewer4

ARPR −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01
RMPG −9.3242e+ 00 −9.3262e+ 00 −9.3250e+ 00 −9.3239e+ 00 −9.3238e+ 00
QSR −1.1955e+ 01 −1.1956e+ 01 −1.1956e+ 01 −1.1955e+ 01 −1.1955e+ 01
GINI −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01
MEAN −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01

deville1 deville2 deville3 fix rose

ARPR −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01 −1.7307e+ 01
RMPG −9.3251e+ 00 −9.3250e+ 00 −9.3250e+ 00 −9.3240e+ 00 −9.3251e+ 00
QSR −1.1956e+ 01 −1.1956e+ 01 −1.1956e+ 01 −1.1955e+ 01 −1.1956e+ 01
GINI −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01 −2.0504e+ 01
MEAN −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01 −1.7330e+ 01

stars (i.e., *) denote the closest value to zero in each row
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Table 9.5: Coverage Probability of CI constructed with Direct Variance Estimators for
Designs 1.5a and 2.6

1.5a 2.6
ARPR 9.4950e+ 01 8.9340e+ 01
RMPG 9.4550e+ 01 9.2930e+ 01
QSR 9.4850e+ 01 8.3880e+ 01
GINI 9.5140e+ 01 8.4230e+ 01
MEAN 9.5320e+ 01 7.8720e+ 01

9.4 Bootstrap

The boostrap method used in the simulation study is a Monte Carlo Bootstrap with
100 replications. The method was implemented by using the boot function of the boot
package (see Canty and Ripley, 2010; Davison and Hinkley, 1997). In case of the
two-stage sampling designs 2.6 and 2.7 only the first stage of sampling is considered,
because, as mentioned above, it is the principal component of the variance. The relative
bias and the coverage probability of CI for bootstrap variance estimators are given in
tables 9.6 and 9.7.

Table 9.6: Relative Bias (in %) of Boostrap Variance Estimators for Designs 1.2, 1.4a,
1.5a, 2.6 and 2.7

1.2 1.4a 1.5a 2.6 2.7
ARPR 3.4170e+ 00 1.7062e+00∗ 3.0425e+ 00 −2.3091e+ 01 −3.1199e+ 00
RMPG 4.9318e+ 00 6.9235e+ 00 3.6407e+00∗ −9.1982e+ 00 1.3912e+ 01
QSR 3.7710e−01∗ 2.9131e+ 00 1.9858e+ 00 −1.8887e+ 01 4.4255e+ 00
GINI −1.5121e+ 00 1.4993e+ 00 4.3150e−01∗ −2.6783e+ 01 −7.9915e+ 00
MEAN −1.0235e+00∗ 4.9193e+ 00 3.7298e+ 00 −2.2048e+ 01 1.5894e+ 00

stars (i.e., *) denote the closest value to zero in each row

Table 9.7: Coverage Probability of CI constructed with Bootstrap Variance Estimators
for Designs 1.2, 1.4a, 1.5a, 2.6 and 2.7

1.2 1.4a 1.5a 2.6 2.7
ARPR 9.5100e+ 01 9.4910e+ 01 9.4810e+ 01 8.7850e+ 01 9.3070e+ 01
RMPG 9.4410e+ 01 9.4750e+ 01 9.4600e+ 01 9.2390e+ 01 9.4940e+ 01
QSR 9.4280e+ 01 9.5180e+ 01 9.4220e+ 01 8.2210e+ 01 8.8260e+ 01
GINI 9.4240e+ 01 9.4770e+ 01 9.4660e+ 01 8.1890e+ 01 9.0070e+ 01
MEAN 9.4620e+ 01 9.5260e+ 01 9.5090e+ 01 7.7630e+ 01 9.0340e+ 01

9.5 Balanced Repeated Replication

The Group Balanced Repeated Replication (BRR) method is also tested, whereas the
grouping is repeated as described in Shao and Rao (1993, p. 344). For the BRR, rep-
licate weights are computed by the formula (5.2) in Davison and Sardy (2004, p. 18).
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Like the bootstrap, the BRR is only applied at the first sampling stage. To select the
PSU a Hadamard matrix is used, which is implemented in R with the hadamard function
(see package, Lumley, 2010). The BRR is not used for design 1.2 due to the missing
stratification. The relative bias and the coverage probability of CI for this approach are
given in tables 9.8 and 9.9, respectively.

Table 9.8: Relative Bias (in %) of BRR Variance Estimators for Designs 1.4a, 1.5a, 2.6
and 2.7

1.4a 1.5a 2.6 2.7
ARPR 3.0199e+00∗ 4.2885e+ 00 −1.6374e+ 01 −1.4306e+ 01
RMPG 8.2757e+ 00 5.4446e+00∗ −8.3269e+ 00 −6.5820e+ 00
QSR 1.8593e+00∗ 2.4236e+ 00 −1.4850e+ 01 −1.4224e+ 01
GINI 8.4603e−01∗ 1.0440e+ 00 −2.0591e+ 01 −1.9099e+ 01
MEAN 1.1381e+00∗ 3.4923e+ 00 −1.5421e+ 01 −1.5416e+ 01

stars (i.e., *) denote the closest value to zero in each row

Table 9.9: Coverage Probability of CI constructed with BRR Variance Estimators for
Designs 1.4a, 1.5a, 2.6 and 2.7

1.4a 1.5a 2.6 2.7
ARPR 9.5080e+ 01 9.5190e+ 01 8.8240e+ 01 8.9430e+ 01
RMPG 9.4880e+ 01 9.4850e+ 01 9.2390e+ 01 9.2250e+ 01
QSR 9.5110e+ 01 9.4670e+ 01 8.1440e+ 01 8.1250e+ 01
GINI 9.4870e+ 01 9.4910e+ 01 8.1650e+ 01 8.3070e+ 01
MEAN 9.4910e+ 01 9.5130e+ 01 7.6710e+ 01 7.8240e+ 01

9.6 Comparison of the different variance estimation
methods

For a better comparison of the different variance estimators figure 9.2 shows the distribu-
tion of the relative bias for each variance estimate with boxplots. Boxplots labeled naive
relate to the estimators in equations 9.2a, 9.2b, and 9.2c, the ones labeled as approx4 refer
to the approximation estimator used for estimating the variance for designs 1.5a and 2.6.
The resampling methods are labeled with boot and rbrr for the Bootstrap and Balanced
Repeated Replication, respectively. The boxplots labeled naive for 1.5a and 2.6 related to
estimators 9.2b and 9.2c, i.e. in this case designs 1.5a and 2.6 are treated as being drawn
with equal probability.

For one stage designs (1.2, 1.4a and 1.5a) all are variance estimators are almost unbiased.
In general, the direct estimators, approx4 and naive, show a greater efficiency as the res-
ampling methods. It is noteworthy that using the naive variance estimator for design 1.5a
results also to a comparable small relative bias. For instance, in cases of the ARPR the
relative bias using the naive variance estimator is only slightly higher 0.004825974 than
using the best approximation method approx4, which has a relative bias of 0.004459717.
For other indicators the difference is even lower. Another notable observation is that the
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bootstrap and the BRR estimators give also reasonable results for design 1.5a although
this methods do not explicitly account for unequal probability sampling.

Finally it needs to by mentioned that for the two-stage designs all variance estimators,
except the bootstrap for design 2.7, underestimated the variance. In general they have
negative relative bias well above 10%. In case of the variance estimators based on linear-
ization it is assumed that there might be a problem of convergence. Casually speaking for
the linearization method to work we need that certain remainder term Rn to converge in
probability to zero as the sample size increases to infinity (see section 2.1 Münnich and
Zins, 2011). A sufficient condition for this to hold is met in case of iid observations yi,
but for estimator from general survey designs this is not easy to prove (see Demnati and
Roa, 2004). Serfling (1980) makes some suggestions on how to analysis Rn in practice.

Figures 9.3 and 9.4 display the kernel density estimators for the distribution of the point
and variance estimates, respectively. In figure 9.3 it can be seen that almost all point
estimators are normal distributed. Exceptions are the non-robust statistics QSR, GINI
and MEAN in case of the two-stage sampling designs 2.6 and 2.7. This shape of the dis-
tributions of point estimates and the underestimations of the variance estimators explain
the low coverage probability of CI in case of the two-stage designs, which can be found in
the tables 9.2, 9.5, 9.7, and 9.9.

The kernel density estimation of the different variance estimation methods in figure 9.4
shows that the distribution of the naive approach and the approx4 method for the designs
with only one stage are almost normal distributed for all indicators. In comparison to
these methods the distribution of the resampling methods for the ARPR and the RMPG
is very flat and indicates a high variance for this variance estimators.

For the two stage designs has the empirical distribution of most variance estimators a
heavy positive skewness. This reflects also the problem with the variance estimation for
these design.
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Figure 9.2: Relative Bias of Variance Estimates
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Figure 9.3: Density Estimation of Point Estimates
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9.7 Recommendations
In practice there is often a desire of accurate but also simple variance estimators.
Therefore in the simulation study different techniques have been examined that simplify
variance estimation under complex survey designs and statistics. To cope with complex
statistics linearization and resampling methods have been studied.

In general we endorse the usage of linearization over that of resampling, because lin-
earization is less computationally intensive and usually more efficient. Further, the
linearizations for most indicators of poverty and income inequality are well known,
which allows for the direct usage of variance estimation software that accommodates
to many sampling designs. This is in contrast to resampling methods that are often
not applicable to complex sampling designs.

However, because the results of the simulation study on the performance of the linear-
ization methods are mixed, we can not recommend linearization without reservation.
The simulation has shown that variance estimates based on the linearization technique
perform very well for the one-stage design but are negatively biased for the two-stage
designs. Because these methods estimate only the asymptotic variance of an estimator
there may be problems of convergence. We presume that this might be caused by the
highly skewed distribution of sampling elements in case of the two-stage samples.

Another issue considered was the simplicity of the variance estimator with regard to
the sampling design. First, there are variance estimators that use approximations
of the second-order inclusion probabilities in case of unequal probability sampling.
Here we recommend the usage of the type 1 estimators, that require knowledge about
the first-order inclusion probabilities for the sampled elements only. These estimators
require less information than the type 2 estimators, where inclusion probabilities have
to be known for each element in the sampling frame, but also they are in general
less computationally intensive and the simulations have shown that they are almost
as accurate as the type 2 estimators. Second, the resampling methods we used in our
simulation only considered the first stage of the sampling process. This omission of
the following stages is justified under certain conditions like small sampling fractions
or homogeneous units in several primary sampling units. For resampling methods we
refer also to Table 3.1 in Bruch et al. (2011), which contains an overview of the
different resampling methods with regard to there applicability to some characteristics
of (complex) sample surveys.
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Chapter 10

WP4: Robustness

10.1 Introduction

Social inclusion indicators which are based on income data must take care of outliers in the
data. The robust methods developed in the AMELI project are described in Deliverable
D4.2 (Hulliger et al., 2011b). The simulations with robust methods have the following
objectives

1. Study efficiency and bias of the robust estimators without contamination and with
various settings of contamination. Efficiency and bias must be compared with the
standard robust estimators.

2. Study the effect of tuning constants in order to give practical advice on their use.

3. Study the effect of the sample design on the robust estimators.

4. Study the quality of the variance estimators for the cases where variance estimators
are possible.

5. For the multivariate methods, study the impact of missing values in the components
on robust procedures.

The simulations use the AAT-SILC and AMELIA universe with various outlier and con-
tamination settings (see 4.2.4). In addition, for the multivariate procedures, missing
values were generated with the mechanisms described in Section 5.1. Most of the sim-
ulations were run with the one stage designs but also two stage designs were used (see
2).

10.2 Robust estimation of means

We present some results on simulations for estimating the population mean. This is useful
to understand the behaviour of robust estimators and to compare the results with previous
work on robust estimation.
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We use the AAT-SILC population and simple random sampling only. The estimators
are the one-sided robustified Horvitz-Thompson estimator with a asymmetric Huber ψ-
function and the one-sided Trimmed Mean. Table 10.1 shows the performance in relative
bias and relative mean squared error (both expressed as a percentage of the uncontamin-
ated value, cf. Section 6.2). We chose a standard tuning constant for both estimators and
the optimal tuning constant in terms of relative mean squared error. The standard tun-
ing constant for RHT is k = 6 (measured in normalized mads, i.e. in mad*1.4826). This
tuning constant yields approximately 0.5% of observations which are downweighted and
it thus is comparable to the standard trimming proportion used for the trimmed mean,
i.e. αu = 0.005. Note that it is very difficult to discuss different robust estimators that
downweight a very different number of observations because it then is not clear, whether
differences are due to the type of estimator or due to the choice of the tuning constants.
Note that the tuning constants have been chosen on grids such that the actually evaluated
tuning constant for RHT is k = 6.2 and the optimal tuning constant might be somewhat
smaller still.

Table 10.1: Relative bias and root mean squared error (in %) of RHT and TM at AAT-SILC
with simple random samples (k = 6.2, αu = 0.005).

OCAR OAR

CCAR NCAR CCAR NCAR
T ε =→ 0 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01

HT relbias 0.00 3.62 34.70 1.57 15.04 3.52 33.29 1.64 15.46
HT relmse 0.74 3.70 34.71 1.76 15.08 3.60 33.30 1.81 15.49
RHT relbias -0.23 0.72 9.94 0.61 8.24 0.66 9.08 0.60 7.87
RHT relmse 0.77 1.03 9.98 0.96 8.29 0.99 9.13 0.95 7.91
opt k 7.7 4.3 2 4.3 2 4.3 2 4.3 2
RHT relbias 0.00 -0.21 -0.61 -0.25 -0.71 -0.26 -1.00 -0.28 -1.05
RHT relmse 0.74 0.75 0.94 0.76 1.01 0.77 1.23 0.78 1.27
TM relbias -1.75 -0.73 25.62 -0.90 9.29 -0.79 23.87 -0.90 9.34
TM relmse 1.89 1.04 25.64 1.16 9.33 1.08 23.89 1.16 9.38
opt α 0 0.05 0.031 0.003 0.026 0.003 0.028 0.003 0.026
TM relbias 0.00 -0.73 0.11 0.00 0.15 0.63 0.43 0.02 -0.22
TM relmse 0.74 1.04 0.84 0.74 0.78 0.98 0.96 0.75 0.79

Bias is an important driver for a large relrmse of the estimators. The Horvitz-Thompson
estimator, which is the arithmetic mean in our case of simple random sampling of house-
holds, with full enumeration of household members, as expected has practically no bias
it there is no contamination. The relrmse is therefore just the standard deviation, which
is 0.74%. This is not astonishing with the large sample size. A light contamination with
outlyingness completely at random (OCAR) and contamination completely at random
(CCAR) with outlier rate 0.1% (ε = 0.001) introduces a bias and mean squared error
of 3.62%! In other words about 16 observations in our samples of about 16 000 have a
36-fold effect. If the outlier rate is 1% (ε = 0.01) the mean estimator is biased by more
than 30%. In other words a contamination of 160 observations yields a mean of 16 000
observations practically useless. This shows the inherent non-robustness of the classical
non-robust estimators. The different scenarios of contamination do not differ by much
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though the impact of the NCAR contamination is less heavy than CCAR.

The optimal robust estimators, i.e. the estimators with the least relative root mean
squared errors, have very low bias in all contamination scenarios and very low relat-
ive root mean squared error. The highest relrmse occurs for the RHT estimator at an
OAR-NCAR contamination with outlier rate ε = 0.01: 1.27% with a bias of −1.05%.
The optimal tuning constant of the RHT depends only on the outlier rate but not on the
particular scenario. It is k = 7.7 for ε = 0, k = 4.3 for ε = 0.001 and k = 2 for ε = 0.01.
Obviously the standard tuning constant k = 6.2 is relatively good at the lower outlier
rates but does not downweight enough at ε = 0.01. The grid for the trimming proportion
is finer than for k and thus there is a slight variability visible but roughly also here the
optimal trimming proportion is αu = 0 for ε = 0, as to be expected, αu = 0.005 for
ε = 0.001 αu = 0.03 for ε = 0.01. The optimal tuning constants thus downweight more
observations than the outliers.

The RHT estimator with the standard tuning constant k = 6.2 has slightly smaller bias
and relrmse for outlier rate ε = 0.001 than the trimmed mean TM and the robust estim-
ators are much better than the classical non-robust estimator. In fact the highest relrmse
of RHT and TM is 1.16% at the NCAR scenarios compared to the 3.7% of the classical
HT at the OCAR-CCAR scenario. For the higher outlier rate ε = 0.01 the standard
estimators have too low tuning constants but nevertheless perform relatively well. Again
the RHT estimator performs better than the trimmed mean at CCAR contamination and
somewhat better at NCAR contamination.

Overall it seems advisable to use a robust estimator instead of the classical estimator
because the loss with a slight robustification is minimal if the data behaves well (no
contamination) while the gain is moderate to large if there is contamination in the data.

We now look at the results for the variance estimators for the robustified Horvitz-Thompson
estimator and for the trimmed mean. Table 10.2 shows the performance of the linearized
variance estimators for the estimators with standard tuning constant. The variance es-
timator for the RHT estimator has a positive bias and a moderate to large relrmse. In
spite of the large bias at ε = 0.01 the variance estimator remains useful. The variance
estimator of the trimmed mean is not satisfactory, in particular for the high outlier rate.
It seems that important aspects of the variability are not captured. More research is
needed to refine this variance estimator and in the mean time only resampling procedures
seem to be sufficiently reliable for trimmed means.

10.3 Robust non-parametric estimation of the Quin-
tile Share Ratio

The estimators of the Quintile Share Ratio (QSR) used in the simulations were wPDC-CN
from TUW and TQSR and SQSR from FHNW.
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Table 10.2: Linearized variance estimators at AAT-SILC with simple random sampling

OCAR OAR

CCAR NCAR CCAR NCAR
V ε =→ 0 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01

RHT relbias 2.0 12.3 71.8 9.8 50.2 10.9 57.5 9.7 54.2
RHT relmse 5.1 13.4 72.3 11.0 50.7 12.0 58.1 10.9 54.7
TM relbias -50.9 68.8 1553.7 52.7 280.4 65.9 1558.9 54.3 342.9
TM relmse 51.1 69.9 1555.2 53.6 283.2 67.0 1560.2 55.3 345.3
opt α 0 0.005 0.031 0.003 0.026 0.003 0.028 0.003 0.026
TM relbias -35.9 68.8 339.5 66.1 108.0 217.1 378.7 67.3 118.2
TM relmse 36.3 69.9 355.7 67.1 109.1 218.2 388.8 68.4 119.3
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10.3.1 TQSR and SQSR

The robustification by trimming a proportion αu of the largest observations is called
TQSR. TQSR necessarily has a bias, which SQSR tries to compensate for. A detailed
description of these two estimators together with an estimator of their variance is described
in (Hulliger et al., 2011b, Chapter Robust Quintile Share Ratio).

AMELIA SRS

We start by discussing the simulation runs with a simple random sample of households
from the AMELIA population. These are runs N0010 for SQSR and N0011 for TQSR.
A standard analysis output for the two runs is included in Appendix (Hulliger et al.,
2011a).

We first investigate the behaviour of the robust estimators when different tuning constants
are chosen. Tuning constants can be chosen by the statistician using these estimators.
There is a lot of freedom in this choice but also a lot of uncertainty and insight into the
behaviour of the estimators is needed for a well-founded choice. In practice it is clearly not
appropriate just to look at one tuning constant. A range of constants must be considered
to obtain an overview and make a choice.

Figure 10.1 shows the steadily growing negative bias of TQSR when the trimming pro-
portion is increased. The bias of SQSR becomes slightly negative first and then increases
monotonically when the trimming proportion is increased. This shows that robustification
induces a bias and that SQSR can compensate a bias in a small range of trimming but
then overcompensates heavily. Note that for a trimming proportion of α = 0 both TQSR
and SQSR correspond to the classical Quintile Share Ratio estimator.

Figure 10.2 shows that the variance of TQSR decreases monotonically with the trimming
proportion while for the SQSR the initial decrease changes to a steady increase when
larger proportions are used.

Note that the trimming proportions are small in these examples, ranging from αu = 0 to
0.03 only. This must be seen in the light of the sample size, which is approximately 16 000
for the mean AMELIA household size of 2.648. A trimming proportion of 0.03 would
already mean to trim away some 480 observations. This would probably be considered as
data of low quality.

The relative root mean squared error criterion relrmseT (see Section 6.2) gives a good
impression of the joint behaviour of variance and bias. Figure 10.3 shows that the bias
is the dominant term and therefore SQSR is about as efficient as the classical non-robust
QSR estimator for a moderate range of trimming up to α = 0.005 while the bias yields
TQSR inefficient already for slight trimming.

This behaviour of TQSR and SQSR changes when contamination is introduced. We look
at a situation where a proportion of ε = 0.001, i.e. about 16 observations are declared
outliers completely at random and where the contamination has a normal distribution with
mean 500 000 and standard deviation 20 000. This situation is called OCAR-CCAR since
outlyingness and contamination are completely at random (see 4.2.4). This seems quite
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Figure 10.1: Bias of TQSR and SQSR at AMELIA, no contamination, simple random
sampling

a realistic situation because even after a careful editing it is possible that 16 observations
may not be declared outliers even if they are. Note that we consider the outliers as
non-representative and the target characteristic to estimate remains the QSR of the true,
uncontaminated data.

Figure 10.4 shows the relative root mean squared error and Figure 10.5 the bias at the con-
tamination rate ε = 0, i.e. there is no contamination, ε = 0.001 a realistic contamination,
and ε = 0.01 a heavier contamination. The left most panel of these Figures correspond
to Figures 10.3 and 10.1 respectively. The middle panel of Figures 10.4 and 10.5 is the
one with a realistic outlier rate ε = 0.001. With this light contamination the QSR es-
timator without robustification has a bias as an estimator for the uncontaminated QSR
in the population. The bias of TQSR is minimal at approximately α = 0.002 and then
becomes more and more negative. The bias of the SQSR is minimal at α = 0.004 and is
growing when more trimming is applied. In other words, the bias compensation of SQSR
is too strong for larger trimming proportions. Due to the dominance of the bias it is also
visible in the relative root mean squared error that there is a relatively sharp minimum
for TQSR (relrmseT=3.6125) at α = 0.002 while the minimum is flatter for SQSR and
somewhat higher (relrmseT=4.2639) at α = 0.0045. Note that the non-robust classical
QSR estimator, which corresponds to α = 0, has relrmseT=6.1819. In other words the
robust estimators TQSR and SQSR outperform by far the classical estimator if the best
tuning constant is chosen. In practice the choice of the tuning constant is difficult since
we do not know exactly how much contamination we have and what form the tails of the
distribution have. Therefore the choice of the tuning constant may be sup-optimal. Since
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Figure 10.2: Variance of TQSR and SQSR at AMELIA, no contamination, simple random
sampling

the minimum is flatter for the SQSR estimator and therefore the choice of the tuning
constant is less critical, the SQSR estimator might be the preferable to the TQSR.

The situation is analogue but much more extreme for an outlier rate of ε = 0.01. Here
the TQSR outperforms SQSR for a large range of tuning constants and would be the
preferred robust estimator. Of course the TQSR could be still outperformed by a bias
compensation where an optimal trimming of the upper end of the first quintile is picked.
This lower trimming proportion αl would be chosen lower than the default choice of the
SQSR which for strongly asymmetric tails is roughly double the trimming proportion αu
in the upper quintile. For practical purposes therefore an alternative to SQSR would be
the so-called BQSR which just sets the lower trimming proportion to the upper trimming
proportion, i.e. αl = αu.

Table 10.3 shows results for the performance of classical QSR, TQSR and SQSR at dif-
ferent contamination scenarios. For each scenario the relbias and relrmse of TQSR and
QSR are given for a standard trimming proportion αu = 0.005 and for the optimal trim-
ming proportion. The optimal trimming proportion is the one that yields least relative
root mean squared error. Remember that TQSR does not trim in the first quintile, while
SQSR uses a bias compensation trimming where the ratio of asymmetries in the fifth and
first quintile is taken into account to determine the lower trimming proportion αl.

The effect of the OAR mechanism on bias and MSE of all estimators is small and we con-
centrate on the analysis of the OCAR mechanisms. Without contamination the relative
bias of SQSR is low for a standard tuning constant αu = 0.005 or for the optimal tuning
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Table 10.3: Relative bias and root mean squared error of QSR estimators

OCAR OAR

CCAR CCAR NCAR CCAR NCAR
T ε =→ 0 0.001 0.01 0.001 0.001 0.001

QSR relbiasT% 0.0 4.9 48.4 2.9 4.9 3.3
QSR relrmseT% 3.7 6.2 48.6 4.8 6.2 5.0
TQSR5 relbiasT% -6.5 -4.7 32.6 -5.3 -4.7 -5.2
TQSR5 relrmseT% 7.3 5.8 33.0 6.3 5.8 6.2
opt α 0 0.002 0.0215 0.001 0.002 0.0015
TQSRopt relbiasT% 0.0 -0.1 0.0 0.1 -0.1 -0.6
TQSRopt relrmseT% 3.7 3.6 3.6 3.7 3.6 3.6
SQSR5 relbiasT% 0.2 2.2 43.6 1.5 2.2 1.7
SQSR5 relrmseT% 3.6 4.3 43.9 4.0 4.3 4.0
opt α 0.0045 0.0045 0.0110 0.0030 0.0040 0.0030
SQSRopt relbiasT% 0.0 2.1 42.4 1.1 2.2 1.3
SQSRopt relrmseT% 3.6 4.3 42.8 3.8 4.3 3.9
Notes: Standard tuning constant αu = 0.005 and optimal tuning constant.
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Figure 10.3: Relative root mean squared error of TQSR and SQSR at AMELIA, no
contamination, simple random sampling

constant. The standard tuning constant yields a negative bias of 6.5%, which is substan-
tial considering the small amount of trimming. The efficiency is good for the standard
and optimally tuned SQSR and for the optimally tuned TQSR. Of course the relatively
large bias of the standard TQSR yields a relatively large relrmse, too.

It may be argued that the standard tuning constant αu = 0.005 lies quite close to the
optimal tuning constant αu = 0.0045, which is not realistic. However, if there is no
contamination the relrmseT of the SQSR is practically constant and in any case much
smaller than for the TQSR in a wide range, as can be seen in Figure 10.3.

In a completely random outlying and contamination scenario the non-robust classical QSR
has a bias of 4.9% when the outlier rate is ε = 0.001 and a bias of 48.4% when the outlier
rate is ε = 0.01. Thus the impact and biasing effect of outliers is heavy. Trimming by
αu = 0.005 yields a negative bias −4.7% of TQSR for the mild outlier rate and a positive
bias of 32% for ε = 0.01. Obviously this standard tuning constant is far away from the
optimal tuning constant αu = 0.002 at ε = 0.001 and αu = 0.0215 at ε = 0.01, which
yields a very low bias and consequently relrmse. Thus it seems that trimming roughly
double the outlier rate would yield a good TQSR. The bias compensation of SQSR seems
to be about right with αu = 0.005 for the mild outlier rate ε = 0.001 because the bias is
moderate (2.1%) and the relrmse is optimal at αu = 0.0045. The efficiency loss compared
with the optimal TQSR is substantial but the gain compared with the non-robust QSR
is larger.

The outlier rate ε = 0.01 poses difficulties to the SQSR estimator because the bias com-
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Figure 10.4: Relative root mean squared error of TQSR and SQSR at AMELIA, simple
random sampling, OCAR-CCAR with ε = 0, 0.001, 0.01

pensation is too strong. The bias with trimming αu = 0.005 is close to the bias when
minimising relrmse and only moderately lower than for the non-robust QSR. TQSR is
better than SQSR here but only if a good tuning constant is chosen.

For an OCAR-NCAR (and OAR-NCAR) contamination with outlier rate ε = 0.001 we
get a similar picture as with OCAR-CCAR except that now SQSR with standard and
optimal tuning constant favor even better.

Variance estimation of the QSR, TQSR and SQSR was evaluated with the relative bias
of the variance estimator and with the relative root mean squared error of the variance
estimator. Variance estimation of the QSR-estimators is difficult because of the quantiles
involved and because of the non-linearity of the estimators. Table 10.4 shows the relative
bias and relative root mean squared error for the AMELIA population when simple ran-
dom sampling (design 1.2) is used. The upper trimming proportion is αu = 0.005. When
there is no contamination, i.e. at ε = 0 the variance estimator overestimates the Monte
Carlo variance by 25% to 32%, which is moderate. The variance of the variance estimator
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Figure 10.5: Bias of TQSR and SQSR at AMELIA, simple random sampling, OCAR-
CCAR with ε = 0, 0.001, 0.01

does not seem to be a big problem compared to this bias, since most of the relative root
mean squared error is due to the bias. The bias is larger when contamination occurs. The
bias at ε = 0.001 is about 30% to 40% and at ε = 0.01 the bias is about 90%.

The variance estimators are thus not satisfactory and it is difficult to judge how much
overestimation will result in a practical situation. The bias seems to increase when the
outlier rate increases. Confidence intervals based on these variance estimators will be
conservative. As an alternative, though maybe costly, resampling variance estimators
might be used.

The choice of the tuning constant obviously depends on an educated guess of how much
contamination the sample has. If a minimal protection against extreme disposable incomes
should be achieved then α must be larger than 0. For these large samples trimming must
be very light in order not to introduce to much bias. A trimming proportion of α = 0.005
seems to be a reasonable start for SILC data.
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Table 10.4: Relative bias and root mean squared error of variance estimators

ε T relbiasV% relrmseV%

0 QSR 25.2 30.2
TQSR 26.3 30.9
SQSR 31.9 36.2

0.001 QSR 40.3 44.1
TQSR 29.6 33.9
SQSR 34.9 38.9

0.01 QSR 90.7 93.0
TQSR 92.2 94.5
SQSR 98.0 100.3

Notes: Universe AMELIA, simple random
sampling, trimming αu = 0.005.
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AMELIA with different designs

Stratification with probability proportional to size sampling of households (i.e. design 1.5a
in Table 2.1) yields the results in Table 10.5. Comparing the results with simple random
sampling (Table 10.3) they look very similar and thus stratification and pps-sampling has
a minor effect on the results.

Table 10.5: Relbias and relrmse of QSR estimators at stratified pps sampling

OCAR OAR

CCAR CCAR NCAR CCAR NCAR NCAR
R ε =→ 0.001 0.01 0.001 0.001 0.001 0.01

QSR relbiasT 5.2 48.6 3.2 5.2 3.5 33.5
QSR relrmseT 6.5 48.9 5.0 6.5 5.2 33.9
TQSR5 relbiasT -4.5 -4.5 32.8 -4.4 -4.9 16.8
TQSR5 relrmseT 5.6 5.6 33.2 5.6 6.0 17.3
opt. α 0.0020 0.0210 0.0015 0.0020 0.0015 0.0145
TQSRopt relbiasT 0.1 0.1 -0.6 0.1 -0.4 0.1
TQSRopt relrmseT 3.6 3.5 3.7 3.6 3.6 3.7
SQSR5 relbiasT 2.4 43.8 3.5 2.5 1.9 25.9
SQSR5 relrmseT 4.5 44.1 5.2 4.5 4.2 26.3
opt. α α 0.0040 0.0110 0.0025 0.0040 0.0025 0.0095
SQSRopt relbiasT 2.3 42.5 1.3 2.4 1.4 24.9
SQSRopt relrmseT 4.4 42.9 3.9 4.4 4.0 25.3

In order to compare the effect of the universe the results for the universe AAT-SILC with
a simple random sample design are presented in Table 10.6. It seems that the standard
trimming chosen for SQSR with the AMELIA population, αu = 0.005 performs well
also for AAT-SILC. In other words the optimal αu for SQSR is close to 0.005 also for
AAT-SILC. The optimal trimming for TQSR, which does not use a bias compensation,
is slightly closer to 0.005 than for AMELIA and this tends to reduce the bias of TQSR
with αu = 0.005. The impact of contamination on the non-robust classical QSR is heavier
for the AAT-SILC population, introducing more bias. This is not the case for the robust
estimators, where bias is similar to the AMELIA universe. The figures of relative MSE
are slightly lower for AAT-SILC but in general follow a similar pattern as for AMELIA.

Table 10.7 shows the results of the simulations for the two universes at stratified random
sampling with simple random sampling within the strata (design 1.4a). The contamination
mechanism considered is OCAR-CCAR. The features discussed above are similar in both
universes but the effect is often quantitatively larger in AMELIA than in AAT-SILC
when the outlier rate is 0 or 0.001. At ε = 0.01 the contamination may have a large effect
and we can see that the choice of the tuning constant αu = 0.005 is far from optimal.
The effect of the sub-optimal choice is heavy for TQSR, where the optimal tuning would
yield a very good estimator in terms of bias and variance. At the AAT-SILC universe
SQSR shows a considerable improvement between the standard choice αu = 0.005 and
the optimal tuning constant: Relative RMSE drops from 75.80 to 41.15. At the AMELIA
population the improvement of the optimal tuning constant is small.
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Table 10.6: Relbias and relrmse of QSR estimators with universe AAT-SILC and simple random
sampling

OCAR OAR

CCAR NCAR CCAR NCAR
T ε =→ 0 0.001 0.001 0.001 0.001

QSR relbiasT 0.0 9.6 3.9 9.4 4.2
QSR relrmseT 1.9 9.8 4.4 9.6 4.7
TQSR5 relbiasT -6.1 -3.8 -4.3 -3.8 -4.2
TQSR5 relrmseT 6.4 4.2 4.6 4.2 4.5
opt α 0.0000 0.0030 0.0020 0.0030 0.0020
TQSRopt relbiasT 0.0 -0.4 -0.4 -0.5 -0.2
TQSRopt relrmseT 1.9 1.9 1.9 1.9 1.9
SQSR5 relbiasT -0.5 2.1 1.6 2.0 1.7
SQSR5 relrmseT 2.0 2.9 2.6 2.9 2.6
opt α 0.0000 0.0060 0.0045 0.0055 0.0045
SQSRopt relbiasT 0.0 2.1 1.6 2.0 1.7
SQSRopt relrmseT 1.9 2.9 2.5 2.9 2.6

Table 10.7: QSR-estimators at stratified random sampling with both universes

AAT-SILC AMELIA AAT-SILC AMELIA AAT-SILC AMELIA
T ε 0 0 0.001 0.001 0.01 0.01

QSR relbiasT -0.04 0.11 9.50 5.02 90.60 48.58
QSR relrmseT 1.89 3.53 9.71 6.22 90.65 48.84
TQSR5 relbiasT -6.18 -6.38 -3.84 -4.54 64.31 32.86
TQSR5 relrmseT 6.43 7.15 4.25 5.62 64.38 33.17
opt α 0.000 0.000 0.003 0.002 0.025 0.0215
TQSRopt relbiasT -0.04 0.11 -0.46 0.03 -0.26 0.28
TQSRopt relrmseT 1.89 3.53 1.94 3.50 2.13 3.58
SQSR5 relbiasT -0.50 0.29 2.05 2.33 75.72 43.81
SQSR5 relrmseT 2.06 3.52 2.91 4.29 75.80 44.09
opt α 0.0000 0.0045 0.0055 0.0040 0.0295 0.011
SQSRopt relbiasT -0.04 0.08 2.01 2.26 40.67 42.72
SQSRopt relrmseT 1.89 3.50 2.89 4.25 41.15 43.04
Note: Contamination is OCAR-CCAR
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10.4 Robust semiparametric estimation

Since EU-SILC data may contain nonrepresentative outliers in the upper tail of the in-
come distribution, robust Pareto tail modeling for reducing the influence of outliers is
investigated. These methods are described in detail in Hulliger et al. (2011b). In order
to fit a Pareto distribution to the upper tail of the data, a threshold needs to be selected
first. Holzer (2009) concluded that graphical methods perform best in practical situ-
ations in the case of EU-SILC. For details on these graphical tools, the reader is referred
to Hulliger et al. (2011b). However, graphical methods have the disadvantage that the
threshold cannot be determined exactly. Therefore the main aim of the simulation stud-
ies for semiparametric estimation was to evaluate how the methods behave for different
choices of the threshold. Serveral methods for estimating the shape of the Pareto distri-
bution are thereby investigated: Hill, wHill, ISE, wISE, PDC and wPDC (see Hulliger
et al., 2011b, and references therein).

Basically, three general approaches for semiparametric estimation based on Pareto tail
modeling have been developed:

Replacement of the tail (RT): All values above the threshold are replaced by values
drawn from the fitted distribution. The order of the original values is preserved.

Replacement of nonrepresentative outliers (RN): Values larger than a certain α-
quantile of the fitted distribution (with α close to 1) are declared as nonrepresent-
ative outliers. Only these nonrepresentative outliers are replaced by values drawn
from the fitted distribution, thereby preserving the order of the original values. For
the results in this report, α = 0.99 is used.

Calibration for nonrepresentative outliers (CN): Values larger than a certain α-
quantile of the fitted distribution (with α close to 1) are declared as nonrepresent-
ative outliers. Since these are considered to be unique to the population data, the
sample weights of the corresponding observations are set to 1 and the weights of the
remaining observations are adjusted accordingly by calibration. For the results in
this report, α is set to 0.99 and the variable giving the NUTS2 regions is used as
auxiliary information for calibration.

The basis for the simulation studies included in this report is the synthetic AAT-SILC
data set. In these examples, the samples are drawn with stratified Midzuno sampling in
order to investigate the differences between the weighted and unweighted estimators for
fitting the Pareto distribution (for the estimation of the indicators, the sample weights
are of course always taken into account). See Part 4 for a description of the simulation
scenarios. It should also be noted that only results for the quintile share ratio (QSR) are
shown here.

However, the results included in this report were selected representatively. A complete
overview of all simulation results for the semiparametric methods can be found in the
appendix (Hulliger et al., 2011a, Ch.F).
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Figure 10.6: Average results (top) and RMSE (bottom) for the QSR using the three
approaches for Pareto tail modeling with k varying between 100 and 750. Scenario:
AAT-SILC, stratified Midzuno sampling, and no contamintation.

10.4.1 No contamination

This section presents simulation results for the case where no contamination is added to
the data.

Figure 10.6 shows the average results (top) and RMSE (bottom) for the semiparametric
QSR estimates with the number of households k used for tail modeling varying between
100 and 750. The different estimators of the shape of the Pareto distribution are thereby
compared for the three approaches for tail modeling. In addition, the grey reference line
represents the true population value of the QSR. Clearly, the RT approach introduces a
considerable amount of additional uncertainty and produces rather unstable results. The
curves for RN and CN approaches, on the other hand, are much smoother and reflect the
better performance. In fact, these two approaches lead to very similar results. This is
not surprising, because in the case without contamination, they should ideally not flag
any observations as outliers, resulting in standard estimation of the QSR. Consequently,
the curves for the different estimators of the shape of the Pareto distribution are almost
superposed up to k ≈ 400 and are very close to the true population value. Nevertheless,
the quality of the estimates deteriorates a bit for larger values of k, which is visible
in the curves by sudden kinks away from the reference line. This means that if too
many observations are used for tail modeling, false positives are detected and replaced or
downweighted, respectively, which in turn causes a negative bias.

To further investigate the performance of the robust PDC estimator and its weighted
counterpart wPDC, Figure 10.7 uses boxplots to compare these estimators for the three
approaches for tail modeling with the standard estimation of the QSR and a parametric
method based on fitting a GB2 distribution to the data. For the PDC and wPDC estim-
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Figure 10.7: Box plots of the simulation results for the QSR using standard estimation,
the three semiparametric approaches for Pareto tail modeling with the PDC and wPDC
estimators and k = 300, as well as parametric estimation using a GB2 distribution with
the profile log-likelihood approach. Scenario: AAT-SILC, stratified Midzuno sampling,
and no contamintation.

ators, k = 300 is selected representatively. This plot again illustrates the similarity of the
semiparametric estimates with the RN and CN approaches and the standard estimation.
Furthermore, the additional variability with the RT approach is clearly visible, as well
as a small bias. An even larger bias is obtained with the parametric estimate based on
fitting a GB2 distribution with the profile log-likelihood method. However, Graf et al.
(2011) have in the mean time developed a simple adjustment of the parametric estimator
that should produce more accurate results.

To complement the graphical evaluation methods, Table 10.8 contains all evaluation cri-
teria for univariate point estimation as described in Section 6.2: average, variance, bias,
relative bias (relBias), median, median absolute deviation (MAD), median error (MedE),
root mean squared error (RMSE), relative root mean squared error (relRMSE), median
absolute error (MedAE), and maximum absolute relative error (MaxARE). In particular
the relBias and the relRMSE are of interest. For the semiparametric methods, results for
k = 300, 500, 700 are shown. These choices of k are selected representatively to compare
the results across different contamination settings (cf. the following sections). In any case,
Table 10.8 also reflects the similar results for the estimators of the shape of the Pareto
distribution in the case of the RN and CN approaches and the excellent performance of
these estimates.

With the results presented in this section, it should be noted that there is not much differ-
ence between weighted and unweighted estimators of the shape of the Pareto distribution
for the RN and CN approaches. The reason is that these procedures remain quite stable
for slight misspecifications of the Pareto model, which is also why there is a wide range
for the coice of k that leads to excellent results.

AMELI-WP7-D7.1



10.4 Robust semiparametric estimation 122

Ta
bl
e
10
.8
:E

va
lu
at
io
n
of

th
e
di
ffe

re
nt

es
tim

at
io
n
m
et
ho

ds
fo
rt

he
Q
SR

at
A
AT

-S
IL
C
,s
tr
at
ifi
ed

M
id
zu
no

sa
m
pl
in
g,

an
d
no

co
nt
am

in
t-

at
io
n.

M
et
ho

d
T
yp

e
k

Av
er
ag

e
Va

ria
nc

e
B
ia
s

re
lB
ia
s

M
ed

ia
n

M
A
D

M
ed

E
R
M
SE

re
lR

M
SE

M
ed

A
E

M
ax

A
R
E

st
an

da
rd

4.
07

0.
00

−
0.
01

−
0.
13

4.
07

0.
07

−
0.
01

0.
07

1.
68

0.
07

0.
07

w
H
ill

RT
30

0
4.
12

0.
01

0.
04

0.
89

4.
11

0.
08

0.
03

0.
09

2.
18

0.
09

0.
09

w
H
ill

RT
50

0
4.
11

0.
01

0.
03

0.
74

4.
10

0.
09

0.
02

0.
09

2.
25

0.
09

0.
09

w
H
ill

RT
70

0
4.
12

0.
01

0.
04

1.
02

4.
12

0.
09

0.
04

0.
10

2.
44

0.
09

0.
11

w
H
ill

R
N

30
0

4.
07

0.
00

−
0.
01

−
0.
21

4.
07

0.
07

−
0.
01

0.
07

1.
71

0.
07

0.
07

w
H
ill

R
N

50
0

4.
06

0.
01

−
0.
02

−
0.
48

4.
06

0.
07

−
0.
02

0.
07

1.
81

0.
08

0.
07

w
H
ill

R
N

70
0

4.
05

0.
01

−
0.
03

−
0.
73

4.
05

0.
07

−
0.
03

0.
08

1.
88

0.
08

0.
07

w
H
ill

C
N

30
0

4.
07

0.
00

−
0.
01

−
0.
24

4.
07

0.
07

−
0.
01

0.
07

1.
72

0.
07

0.
07

w
H
ill

C
N

50
0

4.
06

0.
01

−
0.
02

−
0.
55

4.
05

0.
07

−
0.
03

0.
07

1.
83

0.
08

0.
07

w
H
ill

C
N

70
0

4.
05

0.
01

−
0.
03

−
0.
81

4.
04

0.
07

−
0.
03

0.
08

1.
92

0.
08

0.
07

w
IS
E

RT
30

0
4.
13

0.
01

0.
05

1.
28

4.
13

0.
10

0.
05

0.
11

2.
69

0.
10

0.
10

w
IS
E

RT
50

0
4.
09

0.
01

0.
01

0.
20

4.
08

0.
09

0.
00

0.
10

2.
39

0.
09

0.
11

w
IS
E

RT
70

0
4.
14

0.
01

0.
06

1.
59

4.
14

0.
09

0.
06

0.
11

2.
81

0.
11

0.
09

w
IS
E

R
N

30
0

4.
07

0.
00

−
0.
01

−
0.
23

4.
07

0.
07

−
0.
01

0.
07

1.
72

0.
07

0.
07

w
IS
E

R
N

50
0

4.
05

0.
01

−
0.
03

−
0.
64

4.
05

0.
07

−
0.
03

0.
08

1.
86

0.
08

0.
07

w
IS
E

R
N

70
0

4.
05

0.
00

−
0.
03

−
0.
67

4.
05

0.
07

−
0.
03

0.
08

1.
85

0.
08

0.
07

w
IS
E

C
N

30
0

4.
07

0.
00

−
0.
01

−
0.
26

4.
07

0.
07

−
0.
01

0.
07

1.
73

0.
07

0.
07

w
IS
E

C
N

50
0

4.
05

0.
01

−
0.
03

−
0.
74

4.
05

0.
07

−
0.
03

0.
08

1.
92

0.
08

0.
07

w
IS
E

C
N

70
0

4.
05

0.
00

−
0.
03

−
0.
74

4.
05

0.
07

−
0.
03

0.
08

1.
88

0.
08

0.
07

w
PD

C
RT

30
0

4.
13

0.
01

0.
05

1.
28

4.
13

0.
11

0.
05

0.
12

2.
97

0.
11

0.
14

w
PD

C
RT

50
0

4.
07

0.
01

−
0.
01

−
0.
26

4.
06

0.
11

−
0.
02

0.
11

2.
73

0.
11

0.
11

w
PD

C
RT

70
0

4.
17

0.
01

0.
09

2.
09

4.
16

0.
11

0.
08

0.
14

3.
53

0.
14

0.
13

w
PD

C
R
N

30
0

4.
07

0.
00

−
0.
01

−
0.
28

4.
07

0.
07

−
0.
01

0.
07

1.
73

0.
07

0.
07

w
PD

C
R
N

50
0

4.
05

0.
01

−
0.
03

−
0.
82

4.
05

0.
07

−
0.
03

0.
08

1.
96

0.
08

0.
07

w
PD

C
R
N

70
0

4.
05

0.
00

−
0.
03

−
0.
65

4.
05

0.
07

−
0.
03

0.
07

1.
83

0.
07

0.
06

w
PD

C
C
N

30
0

4.
07

0.
00

−
0.
01

−
0.
32

4.
06

0.
07

−
0.
02

0.
07

1.
75

0.
07

0.
07

w
PD

C
C
N

50
0

4.
04

0.
01

−
0.
04

−
0.
95

4.
04

0.
07

−
0.
04

0.
08

2.
05

0.
09

0.
08

w
PD

C
C
N

70
0

4.
05

0.
00

−
0.
03

−
0.
72

4.
05

0.
07

−
0.
03

0.
08

1.
87

0.
08

0.
06

G
B
2

4.
19

0.
01

0.
11

2.
64

4.
19

0.
08

0.
11

0.
13

3.
24

0.
16

0.
10

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


10.4 Robust semiparametric estimation 123

10.4.2 OCAR-CCAR, contamination level ε = 0.001

In this section, simulation results for the contamination level ε = 0.001 are discussed.
The outliers are thereby generated with an OCAR-CCAR mechanism based on a normal
distribution N (µ, σ) with µ = 500 000 and σ = 20 000. With an average sample size of
more than 18 000 persons corresponding to (exactly) 6 000 sampled households, this results
in about 19 contaminated household per sample, which can be considered realistic.

Figure 10.8 displays the average results (top) and RMSE (bottom) for the semiparametric
QSR estimates. Since outliers are added to the samples, the number of households that
are needed for tail modeling increases compared to the situation without contamination.
Consequently, only the results for k between 200 and 750 are included in the plot because
of instabilities of the RT approach for too small values of k. First of all, significant
differences in the results occur only for the RT approach, as it is more sensitive towards
misspecifications of the Pareto model due to the considerable number of observations
that are drawn from the distribution. However, the results for the RT approach are not
satisfactory. Concerning the RN and CN approaches, the PDC/wPDC estimator still
shows a slight dent in the curves at k ≈ 400, which is again an indication that some false
positives are detected for larger values of k. While the RN approach has a positive bias
before that dent, the CN approach gives accurate results between k ≈ 250 and k ≈ 400. It
is also interesting to see that the influence of the outliers on the Hill/wHill and ISE/wISE
estimators decreases steadily for the RN and CN approaches as k increases. While the
ISE/wISE estimator behaves quite similarly to the PDC/wPDC estimator but only with
a slight dent at k ≈ 400, the Hill/wHill estimator leads to inaccurate results if k is not
large enough. Nevertheless, it is surprising that it is at all possible to reduce the influence
of the outliers on the QSR with this non-robust estimator for the shape of the Pareto
distribution.

In Figure 10.9, box plots are used to compare the PDC and wPDC estimators for the
three approaches for tail modeling with the standard estimation of the QSR and the
parametric method based on a GB2 distribution. As in the case without contamination,
k = 300 is selected for the PDC and wPDC estimators. Clearly, the standard estimation
is already influenced by the small amount of contamination and shows a significant bias.
Also for the GB2 approach, the bias is significantly larger than in the non-contaminated
case. In this example, the RN and CN approaches differ as far as bias is concerned. While
there is a positive bias for the RN approach, the CN approach does not suffer from this
problem. However, the two approaches are similar in terms of variability. In any case, the
RT approach shows both a slightly larger bias (although it is a significant improvement
to the standard estimation) and higher variability.

For completeness, Table 10.9 gives a numeric overview of the simulation results with the
different evaluation criteria. It allows to study the aforementioned differences between
the investigated approaches in more detail.

10.4.3 OCAR-CCAR, contamination level ε = 0.01

While the contamination level was quite realistic in the previous section, this section is
focued on a larger, rather unrealistic contamination level ε = 0.01. Depending on the
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Figure 10.10: Average results (top) and RMSE (bottom) for the QSR using the three
approaches for Pareto tail modeling with k varying between 450 and 750. Scenario:
AAT-SILC, stratified Midzuno sampling, and OCAR-CCAR with ε = 0.01.

number of persons in the samples of 6 000 households, this amounts to about 185 to 190
contaminated households. As before, the outliers are generated with an OCAR-CCAR
mechanism based on a normal distribution N (µ, σ) with µ = 500 000 and σ = 20 000.

In Figure 10.10, the average results (top) and RMSE (bottom) for the semiparametric
QSR estimates are shown. Due to the large number of outliers in the upper tail of the
distribution, the range of k is limited to 450 to 750, otherwise the plot would be unreadable
due to instabilities for the RT approach. In fact, the Hill/wHill estimates for the RT
approach had to be omitted completely from the plot because of their instability. Most
notably about the plots are the large differences between the weighted and unweighted
ISE estimates. In this case, the weighted version performs much better, even though
not satisfactory. Nonetheless, the influence of the outliers on the ISE/wISE estimator
decreases dramatically with increasing k. The Hill/wHill estimates, on the other hand,
show a consistent high influence. Even the PDC/wPDC estimates show a significant bias
for lower values of k, but the results are excellent for values of k larger than ≈ 600.

Figure 10.11 contains box plots for the PDC and wPDC estimators for the three ap-
proaches for tail modeling with, as well as the standard estimation of the QSR and the
parametric method based on a GB2 distribution. In this scenario, k = 700 is selected for
the semiparametric estimators. Clearly, the standard estimation and the GB2 approach
are corrupted by the outliers. Also the RT and RN approaches show a significant positive
bias. However, the CN approach leads to excellent results.

The superior performance of the PDC-CN/wPDC-CN estimators—provided k is chosen
sufficiently large—is also clearly documented in Table 10.10. It is also worth noting
the instabilities for the RT approach with the Hill/wHill and ISE/wISE estimators for
k = 300.
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Figure 10.11: Box plots of the simulation results for the QSR using standard estimation,
the three semiparametric approaches for Pareto tail modeling with the PDC and wPDC
estimators and k = 700, as well as parametric estimation using a GB2 distribution with
the profile log-likelihood approach. Scenario: AAT-SILC, stratified Midzuno sampling,
and OCAR-CCAR with ε = 0.01.

AMELI-WP7-D7.1



10.4 Robust semiparametric estimation 128

Ta
bl
e
10
.1
0:

Ev
al
ua

tio
n
of

th
e
di
ffe

re
nt

es
tim

at
io
n
m
et
ho

ds
fo
rt

he
Q
SR

at
A
AT

-S
IL
C
,s
tr
at
ifi
ed

M
id
zu
no

sa
m
pl
in
g,

an
d
O
C
A
R
-C

C
A
R

w
ith

ε
=

0.
01
.

M
et
ho

d
T
yp

e
k

Av
er
ag

e
Va

ria
nc

e
B
ia
s

re
lB
ia
s

M
ed

ia
n

M
A
D

M
ed

E
R
M
SE

re
lR

M
SE

M
ed

A
E

M
ax

A
R
E

st
an

da
rd

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
H
ill

RT
30

0
31

.4
3

28
38

6.
54

27
.3
5

67
0.
43

14
.7
5

5.
13

10
.6
7

17
0.
61

41
81

.6
5

15
.8
3

11
98

.8
2

w
H
ill

RT
50

0
10

.2
0

34
.2
5

6.
12

14
9.
97

9.
01

1.
37

4.
93

8.
46

20
7.
48

7.
31

25
.7
9

w
H
ill

RT
70

0
7.
75

2.
33

3.
67

89
.8
7

7.
43

0.
67

3.
35

3.
97

97
.3
5

4.
96

6.
29

w
H
ill

R
N

30
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
H
ill

R
N

50
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
H
ill

R
N

70
0

7.
80

0.
02

3.
72

91
.3
0

7.
80

0.
14

3.
72

3.
73

91
.3
6

5.
52

1.
06

w
H
ill

C
N

30
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
H
ill

C
N

50
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
H
ill

C
N

70
0

7.
80

0.
02

3.
72

91
.3
0

7.
80

0.
14

3.
72

3.
73

91
.3
6

5.
52

1.
06

w
IS
E

RT
30

0
19

.5
0

11
49

.0
6

15
.4
2

37
8.
02

11
.9
9

4.
57

7.
91

37
.2
3

91
2.
43

11
.7
3

11
6.
51

w
IS
E

RT
50

0
5.
28

0.
10

1.
20

29
.4
0

5.
25

0.
30

1.
17

1.
24

30
.4
1

1.
73

1.
15

w
IS
E

RT
70

0
4.
75

0.
03

0.
67

16
.4
2

4.
74

0.
15

0.
66

0.
69

16
.9
4

0.
98

0.
34

w
IS
E

R
N

30
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
IS
E

R
N

50
0

6.
73

0.
34

2.
66

65
.0
8

6.
73

0.
62

2.
65

2.
72

66
.6
3

3.
92

1.
04

w
IS
E

R
N

70
0

4.
73

0.
09

0.
65

16
.0
4

4.
68

0.
25

0.
60

0.
72

17
.6
2

0.
89

0.
54

w
IS
E

C
N

30
0

7.
81

0.
02

3.
73

91
.3
1

7.
80

0.
14

3.
72

3.
73

91
.3
7

5.
52

1.
06

w
IS
E

C
N

50
0

6.
63

0.
41

2.
55

62
.4
9

6.
62

0.
67

2.
54

2.
63

64
.4
5

3.
77

1.
04

w
IS
E

C
N

70
0

4.
47

0.
10

0.
39

9.
54

4.
40

0.
25

0.
32

0.
50

12
.2
3

0.
48

0.
51

w
PD

C
RT

30
0

5.
39

1.
98

1.
31

32
.0
6

5.
06

0.
21

0.
98

1.
92

47
.0
5

1.
45

6.
71

w
PD

C
RT

50
0

4.
55

0.
02

0.
47

11
.4
8

4.
53

0.
14

0.
45

0.
49

12
.0
7

0.
67

0.
34

w
PD

C
RT

70
0

4.
33

0.
02

0.
25

6.
03

4.
31

0.
13

0.
23

0.
28

6.
86

0.
35

0.
20

w
PD

C
R
N

30
0

6.
63

0.
51

2.
55

62
.4
5

6.
36

0.
60

2.
28

2.
65

64
.8
6

3.
38

1.
04

w
PD

C
R
N

50
0

4.
61

0.
07

0.
53

12
.9
0

4.
54

0.
17

0.
46

0.
59

14
.4
2

0.
68

0.
64

w
PD

C
R
N

70
0

4.
30

0.
01

0.
22

5.
47

4.
30

0.
10

0.
22

0.
25

6.
06

0.
32

0.
19

w
PD

C
C
N

30
0

6.
44

0.
68

2.
37

57
.9
7

6.
14

0.
71

2.
06

2.
51

61
.4
0

3.
05

1.
04

w
PD

C
C
N

50
0

4.
27

0.
08

0.
19

4.
65

4.
19

0.
15

0.
11

0.
34

8.
21

0.
17

0.
62

w
PD

C
C
N

70
0

4.
07

0.
01

−
0.
01

−
0.
13

4.
07

0.
08

−
0.
01

0.
09

2.
21

0.
08

0.
13

G
B
2

6.
39

0.
02

2.
31

56
.5
6

6.
38

0.
12

2.
30

2.
31

56
.6
5

3.
41

0.
68

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


10.5 Multivariate outlier detection and imputation 129

10.4.4 Conclusions

Clearly, the RT approach introduces too much additional uncertainty and is not re-
commendable. For RN and CN, in most cases there is not much difference between
using the weighted and unweighted estimators for the shape of the Pareto distribution,
since the procedures are quite stable in case of slight misspecifications in the Pareto
model. Nevertheless, it is advised to use the weighted versions to avoid any unnecessary
misspecifications. Furthermore, the RN and CN approaches have very similar beha-
vior in a realistic contamination setting and give excellent results in this case. Both
approaches show wide ranges of the number of households used for tail modelling that
lead to stable results. Selecting a suitable threshold for tail modelling should therefore
not be too difficult in practice. The CN approach is favorable, though, as it does not
require random draws from the Pareto model and performs better in the case of heav-
ier contamination. Concerning the estimators of the shape parameter of the Pareto
distribution, the PDC/wPDC estimator performs best in the presence of outliers and
also performs as well as the other estimators in the case of uncontaminated data. For
semiparametric estimation, it is thus recommended to use the wPDC-CN estimator.

10.5 Multivariate outlier detection and imputation

10.5.1 Introduction

For the multivariate outlier detection and imputation methods (MODI), we pursue two
evaluation strategies. The first evaluation strategy is concerned with numerical criteria
of the outlier-detection and imputation performance. In particular, we report the av-
erage proportion of false negatives (AVEPFN) and average proportion of false positives
(AVEPFP) for different parameterizations of outlier-detection methods. The former is a
measure of the relative number of undetected outliers, and AVEPFP is the relative num-
ber of observations falsely declared as outliers. In addition, we report the total number of
declared outliers. The second strategy is to analyze both the effect of multivariate outliers
and the effect of MODI methods on a set of Laeken indicators. We consider the following
(representative) set of Laeken indicators

• sample mean (Hajek estimator),

• at-risk-of-poverty rate (ARPR),

• relative-risk-poverty gap (RMPG),

• quintile share ratio (QSR),

• Gini coefficient.

This set comprises the primary poverty and income-inequality measures (and the mean
as a benchmark indicator). All indicators are computed with the equivalized disposable
income.
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Population and Sampling Design

We restrict attention to the stratified (NUTS2 regions) simple cluster sampling design
(with proportional allocation) based on the AAT-SILC population. The results of all other
setups can be obtained from the simulation-run reports. The basic problems of robustness
depend only moderately on the sample design. For example in a OAR-CAR contamination
where the same variables determining the outlier mechanism are also involved in the
sampling designs additional effects may be observed.
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Figure 10.12: Empirical distribution function of the Mahalanobis distances (in original
and log scale) for BACON-EEM (red color) and a corresponding χ2-distribution with 3,
4, and 5 degrees of freedom (blue color).

Variables, Outliers and Missing Values

The (18 household- and 14 individual-level) income components have been aggregated.
We use the following four aggregated components: workinc, capinc, transh, and transp;
see Hulliger et al. (2011b) for more details. The outliers have been generated by means
of an OCAR-NCAR mechanism. That is, a proportion ε of the observations is shrinked
byλ = 0.2 and has been displaced to the 95% quantile of the data projected onto the the
eigenvector corresponding to the smallest eigenvalue of the original covariance matrix. We
study two contamination scenarios: 1% and 5% outliers (this corresponds to an expected
number of 127.9 and 641.8 outliers, respectively). Note that the outliers in the components
are smeared over the household due to the calculation of the disposable income, which is in
fact a redistributed household income. Therefore the effect of outliers in the components
on the disposable income is less severe than if the disposable income is contaminated
directly as has been the case in the univariate contamination scenarios.
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As missingness mechanism we use missing completely at random (MCAR) with a pro-
portion of 2% in each of the (aggregated) income components. This choice results in a
probability of p = 1− (1− 0.024)n = 0.0026 that at least one observation exhibits missing
values in all its components.

All structural zeros, i.e. all zero values in any of the income components, are set to a
missing value prior to outlier detection. When it comes to imputation (for outliers and
missing observations) those structural zeros are set back to zero.

Simulation

All methods are evaluated on grounds of a design-based simulation study. The numerical
criteria are computed (and compared) with respect to the true population charateristics.
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Figure 10.13: Upper tail of the empirical distribution function of the Mahalanobis dis-
tances (in original and logscale; see Figure 10.12) for BACON-EEM. The blue vertical
lines indicate some (reasonable) cutoff points (i.e., in log-scale 4.34 and 4.53)

Outlier Detection

In the case of p-variate normally (MVN) distributed data (or in general for elliptically
contoured (EC) data), outlier-detection methods that employ identification rules based
on the robustly estimated squared Mahalanobis distance (MD) are well known; see e.g.,
Maronna and Zamar (2002). If the data were MVN, one may choose a threshold of the
MD and subsequently declare all points as outliers with MD larger than that particular
threshold. The threshold is usually chosen as the α quantile, say, of the χ2

p distribution,
referring to the fact that (asymptotically) MDi ∼ χ2

p. In the matter at hand, these rules
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are of very limited (if any) value because the data on income components are far from
being MVN (even after appropriate transformation).
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Figure 10.14: Functional boxplot of the upper tail of the ECDF of the squared Ma-
halanobis distances (for contaminated and uncontaminated data). Each line represents
the upper tail of the ECDF of the MD for an application of BACON-EEM on a Monte
Carlo sample (here subsample of 500 ECDFs among 1000; MD in log scale; upper tail:
300 largest MD values). The black curve represents the median curve; outlier curves are
colored red.

By way of illustration, we depict in Figure 10.12 the empirical cumulative distribution
function (ECDF) of the MD for BACON-EEM. It is evident that the ECDF of the MD
clearly deviates from a theoretical χ2 distribution (with d.f. 3,4, or 5) in the upper tail (the
same holds for the ECDF in log-scale). As a result, choosing the MD cutoff on grounds of
the χ2

p(α) leads to thresholds that are far too large. In addition, also the Wilson-Hilferty
transform, (MDi/p)1/3 ∼ N (1− 2/(9p, 2/(9p)) (cf. Little and Smith, 1987, 61), gives
results that are in no way better. Neither transform brings the empirical MD sufficiently
close to a theoretical distribution so that a probabilistic argument could automatically be
used for outlier detection. Consequently, the analyst has to choose the cutoff point in a
case-by-case manner. Notably this means that one has to study the distribution of the
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MD. In Figure 10.13, we depict the upper tail of the ECDF of the MD in ordinary and log
scale. As is apparent from the display, the ECDF does not approach the horizontal limit
at 1.0 in a smooth manner as the CDF of a corresponding χ2 distributed r.v. would. The
ECDF features a clearly visible bulge. For the ECDF in log-scale (RHS panel in Figure
10.13), we therefore propose to choose the cutoff point in the region (more precisely at
the right boundary of the region) where the ECDF still behaves like the CDF of the χ2

r.v. In the example depicted in Figure 10.13, the chosen threshold would coincide with
one of the blue vertical lines – in terms of numbers (in log-scale) 4.35 or 5.43 (note that
the curvature of the ECDF before and after the first cutoff is slightly different). As a
result, we identify those observations as outliers with a squared Mahalanobis distance
larger than the chosen cutoff point.

For outlier-detection methods appealing to the concept of MVN (or EC) data, the choice
of tuning constant (denoted α) is based on the aforementioned relation between MD
and a theoretical distribution, e.g., χ2. Referring to the (above) α-quantile argument
for outlier detection with the income data at hand, will be uninformative or misleading.
These problems pertain to BACON-EEM, GIMCD, and TRC (but not to the Epidemic
Algorithm). For these methods, we therefore propose to study the ECDF of the MD.
Given the ECDF, one choses an appropriate cutoff based on changes of the curvature the
ECDF and the number of declared outliers corresponding to potential cutoffs. For the
simulation, studying the ECDF of the MD for each sample separately is impracticable. We
therefore rely on the following heuristic. Figure 10.14 shows functional boxplots (Sun and
Genton, 2011) of the upper tail of the ECDF of the squared Mahalanobis distances (in log
scale and w.r.t. the location estimate of BACON-EEM) for 500 randomly drawn samples
(out of 1000; this subsampling results in a slight underestimation of the dispersion of the
functions; upper tail:= largest 300 observations). Subfigure a) and b) depict functional
boxplots of the uncontaminated and contaminated data, respectively. It is apparent
that for uncontaminated data, the ECDF curves are reasoably well behaved (i.e., their
behavior is similar to the CDF of a χ2 r.v. For contaminated data, on the other hand,
the median curve (black) for the 500 samples features the bulge at approximately 4.35
(in log scale), too. The heuristic consists of choosing cutoff=4.35 (and the corresponding
number of outliers) for all samples. Clearly, this heuristic does not give an optimal cutoff
for samples with an outlying MD-ECDF curve (red lines in Figure 10.14). Subsequently
the methods are tuned (by means of α) such that they give the right number of declared
outliers. Insofar, the methods could be tuned correctly when used for data that conform
to the assumed model, i.e., MVN or EC data. When the data do not comply with the
underlying model (or only partially), like for income components, we do not modify the
methods, but use different heuristics to choose the tuning constants.

10.5.2 BACON-EEM

Suppose the data on the income components have been transformed appropriately for
BACON-EEM. In Table 10.12, we report the detection performance of BACON-EEM
for three scenarios: uncontaminated data and contaminated data with either 1% or 5%
outliers (corresponding to an expected number of 129.7 and 641.8 outliers, respectively).
For each scenario, the number of declared outliers (DecOut) and the average proportion
(average of the 1000 Monte Carlo replicates) of false negatives (avepfn) and false positives
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Figure 10.15: Detection performance of BACON-EEM for a single sample.

(avepfp) are shown, corresponding to a particular parametrization (α) of BACON-EEM.
It is evident that the smaller α, the smaller is the declared number of outliers. However,
the relation between α and DecOut does not relate to the standard α-quantile (of a χ2

distribution) argument (see discussion above). Moreover, and irrespective of the amount
of contamination, the larger DecOut, the larger is also avepfp (the relative number of
good observations that have been declared outliers). This shows that BACON-EEM
detected representative outliers (of the fairly scattered distribution of good observations).
Therefore, if α would be chosen to large (1 in the limiting case), a large share of points
(all points) would be declared ”representative“ outlier. The relationship between α and
avepfn (undetected outliers), on the other hand, is reversed, in that larger values of α are
associated with smaller numbers of avepfn. Clearly, if α has been chosen such that the
declared number of outliers is far below the number of contaminated observations, avepfn
is relatively high because BACON-EEM tends not to identify all outliers. Note that in the
case of uncontaminated data, avepfn can not be computed because there are no outliers
to be detected at all. To summarize, avepfn and avepfp react in opposite direction when
moving from a particular choice of α to another. As a result, there is a trade-off between
avepfp and avepfn.

The choice of appropriate tuning constants with data whose distribution is neither MVN
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Figure 10.16: Location estimates for BACON-EEM and several tuning constants: con-
taminated vs. un-contaminated data. Note that the means are computed in log-scale and
having set all zeros to NA.

nor EC is very involved. This especially means that we cannot rely on some simple
decision rules or heuristics (cf. discussion above). Further evidence concerning this issue
is presented in Figure 10.5.2. The plot is a visual display of the location estimates of the
four variables in question (in the transformed space) versus α. In addition, we computed
the location estimates for both contaminated (1%) and uncontaminated data. Notably,
the plots indicate how the location estimates change when α is varied. Moreover, at the
particular α where the two lines (representing estimates of the un- and contaminated
data) coincide for the location estimates of a variable, one may say the α –kind of –
”sweeps off“ the effect of contamination for the variable under consideration. The plots
clearly show that almost all variables have their specific α value where the lines overlap
(viz., e.g., for workinc 8E-10 and for transp 8E-7). Accordingly, this fact is another
indication that no single optimal choice of α exists.

In agreement with the discussion on the tuning constant (above), we propose to choose
α in correspondence with the cuttoff on the squared Mahalanobis distance such that the
ECDF of MD behaves in the right tail like the CDF of a χ2 r.v. In the simulation study,
the number of observations with MD larger than the cutoff roughly corresponds to the
number of generated outliers. Consequently, in case of 1% contamination we would choose
α equal to 8E-11, for 5% contamination, we choose 8E-09 (highlighted numbers in Table
10.12). For ε = 0.01 we would have about 0.12% good observations declared as outliers
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and about 12.6% of the outliers not detected. However, this fixed choice does not fully
reflect the uncertainty of the choice of the tuning constant because even if a bulge is
visible in the ECDF and thus a reasonable region for the cutoff can be determined the
exact choice cannot be ensured in practice.

Table 10.11: Summary statistics of the number of declared outliers based on the cutoff
heuristic (cutoff κ in log scale).
κ Q(#[MD > κ]; 0.25) Q(#[MD > κ]; 0.50) Q(#[MD > κ]; 0.75) avg(#[MD > κ])

3.0 100.0 108.5 114.0 106.1
3.5 91.0 100.0 108.0 97.5
4.0 75.0 90.0 100.0 86.2
4.5 55.7 74.0 90.0 71.6
Notes: MD: squared Mahalanobis distance; Q(·; p) denotes the pth quantile; #[< condition >] denotes
the number of observations that obey the condition.

Table 10.12: Detection performance of the BACON-EEM (for un-contaminated data and
1% and 5% contamination)

un-contaminated 1% contamination 5% contamination

α DecOut avepfp DecOut avepfp avepfn DecOut avepfp avepfn

8.0E-06 127.7 0.0091 253.4 0.0091 0.008 758.2 0.0091 0.0085
8.0E-07 76.0 0.0054 202.1 0.0054 0.009 708.1 0.0054 0.0096
8.0E-08 48.4 0.0035 174.3 0.0034 0.012 677.5 0.0034 0.0161
8.0E-09 33.4 0.0024 157.1 0.0023 0.03 632.1 0.0023 0.0631
8.0E-10 24.0 0.0017 141.7 0.0016 0.076 551.7 0.0015 0.1719
8.0E-11 17.4 0.0012 128.6 0.0012 0.126 324.2 0.0008 0.5117
8.0E-12 12.4 0.0009 118.3 0.0008 0.167 80.5 0.0004 0.8827
8.0E-13 9.5 0.0007 104.9 0.0006 0.25 10.3 0.0002 0.9890
Notes: DecOut: average number of declared outliers; avepfn/avepfp: average proportion of false negatives/-
positives; Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo replications;
Method: BACON-EEM with v = 2, C0 = 600, em.steps.start=10, and em.steps.loops=5; structural
zeros are set to NA.

We next turn to studying the effect of contamination and the effect of MODI methods
on a set of Laeken indicators. To start with, we report the average (over the 1000 Monte
Carlo experiments) relative bias (in %) of the MODI-methods for the poverty measures
(ARPR, RMPG), the income-inequality measures (QSR, Gini), and the mean (bench-
mark) in the case of uncontaminated data (Table 10.13, panel a) that is associated with a
parametrization (α) of BACON-EEM. In addition, we distinguish two imputation meth-
ods, ZTOaM and ZGWI. The prefix ”Z“ of TOaM and WGI indicates that the structural
zeros (which have been set to NA prior to outlier detection) have been set back to zero
before imputation. Therefore, the imputation methods have only to impute for declared
outliers and incomplete observations. The results indicate that for uncontaminated data,
the relative bias produced by BACON-EEM and the subsequent imputation method is
negligible, whatsoever α or imputation method has been chosen (e.g., for α=8E-13, relbias
is at most -0.27% for RMPG).
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Contaminated Data

The presence of contamination alters the picture completely. In Table 10.13, we report the
relative bias (relbias) that is associated with a specific parametrization of BACON-EEM
followed by either ZTOaM or ZWGI for the scenario with 1% contaminated observations.
The findings are as follows.

• First, relbias induced by contamination only (i.e., neither outlier-detection nor im-
putation; denoted by BACON-EEM with α=0; Table 10.13, panel b)) is different
for the poverty and income inequality measures (and the mean). Both ARPR and
RMPG are relatively robust with regard to contamination (relbias of 1.8% and -
0.1%). The inequality measures, QSR and Gini, are seriously affected since relbias
is 251.4% and 122.0%, respectively. The mean is also affected from contamination
(relbias 92.7%). Therefore, applying BACON-EEM with α=8E-13 (which is by no
way optimal) instead of α=0, yields estimates of the inequality measures that are
8-9 times better in terms of relbias. Recall that in the case of no contamination,
BACON-EEM with α=8E-13 produced an absolute relative bias of at most 0.2%.
Thus, we argue that if the sample data are supposed to be slightly contaminated,
one may gain a lot (in terms of relative bias and relative MSE (relmse); see below)
in processing the data by BACON-EEM with a relatively low α (even if the choice of
α is not optimal). If the choice of α is poor, we have to apprehend only a relatively
small loss in terms of relbias.

• Yet we argued that the loss in relbias is relatively low. The same is true for relrmse
since it is strongly dominated by the bias part (the expected sample size of 16000
renders variance considerations negligible; for results on mse/relmse see appendix).

• Besides the issue of how to tune BACON-EEM, some emphasis must be put on
choosing the imputation method. For a given α, we report values of relbias for
ZTOaM and ZWGI (Table 10.13, panel b; for rmse, see appendix). In contrast to
the results for uncontaminated data (ibid., panel a), it is evident that the imputation
methods differ in terms of relbias in the case of contaminated data. Although the
difference in relbias between ZTOaM and ZWGI depends on α, it is in general
higher for ZWGI (for the inequality measures). This is evidence that ZWGI tends
to preserve the direction of the contaminated observations too much when imputing.
In other words, ZWGI does not down-weight the outliers sufficiently strong so that it
ends up with a higher bias than ZTOaM. By way of example, we depict the difference
in the point estimates of QSR for the imputation methods in Figure 10.5.2. Note
that for α=8E-8 and 8E-9, the bias produced by ZTOaM is negligible (if present
at all), whereas for ZWGI, the median point estimate is clearly biased (e.g., for
α=8E-11 and ZWGI relbias is 38.4%). In line with these findings, we conclude that
the ZTOaM tends to give estimates with a lower relative bias. In other words the
strategy to set outliers to missing is better than to winsorized them.

• In the case of 5% contaminated observations (Table 10.13, panel c), the gain in
relbias and relmse is accentuated. For the income inequality measures, relbias
takes extreme values if the α is too low (viz. relbias=1154.9% for α=8E-13 and
ZTOaM). In contrast to the 1% contamination, 5% outlying observations also affect
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Table 10.13: Relative bias (in %) of a set of Laeken indicators. Un-contaminated data, and
1% and 5% contaminated data processed by BACON-EEM and two different imputation
methods (ZTOaM and ZWGI).

ZTOaM ZWGI

α mean ARPR RMPG QSR Gini mean ARPR RMPG QSR Gini

Panel a): no contamination

8.0E-06 1.63 0.04 -1.21 0.65 0.73 -0.33 -0.02 0.27 -0.78 -0.71
8.0E-07 1.12 -0.03 -0.83 0.53 0.60 -0.15 0.10 0.19 -0.31 -0.30
8.0E-08 0.76 0.00 -0.61 0.32 0.39 -0.10 0.15 0.08 -0.20 -0.21
8.0E-09 0.54 0.01 -0.44 0.22 0.28 -0.07 0.16 0.04 -0.14 -0.15
8.0E-10 0.40 0.00 -0.40 0.14 0.19 -0.05 0.15 -0.01 -0.10 -0.12
8.0E-11 0.30 0.01 -0.35 0.07 0.12 -0.03 0.14 -0.04 -0.08 -0.09
8.0E-12 0.23 0.03 -0.32 0.04 0.09 -0.01 0.13 -0.07 -0.06 -0.06
8.0E-13 0.19 0.04 -0.27 0.03 0.07 0.00 0.13 -0.09 -0.04 -0.04

Panel b): 1% contamination

8.0E-06 3.19 0.76 -1.16 2.20 1.98 3.46 0.86 0.03 6.62 5.66
8.0E-07 2.74 0.76 -0.90 2.23 1.98 4.83 1.04 0.00 10.18 8.73
8.0E-08 2.40 0.78 -0.75 2.14 1.87 6.76 1.27 -0.07 15.22 12.99
8.0E-09 2.41 0.79 -0.62 2.69 2.36 9.29 1.50 -0.04 21.93 18.48
8.0E-10 3.22 0.83 -0.53 5.18 4.63 12.27 1.66 -0.07 29.96 24.78
8.0E-11 4.63 0.86 -0.49 9.23 8.30 15.37 1.75 -0.07 38.34 31.06
8.0E-12 6.55 0.88 -0.42 14.63 12.83 18.49 1.83 -0.10 46.79 37.04
8.0E-13 12.35 1.00 -0.36 30.65 24.21 23.88 1.87 -0.09 61.59 46.16
0 92.79 1.89 -0.10 251.43 122.03 – – – – –

Panel c): 5% contamination

8.0E-06 9.2 3.7 0.5 7.9 6.3 18.4 5.0 1.2 34.0 25.5
8.0E-07 8.8 3.7 0.5 8.2 6.5 24.7 5.5 1.6 49.4 35.6
8.0E-08 8.9 3.9 0.6 9.1 7.2 34.5 6.4 2.1 74.0 49.8
8.0E-09 12.8 4.1 0.6 20.1 15.9 50.2 7.5 2.8 114.2 69.5
8.0E-10 36.0 4.7 0.9 81.1 41.7 80.9 8.6 3.1 194.2 93.8
8.0E-11 174.2 6.8 1.9 443.5 105.0 207.9 9.6 3.4 528.5 137.0
8.0E-12 373.6 9.2 3.1 966.5 168.1 384.1 10.0 3.5 994.1 176.5
8.0E-13 445.2 9.9 3.5 1154.9 185.5 446.4 10.0 3.5 1158.7 186.4
0 xxx xxx xxx xxx xxx – – – – –
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: BACON-EEM with v = 2, C0 = 600, em.steps.start=10, and em.steps.loops=5;
structural zeros are set to NA.

the estimates of the (robust) poverty measures. It is evident that even a moderate
robustification yields far better estimates in terms of bias and relmse.
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Figure 10.17: Differences in point estimates of QSR (1000 Monte Carlo replications) for
two different imputation methods: ZTOaM and ZWGI. Data: 1% contaminated; Method:
BACON-EEM; Red line indicates the population value.

Contaminated Data and Missing Values

Besides the effect of contamination on the estimates, we are interested how the estimators
behave when the contaminated data feature also missing values. In Table 10.14, we report
the numerical criteria of the detection performance (we also report the number of BACON
iterations, the final set of good observations, and the MD cutoff associated with α). When
comparing the detection performance of BACON-EEM with and without missing values
(Tables 10.14 and 10.12) we recognize hardly any difference, except that in the latter
case the number of undetected outliers tends to be slightly higher. Overall, the detection
performance of BACON-EEM with incomplete data (for the relatively small amount of
missing values) is as good as for complete data.

We then turn to studying the effect of contamination and the effect of MODI methods
on a set of Laeken indicators in the presence of missing values. In this case the imputa-
tion methods, ZTOaM and ZWGI, have to impute for the missing observations and the
declared outliers. The results are shown in Table 10.15. In addition, we show boxplots
of the point estimates of QSR for ZTOaM vs. ZWGI and complete vs. incomplete data
(Figure 10.5.2; the plots for complete data are the same as in Figure 10.5.2 and have been
repeated for ease of comparability). For the income-inequality measures, the findings are
as follows.

• The results of ZWGI and ZTOaM are very similar in the case of incomplete data.
This is in contrast to complete data.

• Irrespective of the imputation method and the choice of α (among the possible
values), the relative bias is slightly larger than in the case of no missing values.
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For the poverty measures:

• The estimates of the poverty indicators are remarkably biased (Figure 10.5.2).

• Moreover, the relative bias tends to be independent of the choice of α. This is
evidence that estimated model (particularly the location) does not perfectly conform
with the underlying data. This in turn is no surprise as for income data, an EC
model can at most serve as a working model. Fortunately, the relative bias is
relatively small (4.1%-5.1%).

Table 10.14: Detection performance of the BACON-EEM (for 1% contamination; 2%
component-wise missing values)
α DecOut avepfp avepfn final_set niter cutpoint

8.00E-06 257.7 0.0095 0.0115 13613.3 9.5 29.0
8.00E-07 204.8 0.0056 0.0119 13666.2 8.0 34.0
8.00E-08 175.8 0.0036 0.0157 13695.1 7.4 39.0
8.00E-09 158.0 0.0025 0.0330 13712.9 7.0 43.9
8.00E-10 142.2 0.0018 0.0799 13728.7 6.8 48.8
8.00E-11 128.7 0.0013 0.1314 13742.2 6.6 53.7
8.00E-12 118.1 0.0009 0.1735 13752.9 6.3 58.6
8.00E-13 104.3 0.0007 0.2585 13766.7 6.9 63.4
Notes: DecOut: average number of declared outliers; avepfn/avepfp: average proportion of false negatives/-
positives; niter: number of BACON iterations; cutpoint: squared MD threshold Data: AAT-SILC; stratified
simple cluster sample, 6000 households; 1000 Monte Carlo replications; Method: BACON-EEM with v = 2,
C0 = 600, em.steps.start=10, and em.steps.loops=5; structural zeros are set to NA.

Table 10.15: Relative bias (in %) of a set of Laeken indicators. Contaminated data with
2% component-wise missing observations processed by BACON-EEM and two different
imputation methods (ZTOaM and ZWGI).

ZTOaM ZWGI

α mean ARPR RMPG QSR Gini mean ARPR RMPG QSR Gini

8.0E-06 4.48 4.90 4.10 7.31 4.90 4.71 4.85 4.23 8.07 5.51
8.0E-07 4.02 4.88 4.34 7.30 4.87 4.26 4.86 4.37 8.28 5.59
8.0E-08 3.73 4.88 4.53 7.29 4.85 3.85 4.85 4.51 7.71 5.15
8.0E-09 3.75 4.82 4.73 7.86 5.33 3.77 4.81 4.62 7.99 5.41
8.0E-10 4.54 4.87 4.69 10.41 7.55 4.51 4.91 4.73 10.52 7.61
8.0E-11 5.92 5.00 4.86 14.66 11.19 5.94 5.01 4.72 14.85 11.32
8.0E-12 7.74 5.08 4.99 20.12 15.56 7.77 5.10 4.90 20.41 15.75
8.0E-13 13.42 5.25 5.24 36.70 26.71 13.50 5.24 5.15 37.06 26.96
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: BACON-EEM with v = 2, C0 = 600, em.steps.start=10, and em.steps.loops=5;
structural zeros are set to NA.
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(a) Imputation: ZWGI
ZWGI
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(b) Imputaion: ZTOAM

Figure 10.18: Differences in point estimates of QSR (1000 Monte Carlo replications)
for two different imputation methods: ZTOaM and ZWGI and complete and incomplete
(MCAR_0.02) data. Data: 1% contaminated; Method: BACON-EEM; Red line indicates
the population value.

10.5.3 GIMCD

GIMCD is also based on the assumption of MVN (EC) data. Therefore, the difficulties of
choosing an appropriate tuning constant (α) pertain here too. As with BACON-EEM the
choice of α is based on heuristics adapted from the ECDF of the squared Mahalanobis
distances (MD). In Figure 10.20, we show the upper tail of the ECDF of the MD for
a subsample of 500 ECDF curves (among the 1000). In contrast to BACON-EEM, the
median MD-ECDF curve for GIMCD does not feature a clearly visible bulge. Nonetheless,
the slope of the curve changes at approximately log(MD)=3.75 its behavior. This point
is associated with an average of 114 declared outliers (Table 10.16). It should be stressed
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Figure 10.19: Differences in point estimates of ARPR (1000 Monte Carlo replications)
between complete and incomplete (MCAR_0.02) data for ZTOaM. Data: 1% contamin-
ated; Method: BACON-EEM; Red line indicates the population value.

that this heuristic should be considered as a rule of thumb (which may far from optimal).
Despite the reservations, it may serve as a useful tool.

Table 10.16: Detection performance of GIMCD: summary statistics of the number of
declared outliers based on the cutoff heuristic (cutoff κ in log scale).
κ Q(#[MD > κ]; 0.25) Q(#[MD > κ]; 0.50) Q(#[MD > κ]; 0.75) avg(#[MD > κ])

3.25 219.0 229.0 241.0 230.0
3.50 150.0 157.0 163.0 156.7
3.75 108.0 114.0 120.0 114.0
4.00 69.0 79.0 87.0 77.1
4.25 22.0 33.0 41.0 31.2
Notes: MD: squared Mahalanobis distance; Q(·; p) denotes the pth quantile; #[< condition >] denotes
the number of observations that obey the condition.

Contaminated Data

Thoughout the discussion, we will adhere to the above heuristic and the therby obtained
number of 114 declared outliers (cf. Table 10.16). The detection performance of GIMCD
(for a series of tuning constants, α) in the case of uncontaminated and contaminated
data (ε = 0.01) is reported in Table 10.17. From the tabulated values, we deduce that
GIMCD with α=8E-7 declared a number of 130 outliers. Note that the α values have
been chosen on a equally spaced grid (for ease of simplicity). Accordingly, the values of
DecOut, the number of declared outliers associated with the respective α, are on a grid,
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Figure 10.20: Functional boxplot of the upper tail of the ECDF of the squared Ma-
halanobis distances. Each line represents the upper tail of the ECDF of the MD for an
application of GIMCD on a Monte Carlo sample (here subsample of 500 ECDFs among
1000; MD in log scale; upper tail: 300 largest MD values). The black curve represents
the median curve; outlier curves are colored red.

too. As a result, there are two choices of alpha, i.e., 8E-8 and 8E-7, that accord with
the number of 114 declared outliers (which is due to the heuristical argument). In the
presence of (anticipated) contamination, it is safe to choose α=8E-7 because it declares
a larger number of outliers – i.e., a conservative choice. In terms of the avepfp-avefpn,
α=8E-7 seems to be are reasonable choice. However, avepfn=0.19 is rather high, insofar
that almost 20% of the declared outliers are falsely declared outliers. This is also in sharp
contrast to the declaration performance of BACON-EEM with avepfn=0.12 on grounds
of DecOut=128.6 (cf. Table 10.12). It seems that GIMCD tends to falsely declare a
larger number of observations than BACON-EEM does (e.g., GIMCD with DecOut=157.1
features an avepfn of 0.15 (Table 10.17) whereas BACON-EEM with 157.1 exhibits an
avepfn of only 0.03 (Table 10.12); avepfp, on the other hand, is similar for both methods).

In passing we note that

Contaminated Data and Missing Values

Besides the effect of contamination on the estimates, we are interested how the estimat-
ors behave when the contaminated data feature also missing values. In Table 10.19 we
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Table 10.17: Detection performance of the GIMCD (for un-contaminated data and 1%
contamination)

un-contaminated 1% contamination

α DecOut avepfp avepfn DecOut avepfp avepfn

8.00E-03 574.72900 0.04103 – 661.279 0.03868 0.02755
8.00E-04 229.62800 0.01639 – 325.09 0.01467 0.05035
8.00E-05 112.17700 0.00801 – 210.11 0.00682 0.09805
8.00E-06 61.06600 0.00436 – 158.70 0.00360 0.15005
8.00E-07 34.97500 0.00250 – 130.83 0.00198 0.19223
8.00E-08 20.77800 0.00148 – 109.32 0.00113 0.26847
8.00E-09 12.89200 0.00092 – 94.02 0.00068 0.33957
8.00E-10 8.09200 0.00058 – 77.03 0.00042 0.44329
8.00E-11 5.10900 0.00036 – 58.88 0.00026 0.56825
8.00E-12 3.26800 0.00023 – 43.66 0.00017 0.67698
8.00E-13 2.23600 0.00016 – 28.74 0.00011 0.78792
Notes: DecOut: average number of declared outliers; avepfn/avepfp: average proportion of false neg-
atives/positives; Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: GIMCD, structural zeros are set to NA.

report the numerical criteria of the detection performance. With regard to the scenario of
complete data, GIMCD behaves almost the same with 2% component-wise missing values.

We then turn to studying the effect of contamination and the effect of GIMCD on a set of
Laeken indicators in the presence of missing values. In this case the imputation methods,
ZTOaM and ZWGI, have to impute for the missing observations and the declared outliers.
The results are shown in Table 10.20.

The findings can be summarized as follows.

• The bias of all indicator in the set of Laken indicators is slightly larger than in the
case of complete data.

• Income inequality measures: The results of ZWGI and ZTOaM are very similar in
the case of incomplete data. This is in contrast to complete data.

• Poverty indicators: The estimates of the poverty indicators are remarkably biased.
Moreover, the relative bias tends to be independent of the choice of α. This is
evidence that estimated model (particularly the location) does not perfectly conform
with the underlying data. This in turn is no surprise as for income data, an EC
model can at most serve as a working model. Fortunately, the relative bias is
relatively small.

• Overall, the results of GIMCD with incomplete data are very similar to those of the
BACON-EEM with the same data.
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Table 10.18: GIMCD: relative bias (in %) of a set of Laeken indicators. Un-contaminated
data, and 1% and 5% contaminated data processed by GIMCD and two different imputa-
tion methods (ZTOaM and ZWGI).

ZTOaM ZWGI

α mean ARPR RMPG QSR Gini mean ARPR RMPG QSR Gini

Panel a): no contamination

8.0E-13 0.05 0.11 -0.13 -0.03 -0.02 0.01 0.13 -0.10 -0.03 -0.04
8.0E-12 0.06 0.12 -0.15 -0.02 -0.01 0.00 0.13 -0.09 -0.04 -0.04
8.0E-11 0.09 0.12 -0.15 0.00 0.00 0.00 0.13 -0.09 -0.04 -0.04
8.0E-10 0.14 0.13 -0.18 0.03 0.04 0.00 0.13 -0.09 -0.04 -0.04
8.0E-09 0.20 0.12 -0.21 0.08 0.08 0.00 0.14 -0.09 -0.04 -0.05
8.0E-08 0.32 0.12 -0.24 0.18 0.18 -0.01 0.13 -0.08 -0.05 -0.06
8.0E-07 0.51 0.15 -0.31 0.39 0.38 -0.03 0.11 -0.05 -0.08 -0.08
8.0E-06 0.81 0.19 -0.41 0.67 0.62 -0.07 0.06 -0.03 -0.17 -0.15
8.0E-05 1.34 0.34 -0.63 1.09 0.99 -0.19 -0.08 -0.03 -0.44 -0.37
8.0E-04 2.50 0.63 -0.90 2.12 1.87 -0.51 -0.43 -0.07 -1.33 -1.11
8.0E-03 5.41 1.27 -1.18 4.46 3.83 -1.71 -2.02 -1.04 -4.98 -4.09

Panel b): 1% contamination

8.0E-13 57.73 1.61 -0.17 155.23 93.33 67.32 1.90 -0.10 181.24 102.35
8.0E-12 44.51 1.47 -0.20 118.97 78.26 56.16 1.90 -0.10 150.49 91.03
8.0E-11 34.11 1.37 -0.27 90.43 64.18 46.17 1.89 -0.10 122.97 79.46
8.0E-10 24.36 1.24 -0.27 63.65 48.81 35.00 1.85 -0.11 92.25 64.59
8.0E-09 17.52 1.11 -0.30 44.77 36.45 25.52 1.66 -0.12 66.31 49.96
8.0E-08 12.52 1.09 -0.39 30.90 26.25 18.63 1.48 -0.15 47.51 37.82
8.0E-07 7.55 1.01 -0.42 17.01 15.03 11.91 1.24 -0.21 29.25 24.51
8.0E-06 5.73 1.02 -0.52 11.53 10.31 8.37 1.07 -0.25 19.77 16.96
8.0E-05 4.46 1.13 -0.59 7.13 6.31 5.29 0.90 -0.23 11.54 10.01
8.0E-04 4.60 1.35 -0.74 5.48 4.72 2.91 0.53 -0.27 5.26 4.58
8.0E-03 7.60 2.13 -0.75 8.02 6.74 0.50 -1.08 -1.13 -1.45 -0.99
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: GIMCD; structural zeros are set to NA.

10.5.4 Epidemic Algorithm

In contrast to BACON-EEM and GIMCD the Epidemic Algorithm (EA) is not based on a
distributional assumption (or specific data model) such as multivariate normality. There-
fore, the data on the income components do not necessarily have to be transformed prior
to the outlier-detection phase. In addition, the algorithm can cope with the structural
zeros.
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Table 10.19: Detection performance of GIMCD: 1% contaminated data; 2% component-
wise missing values
α DecOut GenOut avepfp avepfn

8.00E-13 24.943 127.978 0.00011 0.81738
8.00E-12 39.622 127.978 0.00017 0.70843
8.00E-11 54.222 127.978 0.00026 0.60419
8.00E-10 72.036 127.978 0.00041 0.48183
8.00E-09 90.216 127.978 0.00067 0.3681
8.00E-08 105.634 127.978 0.00107 0.29111
8.00E-07 127.029 127.978 0.00187 0.21049
8.00E-06 154.582 127.978 0.00342 0.16351
Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo replications; Method:
GIMCD; structural zeros are set to NA.

Table 10.20: GIMCD: relative bias (in %) of a set of Laeken indicators: 1% contamin-
ated data; 2% component-wise missing values, processed by GIMCD and two different
imputation methods (ZTOaM and ZWGI).

ZTOaM ZWGI

α mean ARPR RMPG QSR Gini mean ARPR RMPG QSR Gini

8.0E-13 61.16 5.58 4.85 170.28 96.95 65.33 5.71 4.99 181.92 100.71
8.0E-12 47.68 5.41 4.84 132.45 82.26 51.05 5.60 4.94 141.88 85.84
8.0E-11 37.28 5.36 4.78 103.32 68.87 39.18 5.44 4.87 108.58 71.18
8.0E-10 27.38 5.18 4.84 75.54 54.04 27.98 5.26 4.85 77.29 54.93
8.0E-09 19.65 5.06 4.91 53.86 40.74 19.86 5.07 4.85 54.55 41.16
8.0E-08 14.32 4.95 4.82 38.72 30.27 14.43 4.94 5.00 39.14 30.55
8.0E-07 8.99 4.92 4.79 23.50 18.63 9.01 4.91 4.79 23.62 18.73
8.0E-06 6.89 4.96 4.65 17.05 13.33 6.87 4.81 4.62 17.00 13.32
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: GIMCD; structural zeros are set to NA.

EA Detection

The data on the four income components, workinc, capinc, transp, and transh are dir-
ectily processed by EA. All computations have been done with the following specifications
of EA: EAdet(data, weights, reach = ”max“, transmission.function = ”root“,
power = ncol(data), distance.type = ”euclidean“, global.distances = F, maxl
= 5, prob.quantile = 0.9, random.start = F, threshold = F, deterministic =
TRUE); all other tuning constants are set to their default values. Two issues are important
to note. First, the root transmission function leads to a relatively good spreaded/dis-
persed distribution of infection times, which is an important characteristic in order to
study the outlier-declaration behavior. If the infection times of the majority of the data
were very similar (if not identical), it would be very difficult to distinguish potential out-
liers from ordinary observations. Second, power was set to number of variables—here,
four. Though, setting power to three gives very similar results.
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Figure 10.21: Detection performance of EA: number of uninfected observations and num-
ber of declared outliers (using the default rule) versus duration. (red line shows a local
polynomial fit; bandwidth selection: smooth cross-validation criterion).

In general, EA cannot be used in an out-of-the-box, i.e., rather automatic, manner. It
requires the user to study certain diagnostics and to tune the method accordingly. As a
result, it is extremely difficult to tune EA in a simulation study such that the results of
particular simulation runs can be aggregated to yield a consistent overview. Notably, we
encounter rather high variability among the numerical criteria of the detection perform-
ance (Figure 10.21). In view of the high degree of variation among the simulation runs,
we decided to study the detection and imputation properties separately.

The findings of the EA detection step can be summarized as follows.

• The default outlier-detection rule of EA does not work for the income-component
data (Figure 10.21). This method declares between 0 and more than 4000 outliers
(observe that we generated on average 127.9 outliers, with 1.19 std. dev.). Moreover,
the number of declared outliers tends to be almost independent from the duration
of the epidemic.

• Declaring the uninfected observations as outliers, on the other hand, seems to be
a sensible outlier-declaration rule (Figure 10.21), given that the duration of the
epidemic was sufficiently long (e.g., duration larger than 15 or 20).

• The duration of the epidemic is crucial in order to declare outliers properly. In
Figures 10.22 and 10.23 we show the average proportion of false negative (avepfn)
and false positives (avepfp) – i.e., undetected outliers and falsely declared outliers
– versus duration and the number of declared outliers, respectively. It is evident

AMELI-WP7-D7.1
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Figure 10.22: Detection performance of EA: avepfp and avepfn versus declared outliers.
(red line shows a local polynomial fit; bandwidth selection: smooth cross-validation cri-
terion; fit is restricted to a range of 0–150 declared outliers.)

that the larger the number of declared outliers, the smaller the average proportion
of undetected outliers (avepfn; and vice versa). In contrast, the larger the aver-
age number of declared outliers, the larger the number of falsely declared outliers
(avepfp). Thus, there is a trade-off. The situation is clarified, when we consider
avepfn and avepfp contrasted with the duration of the epidemic (Figure 10.23): Up
to a duration of approx. 22, avepfn decreases considerably, whereas the increase of
avepfp is moderate. As a result, EA works best for a duration between 20 and 25.

Reverse EA Imputation

In view of the high degree of variation among the simulation runs, we decided to study the
detection and imputation properties separately. We therefore modified the EA-detection
step so that it produces a fixed number of declared outliers. In this respect, the vector
of infection times for all observations was sorted in ascending order, and the largest g
observations are then declared outliers (where g can take the (arbitrarily chosen) value 100,
130, 140, 160 or 200). Essentially, this modification impedes that the detection-related
variability carries over to the final estimates of the Laeken indicators. Consequently, the
Monte Carlo distribution of the estimates is determined by the imputation step.

Given the fixed number of declared outliers, g, the Reverse Epidemic Algorithm (REA) is
used to impute for the declared outliers. EAimp(data, weights, outind=EAdet.i$outind,
duration = EAdet.r$duration, maxl = 5, kdon = 1; all other arguments are set to

© http://ameli.surveystatistics.net/ - 2011
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Figure 10.23: Detection performance of EA: avepfp and avepfn versus duration. (red line
shows a local polynomial fit; bandwidth selection: smooth cross-validation criterion).

their default value. Observe that the duration of the reverse epidemic is the same as the
one of the detection phase.

The relative bias (in %) of the set of Laeken indicators, computed on grounds of the data
processed by REA imputation, are reported in Table 10.21. Note that the root mean
squared error is of similar magnitude that the bias, because the former is dominated by
the bias term. For this simulation, an average number of 127.9 outliers (std. dev. 1.19)
has been generated. The results are qualitatively similar to those of BACON-EEM and
GIMCD, insofar that the estimates of the poverty indicators have almost zero bias, and
the income inequality measures are severely biased. In contrast to BACON-EEM and
GIMCD, the bias of the income inequality measures is extremely high, even in the case
of 200 declared outliers (DecOut). Though, it might be possible that the bias can be
reduced when increasing the DecOut. On the other hand, it would be questionable how
to motivate the choice of such a large number of declared outliers. Overall, the tuning of
REA is extremely difficult.
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Table 10.21: Reverse Epidemic Algorithm: relative bias (in %) of a set of Laeken indic-
ators: 1% contaminated data.
DecOut Mean QSR Gini ARPR RMPG

avg med avg med avg med avg med avg med

100 52.2 50.4 141.9 136.7 88.6 80.4 1.5 1.5 0.05 0.20
130 30.9 37.7 84.2 102.0 60.8 63.1 1.3 1.4 0.01 0.25
140 27.3 35.8 72.4 97.0 55.0 60.5 1.3 1.4 0.03 0.28
160 22.6 32.7 60.8 88.4 47.2 56.1 1.3 1.4 0.04 0.30
200 19.1 28.5 50.8 77.1 40.5 50.1 1.3 1.4 0.07 0.38
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: EA detection with a fixed number of outliers, DecOut, and subsequent imputation by
Reverse Epidemic Algorithm.
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Table 10.22: BACON-EEM: Root MSE (in %) of a set of Laeken indicators. Un-
contaminated data, and 1% and 5% contaminated data processed by BACON-EEM and
two different imputation methods (ZTOaM and ZWGI).

ZTOaM ZWGI

α mean ARPR RMPG QSR Gini mean ARPR RMPG QSR Gini

Panel a): no contamination

8E-06 368.2 0.47 1.01 0.09 0.43 167.71 0.48 1.06 0.08 0.40
8E-07 278.7 0.48 1.01 0.08 0.41 155.97 0.48 1.07 0.08 0.36
8E-08 222.1 0.47 1.03 0.08 0.39 154.47 0.48 1.06 0.08 0.35
8E-09 192.9 0.47 1.03 0.08 0.37 153.70 0.48 1.06 0.08 0.35
8E-10 176.5 0.47 1.04 0.08 0.37 153.32 0.48 1.06 0.08 0.35
8E-11 166.9 0.47 1.04 0.08 0.35 153.16 0.48 1.06 0.08 0.35
8E-12 162.0 0.47 1.05 0.08 0.35 153.27 0.48 1.06 0.08 0.35
8E-13 159.0 0.47 1.05 0.08 0.35 152.87 0.48 1.06 0.08 0.35

Panel b): 1% contamination

8E-06 664.8 0.49 0.98 0.12 0.66 727.98 0.50 1.00 0.29 1.62
8E-07 576.6 0.49 0.97 0.12 0.66 1011.86 0.50 1.00 0.44 2.47
8E-08 511.6 0.49 0.98 0.12 0.63 1419.52 0.52 0.99 0.66 3.68
8E-09 517.3 0.50 0.99 0.14 0.78 1946.49 0.53 0.99 0.94 5.21
8E-10 693.0 0.50 0.98 0.25 1.45 2562.83 0.54 0.98 1.28 6.93
8E-11 979.2 0.50 0.99 0.41 2.42 3185.44 0.55 0.98 1.62 8.60
8E-12 1516.4 0.50 0.99 0.73 3.99 3821.74 0.56 0.98 1.97 10.21
8E-13 3358.8 0.51 0.99 1.78 8.30 5127.88 0.56 0.98 2.71 12.97

Panel c): 5% contamination

8E-06 1876.2 0.74 0.94 0.34 1.75 3761.09 0.90 1.02 1.41 6.97
8E-07 1796.0 0.75 0.94 0.35 1.81 5078.47 0.96 1.02 2.08 9.80
8E-08 1820.6 0.76 0.96 0.41 2.12 7149.38 1.08 1.07 3.13 13.76
8E-09 2846.6 0.78 0.99 1.03 5.34 10372.07 1.23 1.13 4.81 19.10
8E-10 14113.6 0.87 1.01 7.21 14.29 19306.83 1.38 1.16 9.66 25.99
8E-11 49452.9 1.20 1.10 25.87 33.28 51121.59 1.51 1.19 26.69 38.41
8E-12 81496.6 1.49 1.17 42.83 46.93 81882.37 1.57 1.20 43.06 48.14
8E-13 92269.5 1.56 1.19 48.55 50.34 92300.21 1.57 1.20 48.61 50.47
Notes: ARPR: at-risk-of-poverty rate; RMPG: relative median poverty gap; QSR: quintile share ratio; Gini:
Gini coefficient. Data: AAT-SILC; stratified simple cluster sample, 6000 households; 1000 Monte Carlo
replications; Method: BACON-EEM with v = 2, C0 = 600, em.steps.start=10, and em.steps.loops=5;
structural zeros are set to NA.
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10.6 Recommendations
Means: Even if no outliers are present in the data the very skew distribution of
income favours a very light robustification over the non-robust classical estimators. A
robustified Horvitz-Thompson (RHT) estimator with a tuning constnat of k = 6 seems
to be a good candidate with low bias if the data contains no outliers and with at least
a minimal protection against some rare outliers. A trimmed mean (TM) with light
trimming of 0.5% of large observations is similar to a robustified Horvitz-Thompson
estimator. The RHT has the advantage that it does not downweight any observation
in case of very well behaved data, while the TM always downweights the specified
proportion of the data.

Quintile Share Ratio: The quintile share ratio should always be estimated with
a robust estimator. The non-parametric SQSR estimator with a very slight trimming
above, say some 0.5% and a bias compensation in the lower quintile of similar magnitude
or roughly double the upper trimming proportion, seems to be versatile, robust and
sufficiently efficient over a range of mild contamination rates. If contamination is larger
then the choice of the trimming proportion becomes more difficult. In any case, before
fixing a trimming proportion, several choices should be evaluated.

If the tail of the income distribution can be approximated with a Pareto distribu-
tion, which is the case for the AMELIA and AAT-SILC simulation universes, a semi-
parametric robustification is promising. Replacement of non-representative outliers
(RN) with an additional calibration are the best versions. The choice of the tuning
constant seems to be less critical than for the non-parametric estimators, however at
the price of a more complex procedure.

Multivariate outliers: The multivariate non-elliptical distribution of the income
components makes it very difficult to detect and impute multivariate outliers. Nev-
ertheless this is necessary when the structure of income must be investigated more
closely. The pre- and post-treatment of the data is crucial for the methods to work. In
particular the components must be aggregated or segmented such that the detection
and imputation can be carried out in four, five, maybe up to eight or ten dimensions
but not for all original variables together. Setting the zero values to missing is a
possible way of treatment if the subsequent algorithms can cope with many missing
values. The BACON-EEM algorithm for outlier detection is remarkably stable. A
subsequent imputation with the same multivariate model as underlying the outlier de-
tection proved to be feasible and with good results. Non-parametric methods like the
Epidemic Algorithm proved to be complex in their handling and are rarely better than
the BACON-EEM with Gaussian imputation.

The default choice of tuning constants of the methods studied often gives poor results.
This is mainly a problem for simulations, where no visual inspection of the distribution
of the Mahalanobis distances or of infection times is possible. In an application several
tuning constants would be tested and visual inspection of distribution plots would be
used to decide on the cut-point for outlyingness.

Variance estimation: Univariate robust estimators allow for a decent variance es-
timator. However, with complex designs the variance estimators may overestimate the
true variance rather heavily.
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Variance estimation for data which has undergone multivariate outlier detection and
imputation as well as subsequent reaggregation into disposable income followed by
classical estimators of Laeken indicators might be possible with resampling techniques.
However their calculation is very complex and the costs seem prohibitive for the moment
at least for routine application. It is nevertheless recommended to investigate with
simulation the impact on the variance of estimators of multivariate outlier detection
and imputation, and in fact of any editing and imputation of income components.
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