Human action control relies on representations that integrate perception and action, but the relevant research is scattered over various experimental paradigms and the theorizing is overly paradigm-specific. To overcome this obstacle we propose BRAC (binding and retrieval in action control), an overarching, integrative framework that accounts for a wide range of seemingly unrelated findings by assuming ‘two core processes: feature binding and retrieval’. In contrast to previous approaches, we define binding and retrieval as functionally different and separable processes that independently contribute to the observed effects. Furthermore, both processes are independently modulated by top-down and/or bottom-up processes. BRAC organizes the literature on action control in novel ways, and relates diverse independently investigated action-related phenomena from different research fields to each other.

A Cognitive Approach to Action

Human cognition serves adaptive action. Through their actions humans shape and influence their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1]. They acquire their ability to turn movements (arbitrary, nongoal-directed activities [2]) into goal-directed actions by integrating movements with their physical and social environment [1].

The idea that action and perception are closely intertwined was already suggested by ideomotor theory (see Glossary) [6]; more recent approaches are presented in [7–10]; overviewed in [11], as well as by Piaget’s [12] approach to cognitive development. This idea continues in current approaches to action control (Box 1) that focus on the integration of perception, action, and outcomes – and is applicable, as we will argue, to various well-established experimental tasks that are commonly used to study action control. These tasks have one important procedural characteristic in common, namely that they all rely on a sequential prime–probe structure – meaning that processing of information at one occasion (a prime trial) influences processing and responding at a subsequent occasion (a probe trial). However, each action-control task has been developed to measure a specific aspect of action, and the specific results of these action-control tasks have been interpreted by paradigm-specific accounts.

We propose an overarching perspective that (i) is tailored to the prime–probe structure of action-control paradigms, (ii) allows integration of results that were gathered with these paradigms, and (iii) can replace paradigm-specific mechanistic explanations with a unifying explanation that covers all these paradigms, and that can be related to research on action in general. The framework we propose comprises two core processes: feature binding and retrieval (Figure 1).
The BRAC Framework

Our major claim is that many aspects of cognition such as perception, attention, memory, and motor planning are best understood by their contribution to action control. Accordingly, many observations that have been made in areas investigating these functions can be accounted for by core processes that are known to drive action control.

Building on existing action-control approaches, we assume that features of the stimulus environment (S; stimulus, context, cue), a response in that environment (R; decision, effector), and its subsequent effects (E; perceptual and affective) are integrated (or bound together) into an event-file [13]. Repetition of any S, R, or E feature triggers the retrieval of previous event-files comprising codes of the same features, and these can impact on current performance. If, for instance, a participant responds to a stimulus S with a keypress (the R component), which then triggers a particular perceptual effect (a change or disappearance of the stimulus), the whole episode consisting of the S features (the color, shape, location, and also the meaning of the situation), the R features (the particular effector, its location, the key, but also the semantic representation of the response meaning), and the E features (tactile or visual feedback, and also evaluative outcomes) are bound together into an event-file. Re-encountering one of the features then leads to automatic retrieval of all the elements of the previous episode (S, R, and E). Whether such retrieval results in performance costs or benefits depends, however, on the particular circumstances.

BRAC adopts the assumption of the theory of event coding [14] that stimuli, responses, and action effects are coded in a common representational format that allows us to treat features of S, R, and E interchangeably: event-file retrieval can be triggered by any type of feature. Thus, even a
Trends in Cognitive Sciences

Figure 1. The BRAC (Binding and Retrieval in Action Control) Framework. This framework postulates two core processes: (i) feature binding of stimulus (S), response (R), and effect (E) features into an event-file; then, upon repetition of any feature, (ii) an automatic episodic retrieval process that retrieves the previous event-file including all features. Feature binding and retrieval operate in separation and are independently modulated by top-down and bottom-up influences.

The BRAC framework emphasizes that the immediate past shapes current behavior. By stressing this point, BRAC builds bridges between various action-control tasks that almost always rely on a sequential prime-probe design. Responses in the prime (or trial n − 1) affect responding in the probe (or trial n). The sequential design of action-control paradigms has several important theoretical consequences. For instance, because of their sequential character, it is always possible that episodic retrieval processes in the probe retrieve information from the prime [18,19]. As a consequence, effects that are observed in these tasks are in principle open to different explanations (in terms of retrieval, inhibition, reconfiguration, partial match, etc.). This inherent complexity of the sequential paradigms employed to study intentional action in laboratory settings probably resembles the complexity of intentional actions themselves in real-world settings [20]. We see this complexity as a strength because this is a prerequisite to arrive at a realistic picture of the various determinants of action control and of their interactions. Nevertheless, making adequate use of these paradigms to investigate action control requires a conceptual framework that (i) allows integration of findings across different paradigms, and (ii) stresses the separation of processes taking place at the prime from processes taking place at the probe. The separation of feature binding in the prime, and retrieval at the probe, is a core assumption of the BRAC framework.

repeated response retrieves the previous S and E features [15], and a stimulus that is expected to induce response conflict might induce a perceptual conflict upon feature retrieval, as measured by early lateralized visual electroencephalography (EEG) [16]. We recently showed that even anticipated responses retrieve previously integrated sensory features [17] – confirming that R features and S features can initiate retrieval equally well.

Glossary

Action-planning tasks: the key question in action-planning studies concerns how the mental preparation of an action in a prime trial impacts on the initiation of the prepared (or a related) action in a probe trial. Feature binding during action planning can hinder or facilitate the initiation of features overlapping actions, although the specific conditions and reasons for such costs and benefits have remained elusive so far.

Distractor-response binding task: an action-control task in which a distractor is repeated (as distractor) or changed between two consecutive displays while the response also repeats or changes. Distractor repetition effects are modulated by the response relation between prime and probe.

Event-file: an internal feature-based representation of stimulus, response, and effect features. The concept of an event-file follows the tradition of Kahneman and Treisman’s [93] object files (that consisted only of stimulus features).

Gratton effect: denotes the sequential modulation of congruence effects and more specifically how conflicting information is handled by cognitive control. Ignoring incongruent information in trial n seems to be easier if trial n − 1 was also incongruent (i.e., congruency effects are typically smaller after an incongruent compared with a congruent trial).

Ideomotor theory: the basic assumption of this >100 year old approach is that for an action one must first anticipate the perceptual effect the action will produce (this is labeled the ‘idea’). The motor program that will lead to this anticipated perceptual effect is then retrieved and executed.

Negative priming task: an action-control task that was designed to investigate the processing of distracting stimuli while selectively responding to a target. In this task, on each display a target and a distractor are presented. Repeating the prime distractor in trial n − 1 as the probe target in trial n leads to performance costs.

Repetition priming tasks: a family of tasks where a stimulus repeats between consecutive displays while the response also repeats or changes. Repetition priming effects emerge at the perceptual level when the same stimulus appears a second time, and they emerge also at
Integration of Task-Specific Explanations in Action Control

An important benefit of the framework is its potential to reinterpret empirical phenomena of action control across a wide range of experimental paradigms while retaining the level of detail of theorizing that has been achieved in these paradigms. BRAC can account for well-known effects observed in action-control tasks such as task-switching tasks [21], negative priming tasks [20,22], repetition priming tasks [23], S1R1–S2R2 tasks or distractor–response binding tasks [24–26], action-planning tasks [27–29], and tasks measuring sequential modulation of interference (i.e., the Gratton effect [30]), thereby stressing the convergent nature, if not identity, of the underlying processes. All these different paradigms have been designed to study specific aspects of action control. For example, ignoring distractors is assessed in the negative priming paradigm, flexibility and rigidity of action control in multitask environments is measured in task-switching, and adaptive changes in action modes (e.g., speed vs accuracy) are assessed via the sequential modulation of interference. Sophisticated theoretical models have been developed for each of the effects that these paradigms have produced. Importantly, however, for each of these paradigm-specific explanations, alternative explanations in terms of binding and retrieval can be suggested (Table 1 summarizes the procedural details of the tasks, the elicited effects, the typical explanation, and how BRAC can describe the effects in terms of binding and retrieval).

For instance, task-switching costs emerge as a sequential effect if the task changes rather than repeats from prime to probe. It has been argued that task-set inhibition after the prime leads to task-switching costs [31] because the incompatible task-set in the prime is inhibited and must be reactivated in the probe. Nevertheless, task-switching costs can be explained under the BRAC framework as task-induced retrieval of incompatible S–R mappings. Because the stimulus categories repeat from prime to probe (even in task-switch conditions), repeating the task context in the probe retrieves the prime event-file that includes the S–R mapping of the prime task, which in task-switch sequences interferes with current task demands of the probe [32–36]. The same approach can be taken to explain negative priming [20]. In this task, participants respond to a target while ignoring a distractor on each prime and probe display. The original and still accepted interpretation invokes inhibition (or episodic retrieval of do-not-respond tags attached to the prime distractor [37]). A distractor-to-target repetition that typically leads to performance costs (i.e., the negative priming effect) was interpreted as reflecting lingering prime inhibition or reactivated do-not-respond tags [38]. BRAC assumes that all prime stimuli and the response are integrated into a prime event-file that is retrieved when the prime distractor repeats as the probe target [22,26] – the prime response is always incompatible with the probe response, and hence performance costs emerge. There is clear evidence that the prime response is indeed retrieved (and not a general inhibition or instruction to not respond) because errors in the probe indicating prime response retrieval are much more likely than are random errors [22,39].

For many other action-control effects, task-specific explanations can also be replaced by explanations in terms of binding and retrieval (Box 2 for further in-depth discussion of the BRAC approach to other action-control tasks). By unifying and integrating these explanations in terms of binding and retrieval, BRAC has the potential to make a strong contribution to theoretical parsimony and consistency. For instance, with respect to the two action-control paradigms discussed above, it might be possible to link the decade-long debate on inhibition versus retrieval in the negative priming paradigm [20,26] to the debate on inhibition versus retrieval in task-switching [31,40,41].

There have been first attempts to relate the different action-control phenomena directly to each other. It was shown that episodic retrieval processes that mediate effects in different action-control tasks can be modeled by a single cognitive architecture [42]. We also showed that effects
from different ‘binding tasks’ correlate highly in young, healthy subjects [43], suggesting common underlying processes. In another study, we [32] combined binding approaches from task-switching and negative priming. These observations support our claim that many (often theoretically not overly parsimonious) task-specific explanations can be unified in terms of binding and retrieval as represented by BRAC.

Binding and Retrieval as Separate Processes

Action-control effects are commonly investigated in sequential prime–probe paradigms that imply both the integration of features and the retrieval of the resulting event-file. Accordingly, almost all resulting experimental observations presuppose both integration and retrieval, and typically these two processes and their relative contributions to action-control effects are not separately

Table 1. Overview of Action-Control Paradigms and How BRAC Can Explain the Effects in Terms of Binding and Retrieval

<table>
<thead>
<tr>
<th>Experimental paradigm</th>
<th>Typical procedure</th>
<th>Behavioral effect</th>
<th>Established explanation</th>
<th>BRAC explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-switching paradigm [13]</td>
<td>Prime–probe sequences in which one of two tasks (e.g., task A, odd/even judgment; and task B, vocal/consonant judgment) are presented on each display, typically using the same response keys for both tasks</td>
<td>Switching costs: task changes from prime to probe lead to worse performance than task repetitions</td>
<td>Task set inertia: persisting activation of previous task set interferes with a task-switch, as well as persisting inhibition of the competitor task in the previous trial, slows down switching to this still inhibited task</td>
<td>Stimuli and task sets are integrated in the prime and, upon category repetition in the probe, the previous event-file is retrieved, including the incompatible task set, leading to interference</td>
</tr>
<tr>
<td>Negative priming paradigm [14,15]</td>
<td>Prime–probe sequences consisting of a target and a to-be-ignored distractor in the prime and probe displays</td>
<td>Negative priming effect: distractor-to-target-repetitions lead to performance costs</td>
<td>Distractor inhibition and/or episodic retrieval of a do-not-respond tag: ignoring a prime distractor leads to inhibition of that stimulus or the attachment of a do-not-respond tag. In case of repetition as a probe target, this leads to performance costs</td>
<td>Prime stimuli and response are integrated, and this event-file is retrieved if the distractor repeats, thereby retrieving the incompatible prime response during the probe, causing interference</td>
</tr>
<tr>
<td>Tasks with sequential modulation of interference [17]</td>
<td>Prime–probe sequences in tasks with targets and distractors that are congruent or incongruent with the target (AAA vs ABA); congruency in the prime is independently varied from probe congruency</td>
<td>Gratton effect: probe congruency effects (difference between incongruent and congruent conditions) are smaller after incongruent primes</td>
<td>Cognitive control is enhanced after incongruent prime trials (in response to the conflict during the prime), leading to smaller congruency effects in probes after incongruent primes</td>
<td>Incongruent trials (ABA) after incongruent trials (ABA) retrieve the previously integrated prime response that is compatible with the probe, resulting in smaller congruency effects</td>
</tr>
<tr>
<td>Repetition priming paradigm [16]</td>
<td>Prime displays (with one stimulus) are followed by probe displays with one stimulus that is either repeated or not</td>
<td>Repetition priming effect: participants respond faster to repeated stimuli</td>
<td>Spreading activation at perceptual and response levels</td>
<td>Prime stimuli are integrated with a response (executed or not), and upon repetition retrieve the prime response which facilitates the probe response</td>
</tr>
<tr>
<td>Action-planning paradigm [20]</td>
<td>Prime–probe structure but the prime response is only mentally planned</td>
<td>Action-planning costs: probe response times increase when some action features change from prime to probe response</td>
<td>Modification of the original action plan which takes more time depending on how much modification is necessary</td>
<td>Features of the planned action are integrated and involuntarily retrieved by features of the probe response</td>
</tr>
<tr>
<td>Binding tasks: S1R1–S2R2 or distractor–response binding paradigm [21–23]</td>
<td>Prime–probe sequences in which target or distractor repetitions are orthogonally varied to response repetitions</td>
<td>Binding effects: interaction of stimulus × response repetitions</td>
<td>See BRAC explanation</td>
<td>Prime stimuli and response are integrated and this event-file is retrieved if a stimulus repeats, thereby facilitating or hindering responding (depending on response compatibility)</td>
</tr>
</tbody>
</table>
assessed [44]. Accordingly, we recommend reserving the term ‘binding’ to the process of feature integration proper – and that this binding process is not confused with the retrieval process that is necessary to demonstrate that the features have been bound. We also suspect that, for most known modulating variables of action-control effects, it remains so far unclear whether they impact upon feature binding, retrieval, or both.

In many situations it is theoretically interesting and experimentally feasible to modulate binding and retrieval in distinct ways. For example, it has been reported [45] that perceptual grouping of distractors and targets affects distractor-based binding effects. Distractors that are grouped together with the target produce larger binding effects – yet grouping was manipulated in prime and probe displays. We recently reported [46] that color-grouping of distractors and targets in the prime display leads to enhanced feature integration and in turn to larger binding effects, whereas color-grouping of distractors and targets leads to smaller binding effects when applied in the probe display – suggesting that grouping has opposite effects on feature integration and retrieval.

In the same vein, spatial attention towards a distractor in the prime display and in the probe display was separately modulated [47]. Although cued spatial attention had no effect on integration in the prime, it boosted retrieval in the probe [48]. It has been shown that drawing attention to particular feature dimensions affected the strength with which repetition-induced retrieval of features from this dimension interfered with ongoing processing; however, this effect was independent of whether the attentional cue was given before or after the integrated stimulus–response episode, suggesting that only retrieval was affected [44]. In concert, these findings suggest that binding and retrieval should be experimentally disentangled and their separate contributions to observed effects should be stressed. Our recent results therefore highlight the necessity to re-evaluate previous findings from paradigms using prime–probe sequential designs against the suggestion of the BRAC framework to disentangle feature binding and retrieval.
Top-Down versus Bottom-Up Influences on Binding and Retrieval

Conceptual problems of the coarse-grained separation of cognitive processes into top-down versus bottom-up [49] notwithstanding, our current version of BRAC distinguishes between effects that originate in the observer (e.g., the impact of the experimental task instruction, perceived relations between the stimuli) and effects that reflect the impact of the current sensorimotor experience. Our framework postulates that such top-down and bottom-up factors independently impact on feature binding and retrieval (binding and retrieval are thus not understood as top-down or bottom-up per se). That is, we assume that top-down control, such as different levels of action representation [50], attentional weighting of stimulus features [51], and metacontrol of action–perception links [52], impacts on the processes of feature binding and retrieval independently, and perhaps in different ways (by operating on different levels of representation such as task rules, framing, mind sets, speed/accuracy tradeoffs, and instruction-based effects). Control processes can thus influence the binding process (features receiving much attention might be more likely to become integrated into event-strings [24]), the retrieval process (features that are ignored might be less effective retrieval cues [47]), or both. Relatedly, it has been shown that binding processes between stimuli and responses are influenced by the task instructions: S–R binding effects emerged when the task rules stressed specific stimulus–response assignments, whereas instructing participants to categorize the same stimuli on the basis of superordinate semantic features eliminated these effects [53].

There is evidence that can be interpreted as ‘bottom-up control’ of binding and retrieval; that is, the sensitivity of integration and/or retrieval to stimulus contingencies [54], affective states [55–57], and perceptual configurations (as a result of Gestalt mechanisms [45,58]) might indicate control of binding and retrieval processes by variables not originating in the observer. In addition, location repetitions versus changes of stimuli to which one responds actually influence whether features and responses are bound in a more binary fashion (when location changes) or whether the stimulus features are integrated into a single object and this feature compound is bound to the response [59]. Thus, in BRAC both top-down control and bottom-up control are assumed to exert their independent influences on binding and retrieval.

New Hypotheses and Questions Generated by the BRAC Framework

Focusing on the commonalities between seemingly different experimental paradigms or research fields provides an opportunity to turn the typical analytic approach to human cognition into a synthetic approach [18,42,60] which starts with a transparent, well-understood set of core mechanisms that are combined to explain as many aspects of as many different experimental effects as possible. We consider it likely that BRAC will not address all possible aspects of the mentioned observations, whereas it might reorient the theoretical interest to overarching cognitive mechanisms rather than to processes specific to arbitrary individual paradigms.

The strong hypothesis-generating potential of BRAC derives from two implications. First, the systematic distinction between feature integration and feature retrieval raises many questions regarding the interpretations of previous findings. In most cases, what is currently attributed to modulation of binding may well turn out to reflect modulations of retrieval. Hence, systematic research will be necessary to experimentally disentangle the contributions of binding and retrieval processes to previous results in the vast literature on action control.

Second, the emphasis of BRAC on the commonalities between different paradigms allows numerous new hypotheses. Given that these commonalities refer to overlap of mechanisms rather than to overlap in paradigmatic details, it will be possible to generalize to entirely different paradigms what hitherto was considered to represent paradigm-specific effects of experimental manipulation. For instance, it should be possible to generalize to all action-control
paradigms the observation that attentional and perceptual parameters targeting the stimulus and response components of event-files (salience, grouping, feature weighting, inhibition [58, 61]) affect event-file binding and/or retrieval. The same holds for contextual influences [62] and the impact of emotion [55]. BRAC suggests expanding research beyond the almost exclusive paradigm-specific approaches to action control, and instead advocates describing the underlying processes by a single overarching framework. Accordingly, many paradigm-specific results should be replicated in action-control paradigms that differ from those in which the results were originally observed.

Impact of the BRAC Framework beyond Action Control

Action-related phenomena are an essential part of many ‘building blocks of cognition’. We discuss here the mutual impact of the BRAC framework and different areas of research that are closely related to action – namely attention, memory and learning, and motivation (Figure 2). Again, many well-known effects we discuss here can be separated into feature binding and retrieval parts, and BRAC is tailored to the prime-probe structure of these phenomena.

BRAC and Attention

In many approaches to attention, feature integration and feature weighting are core processes as they are in BRAC ([63] for a recent discussion). In addition, intertrial effects in attention paradigms have led to debates about the interplay of attention and retrieval mechanisms – a debate that can be perfectly accommodated and moderated by BRAC.

Spatial orienting as in the Posner cuing task consists of a sequence of two events. A cue which carries a spatial feature (e.g., RIGHT) is bound to an orienting response (cf premotor theory of attention [64]) followed by a subsequent target either carrying the same spatial code (RIGHT), and thus retrieving the previously bound orienting response that facilitates target processing (in a valid trial), or carrying a different spatial code and hence does not retrieve the planned orienting response (in an invalid trial). BRAC can thus describe validity effects in spatial cuing. In addition, once the target is processed, another feature becomes available, namely whether the target episode was validly or invalidly cued. Repeating the spatial feature from the preceding target event in the cue event of the next trial will reactivate the previous target episode, including its validity feature. This invokes the ‘expectancy’ that the cue will also be valid or invalid, thereby increasing the benefits of an actually valid trial and decreasing the costs of an actually invalid trial. Thus, BRAC might partly explain intertrial modulations of cuing effects [65–67].

In the same vein, intertrial effects in visual search can be explained in terms of binding and retrieval: in visual search [68, 69], in so-called compound search tasks [70, 71] participants search for a target that could pop-out in one of two dimensions in an array of multiple distractors. Targets contain a relevant feature that must be discriminated [71]. In such tasks, in which a response-defining feature follows target selection, reaction-time benefits occur when the target-defining dimension and response-defining feature fully repeat; however, if the target-defining dimension repeats, but the response-defining feature changes, responses are slowed down [70–72]. This pattern is easily explained by response retrieval due to feature repetition. Thus, BRAC can be used to link the research on visual search and attentional orienting with research on action control.

BRAC and Memory/Learning

Given the connection between the event-file concept and episodic memory, it is important to more closely investigate the relationship between binding and short-term memory, as well as between binding and long-term memory. Although this connection may sound obvious (event-files might be considered similar to Logan’s [18] instances, which represent memory entries), there are
findings suggesting the independence of long-term memory and binding [73,74]. Even so, memory and action control have been linked in recent approaches to action control (Box 1).

Along the same lines, BRAC raises the question whether and how both event-files and long-term memory rely on learning, for example, contingency-based learning and reward-based learning.
This is particularly promising because BRAC bears a striking structural resemblance to the basic paradigm that characterizes Pavlovian conditioning. Specifically, in Pavlovian conditioning, incidentally pairing a formerly neutral stimulus (conditioned stimulus, CS) with a stimulus eliciting a response (unconditioned stimulus/unconditioned response, US/UR) endows this CS with a tendency to trigger the same response on a later occasion, even in the absence of the US [78]. Similarly, in standard binding and retrieval paradigms ([26]; also [22,24,25,54]) it has repeatedly been shown that a prime distractor activates the specific prime response when the same stimulus is presented again during a subsequent probe trial. Despite differences with regard to the behaviors that have been studied in the two paradigms, and also with regard to the designs (learning after extended practice in Pavlovian conditioning, compared to single-trial effects in the retrieval paradigm; cf [79]), it seems promising to investigate episodic binding and retrieval as potential contributors to Pavlovian conditioning effects [54].

Highlighting the importance of BRAC for understanding learning, recent studies demonstrate that effects of contingency learning were eliminated after controlling for effects of episodic response retrieval [76,77]. Apparently, habit acquisition and maintenance are, to a large degree, mediated by retrieving the last occurrence of the current stimulus situation and reactivating the response that was bound to it. Such a recency-based episodic retrieval account of learning [76] provides an alternative explanation for the ‘law of exercise’ [80] that competes with standard frequency-based explanations [81].

The relevance of episodic response-retrieval processes for explaining learning is further corroborated by a recent study that analyzed the modulating effects of affective consequences on binding and retrieval [75]. In that study, negative performance feedback after a previous response episode led to a reversed response-retrieval effect for this episode. Similar modulating effects of affective consequences on retrieval were recently reported in research on action–effect bindings [82,83]. Based on these preliminary results, we think that BRAC provides a promising perspective to explain learning effects from the domain of conditioning research (Pavlovian conditioning, operant conditioning, and even evaluative conditioning [15,84]) in terms of episodic response retrieval.

BRAC can also describe influences of transfer-inappropriate processing/transfer-appropriate processing [85] from memory research on actions. Negative priming has been explained in terms of transfer-inappropriate processing [86] in that a prime distractor is processed as ‘being irrelevant’, which in the case of repetition as a probe target slows down responding because an inappropriate processing mode is retrieved. BRAC can explain this finding by assuming that the processing mode is a feature of the prime event-file. If the prime event-file including the processing mode is retrieved, it can facilitate or hinder probe processing depending on the appropriateness. More generally, BRAC suggests implementing the transfer-inappropriate processing/transfer-appropriate processing principle in prime–probe designs defined as compatibility of the response-generation processes between prime and probe event-files.

BRAC and Motivation

BRAC provides a novel perspective on core phenomena in the psychology of motivation. Established theories explain motivational force by drawing on either ‘liking’ (evaluation, incentive value [87]) or ‘wanting’ (drive, desire [88]). BRAC explains how ‘wanting’ and ‘liking’ emerge and change. Because they are treated as motivational responses (approach vs avoidance [8]) that become bound to specific stimuli, they then elicit these motivational responses via episodic retrieval. Thus, approach and avoidance behavior impact on the evaluation of a (formerly neutral) stimulus ([84,89,90]; also [15]). If a stimulus is approached, the features of the action (including the affective
code that is part of the action representation) and the stimulus features become integrated into an event-file, and upon repetition of the stimulus the affective features are retrieved, shifting the evaluation of the stimulus in a positive direction. With respect to BRAC, it seems important to investigate whether stimulus evaluation is changed directly after an approach or avoidance action or whether several repetitions must have occurred before affective codes from the action are transferred to a stimulus. More generally, the relation between BRAC and the research on approach and avoidance behavior is mediated by the relation between BRAC and learning/memory (see above and Outstanding Questions). BRAC further emphasizes the sequential character of many approach and avoidance training procedures that use an acquisition phase followed by a stimulus evaluation phase. In this vein, BRAC offers a new episodic retrieval perspective on motivational phenomena such as ‘cue-triggered wanting’ in addiction [91], or context-dependent re-lapse of conditioned fear after extinction-interventions [92].

Concluding Remarks

Action-control research has tried to pinpoint the sub-processes of actions and to isolate specific aspects that humans use to regulate action. The result is an abundance of detailed and often paradigm-specific findings and debates. Summarizing the rich literature on action control, we introduce a framework that is based on two core processes – feature binding and retrieval. Although many open questions remain (see Outstanding Questions), the emphasis of BRAC on disentangling influences on feature binding and retrieval as separate processes that contribute to the observed ‘binding effects’ will have a lasting effect on cognitive approaches to action. In addition, because the framework is relatively simple, it can easily be used to describe and discuss action-related phenomena from different research fields beyond action control.

Acknowledgments

The authors were supported by funding from the German Research Foundation (DFG) in various projects of the Research Unit FOR2790 Binding and Retrieval in Action Control.

References

Outstanding Questions

Simply put, is binding merely learning? One of the most urgent questions concerns how action control and learning/memory interact – there is already a discussion of whether ‘binding’ refers to ‘single-trial learning’ (with contra [73,74] and pro arguments [75,76].

A particular issue concerning the interaction of binding and learning/memory is the question of whether only the last event-file is retrieved and modulates behavior or whether all previous event-files are retrieved (perhaps to a weaker degree [42]). In this regard, the strength of the memory trace and/or the decay function of an event-file should be further analyzed [111].

What are the neural correlates of feature binding and retrieval? Neural correlates have so far been analyzed without distinguishing between the two processes. It seems that brain oscillations might actually be more suited for pinpointing binding versus retrieval at a physiological level [116] than using event-related potential (ERP) or fMRI data (because of their temporal resolution).

What are the ‘boundaries of binding’? It seems that in some paradigms measuring inhibition of return (IOR) [112] binding does not take place [113] or at least is strongly diminished [114]. It might also be argued that eye movements underlie very different constraints (e.g., a fixed time-schedule) compared with actions executed with hands or feet, and hence the BRAC framework might be exclusive for non-eye movements.

Which concrete top-down and bottom-up mechanisms impact on binding and retrieval? What are the concrete and separate effects of salience, grouping, reward, feedback, instruction, and so on for binding and retrieval?

Do binding and retrieval processes also play a role in more complex actions and action sequences? Recent studies found binding and retrieval between independently planned and executed actions [115].
44. Hommel, B. et al. (2014) Attentional control of the creation and resolution of stimulus–response bindings. Psychol. Res. 78, 520–538
45. Frings, C. and Rothermund, K. (2011) To be or not to be... included in an event file: integration and retrieval of distractors in stimulus–response episodes is influenced by perceptual grouping. J. Exp. Psychol. Learn. 37, 1209–1227

78. Schwartz, E. et al. (2020) Psychology of Learning and Behavior (5th ed.), Norton

88. Schwartz, E. et al. (2020) Psychology of Learning and Behavior (5th ed.), Norton

90. Thorold, E.L. (1898) Analysis of the activities of animals. Nature 32, 466

98. Moutouzopoulou, K. et al. (2019) How long is long-term priming? Classification and action priming in the scaled of days. Q. J. Exp. Psychol. 72, 1183–1199

