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Abstract There is a long-standing and ongoing debate about the relations between conceptual
and procedural knowledge (i.e., knowledge of concepts and procedures). Although there is
broad consensus that conceptual knowledge supports procedural knowledge, there is contro-
versy over whether procedural knowledge supports conceptual knowledge and how instruction
on the two types of knowledge should be sequenced. A review of the empirical evidence for
mathematics learning indicates that procedural knowledge supports conceptual knowledge, as
well as vice versa, and thus that the relations between the two types of knowledge are
bidirectional. However, alternative orderings of instruction on concepts and procedures have
rarely been compared, with limited empirical support for one ordering of instruction over
another. We consider possible reasons for why mathematics education researchers often
believe that a conceptual-to-procedural ordering of instruction is optimal and why so little
research has evaluated this claim. Future empirical research on the effectiveness of different
ways to sequence instruction on concepts and procedures is greatly needed.
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Instruction

More than 30 years ago, Resnick and Ford (1981) noted “the relationship between computa-
tional skill and conceptual understanding is one of the oldest concerns in the psychology of
mathematics® (p. 246). Seventeen years later, Sowder (1998, as quoted in Star 2005) wrote
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“whether developing skills with symbols leads to conceptual understanding, or whether the
presence of basic understanding should precede symbolic representation and skill practice, is
one of the basic disagreements” in mathematics education. In 2014, the question “how can we
help children develop fluency with basic facts and skills while still promoting understanding of
the underlying concepts?” was included in a list of the current grand challenges of mathemat-
ical cognition by an expert panel (Alcock et al. 2014). As demonstrated by these quotes, there
is a long-standing and ongoing debate about the relations between two types of knowledge—
conceptual and procedural. This debate is based on different beliefs about the development and
teaching of conceptual and procedural knowledge.

Conceptual knowledge is defined as knowledge of concepts, which are abstract and general
principles (e.g., Byrnes and Wasik 1991; Canobi 2009; Rittle-Johnson et al. 2001). For
example, the National Research Council defined it as “comprehension of mathematical
concepts, operations, and relations” (Kilpatrick et al. 2001, p. 5). Conceptual knowledge can
be implicit or explicit, and thus does not have to be verbalizable (e.g., Goldin Meadow et al.
1993). Procedural knowledge is often defined as knowledge of procedures (e.g., Byrnes and
Wasik 1991; Canobi 2009; Rittle-Johnson et al. 2001). A procedure is a series of steps, or
actions, done to accomplish a goal. This knowledge often develops through problem-solving
practice, and thus is tied to particular problem types. In mathematics education research,
conceptual and procedural knowledge have sometimes been defined based on the quality of
the knowledge rather than the #pe of knowledge, in particular whether the knowledge is richly
connected (Hiebert and LeFevre 1986). However, there is now some consensus that this
definition was not appropriate, with agreement that they should be defined based on the type
of knowledge (Baroody et al. 2007; Star 2005).

Learners clearly need to develop both conceptual and procedural knowledge in a domain,
but controversy arises over how the two types of knowledge are related. It is widely agreed that
conceptual knowledge often supports and leads to procedural knowledge. Children’s concep-
tual knowledge can help them invent and understand procedures (Gelman and Williams 1998;
Halford 1993; Hiebert and LeFevre 1986). But, is it a “one-way street” from conceptual
knowledge to procedural knowledge, or does procedural knowledge also support and lead to
conceptual knowledge? Some claim yes, that children gradually derive conceptual knowledge
from implementing procedures by abstraction processes, such as representational redescription
(Karmiloff-Smith 1992; Siegler and Stern 1998). Others claim no, that procedural knowledge
does not lead to conceptual knowledge and can even interfere with gaining conceptual
knowledge (Kamii and Dominick 1997, 1998). This debate between a bidirectional perspective
and a conceptual-to-procedural (unidirectional) perspective is the focus of this paper.

Reform efforts in US mathematics education have tended to focus on the unidirectional,
conceptual-to-procedural knowledge perspective. The belief is that conceptual knowledge
should be developed over an extended period of time prior to instruction and practice with
procedures (see Baroody (2003), Kilpatrick et al. (2001), and Resnick and Ford (1981) for
historical reviews). Most recently, the National Council of Teachers of Mathematics (NCTM
2014) explicitly asserted a conceptual-to-procedural perspective in their principle that
“procedural fluency follows and builds on a foundation of conceptual understanding”
(p. 42).“Conceptual understanding (i.e., the comprehension and connection of concepts,
operations, and relations) establishes the foundation, and is necessary, for developing proce-
dural fluency (i.e., the meaningful and flexible use of procedures to solve problems)” (NCTM
p- 7). This principle indicates that students should initially develop a foundation of conceptual
understanding and that procedural knowledge should not be developed prior to the extended
development of conceptual knowledge. We confirmed that the language used was deliberate,
reflecting the “strong belief” of the authors of the report that developing procedural fluency
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“should not come first” (J. Wanko, personal communication, September 24, 2014). This stance
minimizes bidirectional relations between conceptual and procedural knowledge, wherein
procedural knowledge supports conceptual knowledge, as well as vice versa.

The goal of the current paper is to review empirical evidence on (1) the relations between
conceptual and procedural knowledge over time and (2) the impact of interventions that
manipulate the type and order of instruction. Are the relations between conceptual and
procedural knowledge unidirectional or bidirectional? Does one ordering of instruction lead
to better learning than another ordering of instruction?

Evaluation Criteria

When evaluating evidence on the relations between conceptual and procedural knowledge,
both the measures used to assess the two types of knowledge and the studies’ research designs
are critical to consider. First, consider how the two types of knowledge are measured. The two
types of knowledge must be assessed independently in order to study the relations between
them, preferably using multiple measures for each type of knowledge (Schneider and Stern
2010). Conceptual knowledge has been measured using a large variety of tasks, ranging from
evaluating the correctness of an example or procedure to providing definitions and
explanations of concepts (see Crooks and Alibali 2014; Rittle-Johnson and Schneider
2015). A critical feature of conceptual tasks is that they be relatively unfamiliar to
participants, so that participants have to derive an answer from their conceptual
knowledge, rather than implement a known procedure for solving the task. Measures
of procedural knowledge almost always involve solving problems, and the outcome
measure is usually accuracy of the answers or procedures. Procedural tasks are
familiar—they involve problem types people have solved before, and thus should
know procedures for solving. Sometimes, the tasks include near transfer problems—
problems with an unfamiliar feature that require either recognition that a known
procedure is relevant or small adaptations of a known procedure to accommodate
the unfamiliar problem feature (e.g., Renkl et al. 1998; Rittle-Johnson 2006). For both
types of knowledge, continuous knowledge measures are more appropriate than
categorical measures because they capture gradual changes in knowledge, including
changes in the depth and breadth of knowledge. Earlier debates over whether con-
ceptual or procedural knowledge developed first rested on categorical measures to
justify that children had or did not have a particular type of knowledge, and making
categorical claims became untenable (see Rittle-Johnson and Schneider (2015) and
Rittle-Johnson and Siegler (1998) for reviews).

Second, consider appropriate research designs. One source of evidence for potential
bidirectional relations comes from longitudinal studies that evaluate whether prior
procedural knowledge is related to subsequent conceptual knowledge, as well as vice
versa. Causal evidence for bidirectional relations comes from experimental studies that
manipulate each type of knowledge and evaluate whether it leads to increases in the
other type of knowledge. Evidence for optimal ordering of instruction comes from
comparisons of interventions that differ in the inclusion and/or ordering of instruction
on concepts and procedures. The most direct evidence would come from studies that
compared a conceptual-to-procedural instructional order relative to a procedural-to-
conceptual order. Experimental designs with control groups that vary only in the
ordering of instruction and randomization of the participants into the experimental
groups would provide the strongest evidence.
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Evaluation

Bidirectional Relations: Does Procedural Knowledge Support Conceptual Knowledge As Well
As Vice Versa?

Longitudinal Relations Evidence for bidirectional relations between procedural and concep-
tual knowledge comes from longitudinal studies on the predictive relations between the two
types of knowledge over time. For example, in two samples differing in prior knowledge,
middle-school students’ conceptual and procedural knowledge for equation solving was
measured before and after a 3-day classroom intervention in which students studied and
explained worked examples with a partner (Schneider et al. 2011). Conceptual and procedural
knowledge were modeled as latent variables, and a cross-lagged panel design was used to
directly test and compare the predictive relations from conceptual knowledge to procedural
knowledge and vice versa. Each type of knowledge predicted gains in the other type of
knowledge. Further, the relations were symmetrical—procedural knowledge was as predictive
of conceptual knowledge as vice versa. Similar bidirectional relations have been found for
preschool children learning about counting (e.g., Baroody 1992; Fuson 1988; Muldoon et al.
2007) and elementary-school children learning addition and subtraction (Baroody and
Ginsburg 1986; Canobi 2009) and about decimals (Rittle-Johnson and Koedinger 2009;
Rittle-Johnson et al. 2001).

The bidirectional relations between conceptual and procedural knowledge are also present
over several years. For example, elementary-school children’s knowledge of fractions was
assessed in the winter of grade 4 and again in the spring of grade 5 (Hecht and Vagi 2010).
Procedural knowledge in grade 4 predicted conceptual knowledge in grade 5 after controlling
for other factors, and conceptual knowledge in grade 4 predicted procedural knowledge in
grade 5. In a separate study, whole-number procedural knowledge in the second grade
predicted conceptual knowledge of fractions in the fourth grade (Vukovic et al. 2014). Similar
bidirectional relations across grade levels have been found for elementary-school children
knowledge of whole number concepts and procedures (Cowan et al. 2011).

This general pattern of one type of knowledge predicting future knowledge of the other type
does not mean that the two types of knowledge are equally well developed at any given time.
There are individual differences in the relative strength of the two types of knowledge
(Gilmore and Papadatou-Pastou 2009; Hallett et al. 2010, 2012; Hecht and Vagi 2012), with
changes over time in their relative strength (Hecht and Vagi 2012). Nevertheless, procedural
knowledge is a good and reliable predictor of improvements in conceptual knowledge.

Causal Evidence Causal evidence for bidirectional relations comes from studies that experi-
mentally manipulate at least one type of knowledge and then measure both types of knowl-
edge. For example, elementary-school children were given a very brief lesson on a procedure
for solving mathematical equivalence problems (e.g., 6+3+4=6+_ ), the concept of mathe-
matical equivalence, or were given no lesson (Rittle-Johnson and Alibali 1999). Children who
received the procedure lesson gained a better understanding of the concept than the control
group, and children who received the concept lesson gained greater procedural knowledge
than the control group. The relations were bidirectional.

Additional research indicates that improving procedural knowledge can support improve-
ments in conceptual knowledge. Evidence comes from studies on carefully constructed
practice problems (Canobi 2009; McNeil et al. 2011, 2012, 2014). For example, elementary-
school children solved packets of problems for 10 min on nine occasions during their school
mathematics lessons (Canobi 2009). The problems were arithmetic problems sequenced based
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on conceptual principles, the same arithmetic problems sequenced randomly, or nonmathe-
matical problems (control group). Solving conceptually sequenced practice problems support-
ed gains in procedural as well as conceptual knowledge relative to the control condition.
Solving practice problems in random order supported only modest gains in procedural
knowledge and did not support gains in conceptual knowledge. Thus, improving procedural
knowledge can lead to improvements in conceptual knowledge, but not all types of procedural
practice support substantial improvements in either type of knowledge.

Overall, both longitudinal and experimental studies indicate that procedural knowledge
leads to improvements in conceptual knowledge, in addition to vice versa. The relations
between the two types of knowledge are bidirectional. It is a myth that it is a “one-way street”
from conceptual knowledge to procedural knowledge.

Instructional Order: Is Conceptual-to-Procedural Best?

Although the relations between the two types of knowledge are bidirectional, it still may be
optimal for instruction to follow a particular ordering. A conceptual-to-procedural knowledge
perspective asserts that instruction should extensively develop conceptual knowledge prior to
focusing on procedural knowledge (Grouws and Cebulla 2000; NCTM 1989, 2000, 2014). Is
this the most successful route to mathematical competence? Or are there multiple routes to
mathematical competence?

Unfortunately, we could not find empirical evidence to directly evaluate claims for an
optimal ordering of instruction. For example, we could not find a study that compared
the effectiveness of instruction on concepts-then-procedures to instruction on proce-
dures-then-concepts. Thus, we review the evidence that is given in support of the
claim that a conceptual-to-procedural sequence is best, as well as additional evidence
we identified that compared the impact of different types of instruction on conceptual
and procedural knowledge outcomes.

The claim that instruction on concepts must proceed instruction on procedures is based in
part on comparing examples of reform-oriented teaching to traditional instruction. When
teacher-researchers spent considerable time developing conceptual knowledge prior to intro-
ducing and practicing conventional procedures, students gained greater conceptual knowledge
and comparable procedural knowledge compared to typical classroom instruction that focused
on procedural knowledge and often included little instruction on concepts (Blote et al. 2001;
Cobb et al. 1991; Fuson and Briars 1990; Hiebert and Grouws 2007; Hiebert and Wearne
1996). Further, children who were taught standard solution procedures with little attention to
conceptual knowledge had very limited conceptual knowledge about the domain (Kamii and
Dominick 1997, 1998; Mack 1990). While studies such as these highlight that some types of
instruction on procedures do not support conceptual knowledge, these studies do not provide
evidence that a concept-to-procedure sequence is better than a procedures-to-concepts se-
quence—only that learning procedures in conjunction with concepts appeared to be better than
learning procedures with little or no attention to concepts. Multiple ways to support both types
of knowledge were not considered. Furthermore, in all of these studies, the two instructional
conditions differed on many dimensions (e.g., the amount of instruction on concepts; the
amount and quality of student discussion).

Next, consider studies that have manipulated the type(s) of instruction. Advocates for a
conceptual-to-procedural sequence cite a study that compared procedural-then-conceptual
instruction to only conceptual instruction (Pesek and Kirshner 2000). In a classroom-based
study, fifth-grade students were randomly selected to receive instruction on conventional
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procedures for finding area and perimeter prior to conceptually focused instruction (i.e.,
procedural-then-conceptual condition) or to receive no relevant instruction prior to the con-
ceptually focused instruction (i.e., only-conceptual condition). Students in the two conditions
had similar performance on a posttest and retention test on finding the areas and perimeters of
shapes. However, the only-conceptual condition had slightly (but not statistically significantly)
better performance than the procedural-then-conceptual condition (e.g., 48 % vs 42 % correct
at posttest) that the authors argued may have been reliable with a substantially larger sample. In
addition, qualitative descriptions of interviews with 12 students suggested subtle benefits for
the only-conceptual condition on a few of the interview questions. Overall, differences
between the conditions were small and not reliable.

We identified a second study that compared instruction on concepts and procedures to only
instruction on concepts, although this study is rarely cited in the mathematics education
research literature. In Perry (1991), fourth- and fifth-grade students were randomly assigned
to receive instruction on a concept and procedure, only on the concept, or only on the
procedure. In this lab study, children received a few minutes of instruction in the context of
two mathematical equivalence problems. For the concept-and-procedure condition, the in-
struction was provided one after the other on each problem and the order of the two types of
instruction on each problem was counterbalanced across children and did not impact learning
outcomes. Children who received only instruction on concepts showed the greatest procedural
transfer, with children in the two other conditions performing similarly. Thus, this study
provides some support for the claim that instruction on procedures should not be included
concurrently with instruction on concepts, at least early in instruction. Additional research is
needed to evaluate whether this finding would generalize to other mathematics topics and to
typical classroom contexts with much more extensive instruction and problem-solving
experience.

Two additional laboratory-based experimental studies contrasted instruction on a concept
versus a procedure. Children received brief one-on-one instruction on mathematical equiva-
lence. As in Perry (1991), children who received brief instruction on a concept showed greater
knowledge at posttest than children who received brief instruction on a procedure (Matthews
and Rittle-Johnson 2009; Rittle-Johnson and Alibali 1999). These findings support the impor-
tance of including instruction on concepts and suggest that instruction on a procedure may not
be necessary for some topics and for some learning goals. Yet, note that neither of these studies
provides direct evidence on the optimal sequencing of instruction on concepts and procedures.

Finally, one study suggests that a small dosage of instruction on concepts first is preferable
to a large dosage of instruction on concepts first. In two classroom experiments, sixth-grade
students completed six lessons on decimal using an intelligent-tutoring system in one of two
randomly assigned conditions (Rittle-Johnson and Koedinger 2009). In the conceptual-then-
procedural condition, all conceptual knowledge lessons on place value were presented before
the procedural knowledge lessons on adding and subtracting decimals. In an iterative condi-
tion, lessons iterated between a focus on concepts and a focus on procedures, beginning with a
conceptual knowledge lesson. The iterative order supported equivalent conceptual knowledge
and greater procedural knowledge relative to the conceptual-then-procedural sequence. This
finding suggests that conceptual knowledge does not need to be well developed before
beginning instruction on procedures. This was the only study we identified that contrasted
the ordering of different types of instruction and in which all students received the same
instruction and only the order of instruction differed. However, because there was no
procedural-then-conceptual condition or iterative condition that began with a procedural
lesson, this study does not directly inform the debate on a conceptual-then-procedural versus
procedural-then-conceptual approach.
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In summary, prior research has not directly evaluated whether a conceptual-then-procedural
instructional sequence leads to greater learning than alternative orderings of instruction that
also focus on developing both types of knowledge. A few laboratory-based studies suggest that
it may be more effective to begin instruction with a brief conceptual lesson than with a brief
procedural lesson. An experimental, classroom-based study suggests that iterating between
lessons on concepts and procedures is more effective than providing extensive instruction on
concepts before introducing instruction on procedures. However, much more research is
needed on the most effective dosage and timing of instruction on concepts and procedures.
We suspect that there are multiple routes to mathematical competence, such as instruction that
iterates between a focus on concepts and procedures throughout instruction.

Reexamining the Beliefs: Both Empirical and Nonempirical Reasons

There is clear evidence for bidirectional relations between conceptual and procedural knowl-
edge. It is a myth that procedural knowledge does not support conceptual knowledge.
Government-sponsored consensus reports reflect the evidence for bidirectional relations
between conceptual and procedural knowledge. In particular, an influential report from the
National Research Council identified conceptual understanding and procedural fluency as
equally important and interdependent strands of mathematical proficiency (Kilpatrick et al.
2001). Procedural fluency was defined as “skill in carrying out procedures flexibly, accurately,
efficiently and appropriately” (p. 116) and thus encompasses procedural knowledge.
“Procedural fluency and conceptual understanding are often seen as competing for attention
in school mathematics. But pitting skills against understanding creates a false dichotomy. As
we noted earlier, the two are interwoven” (p. 122). The National Mathematics Advisory Panel
(2008) came to a similar conclusion, noting the mutually reinforcing benefits of both types of
knowledge. The terms “interwoven” and “mutually reinforcing” imply bidirectional relations
between the two types of knowledge. However, the reports do not explicitly address how
instruction should support both types of knowledge.

Although the relations between the two types of knowledge are bidirectional, it may be optimal
for instruction to follow a particular ordering. The prevalent conceptual-to-procedural knowledge
perspective asserts that instruction should extensively develop conceptual knowledge prior to
focusing on procedural knowledge (Grouws and Cebulla 2000; NCTM 1989, 2000, 2014).
Unfortunately, we could not find empirical evidence to directly evaluate claims for an optimal
ordering of instruction. Given the bidirectional relations between conceptual and procedural
knowledge, we suspect that there are multiple routes to mathematical competence and that a
conceptual-to-procedural ordering is not the only effective route to mathematical competence.

Future research needs to directly evaluate alternative instructional sequences for supporting
both types of knowledge over time. Comparisons to traditional instruction that focuses primarily
on learning procedures is not an adequate control condition given broad consensus on the
importance of developing conceptual knowledge. Rather, a conceptual-then-procedural sequenc-
ing should be compared to alternative sequencing that includes a strong focus on conceptual as
well as procedural knowledge. An iterative sequencing of instruction appears promising, and
future research is needed to evaluate this sequencing, including whether beginning with one type
of instruction or the other is preferable. At least for some topics, it might be optimal for an initial
lesson to focus on concepts rather than procedures (Perry 1991). Simultaneous instruction on
both types of knowledge is another important alternative to study (Ball et al. 2005; Baroody
1992). Some instructional activities may simultaneously support fluent use of procedures and
understanding of underlying concepts, such as solving carefully sequenced practice problems
with reflection prompts.
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Yet, given the pervasiveness of the belief in a conceptual-then-procedural sequence despite
the lack of empirical evidence, would additional research convince those who hold the belief?
In fact, widespread endorsement of this belief among mathematics education researchers may
help to explain why so little research has directly evaluated it. Thus, it seems important to
briefly consider nonempirical reasons that might support this belief and which could impede
progress in addressing it.

First, language around conceptual and procedural knowledge may also be related to the
prevalence and persistence of this belief. For example, conceptual knowledge has sometimes
been used to refer to knowledge that is richly connected while procedural knowledge was used
to refer to knowledge that is sparsely connected. This makes it impossible to talk about
knowledge of procedures that is richly connected (Star 2005, 2007; Star and Stylianides
2013). A new imprecision in language may be arising with the term procedural fluency. For
some, procedural fluency seems to refer only to an end state of well-developed knowledge,
while conceptual knowledge can refer to a variable amount of knowledge. For example, the
NCTM (2014) report may have been recommending that students learn some conceptual
knowledge prior to complete mastery and fluency with procedures. It is problematic to use the
term procedural fluency to refer to an end state of well-developed knowledge and the term
conceptual knowledge to refer to a variable, continuously developing level of knowledge.
Rather, both terms should refer to knowledge that is variable and continuously developing.
Using the terms procedural knowledge or fluency in more narrow ways than conceptual
knowledge may promote misunderstandings and myths.

Second, acknowledgment that procedural knowledge may support the development of
conceptual knowledge could be interpreted as an argument in support of old instructional
ways. Histories of mathematics education in the USA frequently posit that mathematics
instruction in the past was overly focused on procedures (Baroody 2003; Resnick and Ford
1981). Attention to the value of procedural knowledge early in instruction might be interpreted
as a rejection of prior instructional shortcomings and failure to support modern reforms.
However, it should not be.

Finally, culture may play into the persistence of this belief. The directionality of developing
conceptual and procedural knowledge seems to only be debated in the USA. This may be
because in the USA and some other Western cultures, practice is not believed to aid the
development of understanding. In many Asian countries, by contrast, practice is viewed as a
route toward understanding, where there is a public perception that only through a great deal of
practice can true understanding be developed. Our anecdotal interactions with mathematics
education researchers in non-Western countries suggests that they are confused by the debate
in the USA. Elsewhere, it is taken as obvious that procedural knowledge can lead to conceptual
knowledge (and vice versa).

Conclusion

Mathematical competence rests on developing both conceptual and procedural knowledge, and
it is widely agreed that conceptual knowledge often supports and leads to procedural knowl-
edge. Controversy arises over whether the relations are bidirectional or unidirectional (i.e., a
conceptual-to-procedural perspective). Evidence indicates that the relations between concep-
tual and procedural knowledge are often bidirectional, with improvements in procedural
knowledge often supporting improvements in conceptual knowledge as well as vice versa. It
is not a one-way street from conceptual knowledge to procedural knowledge; the belief that
procedural knowledge does not support conceptual knowledge is a myth.
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Nevertheless, there may be an optimal ordering of instruction, such as a conceptual-to-
procedural sequence (Grouws and Cebulla 2000; NCTM 2014). Unfortunately, claims for an
optimal ordering of instruction have rarely been evaluated. Given the bidirectional relations
between conceptual and procedural knowledge, we suspect that there is not an optimal
ordering of instruction, but rather multiple routes to mathematical competence. Future empir-
ical research on the effectiveness of different ways to sequence instruction on concepts and
procedures is greatly needed.
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