Individual Differences and Stress Variation in English Complex Words

Tammy Ganster, Trier University (Germany) ganster@uni-trier.de

56th Annual Meeting of the Societas Linguistica Europaea

National and Kapodistrian University of Athens

Aug 29 - Sep 1 2023

idéntifiable tríumphant eváluative discríminatory identifíable triúmphant evaluátive discriminátory

Variable stress in English complex adjectives

embedded base	stress preserving derivative variant	stress non-preserving derivative variant
i dén tify	i dén tifiable	identi fí able
trí umph	trí umphant	tri úm phant
e vál uate	e vál uative	evalu á tive
dis crí minate	dis crí minatory	discrimi ná tory

The phenomenon: primary stress of embedded base is not always preserved

within the same morphological category

What factors can account for this variation?

Previous research on stress variability

Stratum-based approaches (Kiparsky 1982 et seq., 2005, 2015, Fudge 1984)	Structural approaches (Trevian 2003, 2007, Bauer, Lieber & Plag 2013, Newell 2020)	Paradigmatic approaches (Steriade 1999a, 1999b, Stanton & Steriade 2014, 2021, Breiss 2021)
 strict division into three categories stress shifting (stem level): - ory > óscillate > oscillátory, oscíllatory, *óscillatory stress preserving (word level): -ness > alért > alértness, *álertness variable (dual level): -able > jústify > jústifiable ~ justifíable 	 segmental phonological features of derivative assumed to influence stress position célebrate > célebr[ə]tory ~ celebr[éɪ]tory 	 suggests broader paradigmatic relationships may be at play embedded base is not considered the only influential base démonstrate demónstrative > demónstrable ?

Issues of structure-based accounts

Stratum-based accounts

- empirical evidence against uniform behavior of stem and word level
- → stress preservation as well as stress shift underpredicted (*oscillátory* ~ *óscillatory*)

Structural accounts

- effect said to be variable (ánalyze > ánal[aɪ]zable ~ anal[áɪ]zable)
- can indentify a possible reason for stress shift but cannot account for variability of stress shift

Paradigmatic approaches

- does not take full extent of morphological relationships in paradigm into account
- does not take psycholinguistic factors such as lexical frequency seriously enough
- all accounts purely phonological even though we are talking about a morphophonological phenomenon

Processing-based accounts: a possible solution?

- based on Hay's dual-route model of lexical access (Hay 2001, 2003, Hay & Baayen 2003)
- relationship between derivative frequency and base frequency is crucial
- ► if derivative frequency < embedded base frequency → decomposition route
 - ▶ anticipatory = anticipate + -ory \rightarrow anticipatory
 - stress preserved
- ► if derviative frequency > embedded base frequency → whole-word route
 - ► derogatory = derogatory (dérogate + -ory) → derogátory
 - stress not preserved
- see Collie 2007, 2008, Bermúdez-Otero 2012, Dabouis 2017 for pertinent studies based on this approach

Issues of processing-based accounts

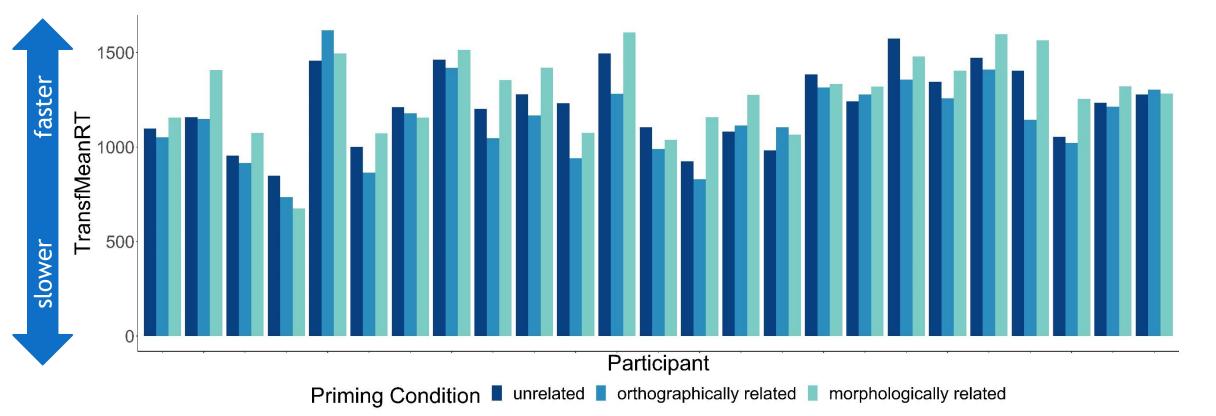
- processing-based accounts have also not fully implemented all assumptions that come with taking a morphological approach such as individual differences in processing
 - exclusive reliance on corpus frequencies to account for processing effects
 - not compatible with individual differences
 - previous studies (Arndt-Lappe & Sanz 2017; Ganster 2019) have shown that not all speakers reflect corpus frequency in the same way
- individual differences generally marginalized, to date mainly only studied in reading acquistion (e.g. McCutchen et al. 2009) and second language acquisition (e.g. Coxhead et al. 2015)

Towards more individual models of morphological processing

- more individual measures of morpholgical processing are needed
- correlates that emerged as important in other fields
 - individual awareness of morphological structure (e.g. McCutchen et al. 2009)
 - vocabulary size (e.g. Brysbaert et al. 2016, Mainz et al. 2017)
- These measures need to be tested for their effects on stress production in complex words

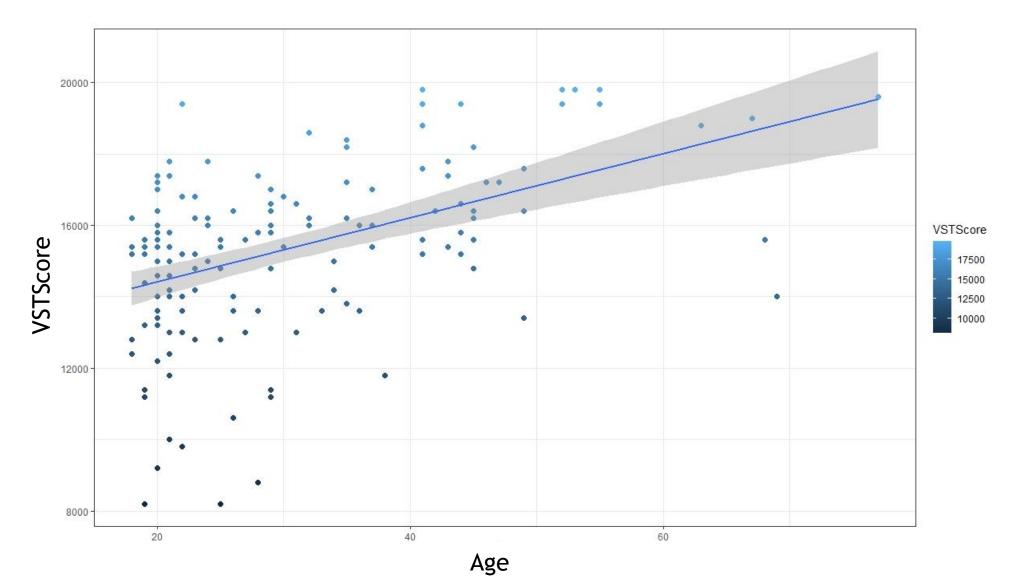
Experiment

- **remote online** experiment
- 153 native speakers of British English
 - > age: 18-77 yrs, mean: 25, median: 29.98 / 93 females, 60 males
 - recruited via the online platform Prolific
- multi-task experiment
 - PROCESSING
 - morphological sensitivity task (masked priming with lexical decision)
 - ▶ vocabulary size test (standardized test, Coxhead et al. 2015, Nation & Beglar 2007)
 - SOCIO-DEMOGRAPHIC DATA
 - meta questionnaire (education, languages, geography, socio-economic status...)

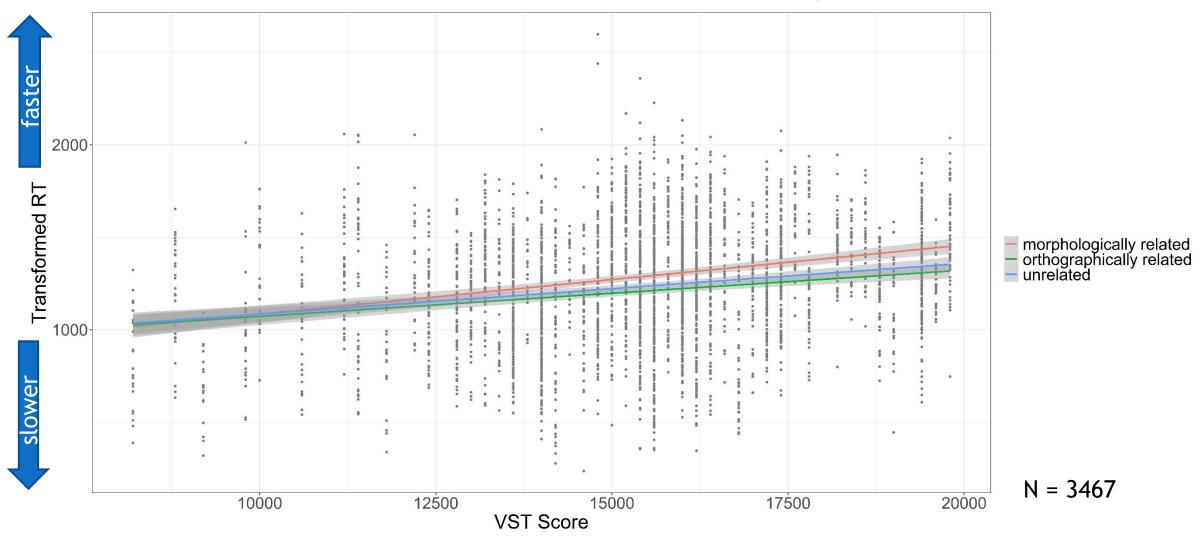

STRESS

- production task (read out test sentences with complex adjectives in them)
- perception task (imitation task)

Data overview


morphological sensitivity task	vocabulary size test	production task
3,467 observations	15,300 observations	
masked priming experiment with lexical decision task	standardized and multiply validated forced choice test (Nation & Beglar 2007)	
measured reaction time to three different priming conditions:	100 questions	
	Example	
complex words primes - simplex words	soot Thou SAM it	will be
targets	see: They SAW it. a) closed it tightly	explained later
morphologically related prime-target	b) waited for it	later
pairs (subversion - subvert)	c) looked at it	
orthographically related prime-target		
pairs (chargeable - charisma)	score from 0 - 20,000 (estimates number	
	of known word families)	
unrelated prime-target pairs (inventive - remorse)		

Individuality in morphological sensitivity



random sample of 25 out of 129 participants Separate model: $lmer(RTtr \sim Condition + VSTScore + (1 + Condition | Participant), data = MSfinal)$ \rightarrow showed priming condition has significant effect on RT

Variation in vocabulary size

Variation in the effect of vocabulary size

Relating individual differences in morphological processing to stress variation

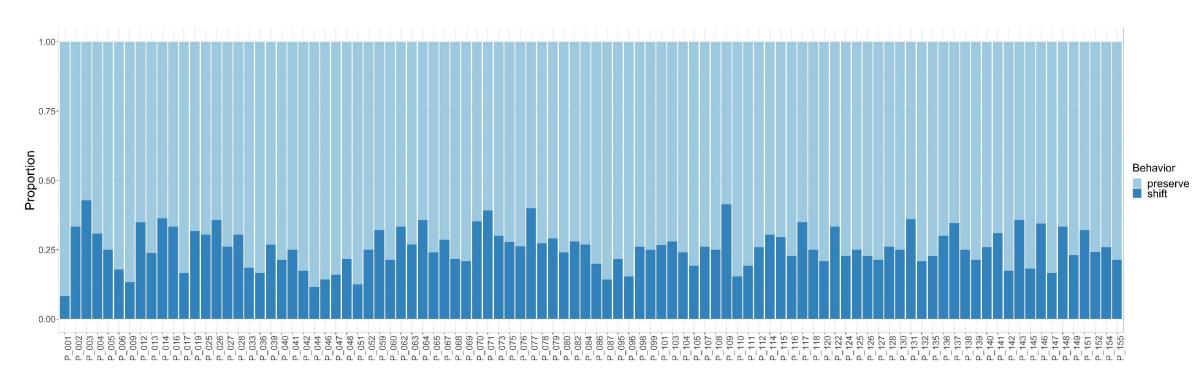
Hypothesis 1: greater sensitivity to morphological structure

more decomposition

 \rightarrow more stress preservation

Hypothesis 2: greater vocabulary size

► more decomposition → more preservation?


► paradigmatic effects → paradigmatically dominant stress preferred?

Experiment: Stress Production

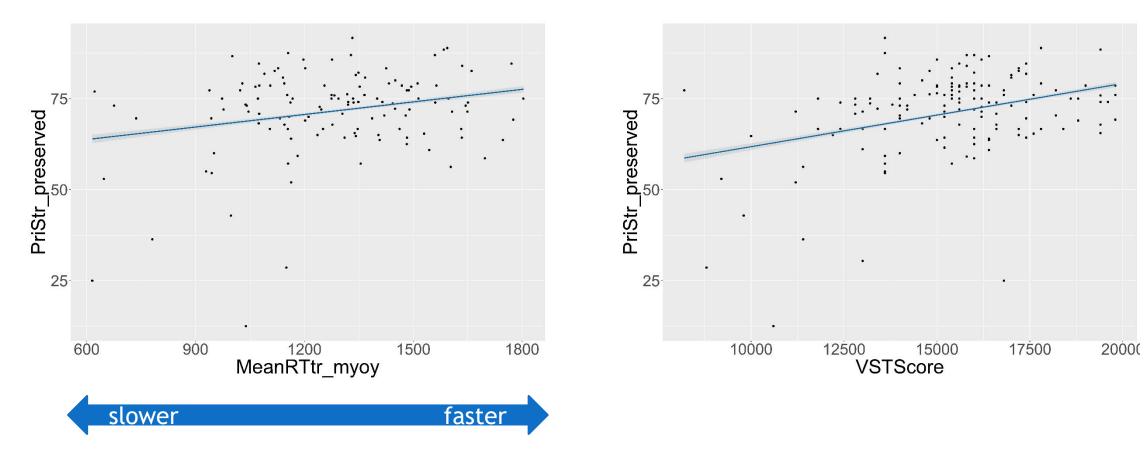
production task

- 3,400 observations from 153 native speakers of British English
- test sentences from Corpus of American Soap Operas (Davies 2011) with complex -able, -ant, -ive, -ory adjectives
- each participant read out 30 test sentences
 - ▶ We're trying to do something a little more innovative.
 - Well, actually, this move was anticipatory.
 - Is there an address or a name or something else that's identifiable?
- each recording assessed by three trained raters (raters agree in 77% of cases, only agreement cases taken into account in analyses)

Individuality in stress variation

For all 98 participants who have lived in the UK all their lives

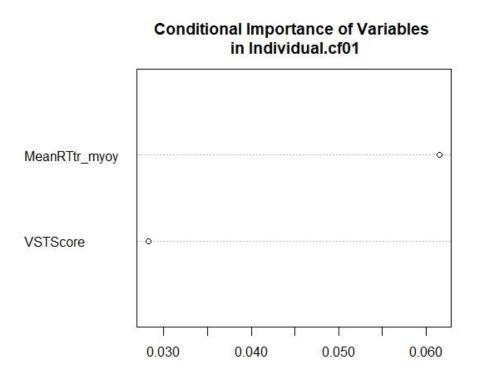
N = 2316


min proportion of non-preservation = 8%

max proportion of non-preservation = 43%

SD in proportion of non-preservation = 7%

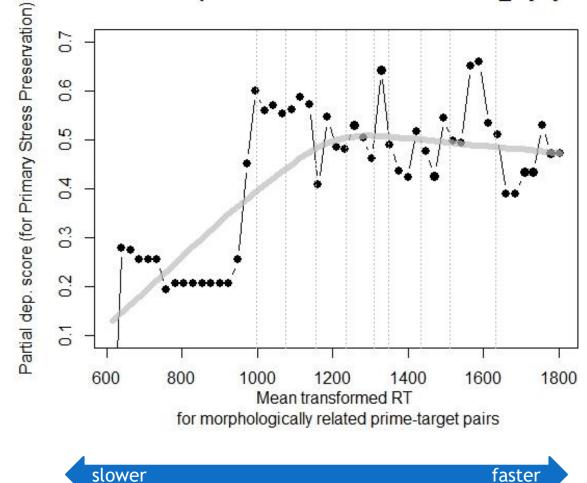
Individual processing and primary stress preservation


N = 2919

N = 3442

Individual processing and primary stress preservation

- transformed mean reaction time to morphologically related prime-target pairs and vocabulary size test score are moderately correlated
 - correlation coefficient: 0.34
 - condition number: 19 (moderate correlation)
- conditional random forest analysis
 - less sensitive to correlated predictors
 - cforest::partykit (Hothorn & Zeileis 2015; Hothorn et al. 2006, Zeileis et al. 2008)
- OOB accuracy of cforest 0.72



PriStrPreservation ~ MeanRTtr_myoy + VSTScore, data = AS_RTs, ntree = 500, perturb=list(replace=TRUE), mtry = 2

non-conditional variable importance yielded same result

Morphological Sensitivity and Stress Preservation

- partial dependence scores can be used to determine the nature and direction of effects in a random forest model
- see Gries 2021: Chpt 7 for more information

Partial dep. of Preservation on MeanRTtr_myoy

Conclusion

- individual differences in morphological processing, vocabulary size and stress placement preferences
- larger vocabulary size facilitates morphological processing
- morphological sensitivity emerged as more important predictor
 - Partial dependence scores of random forest model indicate a faster reaction time to morphologically related prime-target pairs boosts stress preservation in speakers
 - more exploration and validation with other models needed

Thank you/Ευχαριστώ πολύ for your attention!

Feel free to contact me: ganster@uni-trier.de

References

Arndt-Lappe, S., & Sanz, J. (2017, June 21). Stress Variability in English -able and -ory Adjedctives: Markedness, Faithfulness, and Usage. 11th Mediterranean Morphology Meeting, Nicosia, Cyprus.

Baayen, H., & Milin, P. (2010). Analyzing Reaction Times. International Journal of Psychological Research, 3(2), 12-28.

Bauer, L., Lieber, R., & Plag, I. (2013). The Oxford Reference Guide to English Morphology. Oxford University Press.

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How Many Words Do We Know? Practical Estimates of Vocabulary Size Dependent on Word Definition, the Degree of Language Input and the Participant's Age. *Frontiers in Psychology*, *7*.

Collie, S. (2008). English stress preservation: The case for "fake cyclicity." English Language and Linguistics, 12(3), 505-532.

Coxhead, A., Nation, P., & Sim, D. (2015). Measuring the Vocabulary Size of Native Speakers of English in New Zealand Secondary Schools. NZ J Educ Stud, 50, 121-135.

Davies, M. (2011). Corpus of American Soap Operas. <u>https://www.english-corpora.org/scotus/</u>

Fudge, E. (1984). English Word Stress. G. Allen & Unwin.

Gries, S. Th. (2021). Statistics for Linguistics With R (3rd ed.). De Gruyter Mouton.

Hay, J. (2001). Lexical frequency in morphology: Is everything relative? *Linguistics*, 39(6), 1041-1070.

Hay, J. (2003). Causes and Consequences of Word Structure. Routledge.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. https://doi.org/doi:10.1198/106186006X133933

Hothorn, T., & Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal of Machine Learning Research, 16, 3905-3909.

Kiparsky, P. (2005). Paradigm Uniformity Constraints. <u>https://web.stanford.edu/~kiparsky/Papers/LexConservatism.pdf</u>

Kiparsky, P. (2015). Stratal OT: A synopsis and FAQs. In Y. E. Hsiao & L. H. Wee (Eds.), *Capturing Phonological Shades* (pp. 2-44). Cambridge Scholars Publishing.

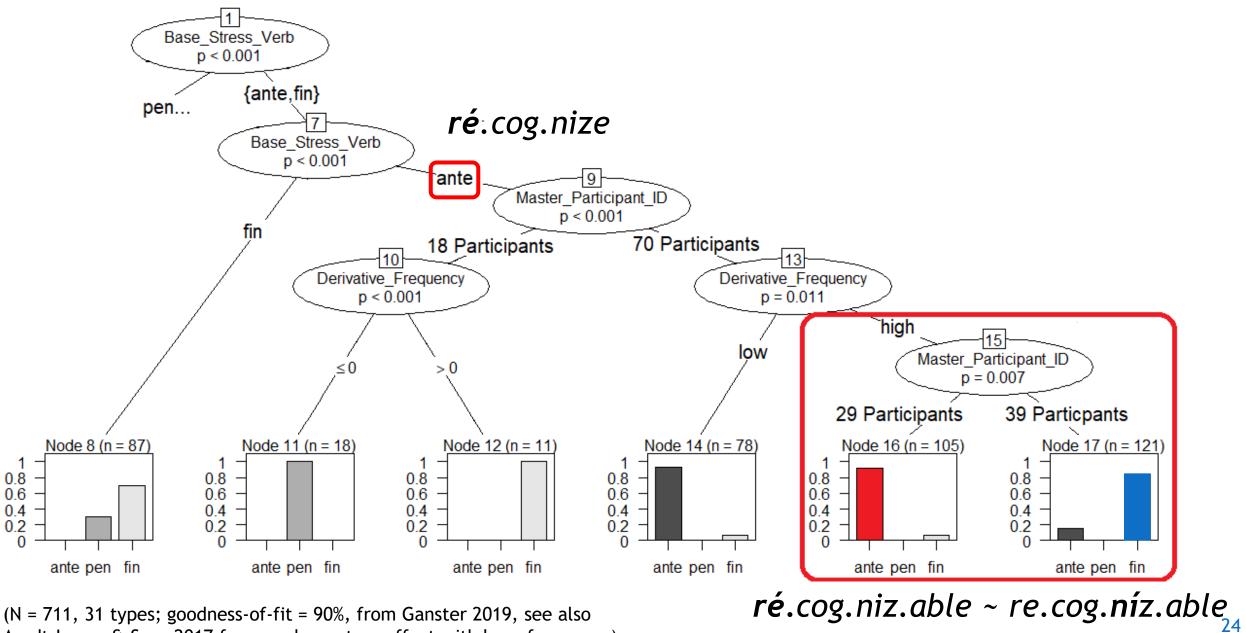
References

Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. S. (2017). Vocabulary Knowledge Predicts Lexical Processing: Evidence from a Group of Participants with Diverse Educational Backgrounds. *Frontiers in Psychology*, 8(1164).

McCutchen, D., Logan, B., & Biangardi-Orpe, U. (2009). Making Meaning: Children's Sensitivity to Morphological Information During Word Reading. *Research Quarterly*, 44(4), 360-376.

Nation, P., & Beglar, D. (2007). A vocabulary size test. The Language Teacher, 31(7).

Stanton, J., & Steriade, D. (2021). Markedness drives base selection: Experimental evidence. The 28th Manchester Phonology Meeting, Manchester, England.


Steriade, D. (1999a). Lexical Conservatism. Linguistics in the Morning Calm - Selected Papers from SICOL 1997, 157-179.

Steriade, D. (1999b). Lexical Conservatism in French Adjectival Liaison. In B. Bullock, M. Authier, & L. Reed (Eds.), *Formal Perspectives in Romance Linguistics* (pp. 243-270). John Benjamins Publishing Company.

Trevian, I. (2003). Morphoaccentologie et processus d'affixation de l'anglais. Peter Lang.

Trevian, I. (2007). Stress-neutral endings in contemporary British English: An updated overview. Language Sciences, 29, 426-450.

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-Based Recursive Partitioning. Journal of Computational and Graphical Statistics, 17(2), 492-514. https://doi.org/doi:10.1198/106186008X319331

(N = 711, 31 types; goodness-of-fit = 90%, from Ganster 2019, see also Arndt-Lappe & Sanz 2017 for complementary effect with base frequency)