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1. Introduction
Analogical reasoning, the ability to recognise and reproduce patterns of similarity between
entities and events, is all pervasive in human cognition and has even been proposed as the
most fundamental difference between human cognition and that of other intelligent species
(Gentner & Smith 2012). Although most research on analogical reasoning has involved
reasoning with awareness, there is also evidence that human subjects use the mechanism
unconsciously (e.g. Day & Gentner 2007), and this gives rise to the possibility that analogical
reasoning could be the unifying process underlying human grammars.

In linguistics, the idea that analogy constitutes a core mechanism of human grammar
has a long tradition, especially in classical and neo-grammarian approaches (e.g. Becker 1990,
Anttila 2003 for a summary). Within generative approaches, however, analogy has come to be
interpreted as exactly the opposite, namely as the source of exceptions to a rule-based core. A
central assumption of such approaches is that the language experienced by speakers is
insufficient to act as a template for the great diversity of language produced, and that some
part of language must therefore be already present in speakers’ minds at birth. It is postulated
that there is a central, innate grammar, conceptualised as a system of abstract symbolic rules,
that precedes exposure to language and is therefore independent of actual linguistic instances
(Chomsky 1975, discussed in Blevins & Blevins 2009; cf. Itkonen 2005). A logical
consequence of this view is that whenever there is clear evidence of linguistic generalisation
based on specific exemplars, and hence whenever there is clear evidence of analogy, such
generalisations are interpreted as having a different status from the grammar proper. An

example of this is the group of ‘dual-route’ proposals that emerged in the 1990s to account for
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the productivity of irregular past tense formation in English. Prasada & Pinker (1993), for
example, argue that irregular past tense forms can be created from appropriate present tense
forms by analogy with irregular present-past pairs stored in memory, whereas regular forms
are generated by ‘a default suffix concatenation process capable of operating on any verb’, i.e.
by a rule system in the sense of generative grammar (see also Pinker & Prince 1988, Pinker &
Prince 1991, Pinker 1991, Kim et al. 1991, Marcus et al. 1992).

Unlike generative approaches to linguistics, usage-based frameworks have embraced
the idea that memory of individual instances can give rise to linguistic generalisation (Bybee
2010 and references therein). Yet despite a common emphasis on the potential relevance of
specific exemplars, such models do not agree on the status of analogy. The reason seems to be
a disagreement about the role of abstraction in generalisation. Whereas construction-based
frameworks generally attribute much importance to schematisation mechanisms that
constitute abstractions from individual instances (e.g. Booij 2010), radical exemplar-based
approaches, which include most analogical models, conceptualise linguistic generalisation as
emerging directly and probabilistically from the set of exemplars in memory (e.g. Derwing &
Skousen 1989, Skousen 1989, Daelemans et al. 1999, Daelemans & van den Bosch 2005,
Gahl & Yu 2006, van den Bosch & Daelemans 2013). Note, however, that the issue of
abstraction also arises here, because a degree of symbolism is involved in the lexical
representation of exemplars. For example, it would be an abstraction to represent an exemplar
as a string of phonemes, since the phoneme is an abstraction from actual sound waves. It
seems incontravertible that some level of abstraction occurs in natural language, otherwise we
would not be able to recognise as such the same word spoken on different occasions, let alone
by different speakers. But at present, it is unclear what kind of evidence could distinguish
between abstraction at the level of lexical representation and abstraction in the form of higher
order schemas, or if indeed there is any principled difference.

In the present paper, we set out to argue in favour of an analogy-based view of
linguistic generalisation. We employ the term ‘linguistic generalisation’ as a more neutral
variant of the term ‘grammar’ and the term ‘analogy-based’ to refer to a single-route model in
which memory of individual instances forms the basis of all linguistic generalisation. We
remain agnostic as to whether generalisation is also mediated by higher-level schemas as
advocated in construction theory: the models presented in this paper neither rule out such
schemas nor provide positive evidence for their existence. The key point we wish to make is
that an analogical view of linguistic generalisation provides an empirically adequate account
of two properties of language that in our view have convincingly emerged from recent
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1. linguistic generalisations involve various levels of generality;

2. linguistic generalisations are often probabilistic.

Using a computational simulation of a testbed phenomenon, we will show how these
properties emerge in a straightforward way from an analogical theory.

Computational implementations of analogical theories, such as TIMBL (Daelemans et
al. 1999 et seq.) and AM::Parallel (Skousen 1989, Skousen et al. 2002 et seq., Skousen &
Stanford 2007), have successfully been used to replicate many aspects of human language:
morphological and phonological, syntactic and semantic, synchronic and diachronic (e.g.
Skousen et al. 2002, Daelemans & Van den Bosch 2005, Chapman & Skousen 2005, Keuleers
2008, Krott et al. 2007, Krott 2009, Soskuthy 2013, Van den Bosch & Daelemans 2013). Our
particular contribution is to show not only that an analogical model is successful, but also how
this success is achieved. We show that a single analogical mechanism can give rise to rule-
like, almost categorical, linguistic patterns as well as the observed variability in linguistic
phenomena, and can account for the relevance of different degrees of abstraction in linguistic
generalisation. At the same time we show that, contrary to some earlier conceptions of the
role of analogy in grammar, analogy can function as a restrictive central mechanism of a
grammatical system. The prerequisite is an independent, invariant procedure that constrains
similarity-based reasoning. Such a system is implemented in the analogical algorithm
AM::Parallel (Skousen & Stanford 2007), henceforth AM.

The testbed for our model is the phonological form of English noun-noun compounds:
some have leftward stress, e.g. apple juice, others have rightward stress, e.g. apple pie, and
others are variable, e.g. ice cream and ice créam, where stress is marked by an acute accent on
the prominent syllable. Although a number of recent corpus studies have shown that, inter
alia, a compound’s semantics and the identities of its constituent nouns are significant
probabilistic predictors of stress placement (e.g. Plag et al. 2007, Plag et al. 2008, Plag 2010),
it is still unclear why some types are more variable than others. Furthermore, although
statistical models show that certain variables can be used to predict stress patterns, they say
nothing about the mechanism that might be involved in creating new forms. This paper fills
these gaps.

We use AM to successfully model stress assignment in a corpus of 486 nominal
compounds, experimentally elicited from multiple speakers and carefully rated for stress
placement (Bell 2013). In an analogical theory, stress is assigned to new compounds in
accordance with the stress pattern of similar compounds previously encountered and stored in
the lexicon. In the AM model presented here, degree of similarity is calculated using the

compounds’ constituents and semantic properties: those with a sufficient level of similarity
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are included in the set of potential analogues. Because the algorithm does this for each
compound independently, in such a way as to maximise the certainty of its predictions, the
type and degree of similarity that is relevant can vary from compound to compound. A
number of compounds with particular semantic properties tend to cluster into a large, strong
‘analogical gang’ in the lexicon, influencing stress assignment in new compounds with the
same semantic properties, and overriding potential constituent effects. Because a large
number of compounds with similar semantics have the same stress behaviour, the result
resembles the effect of a categorical rule. For many other compounds, however, stress
assignment is based on more local analogues: in these cases, the identities of the constituents
are key features in the computation of similarity. But in all cases, the underlying mechanism
is the same.

The paper is structured as follows. In section 2 we discuss the empirical evidence for
incorporating different levels of generality and different types of variability into a theory of
linguistic generalisation, providing an overview of the pertinent literature (section 2.1) and
discussing in detail pertinent evidence with respect to our testbed phenomenon (section 2.2).
In Section 3, we then introduce the basic mechanisms of an analogical theory of
morphophonology as implemented in AM. Section 4 describes the data used for our empirical
models, which are described in Sections 5 and 6. The paper ends with a summary and

conclusion in Section 7.

2. Locality and variability in linguistic generalisation

2.1 The general picture

The idea that different levels of generality are involved in linguistic generalisation is
articulated especially, but not exclusively, in constructionist and exemplar-based work. The
crucial insight is that linguistic generalisations can be based on different degrees of
abstraction, ranging from very ‘local’ to very general. In this context, 'local' means that the
relevant properties of exemplars or, depending on the framework employed, the inputs to
linguistic rules are very specific, applying only to small groups of highly similar words or
expressions; 'general’, on the other hand, means that the relevant properties are more abstract,
pertaining to larger groups of less similar words or expressions. An example of a 'local’
generalisation is productive ablaut formation in the English past tense, which in nonce-word
experiments has been shown to occur predominantly in words which are phonologically
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Pinker 1993). An example of a 'general’ generalisation is the use of the suffix —s to mark the
third person singular present in all lexical verbs in English.

The evidence that linguistic generalisation involves reference properties at different
levels of abstraction comes from empirical work in a variety of linguistic sub-fields. In the
realm of word-formation, Booij (2010) provides ample evidence of different degrees of
generality in word-formation patterns, which lead him to postulate a layered, hierarchical
structure of schematisation, where schemas differ in terms of their level of generality. From a
slightly different theoretical perspective, Albright & Hayes (2003) and Albright (2002,
2009b) have argued in a series of simulation studies using the Minimal Generalization
Learner that different levels of generality are needed to account for various phenomena in
inflectional morphology. For phonology, it is argued for example in Pierrehumbert (2001) and
in Albright (2009a) that both fine-grained phonetic properties of individual exemplars as well
as more abstract phonological representations influence generalisation. Further evidence
comes from the relevance of local as well as more abstract generalisations not only in the
acquisition of syntax (Tomasello 2003 et seq.), but also in constructionist theories of adult
grammar (Goldberg & Jackendoff 2005, Goldberg 2006 et seq).

The issue of variability and gradience has also been the focus of much recent work,
especially in quantitatively oriented linguistics (e.g. Bod et al. 2003, Hay & Baayen 2005,
Bresnan 2007, Coetzee 2009, Coetzee & Pater 2011, Ernestus 2011). The usage of the terms
'variability' or 'gradience’ is largely theory-dependent. "Variability' tends to be used to refer to
outputs of linguistic generalisation mechanisms (such as rules or constraints) whereas
‘gradience’ is used to refer to the structure of representational categories. Which of the two
terms is used, then, often depends on the assumed division of labour between the
generalisation mechanism and the lexical representation. One interesting point of general
consensus seems to be that variability does not occur equally across the board, but that
linguistic generalisations differ in terms of how much variability they allow. Thus, most
scholars agree that there are some categorical, in the sense of exceptionless, generalisations,
but that at the same time there are also generalisations which are probabilistic in nature and
which produce variable outputs. Unlike in earlier generative treatments, where a principled
distinction was drawn between categorical and gradient phenomena, there is growing
evidence that the distinction is not absolute, but a continuum (cf. Ernestus 2011 for an
insightful overview discussion of the issue in phonological theory).

Another variability-related issue, which is subject to less consensus, is the question of
the scope of variability. In particular, the term ‘variable' is sometimes used to refer to

grammatical processes which affect different lexical types in different ways. These are cases
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that are traditionally described as involving subregularities. However, the term is also used to
refer to grammatical processes which produce variable outputs for the same lexical item,
which in turn may occur either between different speakers or even within a single speaker (for
examples, see the discussion of lexically conditioned variation in Coetzee & Pater 2011,
section 5).

In the next section we will introduce our testbed phenomenon. We will show that
stress assignment in English compounds is subject to generalisations at different levels of
generality, which are probabilistic in nature to different degrees. Thanks to a series of recent
large-scale studies (Plag 2006, Plag et al. 2007, Plag et al. 2008, Lappe & Plag 2007, Kunter
& Plag 2009, Kunter 2007, Kunter 2009, Giegerich 2009, Bell 2013), the empirical facts of
English compound stress are well understood. Furthermore, it has been shown that
computational analogical algorithms can model the phenomenon quite successfully (Plag et
al. 2007, Arndt-Lappe 2011). For both these reasons, English compound stress is an ideal

vehicle for the elaboration of a detailed analogical account of linguistic generalisation.

2.2 English compound stress

In what follows, we first describe the variation in English compound stress, and then discuss
how determinants with different levels of generality interact to produce this variation. Note
that we will not review here the theoretical debate about the status of pertinent constructs as
compounds or phrases (Chomsky & Halle 1968, Liberman & Sproat 1992). As has been
shown in an extensive body of literature, stress placement in English noun-noun constructions
is not reliably correlated with any morphosyntactic criterion (Giegerich 2009, Bell 2013 for
detailed discussion). All the data to be analysed in this paper consist of pairs of nouns in
which the first noun (N1) is the semantic modifier of the second (N2). For ease of exposition,

and without theoretical commitment, we will refer to them all as compounds.

2.2.1 Variability

English compound stress displays variability of two kinds (cf. Kunter 2007, Kunter 2009: ch.
8 for detailed discussion). The first, which we will refer to as between-type variability,
describes a situation where different lexical types behave in different ways. An example of
stress variability between types can be found in the compounds apple cake and apple pie. The
former is usually left-stressed whereas the latter is usually right-stressed. Most of the
literature on determinants of compound stress variability has focused on such between-type
variability (e.g. Sampson 1980, Fudge 1984, Ladd 1984, Liberman & Sproat 1992, Olsen
2000, Olsen 2001, Giegerich 2004, Giegerich 2009). In studies that are based on a categorical

rule or constraint system, the implication is that the stress pattern of a given type will be
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determined by the value of a particular predictor: in the examples given above, if N2 = cake
then the compound will be left stressed, whereas if N2 = pie, the compound will be right
stressed.

Apart from between-type variability, however, compound stress has also been
observed to be subject to within-type variability, meaning variability within a single lexical
type (Bauer 1983a, Bauer 1983b, Kunter 2011, Bell 2013). An example is ice cream, for
which both left stress and right stress are attested. Such variation can occur both between
speakers, where speakers consistently produce a particular pattern but not all speakers
produce the same pattern, or within speakers, where the same speaker produces different
patterns on different occasions. An interesting thing about within-type variability in
compound stress is that it does not occur to the same extent across the board. Rather, different
lexical types seem to be affected to different degrees. Recent evidence for this comes from
Kunter (2011) and Bell (2013). Kunter’s study investigates between-speaker variability
among compounds with multiple occurrences in the Boston Radio Speech Corpus (BURSC,
Ostendorf et al. 1996). Although the dataset used in the study was rather small (comprising 64
compound types), the analysis clearly suggests that within-type variability is a phenomenon
that affects a minority of compounds (about 1/3 of the dataset investigated in the study), and
that lexical types differ in terms of how much within-type variability they display. For
example, Kunter finds that in his data the compounds retirement age, birth control, home
phénes, and key detérrent are not variable, whereas budget deficit / budget déficit, state
trooper / state trooper, &ccess barriers / access barriers, and task force / task force are highly
variable (Kunter 2011: 192f.). Very similar findings emerge from Bell’s (2013) study of
within-type variability, which used a much larger corpus and a different variety of English. In
a dataset of 802 compounds, each produced by four different speakers of British English, Bell
(ibid.) found between-speaker variation in 21% of all lexical types.

In a rule-based grammar, within-type variation is difficult to account for, even in terms
of exceptions to a rule. It therefore has to be relegated to the realm of ‘performance’ or
possibly pragmatics: in other words, to some domain outside the grammar proper. In an
analogical grammar, however, within-type variation is expected and arises from the same

central mechanism as more fixed effects.

2.2.2 Different levels of generality

In a number of recent, large-scale empirical studies of English compound stress variation, it

has been shown that five general types of factor act as important predictors of stress position:
e semantic factors (Plag et al. 2007, Plag et al. 2008, Bell 2013),
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e constituent family (Plag 2006, Plag 2010, Arndt-Lappe 2011)

e lexicalisation (Plag et al. 2007, Plag et al. 2008)

e informativeness (Bell 2013, Bell & Plag 2012)

e length (Bell 2013, Bell & Plag 2012, Bell & Plag 2013)
Many of these factors had already been proposed to play a role in compound stress in the
earlier theoretical and descriptive literature (esp. Bloomfield 1933, Lees 1963, Marchand
1969, Payne & Huddleson 2002, Spencer 2003, Giegerich 2004, Giegerich 2009, Sampson
1980, Fudge 1984, Ladd 1984, Liberman & Sproat 1992, Sproat 1994, Olsen 2000, Olsen
2001; cf. Plag et al. 2008 for discussion). However, in terms of grammatical theory, the
findings of the recent larger scale empirical studies pose a double challenge to traditional
accounts of the phenomenon.

The first challenge is that all pertinent studies show that English compound stress is
probabilistic. There are clear tendencies, but none of the above factors determines the locus of
stress in a categorical manner. The second challenge is that stress assignment involves the
interaction of determinants at different levels of generality. This difference in generality can
be seen by comparing semantic effects, such as the tendency for compounds where N1 is a
proper name to be right stressed, with constituent family effects, such as the tendency for
compounds with N2 = cake to be left stressed. Semantic effects are relatively general,
requiring analysis on a relatively abstract level and applying to a relatively large number of
compound types. Constituent family effects, on the other hand, are less general and hence
more local, since they apply to compounds involving specific lexemes; they therefore require
analysis on a less abstract level and apply to relatively fewer compound types. The challenge
is that traditional grammatical systems, which are based on categorical rules, can
conceptualise such lexeme-specific effects only in terms of exceptions, and do not attribute
the same systematic status to both general and local factors.

Semantic categories that are relevant in English compound stress can broadly be
classified into two types. The first type comprises categories that describe the relation
between compound constituents. An example is found in compounds in which the first
constituent expresses a material of which the second constituent is made, e.g. gold earring,
metal cage, etc. The second type comprises categories that only pertain to one of the
constituents. An example is found in compounds where the first constituent (N1) is a term
denoting a time period, e.g. summer holidays, Christmas present, etc. Needless to say, there is
a strong overlap between semantic relations and categories of N1 or N2. For example, in
many cases where N1 denotes a time, the relation between N1 and N2 will be temporal: N2

occurs at time N1.



Empirical studies have consistently shown that certain semantic categories strongly
correlate with rightward stress in English compounds. Particularly important categories are
material, temporal and locative semantic relations, and compounds with N1 belonging to the
semantic classes material, time, location, and proper name (Plag et al. 2007, Plag et al. 2008,
Bell 2013). But even though these semantic categories have been shown to be quite successful
as probabilistic determinants of right stress, one crucial argument against an account of
compound stress purely in terms of these categories is that they pertain to only a minority of
compounds in the lexicon. In other words, corpus studies have generally found that there are
many right-stressed compounds which do not belong to any of the categories identified as
favouring right stress (cf. e.g. Plag et al. 2008: 784 for discussion).

Constituent family effects, on the other hand, have often been cited as reasons for the
existence of exceptional stress patterns (Schmerling 1971, Liberman & Sproat 1992,
Giegerich 2004). Traditionally, such effects have been attributed to analogy, where analogy is
used in the sense of denoting lexical patterns that, crucially, are not considered to be within
the realm of grammatical rules (cf. e.g. Arndt-Lappe in press for discussion). Standard
textbook examples are street names, which are stressed on N1 if N2 = street, but stressed on
N2 if N2 = avenue or lane (as in Oxford Street vs. Oxford Avenue, Oxford Lane). However,
recent studies have made it abundantly clear that constituent family effects happen on a much
larger scale than would be expected if they were exceptional formations (cf. e.g. Plag 2006,
Plag et al. 2007, Plag 2010, Arndt-Lappe 2011, Bell 2013). Plag (2006) used an experimental
study to compare constituent family effects and semantic effects for novel compounds
denoting classical music pieces (e.g. Twilight Sonata vs. Kauffman Sonata, Christmas
Symphony vs. Lieberman Symphony). He found consistent effects of the right compound
constituent, which were independent of semantic effects. Corpus-based evidence for the
importance of constituent family effects in stress assignment comes from studies by Plag and
collegues (2007), Plag (2010), and Arndt-Lappe (2011). Plag (2007) presents a study of stress
in compounds extracted from the CELEX lexical database (Baayen et al. 1995), which also
involved computational modelling with the help of an analogical algorithm (TiMBL,
Daelemans et al. 2007). Analysis of the analogical model revealed that constituent family
information acted as the most important information source for the model. This insight
received strong support from the studies reported in (Arndt-Lappe 2011), where stress
assignment in compounds from two different corpora (CELEX and the Boston University
Radio Speech Corpus, BURSC, Ostendorf et al. 1996) was modelled with the help of two
different analogical algorithms (TiMBL and AM). Again, the identities of both the first and

the second constituent of the compounds tested emerged as the empirically most useful
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information source in all experiments. In particular, constituent family information was found
to be far more important than other types of information that are known to correlate with
stress assignment, including semantic information. Finally, the study reported in Plag (2010)
shows for data from three different corpora that stress biases present in the constituent family
also emerge as highly important predictors of stress assignment in a regression analysis.

A question that emerges from the findings of the studies just discussed is how the two
types of effect — semantic and constituent family effects — interact in the grammar of English.
So far, the only attempt to integrate both types of effect in an analogical model has been made
in Arndt-Lappe (2011). There it was shown that the constituent family acts as a much stronger
predictor than the pertinent semantic categories, to the extent that incorporating semantic
information into the model did not lead to a significant improvement of the model’s predictive
power. It is, however, unclear how these findings can be reconciled with the observation
made in many other studies that semantics does play a role in compound stress assignment.
As Plag et al. (2008) note in the conclusion to their study of semantic effects published in this
very journal: ‘[a]nalogical models may raise the question of why one should find robust
semantic effects’(Plag et al. 2008: 787). In other words, if constituent family was really the
only relevant determinant, it would be difficult to explain why semantically similar
compounds display the same stress pattern even if they do not share any constituents.

Another consideration is that constituent family effects appear to be at least partly
semantic in nature. In the case of street compounds, for example, the tendency to left stress
only applies if the compound is the name of a thoroughfare, and not in other cases such as
London stréet in the context Whenever | walk in a London street. Constituent families may
even be associated with different stress patterns depending on the semantics of the
construction involved (Bell & Plag 2013). For example, two clear patterns can be discerned
for compounds where N1 = toy. When toy is used attributively to indicate that N2 is a replica
of something else, it tends to be associated with right stress, e.g. toy béat, toy trimpet, toy
factory (a model factory for playing with). On the other hand, when toy denotes playthings in
general it tends to be associated with left stress, e.g. toy shop, tdy box, toy factory (a factory
that makes toys, cf. Fail} 1981 for the example).

Clearly, neither form-based constituent families alone nor semantic categories alone
can account for the empirical facts of English compound stress. In this paper, we will
therefore present a model that incorporates both semantic and constituent family information,
and use it to show how factors with different levels of generality interact in an analogical
system. In contrast to categorical rule or constraint-based grammars, an analogical grammar

does not require that less general effects are treated as exceptions.
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Apart from semantic effects and constituent family effects, three other kinds of
variable have been shown to be influential in compound stress assignment. These are
lexicalisation (Plag et al. 2007, Plag et al. 2008), informativeness (Bell 2013, Bell & Plag
2012, Bell & Plag 2013) and length (Bell 2013, Bell & Plag 2012, Bell & Plag 2013). These
features will not be included as explicit predictors in our model, but will be present implicitly
and are therefore briefly discussed in the following paragraphs.

Firstly, a high degree of lexicalisation, measured in terms of compound frequency,
listedness in a dictionary or tendency to be written as a single orthographic word, has been
shown to correlate in English compounds with a tendency towards left stress (e.g. Plag et al.
2007, Plag et al. 2008, Bell 2013). Such a lexicalisation effect may at a first sight seem
difficult to reconcile with the basic idea of computational analogical models that all language
encountered leaves a trace in the lexicon. However, we assume that the measures of
lexicalisation used in these studies are in fact indicative of semantic lexicalisation or
institutionalisation (Bauer 2001: 45-46): in other words, that they are correlates of semantic
opacity. Our data is semantically coded in a way that attempts to take this factor into account.

Secondly, it has been shown that the greater the infomativity of a compound
constituent, measured in terms of either expectedness or semantic specificity, the more likely
it is to be stressed (Bell 2013, Bell & Plag 2012, Bell & Plag 2013 for recent empirical
support and discussion). Furthermore, a constituent’s informativity, as indicated by these
measures, can be used to predict its bias for one stress pattern or the other (Bell & Plag 2013).
This suggests that the informativeness effect is closely related to the constituent family effect
and, as Bell & Plag argue, may even underlie it. In our model, compound constituents will be
used as predictors and, since each constituent will have a certain level of informativeness, this
factor will be implicitly present.

Finally, longer compounds (in terms of number of syllables) have a tendency to be
right stressed (Bell 2013, Bell & Plag 2012, Bell & Plag 2013). Again, by including the
identities of the compound constituents as predictors, we are implicitly including length, since
each constituent has a certain number of syllables. However, the effects of informativity and
length will not be seen in our models independently of other constituent effects, since we do
not explicitly code for them: both variables are numeric in nature, and the AM algorithm

works best with non-numeric data.
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3. An analogical theory of morphophonology

In an analogical theory of morphophonology, new word forms (analogical targets) are created
on the basis of existing forms in the lexicon (analogical bases). To be sustainable, such a
theory therefore needs to spell out how analogical bases are selected from the lexicon in a
systematic and constrained way so as to produce forms that closely mirror those produced by
humans. An example of such a mechanism is provided by the computational algorithm AM
(Skousen 1989, Skousen 1992, Skousen et al. 2002, Skousen & Stanford 2007). In this section
we describe how AM assigns stress to new compounds in a way that accounts both for the
observed variability in output and for the different levels of generality amongst known
predictors. For further explanation of the algorithm and its underlying theory the interested
reader is referred especially to Skousen (1992), Skousen et al. (2002), Skousen (2005),
Skousen (2009), Eddington (2000), Eddington (2002), Eddington (2004: ch. 5).

Figure 1 provides an illustration of how AM assigns stress, using the compound fish
pie as an example. We assume in this example that fish pie is a novel compound, encountered
by the speaker for the first time. Previously-encountered compounds are stored in the lexicon,
with each exemplar represented as a structured set of coded features. In this example, and in
our models, exemplars are coded for just five different features, which represent different
levels of generality. Features 1 and 2 are the specific identities of the first and second
compound constituents. Features 3 and 4, on the other hand, are more general semantic
features: respectively, the semantic relation between N1 and N2, and the semantic class of
N1. Finally, Feature 5 is the stress category, which will function as the target category for the
classification of new items: in other words, the model will try to predict the value of this
feature on the basis of information in the lexicon and the other features of the new item.
Figure 1 shows only a small subset of all items in our dataset.

If a new compound is to be classified for stress, the system extracts from the lexicon a
group of exemplars that are similar to the new compound in terms of the other coded features.
This group of exemplars is known in the AM literature as the analogical set. The exemplars in
the analogical set serve as analogues on the basis of which stress will be assigned to the new
compound. A crucial problem for an analogical theory is how to determine which exemplars
in the lexicon are included in the analogical set. This problem underlies much of the criticism
mounted against traditional analogy-based models of grammar (cf. e.g. Bauer 2001: 75-97 for
an overview of pertinent arguments), and the solution has remained often opaque in studies
using computational analogical models. The problem has two different dimensions. Firstly, it
is unclear what degree of similarity is necessary for an exemplar to be selected for the

analogical set. For example, in Figure 1 the analogical set comprises three exemplars that
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share three features with the new word (namely N2 lemma and both semantic features) as well
as one exemplar which shares only two features with the new word (namely N1 lemma and
the class of N1). Secondly, it is unclear which features, if any, are most important in selecting
members of the analogical set. For example, in Figure 1 both fish shop and chocolate raisin
share two features with the target word, but the former is included in the analogical set while

the latter is excluded.
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exemplars
in the
lexicon

analogical
set

new
item

Feature 1: Feature 2:  Feature 3: Feature 4: Feature 5:
N1 lemma N2 lemma Semantic relation N1 semantic class Stress
lemon pie N1 ingredient in NN material right
steak pie N1 ingredient in NN material right
mince pie N1 ingredient in NN material right

fish shop no rightward relation material left
county caterer N2 located in N1 location right
south avenue no rightward relation location right
silver ware N2 made of N1 no rightward class left

cat food no rightward relation no rightward class left
chocolate raisin N1 ingredient in NN material right
coffee jar no rightward relation no rightward class left

sport centre no rightward relation no rightward class left
Feature 1: Feature 2:  Feature 3: Feature 4: Feature 5:
N1 lemma N2 lemma Semantic relation N1 semantic class Stress
lemon pie N1 ingredient in NN material right
steak pie N1 ingredient in NN material right
mince pie N1 ingredient in NN material right

fish shop no rightward relation material left
Feature 1: Feature 2:  Feature 3: Feature 4: Feature 5:
N1 lemma N2 lemma Semantic relation N1 semantic class Stress
fish pie N1 ingredient in NN material 2?7?

Figure 1. The basic architecture of an analogical model®

3 x right
1 x left

stress: right
(majority
choice)

Although the reason for the inclusion or exclusion of particular exemplars may not be

immediately apparent, an analogical algorithm such as AM in fact bases selection of the

analogical set on a single principled mechanism. AM selects analogues in such a way as to

maximise its certainty about the value of the target variable. The way it does this will be

explained using Figure 2. In this and similar diagrams elsewhere in the paper, the central oval

shows the features of the target item, in this case fish pie, and the three outer ovals contain all

items in the lexicon that share at least one of these features. Each concentric zone represents a

set of so-called “‘contexts’ which are similar to the target item to the same degree. A context is

> Note that the coding will be explained in section 4 in detail. The present discussion focuses on the central
mechanism.
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a constellation of features shared with the target item. For each context, we represent the set
of exemplars that belongs to this context as a block of words. Thus, exemplars in the
outermost zone in Figure 2 share at least one feature with the target item, those in the middle
zone share at least two features with the target item, and those in the inner zone share three
features with the target item. The assumption is that fish pie is a newly encountered
compound, and so no previous exemplars have been encountered that share all four features.
Contexts that constitute the analogical set for fish pie are shaded.

AM starts analogue selection from those exemplars in the lexicon that are maximally
similar to the target item, considering all logically possible contexts, i.e. constellations of
shared features. A context is defined in terms of particular features shared with the target
item, irrespective of whether or not other features are shared. This means, for example, that
any exemplar sharing two features with a target item will automatically occur in three
contexts: shared feature 1, shared feature 2, shared features 1&2. Likewise, any exemplar
sharing three features with the target will occur in seven contexts: shared feature 1, shared
feature 2, shared feature 3, shared features 1&2, shared features 1&3, shared features 2&3,
shared features 1&2&3.

Starting from each context that is maximally similar to the target, the model’s strategy
is to also include contexts that share fewer features with the target along each similarity
dimension, provided these less similar contexts do not reduce certainty about the outcome. By
‘similarity dimension’, we mean the series of subcontexts that can be derived from each
maximally similar context. For example, the following three contexts represent one
dimension: shared features 1&2, shared feature 1, shared feature 2. As described above, any
context that involves three shared features will lead to a further six contexts along that
dimension of similarity. Furthermore, less general contexts will occur in more than one
dimension; for example, shared feature 2 is a subcontext both of shared features 1&2 and of
shared features 2&3.

In Figure 2, we see that the only exemplars in the model’s lexicon that share three
features with fish pie are those that share the N2 lemma and both semantic features. These
three exemplars (Ilemon pie, steak pie, and mince pie), which are to be found in the innermost
zone in Figure 2, are selected for the analogical set because they are maximally similar to fish
pie along this dimension. All three are right stressed, and so they predict right stress for fish
pie with 100% probability.
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N1
fish shop

N1, semN1
fish shop
N1, N2
no exemplars

N2, semN1
lemon pie
mince pie

steak pie

N1, N2, semN1
no exemplars

N1, N2,R
no exemplars

N2 N1: fish

lemon pie N2: pie N1,R

i 1 ti i no exemplars
mince pfe N2, semN1, R R mgredlemf P
steak pie semN1: material

lemon pie
mince pie
steak pie

N1, semN1, R
no exemplars

N2,R

I .

r:’:':z pl": semN1

steak pie 97 exemplars
P (38 left stressed)

semN1, R: apple tdrt, banana sandwich, chicken burger,
chicken curry, chicken kérma, chocolate biscuit, chocolate
rdisin, fruit sindae, ginger pudding, lamb curry, lamb
sandwich, lemon chicken, lemon pie, lemon sérbet,
macaroni pudding, mango sérbet, mdrzipan bar,
mince pie, rice krispie, rice pudding,
salmon sdandwich, steak pie

Key

R: apple tdrt, banana sdndwich, chicken burger, Shared features:

chicken curry, chicken kérma, chocolate biscuit, N1=N1lemma
chocolate rdisin, fruit sindae, ginger pudding, lamb N2 = N2 lemma
curry, lamb sandwich, lemon chicken, lemon pie, lemon R = semantic relation between
sérbet, macaroni pudding, mango sérbet, mdrzipan N1 and N2

bar, mince pie, rice krispie, rice pudding, salmon
sdandwich, steak pie

semN1 = semantic class of N1

The analogical set is shaded

Figure 2: The analogical set for fish pie (36 rightward votes; 2 leftward votes)
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The algorithm next checks to see whether it can include into the analogical set
exemplars with only two of these features, without reducing the certainty of its prediction. In
the case of ‘N2, R, as well as ‘N2, semN1', this is possible. Only the same three exemplars
(lemon pie, steak pie, and mince pie) belong to each of these contexts, and so including these
contexts does not reduce the probability of fish pie being right stressed. However, the context
‘R, semN1’ includes two exemplars that are left stressed (chicken burger and marzipan bar).
Including this context would therefore reduce the certainty of the model’s stress prediction,
and so AM excludes the context from the analogical set. Having excluded exemplars in this
context, the model will not proceed to more general contexts along this dimension, and so two
of the contexts with a single shared feature, namely ‘N1’ and ‘semN1’, are not considered. On
the other hand, the third single-feature context, ‘N2’, is included because it contains only
right-stressed exemplars.

The alert reader might be wondering at this stage why the compound fish shop is
included in the analogical set for fish pie, since it is left stressed and therefore reduces the
overall certainty of the model’s prediction compared with the outcome based only on the three
pie compounds. In fact, fish shop is included for exactly the same reason that the pie
compounds are included: it is maximally similar to fish pie along its dimension of similarity.
In other words, there is no exemplar in our sample lexicon that shares both 'N1'" and 'semN1'
with fish pie, and is more similar to it than fish shop is. In both of the contexts ‘N1, semN1'
and “‘N1', fish shop is the only exemplar in the lexicon. Both of these contexts are therefore
included in the analogical set, since inclusion of the less similar context does not change the
predicted outcome along this dimension.

From this description it can be seen that, in selecting which exemplars to include in the
analogical set, AM gives equal weight to all coded features. In contrast to rule-based
frameworks, the analogical mechanism gives equal weight to very general factors such as
semantic relation as to very specific factors such as N1 lemma, with no a priori ordering. In
other words, all determinant factors are treated as equally important although they differ in
terms of the number of compounds to which they apply.

AM's classification is probabilistic: the algorithm gives the probability of each
possible value being assigned, based on the distribution of these values amongst exemplars in
the analogical set. And in calculating these probabilities, AM takes into account the degree of
similarity between an exemplar and the new item, as well as the number of exemplars with a
particular set of features. The more similar an exemplar is to the new item, the more weight it

receives, and the more exemplars that share a particular set of features, the greater the weight
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assigned to each of them. In our case, the target category is ‘stress’, with possible values ‘left’
and ‘right’, and the basis of classification is the stress pattern of exemplars in the analogical
set. Each exemplar in the analogical set receives a number of votes for its own stress pattern,
depending on how many coded features it shares with the new compound, and how many
other compounds in the lexicon share that particular set of features.

In Figure 2, the analogical set contains one left-stressed and three right-stressed
exemplars. However, not all of these exemplars are equally similar to the new word, fish pie.
Specifically, left-stressed fish shop shares two features with the target, namely 'N1' and
'semN1', whereas right-stressed lemon pie, mince pie, and steak pie each share three features
with the target, namely 'N2', 'semN1’, and 'R'. Furthermore, lemon pie, mince pie, and steak
pie form a group belonging to exactly the same set of contexts, known in the AM literature as
a ‘gang’, whereas fish shop is the only exemplar with N1 = fish. On both these counts, the
right-stressed pie gang will each receive more votes than the left-stressed fish shop.?

To facilitate assessment of the predictive power of concrete simulations, studies using
AM have often transformed the output probabilities into categorical choices. Such categorical
choices are based on the majority vote of exemplars in the analogical set; in the case of fish
pie, discussed above, this would mean categorically right stress. However, the fact that AM’s
stress predictions are actually probabilistic allows us to model within-type variability: a
successful model will be one where the probability of a particular value as given by the model
closely reflects the attested frequency of that value. For example, if our model predicts right
stress for fish pie with a probability of 95%, then we would expect nearly all tokens of fish pie
to be right stressed, but would not be surprised to find a few tokens (5%) with left stress.

In what follows we will present two simulation studies with AM which show that the
challenges posed by English compound stress assignment to grammatical theory can be
successfully overcome by an analogical view of linguistic generalisation. In the first study we
will focus on different degrees of generality and show how the observed patterns of between-
type variability emerge from the different types of analogical set in the model. In the second
study we will look at within-type variability. The discussion of the two studies will be

preceded by a short presentation of our data.

¥ AM achieves this weighting by assigning to each exemplar in the analogical set one vote for every member of
its gang for each context where the gang occurs in the analogical set: remember that the more similar an
exemplar is to the target, the more contexts in which it will occur. In the example given, lemon pie, mince pie,
and steak pie each receive 12 votes because they occur as a gang of three in four different contexts. Fish shop, on
the other hand, receives only two votes because it occurs as a gang of one in only two included contexts. Overall,
the analogical set therefore produces 36 votes for right stress but only 2 votes for left stress.
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4. Data and coding

The set of compounds used for our models, together with their attested stress patterns, come
from Bell’s large-scale empirical study of the English noun-noun construct (Bell 2013); this
data has kindly been made available to us by the author. The full dataset comprises 1,000
compound types extracted from the demographic section of the British National Corpus
(BNC); this section of the BNC contains 4.23 million words of spontaneous conversation
recorded by informants selected to represent a demographically representative sample of the
population. All the types sampled were tagged in the corpus as noun-noun combinations, and
all occurred at least once as spaced, i.e. two-orthographic-word, tokens. Stress information
was gathered in a reading experiment where each compound was read in the same carrier
sentence by four different native speakers of British English. Stress was then coded by two
independent, phonetically trained listeners using two different methodologies, and tokens for
which the stress judgements were not unanimous were excluded. Subsequent removal of types
with fewer than four tokens with agreed stress, yielded a final dataset of 3,405 compound
tokens distributed over 802 different compound types. This dataset contains some types where
stress in all four experimental tokens was invariably left or right (left: 377 types = 47% of all
types; right: 257 types = 32% of all types), and others where stress was variable, i.e. left in
some tokens and right in other tokens (168 types = 21% of all types).

From Bell’s final dataset (ibid.), we extracted two subsets to be used in our AM
simulations. A constraint on both subsets was that at least one of the compound constituents
must have a family in the dataset, so that the algorithm would have access to both semantic
and constituent-family information for each type. In other words, a compound was only
included if at least one of its constituents appeared in the same position in at least one other
compound in the dataset, e.g. fish pie and fish shop. Furthermore, compounds were excluded
if they displayed ambiguity in terms of the semantic features coded or if either constituent was
itself a compound. The subset thus produced contained 1,913 tokens representing 486
different types. Of these, 293 (49%) were consistently left-stressed, 147 (30%) were
consistently right-stressed, and 100 (21%) were produced with both stress patterns. We used
this dataset to investigate within type variability in stress placement, since it included both
compounds that showed within-type variability in the reading experiment and others that did
not. In our first simulation, however, we wanted to investigate in more detail how AM
integrates predictors with different levels of generality. We therefore selected only those
compound types produced with the same stress pattern by all speakers in the reading
experiment. Thus, within-type variability was deliberately excluded from the lexicon for this
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simulation, in order to facilitate the analysis of analogical sets in the model. Excluding
variable types also meant that some additional non-variable types had to be excluded, since
they no longer had a family member in the dataset, i.e. another compound with a shared
constituent. The final dataset for this first study comprised 368 compound types, of which 232
(63%) were left stressed and 136 (37%) were right stressed.

The coding of the predictor variables for our data also comes from Bell (2013), where
all compounds were coded for their first and second constituent lemma (i.e. the singular form
of each constituent) and their semantics. The semantic coding included both semantic
relations and classes of N1 that have in previous studies been shown to trigger right stress
(esp. Plag et al. 2007, Plag et al. 2008, Bell 2013). Figure 2 lists the relations and classes

coded, with examples from the dataset.

Semantic relation between constituents

N2 is made of N1 leather chair
N2 is N1 baby boy
N2 occurs during N1 winter month
N2 is located at/on/in N1 country lane
N1 has N2 plant root

N1 is an ingredient in foodstuff NN apple tart

Semantic class of N1

N1 is a name Tyson case

N1 is a material cotton sheet

N1 is a time period morning peak
N1 is a location farm yard

N1 is a social group family argument

Table 1. Semantic categories coded

The six semantic relations and the category ‘N1 is a name’ were coded by two independent
raters, one a trained linguist and the other a professional lexicographer. Cases of initial
disagreement were discussed until a consensus was reached. A semantic relation was coded to
apply only if the meaning of the relevant compound entails that relation. This meant, for
example, that the locative relation ‘N2 is located at/on/in N1’ was coded to apply in the case
of garage wall, but not in the case of door handle. Although in both cases N1 describes a
location where N2 can be found, the two compounds differ in terms of the status of N1 as a
location. In the case of garage wall, the usual meaning of the compound entails that the wall
is located in a garage. This is not true for door handle, where an object can still be a door

handle without actually being fixed to a door. This entailment criterion means that the coding
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of semantic relations in Bell (2013) and in the present paper is more restrictive than in some
previous studies (e.g. Plag et al. 2007, Plag et al. 2008). Bell (ibid.) argues that compounds for
which the entailment criterion applies are more semantically transparent than those where it
does not apply, and that these ‘rightward leaning’ semantic relations have an effect on
compound stress only when they apply with a maximal degree of transparency (cf. Bell 2013
for discussion). If this is correct, then we assume that the tendency for compounds with these
relations to favour right stress is the inverse of the tendency noted in previous studies for
semantically lexicalised (and therefore opaque) compounds to favour left stress (e.g.
Giegerich 2004, Plag et al. 2007, Plag et al. 2008).

The remaining classes of N1, namely ‘N1 is a material’, ‘N1 is a time period’, ‘N1 is a
location’, and ‘N1 is a social group’, were coded using the WordNet lexical database (Miller
et al. 1990). The database was checked for hypernyms of each N1, and an N1 was coded as
belonging to a given class only if listed as a hyponym of a relevant concept. The hypernyms
used are shown in Table 2.

N1 semantic class Hypernym in WordNet ~ WordNet definition

material substance (sense 1) that which has mass and occupies space
fabric (sense 1) cloth, material, textile
building material material used for constructing buildings

time period time period period of time, period

location location (sense 1) a point or extent in space

social group social group people sharing some social relation
social class socio-economic class

Table 2: Hypernyms used to define classes of N1

In a few cases, more than one relation or class of N1 applied to the same compound. In these
cases, the compound was coded for both features. For example, the semantic relation for
school piano was coded as N1hasN2/N2 is in N1, the class of N1 for Christmas trimming was
coded as N1is a name/N1is a time period, and the class of N1 for school lunch was coded as
N1is time period/N1 is a social group.

Before we proceed to the discussion of the simulations, a principled note is in order
about the theoretical implications of the coding of the variables. First and foremost, it is clear
that the algorithm is given information about which features are relevant for its particular task,
i.e. stress assignment. In this respect, the present model does not differ from many other
grammatical models, where it is standardly assumed that knowledge about which categories

are relevant for a particular type of generalisation is part of the system. In the exemplar-based
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literature, however, we also find the idea that feature relevance is emergent rather than
preconceived (cf., e.g., Skousen 2009, Skousen 2005 for some discussion). In the present
study, we remain agnostic to this issue. A second note concerns the issue that in our coding
there is considerable overlap between the categories that were coded. Thus, for example, we
can expect that in compounds where 'semN1" is classified as 'material’, the semantic relation
'R" between N1 and N2 is likely to be a material one. What is more, the constituent identity of
N1 or N2 will also overlap to a considerable degree with the semantic categories. This overlap
is a feature that has been found to be characteristic of naturally occurring compounds (e.g.
Maguire et al. 2010). Furthermore, having run different simulation experiments using
different feature combinations, we also find that excluding one of the semantic features does

not lead to fundamentally different outcomes in our models (cf. section 5 below).

5. Study 1: Different levels of generality in compound stress

The dataset used in this study is the set of 368 compound types that do not display within-type
variability. The algorithm was given this same dataset both as a lexicon and as a test set, but
the AM parameters were set in such way as to make sure that analogical sets never included
the item to be classified. The algorithm therefore treated all compounds tested as novel
compounds.*

In what follows, we first provide an overview of our model’s success in predicting
stress placement, and then investigate how factors with different levels of generality interact
as determinants of stress in the model. To do this, we perform an in-depth analysis of how the
algorithm composes analogical sets. We will see that generalisations with different degrees of
generality emerge in an analogical model as an epiphenomenon of different set sizes. Local
patterns emerge from small analogical sets whose members are highly similar to one another
and to the test item; more general effects emerge from larger analogical sets whose members
are still similar, but have fewer features in common. Both types of set result from the

distribution of pertinent features amongst items in the lexicon.

5.1 Overall performance of Model 1
To assess the overall performance of the model, we had AM transform its probabilistic stress

predictions into categorical predictions for each compound. This means that if the percentage

* In all experiments reported in sections 5 and 6, we had the algorithm compute analogical sets using pointers,
not occurrences (see Parkinson 2002 for a general outline of the options provided by AM). Furthermore, best
results were achieved if AM treated both the presence and the absence of a semantic category as an informative
value (the —nulls parameter in the program was set to “include’).
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of votes for either left or right stress was greater than 50%, the test compound was predicted
to be categorically left- or right-stressed, respectively. This procedure is well-established in
the literature applying exemplar-based models to linguistic tasks (cf. e.g. papers in Daelemans
& van Bosch 2005, Skousen et al. 2002 for examples and discussion). Also, this procedure
allows us to compare the performance of our model with those tested in Arndt-Lappe (2011),
where AM was set the task of assigning stress in compounds from a different dataset (cf.
section 2.2 for discussion), and where the same assessment procedure was used.

Table 3 provides an overview of the model’s predictive power. As measures of
success, we provide the percentage of correct predictions and F-scores for left and right
stresses as well as two types of averaged F-scores for the complete dataset (cf. e.g. Daelemans
& van Bosch 2005, Arndt-Lappe 2011 for explanation and discussion of the measures).
Unlike measures that only provide the percentage of correct predictions for a given task, F-
scores are sensitive to both underprediction and overprediction of a given outcome. Micro-
averaged F-scores constitute an average F-score for the whole dataset that takes into account
skewings in the distribution of observed outcomes: in this case, left stress is more frequent
than right stress in the dataset, hence predictive power for left stress is given more weight than
that for right stress. In contrast, macro-averaged F-scores treat both possible outcomes as

equally important.

F-score, micro-averaged: 0.93
F-score, macro-averaged: 0.92
% correct predictions (overall): 93%
F-score for left stress: 0.94
% correct left predictions: 94%
F-score for right stress: 0.91
% correct right predictions: 91%

Table 3: Overall performance in Study 1 using both semantics and constituent information

Using a combination of constituent family information and semantic information, AM
successfully predicts more than 90% of stresses in the data, irrespective of the measure used
for assessment. This overall accuracy is very similar to the overall levels of accuracy found by
Arndt-Lappe (2011); where the two studies differ, however, is in the predictive accuracy for
right stress. Whereas in our study, predictive accuracy for right stress is only slightly below

that for left stress, predictive accuracy for right stress in Arndt-Lappe’s study (ibid.) never
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exceeded 67%. We hypothesise that this increase in accuracy for right stressed types is
associated with the more restrictive criteria by which our semantic features were coded.

In terms of the information sources used, the present simulation also differs
remarkably from those presented in Arndt-Lappe (2011), since semantic information plays a
crucial role in enhancing the predictive accuracy of our model. This is illustrated in Table 4,
where we compare F-scores for our model using both constituent and semantic information
(shaded, same model as in Table 3) with those for models that use only semantic information
or only constituent family information, for the same dataset. We see that the best predictive
results are achieved if the model is allowed to use both types of information source. This is
contrary to the findings in Arndt-Lappe (2011), where semantic information did not improve

predictive power compared with a model using constituent information alone.

Information source

constituents semantics I:Ieft Fright I:microav. I:macroav.
v v 0.94 0.91 0.93 0.92
x v 0.93 0.88 0.91 0.90
v x 0.90 0.82 0.87 0.86

Table 4: Performance in Study 1 using different information sources

However, note that, unlike the dataset used by Arndt-Lappe, the present dataset cannot be
used to compare the relevance of constituent family information and semantic information in
absolute terms. This is because, in the present dataset, constituent family information is not
available for all compound constituents: most compounds in the dataset share only one of
their constituents with another exemplar or exemplars in the data. This means that for most
compounds, constituent family information is only available either for N1 or for N2, not for
both N1 and N2. Whereas this may well explain the discrepancy between Arndt-Lappe (2011)
and the present study in terms of the predictive power of the constituent family, note that the
fact that the dataset does not contain all potentially available constituent family information
does not bear on the point that the present paper is making. There is independent evidence that
both semantics and constituent family information play an important role in compound stress
assignment: the point of interest here is to show how these different effects can successfully

be accommodated within an analogical model of grammar.

5.2 Local and general analogies - a matter of degree
In order to explore how effects with different degrees of generality emerge in an analogical
model, we conduct an in-depth analysis of the composition of analogical sets in the model

presented in Table 3. Recall from Section 3 that AM will include less similar exemplars in an
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analogical set under two conditions: one is where less similar exemplars either maintain or
increase certainty about the value of the output variable compared with more similar
exemplars along the same dimension; the other is where there are no exemplars in the lexicon
that share the same features and are more similar to the target item. Under either of these
conditions, the analogical set will include exemplars that have relatively few features in
common with the target item. On the other hand, if neither condition applies, the analogical
set will contain only exemplars that are highly similar to the target item. We refer to the
members of such highly similar analogical sets as ‘local’ analogues. On the whole, more
general analogical sets will contain more exemplars than more local sets, and we can take
advantage of this fact to identify these different types. Figure 3 provides an overview of the

sizes of the analogical sets in our model.
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Figure 3: Sizes of analogical sets in Study 1

In Figure 3, the sizes of the analogical sets in our model, in terms of the number of members,
are plotted against the number of compounds which have an analogical set of that particular
size. We see clearly that analogical set sizes are not evenly distributed among all test
compounds, but that, instead, there are clusters of different set sizes. For the vast majority of
compounds in our dataset, the analogical set is very small. For example, for 149 of all 368 test
compounds (i.e. for 40.49%), the set contains no more than two exemplars. The leftmost
cluster of bars in Figure 3 comprises 306 test compounds (i.e. 83.15% of the dataset), with

analogical sets of between 1 and 12 exemplars. For these compounds, it is likely that the
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model predicts stress assignment on the basis of highly local analogies. For the remaining 62
compounds, analogical set sizes fall into two groups. One group, the rightmost group in
Figure 3, comprises 26 compounds (i.e. 7.07% of the dataset) with a very large analogical set
(174 - 176 members). These compounds are therefore predicted to be stressed on the basis of
very general analogies. The other group, consisting of 36 compounds (i.e. 9.78% of the
dataset) is heterogeneously distributed over several smaller clusters. The analogical set size
here varies between 13 and 43 members; analogies for these compounds are thus more
general than in the larger cluster, but less general than in the rightmost cluster.

In what follows, we will investigate why analogical sets fall into the distinct size
clusters shown in Figure 3. We will see that these clusters reflect not only the different
degrees of similarity involved in analogical set formation but also, in the case of mid- and
large-sized sets, analogical gang behavior: specifically, a situation where the same compounds
reappear again and again in a number of analogical sets. In the case of the small-sized cluster,
different sets are composed not of the same compounds, but of compounds that share the
same type of features with the target. The size clusters identified in Figure 3 reflect situations
which in other frameworks have been ascribed to different mechanisms: in ascending order of
set size, these are local analogy, rule-governed behaviour, and a default situation. We will
look at each type of analogical set in turn: the small sets (1 - 12 exemplars), the mid-size sets

(13 - 43 exemplars), and the large sets (174 - 176 exemplars).

5.2.1 Small analogical sets
Among the 306 compounds with small analogical sets, 188 compounds (i.e. 61.44%) have
leftward stress and 118 compounds (i.e. 38.56%) have rightward stress. Stress was predicted
correctly for 180 of the left-stressed compounds and for 108 of the right-stressed compounds.
Closer inspection of the small analogical sets reveals that they all contain compounds
sharing a constituent with the target word. In fact, for 251 of the 306 compounds in this group
(i.e. 82.03%), the analogical set consists exclusively of items belonging to the constituent
family or families. Examples of pertinent analogical sets containing two exemplars are given
in Table 5.

Target word Analogical set

cat food convénience food cat muck
banana sandwich lamb sandwiches salmon sandwiches

health care car care héalth farm
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Table 5: Examples of small analogical sets in Study 1

The fact that most analogical sets in our model are small means that the model bases most of
its predictions on very local analogies. ‘Local’ means that members of the analogical set are
highly similar to the target word and, as a consequence, small in number. In AM, having such
small analogical sets also means that the model has not incorporated more, less similar
exemplars into the analogical set because this move would have led to a reduction in certainty
about stress behaviour.

It is important to note, however, that, although all small analogical sets in our model
contain members of the constituent family, this does not mean that constituent family
information is more important for stress assignment than semantic information. The example
of banana sandwich is representative here. The members of the analogical set, lamb
sandwiches and salmon sandwiches, share not only the second constituent, but also both
semantic features with the target: N1 is a material, and the relation between N1 and N2 is that
N1 is an ingredient in foodstuff NN. What is relevant for the formation of analogical sets,
then, is a high degree of similarity, which is measured in terms of the number of features
shared between an exemplar and its analogue(s), rather than privileging one type of feature
over another. Furthermore, we see that local analogies in compound stress assignment arise in
conditions where there is a strong correlation between semantic and constituent family
information, in the sense that the presence of a certain constituent is likely to co-occur with a
specific type of compound semantics. This is not an artefact of our data but a characteristic of
naturally occurring compounds (cf. e.g. Brown 2006, Bat-EI 2006). What the presence of
many local analogies in our analogical model shows, then, is that constituent family
information adds to semantic information by restricting the size of analogical sets.

5.2.2 Mid-size analogical sets

Closer inspection reveals that the analogical sets in our model that have between 13 and 43
members are characterised by a specific type of gang behaviour, in which the same gangs of
exemplars consistently reappear as a group in a number of analogical sets, in which they
constitute the dominant group of exemplars to determine stress classification. A gang (cf.
especially Skousen 1995, Skousen 2002a, Skousen 2002b, Skousen 2005) is a group of
exemplars within an analogical set which all have a number of features in common. One of

the most interesting features of an analogical model is that there are gangs that tend to appear
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and reappear in a substantial number of analogical sets®°. Such behaviour leads to effects that,
on the surface, appear rule-governed. However, such ‘rule behaviour’ is epiphenomenal in
AM.
There are four main gangs that are active in the mid-size analogical sets in our model:

1. agang of compounds sharing the feature ‘N2 is N1’
2. agang of compounds in which the relation is ‘N1 is an ingredient in foodstuff NN’
3. agang of compounds in which N1 denotes a material and the relation between N1 and N2

is ‘N2 is made of N1’
4. a gang of compounds in which N1 denotes a material but in which no rightward-leaning

relation between N1 and N2 applies.

Each of these gangs is based on one or more semantic features. The gang characterised by the
feature ‘N2 is N1’ (gang no. 1 above) comprises a group of 13 compounds, 10 of which are
right-stressed and 3 of which are left-stressed. These 13 compounds reappear together as a
gang in 10 analogical sets. In (1) we provide a list of the gang for illustration.

(1) arrangements bit  miracle baby
baby boy 6ldies team
bastard éngine surprise présent
bastard téacher sycamore tree

bitch téacher toy cups
imitation trées washer driers
minimum age

The gang of compounds in which N1 is a food ingredient (gang no. 2 above) comprises a
group of 21 right-stressed and 2 left-stressed compounds which reappear in three analogical
sets. Examples of gang members are chocolate buiscit, rice krispies, chicken burger, and
mango sorbet. The three test compounds for which these food compounds act as a gang are
apple tart, fruit sundae, and marzipan bar. In the gang in which N1 is a material and the
relation between N1 and N2 is ‘N2 is made of N1’ (gang no. 3 above) we find 33 right-
stressed compounds and one left-stressed compound. Examples are iron lég, gold jéwellery,
cotton shéet, and metal ring. They act as a gang for six test compounds, namely for bread roll,
brick wall, denim jackets, junk earrings, silicone chips, and cotton buds. Finally, the gang in

which N1 is a material but no rightward-leaning relation between N1 and N2 applies (gang

> Note that, strictly speaking, the gangs do not reappear as fully identical sets because in our experimental setup
the test compound is never part of the analogical set and, hence, never part of the gang. Thus, there are small
variations in the way gangs are composed.
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no. 4 above) comprises 31 left-stressed compounds and 2 right-stressed compounds.
Examples of gang members are pizza oven, apple cart, téa rooms, gas canister, and jacket
potato. They act as a gang for 15 test compounds, including bread queue, apple cart, egg
yard, and sandwich box: many of the compounds for which this gang is active are compounds
where N1 is a food item, but the relation between N1 and N2 is some sort of functional
relation rather than an ingredient relation.

It is obvious how the behaviour of the four gangs described above can lead to the
impression that the behaviour observed in the test compounds is rule-governed. For the first
three gangs, we could write rules that the relations ‘N2 is N1’, ‘N1 is an ingredient in
foodstuff NN’ and “N2 is made of N1, respectively, lead to right stress. In the case of the
fourth gang, a rule could be postulated, for example, that the relation ‘N2 is for N1’ leads to
left stress. The 1-3 compounds in each gang that display the ‘illegal’ stress patterns would
then be listed as exceptions. Such rules have indeed been suggested in the literature, together
with lists of exceptions (cf. e.g. Fudge 1984). In an analogical model, however, rules do not
exist, and their apparent existence is epiphenomenal of the fact that pertinent compounds in
the lexicon reappear as a gang in the analogical sets of a number of test compounds. Also,
note that even if the model's behaviour may resemble that of a rule in some cases, there are
significant differences between the two generalisation mechanisms that have important
implications for the prediction of variation.

As an example, consider the test compound brick wall. Its analogical set, graphically
represented in Figure 4, contains 36 compounds, of which 33 compounds belong to the
material gang described above (gang no. 3). We see that, in addition to the material gang, the
analogical set for brick wall also contains three exemplars which share its N2 lemma, but
differ from it in terms of both semantic features. Even though they share only one feature with
the target compound, these exemplars are included in the analogical set because there are no
other exemplars that share this feature and are more similar to the target, brick wall. It
happens that these three exemplars are right-stressed, so that their inclusion in the analogical
set leads to an even higher predicted probability of right stress for brick wall than that based
on the material gang alone. In other compounds, similar constellations lead to slightly
different probabilities of right stress. A case in point is silicone chip, whose analogical set
includes left-stressed sound chip in addition to the material gang. In this case, silicone chip is
still predicted to be right-stressed, but with a lower probability than brick wall. It can be seen
that, although the constituent family gang for brick wall includes only right-stressed
exemplars, whereas the constituent family gang for silicone chip includes only a left-stressed

29



exemplar, this makes very little difference to the model’s overall predictions for these
compounds. This is because of the inclusion of the large material gang in the relevant
analogical sets. Whenever a large gang appears in an analogical set, the weight given by AM
to gang size means that the large gang will tend to dominate the model’s predictions. This is

what leads to the illusion of rule-governed behaviour.
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N1
no exemplars

N1, semN1

no exemplars
N1, N2
no exemplars

N2, semN1
no exemplars

N1, N2, semN1
no exemplars

N1, N2,R
no exemplars

N2
end wall
garage wall
kitchen wall

N1: brick
N2: wall
R: N2 made of N1
semN1: material

N1, R
no exemplars

N2, R
no exemplars

N2, semN1, R
no exemplars

N1, semN1, R
no exemplars

semN1
97 exemplars
(38 left stressed)

semN1, R: bread rdll, cétton bud, cotton shéet, denim jdacket, glass
bowl, glass dish, glass dome, glass déor, glass jdr, gold band,
gold jéwellery, gold Iécket, iron I€g, iron tit, junk éarring,
leather bdg, leather bélt, leather chdir, leather glove,
metal bath, metal fénce, metal rdil, metal rim,
metal ring, metal strip, oak tdble, paper bdg,
plastic circle, plastic clip, plastic grid,
plastic wallet, silicone chip,
steel table

R: bread roll, camomile Iawn, cétton bud, cotton shéet, denim jdcket, glass bowl,
glass dish, glass dome, glass door, glass jar, gold band, gold jéwellery,
gold Iocket, iron Iég, iron tit, junk éarring, leather bdg, leather belt,

Key

Shared features:

leather chdir, leather gléve, metal bath, metal fénce, metal rdil, N1=N1lemma
metal rim, metal ring,metal strip, oak tdble, paper bdg, N2 = N2 lemma
pearl éarring, plastic circle, plastic clip, plastic grid, R = semantic relation between
olastic wallet, silicone chip, silver ware, steel table N1 and N2

wire brush, wire mésh, wire nétting, semN1 = semantic class of N1

wire wool
The analogical set is shaded

Figure 4: The analogical set for brick wall (1065 rightward votes; 33 leftward votes)
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The example of brick wall and sound chip thus shows that the emergence of
generalisations in the ‘mid-size’ analogical sets differs significantly from the behaviour of
traditional linguistic rules in a number of ways. One difference between analogical and rule-
based mechanisms concerns the question of how deterministic linguistic generalisations are.
Linguistic rules are usually conceived to be fully deterministic, in the sense that they make a
deterministic prediction for contexts in which they apply. In an analogical model, on the other
hand, deterministic behaviour is the exception rather than the rule. In our model, for example,
deterministic behaviour can only emerge if the lexicon contains a group of highly similar
compounds that exhibit fully consistent stress behaviour, and that act as a gang for test
compounds whose analogical sets show no evidence of the competing stress pattern. In our
simulation, this situation never actually occurs among compounds with mid-size analogical
sets. None of the gangs that lead to mid-size analogical sets is fully deterministic. The gangs
that show the most nearly-deterministic stress behaviour are those that involve material
compounds (gangs 3 and 4 in the list above). But even in these gangs, we find individual
compounds that do not conform to the majority stress pattern. In sum, both between-type and
within-type variation is inherently expected in an analogical system, where it emerges as a
result of the analogical mechanism acting on items in the lexicon. This constitutes a radical
departure from key assumptions made in especially generative frameworks, where the
lexicon, but crucially not the rule system, is a repository of such variation.

In Section 5.1, we saw that AM can be set to make categorical predictions on the basis
of a majority vote in the analogical set. However, we have also seen that classification in AM
is underlyingly probabilistic, with the probability of a particular outcome being equal to the
proportion of the vote that favours that outcome. This probabilistic classification can be
interpreted in two ways: it can be interpreted as the level of certainty with which the
‘winning’ outcome is predicted, or it can be interpreted as the predicted degree of variation
within a new type: in our case, the likelihood of any given token receiving one stress pattern
or the other. A way of modelling this second possibility is to set AM’s parameters so that the
target feature is based on an exemplar chosen at random from the analogical set. Provided the
probability of selecting a given exemplar reflects the weighting of votes produced by the
algorithm, then over time, the distribution of stresses produced in tokens of any given type
will reflect the probabilities in the model. This is how AM produces within-type variation.
Between-type variation then arises as an inevitable consequence of the same mechanism:
since the predictions for different types are based on different analogical sets, the probabilities

of right or left stress will differ between types and so, therefore, will the distributions of stress
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patterns in the output. For some types, the probability of right stress will be almost 100%, in
which case nearly all tokens will be produced with right stress. For other types, the
probability of right stress will be close to zero, in which case nearly all tokens will be
produced with left stress.

Another difference between a rule-based model and the generalisations that emerge
from the mid-size analogical sets in our model is that, unlike linguistic rule application, the
activity of pertinent gangs in an analogical system is not obligatory once a certain context is
met. It is a striking characteristic of all four gangs listed above that they are not active in all
test compounds with the relevant semantic feature(s). For example, gang no. 1 (based on the
semantics ‘N2 is N1’) comprises 13 compounds but applies to only 10 test compounds, in
spite of the fact that in our experimental setup the lexicon and the group of test compounds
are identical. Even more radically, gang no. 3 (based on the semantics ‘N1 is a material’ and
‘N2 is made of N1’) comprises 34 compounds, but applies only to 6 test compounds. The
reasons for these discrepancies lie in the distribution of salient features amongst items in the
lexicon. As an example, we consider here the activity of gang no. 3. The 34 compounds that
constitute the gang are listed in (2). The 6 test compounds to which the gang applies are
shaded.

(2) bread roll glass domes leather belt metal strip
brick wall glass door leather chair oak tables
cotton buds glass jar leather glove paper bags
denim jackets gold band metal baths plastic circles
junk earrings gold jewellery metal fence plastic clips
silicone chips gold locket metal rails plastic grid
cotton sheets iron legs metal rim plastic wallet
glass bowls iron tits metal ring steel table
glass dish leather bag

In the analogical sets of 28 of its members, gang no. 3 is not active. This is not due to the
semantics of these 28 compounds because they all share both coded semantic features with
the 6 compounds for which the gang is active. Instead, it is due to the fact that, for these 28
cases, the lexicon contains exemplars which are more similar to the target compound than the
gang compounds are, and which, crucially, provide the system with more certainty about the

stress prediction for the target compound than the gang compounds would.
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N1
glass bowl,
glass dish,
glass dome,
glass jar

N1, N2
no exemplars

N1,R
glass bowl,
glass dish,
glass dome,
glass jar

N1,N2,R

N2, semN1
no exemplars

no exemplars

N1, N2, semN1
no exemplars

N1, semN1, R
glass bowl,

glass dish,
glass dome,
N2 ) N1: glass glass jar
basement déor

N2: door
R: N2 made of N1
semN1: material

commune déor|
kitchen door

N1, semN1

N2,R glass bowl,

no exemplars glass dll’sh,
N2, semN1, R glass dome,

no exemplars glass jar

semN1
97 exemplars
(38 left stressed)

semN1, R: bread roll, brick wall, cotton bud, cotton shéet, denim
jacket, glass bowl, glass dish, glass déme, glass jdr, gold band,
gold jéwellery, gold Iécket, iron Iég, iron tit, junk éarring,
leather bdg, leather bélt, leather chdir, leather gléve,
metal bath, metal fénce, metal rdil, metal rim,
etal ring, metal strip, oak table, paper bdg,
plastic circle, plastic clip, plastic grid,
plastic wadllet, silicone chip,
steel table

R: bread rdll, brick wdll, camomile Idwn, cotton bud, cotton shéet, denim jdcket, Key
glass bowl, glass dish, glass déme, glass déor, glass jdr, gold bdnd,

gold jéwellery, gold Iocket, iron I€g, iron tit, junk é€arring, leather bdg, Shared features:

N1=N1l|
leather belt, leather chdir, leather glove, metal bath, metal fence, N2 = N2 I:mm:
metal rail, metal rim, metal ring,metal strip, oak table, paper bdg . .
P L L L R = semantic relation between
pearl éarring, plastic circle, plastic clip, plastic grid, N1 and N2

plastic wallet, silicone chip, silver ware, steel tdable,
wire brush, wire mésh, wire nétting,
wire wool

semN1 = semantic class of N1

The analogical set is shaded
Figure 5: The analogical set for glass door (73 rightward votes; 0 leftward votes)
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As an example, we consider the test compound glass door, for which the analogical set is
illustrated in Figure 5. The situation for glass door is different than for the 6 compounds
where gang no. 3 is active (compare brick wall in Figure 4 above), in that the lexicon contains
exemplars which share both the semantics and a constituent with the target, and which, unlike
the gang compounds, have deterministic stress. All exemplars that share both N1 lemma and
two semantic features with glass door are right stressed. Including those exemplars that share
only the semantics would therefore reduce the certainty of the stress prediction along this
dimension, since the ‘N1 is a material and N2 is made of N1’ gang contains one exemplar that
is left stressed. As a consequence, the system does not incorporate the gang compounds into
the analogical set. The implication, then, is the following: behaviour that appears to be the
effect of a general rule emerges only if it is compatible with more local analogies. Again, this
Is contrary to many conceptions in rule-based frameworks, where local analogies are

conceptualised as exceptions whose motivation is often unclear.

5.2.3 Large analogical sets

For 26 of our test compounds the analogical set comprises between 174 and 176 items.
Similar to what we found for the mid-size analogical sets, the large analogical sets in our
model are the result of gang behaviour: a core group of 174 exemplars appears as a gang in all
26 of the large analogical sets, determining stress for the relevant test compounds.

In (3) we provide some examples of the 174 exemplars that make up the large-set
gang. Compounds for which these 174 exemplars appear in the analogical set are shaded.
Within this gang, 166 (95.40%) of the 174 exemplars are left-stressed, and 8 exemplars
(4.60%) are right-stressed.

(3) arm bands alarm business boot bag coffee jars
asséssment piece  antiques day brain work colléction card
bégging bowl art centre bubble bath convénience foods
bingo money attache case canle bag decision time
camping holiday  baby stuff car radios science grade
conker trees banking job caréer woman sports centre
frait stalls bike things carrot maps télephone woman
héad phones bin day cat foods traffic light
square root boarding schools  chicken pox train station

All compounds in the large gang are characterised by the fact that neither the semantic

relation nor the semantic class of N1 belongs to any of the rightward-leaning categories
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coded. Thus, the large analogical sets differ from the mid-size analogical sets in that the
exemplars in the large sets are semantically more heterogeneous. What they have in common
is that they do not fall into any of the categories that trigger right stress. Thus, on the surface,
the generalisation that emerges from these sets looks very much like the situation that is often
described as a default in rule-based frameworks. In an analogical model, this situation
emerges from cases where the analogy drawn is, in a sense, the most non-local type of
analogy conceivable (cf. Derwing & Skousen 1994, Eddington 2000 on inflection).

Another striking feature of the large analogical sets is that, as with the mid-size sets,
the relevant gang of exemplars applies to far fewer compounds than it contains. As discussed
in section 5.2.2, the reason lies in the fact that for those compounds for which the gang does
not play a role, a more local analogical set makes more certain predictions with respect to
stress assignment. In the case of the large analogical sets, the more local set always involves
members of a constituent family: since both semantic features are already matched in the
large gang, the only way another exemplar can be more similar to the target (i.e. more local)
is by also sharing a constituent with it.

As an example, we will compare AM’s predictions for the test compounds begging
bowl and weather man. Both compounds are in the large analogical gang. However, the large
gang is relevant for stress assignment for begging bowl, but not for weather man. The reason
is that for weather man there exists a more local set of exemplars which are a subset of the
gang of 174, but share a constituent with the target in addition to both the semantic features
(or rather lack of them). The members of this smaller gang are all left stressed: bandman,
chéese man, con man, fireman, jdm man and shéwman, whereas the large gang includes
exemplars with both stress patterns. The stress prediction based on just the small gang is
therefore more certain than it would be if the larger gang were included. Since the small gang
is also more similar to the target, along the same dimension as the large gang, the latter is
excluded. The situation for the test compound begging bowl is different. Within our model’s
lexicon, only the exemplars glass bowl and pudding bowl share a constituent with begging
bowl. Neither of these are members of the gang of 174, since they each have at least one
rightward-leaning semantic feature: for pudding bowl ‘N1 is a material’ and for glass bowl
both “N1 is a material’ and ‘N2 is made of N1’. There are therefore no exemplars in the
lexicon that share three features with begging bowl; in other words, no exemplars are more
similar to begging bowl than the large gang, with which it shares the two semantic features.
AM therefore includes the large gang in the analogical set for begging bowil.

The existence of the large gang in our model is interesting because its members are

united not by the presence of particular features but rather by their absence: specifically, by
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the absence of any rightward-leaning semantic category. This shows that information about
both the presence of features and their absence can be used by an analogical mechanism for

the purposes of analogical set formation.®

6. Study 2: Predicting within-type variation

In section 5, we saw how AM predicts both between-type and within-type variability in
compound stress, but for ease of exposition we restricted our lexicon to types that showed no
variation in Bell’s (2013) reading experiment. As discussed in section 2.2, however,
compound stress in general does display within-type variability, and a more realistic model
would therefore include such variation in the lexicon. Furthermore, in order to assess the
success of our model, we transformed AM’s probabilistic output into a categorical decision,
assigning either left or right stress to the item to be classified on the basis of a majority vote in
the analogical set. This meant that we could assess AM’s predictive power for between-type
variability but not for within-type variability. In this section, we therefore present a simulation
in which we use AM to predict within-type variation in English compound stress on the basis
of a more realistic representation of the lexicon as including within-type variability. We use
this model to demonstrate that AM is highly successful in predicting not only between-type

variation but also variation within types.

6.1 Within-type variation in the lexicon

Within-type variability is present in our data because each compound was experimentally
elicited from four different speakers, and in many cases the four speakers did not all produce a
given compound with the same stress pattern. We can therefore represent within-type
variability in the lexicon of AM by storing individual tokens, rather than types. The dataset to
be used is again a subset from Bell (2013), comprising all compounds where either the first or
the second constituent has a constituent family in the dataset, but neither constituent is itself a
compound and the coded semantic features are not obviously ambiguous. This dataset
contains 1,913 tokens representing 486 different types. Of these, 293 (49%) were left-stressed
by all four readers, 147 (30%) were right-stressed by all four readers, and 100 (21%) were
produced with both stress patterns. Amongst the variable types, we include compounds for
which Bell’s dataset contains only two or three tokens with agreed stress, provided these

tokens include at least one with each stress pattern.

® The fact that the absence of pertinent semantic features is indeed useful information for the model is further
corroborated by the fact that excluding this information leads to a loss of predictive power. In a series of
experiments we manipulated the settings of the algorithm in such a way that absence of a semantic feature could
not be used to compute similarity. In these experiments, AM predictions were consistently worse than in
experiments where absence of a feature could be used as an information source (cf. Parkinson (2002) for an
explanation of the relevant parameter settings).
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In order to simulate within-type variability, we use the 1,913 compound tokens as the
lexicon and predict stress for one token of each of the 486 types. Using the set of tokens as the
database means that most compound types are represented in the lexicon four times.
Compounds that showed no within-type variation in the reading experiment are represented
by four tokens with the same stress pattern, whereas compounds that did display within-type
variation are represented by at least one token with each pattern. An example is police
control, which was realised with left stress by two speakers and with right stress by the other
two speakers. For testing, AM parameters were set in such way as to make sure that for a
given test item, all tokens of the same compound type were excluded from consideration. The
rationale behind this was that, for better assessment of the model's predictive power, we
simulated a situation where each test compound was a novel compound.” The information
sources used in the experiment were identical to those in the experiments discussed in section
5, comprising the constituent family or families and right-predicting semantic classes and
relations.

To understand how the model works, we consider the analogical set for the compound
police helmets, graphically represented in Figure 7. Both between-type and within-type
variation are included in the lexicon. As an example of between-type variation, police car is
represented by four left-stressed tokens, whereas the compound government pélicy, which
shares both its semantic features with police helmets, is represented by four right-stressed
tokens. An example of within-type variation is police control, which is represented by two
left-stressed and two right-stressed tokens. Both kinds of variability will be involved in
determining which exemplars enter the analogical set for the target word police helmets, as
well as the distribution of stresses predicted by this set.

The token-based lexicon contains 12 exemplars that are maximally similar to the
target, each sharing the N1 lemma as well as both semantic features. Of these exemplars, 10
are left-stressed while 2 (two tokens of police control) are right-stressed. No further
exemplars, that could affect the probability of the outcome, share the N1 lemma, and so this
gang occurs in the analogical set in four contexts. Although there are many other exemplars in
the lexicon that share one or both semantic features with the target, these other gangs include
a higher proportion of right-stressed tokens and their inclusion in the analogical set would

" In terms of usage-based models of grammar, note that a common assumption is that stored tokens of the same
type will have an influence on the classification of novel types (cf. e.g. Bybee (2001), Bybee (2010)). In terms of
an assessment of predictive power in AM, however, including tokens of the test type in the lexicon renders the
experiment less interesting and convincing, for two reasons. The first is that, because an exemplar's weight in the
vote within the analogical set is correlated with its degree of similarity with the new item, tokens of the same
type will often come to dominate analogical sets. The second is that our dataset, which contains a maximum of
four tokens for each type, cannot be used to realistically represent differences in token frequencies between
lexical types in the lexicon.
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therefore reduce the certainty of the model’s prediction: because of this, they are excluded.
The vote is therefore based just on the 12 tokens with N1 = police, which each receive 48
votes. Since only one two of these tokens are right-stressed, there are 480 votes for left stress
(10 x 48) and 96 votes for right stress (2 x 48). The model therefore predicts 83.33% left
stress for police helmets (480/576). This prediction closely reflects the empirical facts, since 3

of the 4 tokens of police helmets in the data, i.e. 75%, were produced with left stress.

39



N2 R
no exemplars

N1, N2
SemN1 no exemplars
132 exemplars

(47 left stressed)

N1, N2,R
N1, N2, semN1 no exemplars

no exemplars

N2, semN1
no exemplars

N2, semN1, R
no exemplars

N1: police
N2: helmet
R: N2 has N1
SemN1: social group

semN1, R
51 exemplars
18 left stressed,

N1, semN1, R: pdlice car, pélice car, pélice
car, police car, pélice station, pdlice station,
police station, pdlice station,
police control, pélice control,

R police contrdl,
121 exemplars olice contrd
(62 left stressed)

N1, semN1: police car, police car, police car,
police car, police station, police station,
police station, police station, police contro
police control, police control,
police contrél

N2
no exemplars

N1,R
police car
police car
police car
police car

police station
police station
|police station
police station
police control
police control
police contrél
police contrél

/

N1
police car
police car
police car
police car

police station
police station
police station
police station
police control
police control
police contré/
police control

Key

Shared features:

N1 =N1lemma

N2 = N2 lemma

R = semantic relation between
N1 and N2

semN1 = semantic class of N1

The analogical set is shaded

Figure 7: The analogical set for police helmets (480 leftward votes; 96 rightward votes)
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6.1 Overall performance of Model 2

To investigate how accurately AM predicts within-type variability on the basis of this token
data, we divided our compound types into three groups: those that were invariably left-
stressed by Bell’s (ibid.) subjects (N = 239), those that were invariably right-stressed (N =
147), and those that were produced with both patterns (N = 100). For each of these groups, we
plotted the variation in the percentage of right-stressed tokens, as predicted by AM. If the
model is successful at predicting within-type variation, then the variable group should show
the greatest variation in predicted percentage of right stress, whereas the left and right-
stressed groups should ideally show respectively 0% and 100% predicted right stress, with
little variation. The results are shown in the box and whisker plot in Figure 6.
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Figure 6. Predicted vs. observed within-type variability in Study 2 (N = 486)

The figure shows very clear differences between the three stress groups, in ways expected if
the model is successful. For compounds that are consistently left-stressed in our corpus, the
median of the predicted percentage of right stress is 0, whereas for compounds with variable
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stress it is 35% and for those that are consistently right-stressed it is 90%. Predicted within-
type variability for the left-stressed items is rather limited: the length of the whiskers in the
boxplot for this group of compounds indicates that for some 75% of the data the probability of
right stress is predicted to be less than 30%. Predicted within-type variability for the right-
stressed group is somewhat larger, but there is nevertheless little overlap with the left-stressed
group in terms of predicted percentage of right stress. In contrast, the variable stress group has
a much greater range of predicted probabilities than either of the other two groups. A Kruskal-
Wallis rank sum test shows that the differences between the medians of the three groups are
highly significant (chi-squared = 249.34, df = 2, p-value < 2.2e-16), and a Fligner-Killeen test
of homogeneity of variances shows that the three groups also differ significantly in their
degree of variability (chi-squared = 66.89, df = 2, p-value = 2.983e-15).

Overall, these plots and figures show that within-type variability is not only predicted
by the model, but is predicted to occur significantly more often with compound types which
are indeed variable in our database than with compounds which are not variable. It also
appears from these results that the prediction of variability in an analogical model constitutes
not only a virtue, but also a downside of such a model. Specifically, within-type variability is
overpredicted, i.e. it is predicted to occur for compound types which are not in fact variable in
this dataset. However, this may well be a result of the fact that our database only contained
four compound tokens of the same type (and in some cases even fewer than that). This small
number may have been insufficient to capture the full range of variability so that what appears
to be overprediction of variability may, in fact, be a reflection of the full range of variability.

7. Summary and conclusion

Any mechanism that can produce accurate linguistic output is, in effect, a grammar — and we
would argue that a constrained analogical algorithm such as AM represents such a grammar.
The models presented in this paper have demonstrated that a single analogical mechanism can
account for a variety of observed linguistic phenomena: for both rule-like almost categorical
effects and for more variable ones, as well as for the relevance of different degrees of
generality in linguistic generalisation. Furthermore, being constrained by a clearly defined
mechanism for calculating similarity, AM has a restricted set of potential analogs for any
given test item; yet at the same time, the set of potential bases for any test item is individually

computed, so that even apparently similar items may have different analogical sets. The
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criticism of analogical models that they are unconstrained is therefore not true in a case like
this, although the diversity of possible analogs may give this impression.

In section 5 we saw how three different types of behaviour emerge in the analogical
model of English compound stress: behaviour that is based on local analogies involving the
constituent family, behaviour that is based on larger sets of analogical gangs which are
formed by semantically similar compounds, and behaviour that is based on an analogical set
that comprises a considerable part of the lexicon, whose members have in common that none
of the right-favouring semantic features applies. In much of the rule-based literature, these
three types of behaviour have been assigned to different mechanisms: exceptional analogical
formations, rule-based behaviour, and a default case. In this paper we have shown that they
can all emerge from a single mechanism. Our findings thus add support to the growing body
of literature that argues that apparent differences in types of linguistic patterns can be
interpreted as epiphenomena of differences in lexical distributions and accounted for with a
single underlying mechanism (cf. esp. Derwing & Skousen 1994, Eddington 2000, Keuleers
2008 on inflection).

Variability in the output, both between and within test types, is an expected
consequence of an analogical mechanism operating on a lexicon that itself includes variation.
In Section 5, we saw that AM is highly successful at replicating the between-type variation
produced by human subjects, and in Section 6, we saw that the extent of within-type variation
produced by the algorithm also reflects the actual variability found in the human data. The
question therefore arises as to whether human grammars might also be analogical in nature.
As discussed in the introduction, analogical reasoning is extremely pervasive in human
cognition, and the hypothesis that this pervasiveness encompasses language is worthy of
serious consideration.

One question that arises in relation to this hypothesis is how linguistic variability
might be represented in the mental lexicon. In the lexicon of an AM model, the only
technically viable option is to represent tokens, but for the mental lexicon it is possible to
conceive of this variation in different ways: as an unstructured representation of individual
tokens, as an exemplar cloud, or as a type-based representation where stress is probabilistic.
We work from the basic assumption that individual exemplars, i.e. tokens, are initially stored,
but that speakers may subsequently abstract away from these tokens to produce a type-based
representation. We further assume that this more abstract representation is associated with
information about the degree of variability amongst the underlying tokens: in our case, the

degree of variability in stress placement. Thus, for example, the coding of the compound
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types in the lexicon of exemplars in Figures 1, 2, 4 and 5 as left- or right-stressed actually
constitutes an abstraction of the fact that our model speaker has evidence that stress for these
compounds is non-variable.

A second issue is how an analogical human grammar would produce within-type
variation. We have seen that AM does this by selecting exemplars at random from the
analogical set; in the case of human language production, we envisage that any such
mechanism would be subject to the influence of contextual and other pragmatic factors.

An analogical grammar is fundamentally different from a rule-based grammar in being
‘bottom up’ rather than ‘top down’: in an analogical model, general patterns emerge from the
specific examples of language encountered; in rule-based models the direction is reversed,
with specific examples of language being based on abstract rules. Rules tend to map inputs
onto outputs. To give an example involving English compound stress: if the compound has
the semantic relation “N2 is made of N1’ (input), then produce it with right stress (output). In
contrast, an analogical grammar always submits the input to the same mechanism, in the
context of a particular lexicon. The outcome is not pre-determined, but depends on the
composition of the lexicon. Apart from its empirical success, one of the great appeals of an
analogical grammar is therefore its consistency: although outputs vary, as they do in natural

language, the central mechanism is invariant.

44



References

Albright, Adam. 2002. Islands of reliability for regular morphology: evidence from Italian.
Language 78(4). 684-709.

Albright, Adam. 2009a. Feature-based generalisation as a source of gradient acceptability.
Phonology 26. 9-41.

Albright, Adam. 2009b. Modeling analogy as probabilistic grammar. In James P. Blevins &
Juliette Blevins (eds.), Analogy in Grammar, 185-213. Oxford: OUP.

Albright, Adam & Bruce Hayes. 2003. Rules vs. Analogy in English Past Tenses: A
Computational/Experimental Study. Cognition 90. 119-161.

Anttila, Raimo. 2003. Analogy: the warp and woof of cognition. In Brian D. Joseph &
Richard D. Janda (eds.), The Handbook of Historical Linguistics, 425-440. Malden, MA:
Blackwell.

Arndt-Lappe, Sabine. 2011. Towards an exemplar-based model of stress in English noun—
noun compounds. Jounal of Linguistics 47(11). 549-585.

Arndt-Lappe, Sabine. in press. 47. Word-formation and analogy. In Peter O. Mller, Ingeborg
Ohnheiser, Susan Olsen & Franz Rainer (eds.), Word-Formation - An International
Handbook of the Languages of Europe. Berlin: de Gruyter Mouton.

Baayen, Harald R. Richard Piepenbrock & Leon Guilkers. 1995. The CELEX Lexical
Database (CD-ROM). Philadelphia: Linguistic Data Consortium.

Bauer, Laurie. 1983a. English Word-Formation. Cambridge: CUP.

Bauer, Laurie. 1983b. Stress in compounds - a rejoinder. English Studies 64. 47-53.

Bauer, Laurie. 2001. Morphological Productivity. Cambridge: CUP.

Becker, Thomas. 1990. Analogie und morphologische Theorie (Studien zur theoretischen
Linguistik). Mdnchen: Fink.

Bell, Melanie. 2013. The English Noun Noun Construct: Its Prosody and Structure.
Cambridge: Ph.D. dissertation, University of Cambridge.

Bell, Melanie & Ingo Plag. 2012. Informativeness is a determinant of compound stress in
English. Jounal of Linguistics doi:10.1017/S0022226712000199.

Bell, Melanie & Ingo Plag. 2013. Compound stress, informativity and analogy. Word
Structure in press.

Blevins, James P. & Juliette Blevins. 2009. Introduction: Analogy in grammar. In James P.
Blevins & Juliette Blevins (eds.), Analogy in Grammar, 1-12. Oxford: OUP.

Bloomfield, Leonard. 1933. Language. New York: Holt, Rinehart & Winston.

Bod, Rens, Jennifer Hay & Stefanie Jannedy (eds.) (2003). Probabilistic Linguistics.
Cambridge, MA: MIT Press.

Booij, Geert. 2010. Construction Morphology. Oxford: Oxford University Press.

Bresnan, Joan. 2007. Is syntactic knowledge probabilistic? Experiments with the English
dative alternation. In Sam Featherston & Wolfgang Sternefeld (eds.), Roots: Linguistics in
Search of Its Evidential Base, 77-96. Berlin: Mouton de Gruyter.

Bybee, Joan. 2001. Phonology and Language Use. Cambridge: CUP.

Bybee, Joan. 2010. Language, Usage and Cognition. Cambridge: CUP.

Bybee, Joan & Carol L. Moder. 1983. Morphological classes as natural categories.
Language(59). 251-270.

Chapman, Don & Royal Skousen. 2005. Analogical modeling and morphological change: the
case of the adjectival negative prefix in English. English Language and Linguistics 9(2).
333-357.

Chomsky, Noam. 1975. The Logical Structure of Linguistic Theory. Chicago: Chicago
University Press.

Chomsky, Noam & Morris Halle. 1968. The Sound Pattern of English. New York: Harper &
Row.

45



Coetzee, Andries W. 2009. Grammar is both categorical and gradient. In Steven Parker (ed.),
Phonological Argumentation: Essays on Evidence and Motivation, 9—42. London: Equinox.

Coetzee, Andries W. & Joe Pater. 2011. The place of variation in phonological theory. In
John Goldsmith, Jason Riggle & Alan C. L. Yu (eds.), The Handbook of Phonological
Theory, 401-434. Malden, MA: Wiley-Blackwell.

Daelemans, Walter & Antal d. van Bosch. 2005. Memory-Based Language Processing.
Cambridge: CUP.

Daelemans, Walter, Antal van den Bosch & Jakub Zavrel. 1999. Forgetting exceptions is
harmful in language learning. Machine Learning 34. 11-41.

Daelemans, Walter, Jakub Zavrel, Ko van der Sloot & Antal van den Bosch. 1999 et seq.
TiMBL: Tilburg Memory Based Learner : Available from http://ilk.uvt.nl/timbl/.

Daelemans, Walter, Jakub Zavrel, Ko van der Sloot & Antal van den Bosch. 2007. TiMBL.:
Tilburg Memory Based Learner, version 6.0, Reference Guide. LK Technical Report 04-
02.. Tilburg: ILK.

Day, Simon & Dedre Gentner. 2007. Nonintentional analogical inference in text
comprehension. Memory and Cognition 35. 39-49.

Derwing, Bruce |. & Royal Skousen. 1989. Morphology in the mental lexicon: a new look at
analogy. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 1989, 55-71.
Dordrecht: Foris.

Derwing, Bruce I. & Royal Skousen. 1994. Productivity and the English past tense: Testing
Skousen's analogical model. In Susan D. Lima, Roberta Corrigan & Gregory K. lverson
(eds.), The Reality of Linguistic Rules, 193-218. Amsterdam / Philadelphia: John
Benjamins.

Eddington, David. 2000. Analogy and the dual-route model of morphology. Lingua 110. 281-
298.

Eddington, David. 2002. Spanish diminutive formation without rules or constraints.
Linguistics 40(2). 395-419.

Eddington, David. 2004. Spanish Phonology and Morphology: Experimental and Quantitative
Perspectives. Amsterdam / Philadelphia: John Benjamins.

Ernestus, Mirjam. 2011. Gradience and categoricality in phonological theory. In Marc van
Oostendorp, Colin Ewen, Elizabeth Hume & Curt Rice (eds.), The Blackwell Companion to
Phonology, 2115-2136. Oxford: Wiley-Blackwell.

Faif3, Klaus. 1981. Compound, pseudo-compound, and syntactic group especially in English.
In Peter Kunsmann & Ortwin Kuhn (eds.), Weltsprache Englisch in Forschung und
Lehre: Festschrift fur Kurt Wachtler, 132-150. Berlin: Schmidt.

Fudge, Erik C. 1984. English Word-Stress. London: George Allen & Unwin.

Gahl, Susanne & Alan C. L. Yu. 2006. Introduction to the special issue on exemplar-based
models in linguistics. In Susanne Gahl & Alan C. L. Yu (eds.), Special Issue on Exemplar-
based Models in Linguistics (23), 213-216.

Gentner, Dedre & L. Smith. 2012. Analogical reasoning. In Vilanayur S. Ramachandran (ed.),
Encyclopedia of Human Behavior (2nd Ed.), 130-136. Oxford: Elsevier.

Giegerich, Heinz. 2004. Compound or phrase? English noun-plus-noun constructions and the
stress criterion. English Language and Linguistics 8(1). 1-24.

Giegerich, Heinz. 2009. The compound stress myth. Word Structure(2). 1-17.

Goldberg, Adele. 2006. Constructions at Work - the Nature of Generalization in Language.
Oxford: OUP.

Goldberg, Adele & Ray Jackendoff. 2005. The end result(ative). Language 81(2). 474-477.

Hay, Jennifer & Harald R. Baayen. 2005. Shifting paradigms: gradient structure in
morphology. Trends in Cognitive Science 9. 342-348.

Itkonen, Esa. 2005. Analogy as Structure and Process. Amsterdam: John Benjamins.

46



Keuleers, Emmanuel. 2008. Memory-Based Learning of Inflectional Morphology. PhD.
dissertation, Antwerpen: University of Antwerp.

Kim, John, Stephen Pinker, Alan Prince & Sandeep Prasada. 1991. Why no mere mortal has
ever flown out to center field. Cognitive science 15(2). 173-218.

Krott, Andrea. 2009. The role of analogy for compound words. In James P. Blevins & Juliette
Blevins (eds.), Analogy in Grammar, 118-136. Oxford: OUP.

Krott, Andrea, Rob Schreuder, Harald R. Baayen & Wolfgang U. Dressler. 2007. Analogical
effects on linking elements in German compounds. Language and Cognitive Processes 22.
25-57.

Kunter, Gero. 2007. Within-speaker and Between-speaker Variation in Compound Stress
Assignment. Paper presented at the Second International Conference on the Linguistics of
Contemporary English ICLCE2, July 2-4, Université de Toulouse.

Kunter, Gero. 2009. The Phonetics and Phonology of English Compound Stress. Ph.D.
dissertation, Universitat Siegen.

Kunter, Gero. 2011. Compound Stress in English - The Phonetics and Phonology of Prosodic
Prominence (Linguistische Arbeiten 539). Berlin: de Gruyter Mouton.

Kunter, Gero & Ingo Plag. 2009. Constituent families and compound stress assignment in
English. Paper presented at the 3rd International Conference on the Linguistics of
Contemporary English (ICLCE 3), London, July 15-17 2009.

Ladd, D. R. 1984. English compound stress. In Dafydd Gibbon & Helmut Richter (eds.),
Intonation, Accent and Rhythm, 253-266. Berlin: Mouton de Gruyter.

Lappe, Sabine & Ingo Plag. 2007..The Variability of Compound Stress in English: Towards
an Exemplar-Based Alternative of the Compound Stress Rule. Proceedings of the ESSLLI
workshop on exemplar-based models of language acquisition and use. Dublin, Ireland,
August 2007, 8-23.

Lees, Robert B. 1963. The Grammar of English Nominalizations. The Hague: Mouton.

Liberman, Mark Y. & Richard Sproat. 1992. The stress and structure of modified noun
phrases in English. In Ivan A. Sag & Anna Szabolcsi (eds.), Lexical Matters, 131-181.
Stanford: CSLI Publications.

Maguire, Phil, Edward J. Wisniewski & Gert Storms. 2010. A corpus study of semantic

patterns in compounding. Corpus Linguistics and Linguistic Theory 6(1). 49-73.

Marchand, Hans. 1969. Categories and Types of Present-Day English Word-Formation.
Minchen: C.H. Beck.

Marcus, Gary F. Stephen Pinker, Michael Ullman, Michelle Hollander, T. J. Rosen, Fei Xu &
Harald Clahsen. 1992. Overregularization in Language Acquisition (Monographs of the
Society for Research in Child Development). Hoboken, New Jersey: Wiley.

Miller, George, Richard Beckwith, Christiane Fellbaum, Derek Gross & Katherine Miller.
1990. Introduction to WordNet: An on-line lexical database. International Journal of
Lexicography(3). 235-244.

Olsen, Susan. 2000. Compounding and stress in English: a closer look at the boundary
between morphology and syntax. Linguistische Berichte 181. 55-69.

Olsen, Susan. 2001. Copulative compounds: a closer look at the interface between syntax and
morphology. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 2000, 279-
320. Dordrecht: Kluwer.

Ostendorf, Mari, Patti Price & Stephanie Shattuck-Hufnagel. 1996. Boston University Radio
Speech Corpus. Philadelphia: Linguistic Data Consortium.

Parkinson, Dilworth B. 2002. Running the Perl/C version of the Analogical Modeling
program. In Royal Skousen, Deryle Lonsdale & Dilworth B. Parkinson (eds.), Analogical
Modeling, 365-383. Amsterdam / Philadelphia: John Benjamins.

47



Payne, John & Rodney Huddleson. 2002. Nouns and noun phrases. In Rodney Huddleson &
Geoffrey K. Pullum (eds.), The Cambridge Grammar of the English Language, 323-524.
Cambridge: CUP.

Pierrehumbert, Janet. 2001. Exemplar dynamics: word frequency, lenition, and contrast. In
Joan Bybee & Paul Hopper (eds.), Frequency Effects and the Emergence of Lexical
Structure, 137-157. Amsterdam / Philadelphia: John Benjamins.

Pinker, Stephen. 1991. Rules of language. Science 253. 530-535.

Pinker, Stephen & Alan Prince. 1988. On language and connectionism: Analysis of a parallel
distributed processing model of language acquisition. Cognition 28. 73-193.

Pinker, Stephen & Alan Prince. 1991. Regular and irregular morphology and the
psychological status of rules of grammar. In Laurel A. Sutton (ed.), Proceedings of the 17th
Annual Meeting of the Berkeley Linguistics Society, 230-251. Berkeley: Berkeley
Linguistics Society.

Plag, Ingo. 2006. The variability of compound stress in English: structural, semantic, and
analogical Factors. English Language and Linguistics 10(1). 143-172.

Plag, Ingo. 2010. Compound stress assignment by analogy: the constituent family bias.
Zeitschrift fur Sprachwissenschaft 29(2). 243-282.

Plag, Ingo & Melanie J. Bell. 2012. Compound stress, informativity and analogy: submitted
for publication.

Plag, Ingo, Gero Kunter & Sabine Lappe. 2007. Testing hypotheses about compound stress
assignment in English: a corpus-based investigation. Corpus Linguistics and Linguistic
Theory 3(2). 199-233.

Plag, Ingo, Gero Kunter, Sabine Lappe & Maria Braun. 2008. The role of semantics,
argument structure, and lexicalization in compound stress assignment in English. Language
84(4). 760-794.

Prasada, Sandeep & Stephen Pinker. 1993. Generalization of regular and irregular
morphological patterns. Language and Cognitive Processes 8. 1-56.

Sampson, Rodney. 1980. Stress in English N+N phrases: a further complicating factor.
English Studies 61. 264-270.

Schmerling, Susan F. 1971. A stress mess. Studies in the Linguistic Sciences 1. 52-65.

Skousen, Royal. 1989. Analogical Modeling of Language. Dordrecht: Kluwer.

Skousen, Royal. 1992. Analogy and Structure. Dordrecht: Kluwer.

Skousen, Royal. 1995. Analogy: A non-rule alternative to neural networks. Rivista di
Linguistica 7(2). 213-231.

Skousen, Royal. 2002a. An overview of Analogical Modeling. In Royal Skousen, Deryle
Lonsdale & Dilworth B. Parkinson (eds.), Analogical Modeling, 11-26. Amsterdam
/ Philadelphia: John Benjamins.

Skousen, Royal. 2002b. Issues in Analogical Modeling. In Royal Skousen, Deryle Lonsdale
& Dilworth B. Parkinson (eds.), Analogical Modeling, 27-48. Amsterdam / Philadelphia:
John Benjamins.

Skousen, Royal. 2005. Analogical Modeling (49). In Reinhard Kohler, Gabriel Altmann &
Rajmund G. Piotrowski (eds.), Quantitative Linguistik: Ein internationales Handbuch =
Quantitative linguistics (Handbticher zur Sprach- und Kommunikationswissenschaft =
Handbooks of linguistics and communication science = Manuels de linguistique et des
sciences de communication / mitbegr. von Gerold Ungeheuer. Hrsg. von Armin Burkhardt
... ; Bd. 27), 705-716. Berlin: de Gruyter.

Skousen, Royal. 2009. Expanding Analogical Modeling into a general theory of language
prediction. In James P. Blevins & Juliette Blevins (eds.), Analogy in Grammar, 164-184.
Oxford: OUP.

Skousen, Royal & Thereon Stanford. 2007. AM: Parallel : available from
http://humanities.byu.edu/am/.

48



Skousen, Royal, Deryle Lonsdale & Dilworth B. Parkinson (eds.) (2002). Analogical
Modeling. Amsterdam / Philadelphia: John Benjamins.

Soskuthy, Marton. 2013. Analogy in the emergence of intrusive-r in English. English
Language and Linguistics 17(1). 55-84.

Spencer, Andrew. 2003. Does English have productive compounding? In Geert Booij, Janet
DeCesaris, Angela Ralli & Sergio Scalise (eds.), Topics in Morphology. Selected Papers
from the Third Mediterranean Morphology Meeting (Barcelona, September 20-22, 2001),
329-341. Barcelona: Institut Universitari de Linguistica Applicada, Universtitat Pompeu
Fabra.

Sproat, Richard. 1994. English noun-phrase accent prediction for text-to-speech. Computer
Speech and Language 8. 79-94.

Tomasello, Michael. 2003. Constructing a Language: A Usage-Based Theory of Language
Acquisition. Cambridge, MA: Harvard University Press.

van den Bosch, Antal & Walter Daelemans. 2013. Implicit schemata and categories in
Memory-based Language Processing. Language and Speech. DOI:
10.1177/0023830913484902.

49



