
First-order Probabilistic Model
for Hybrid Recommendations

Julia Hoxha
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: julia.hoxha@kit.edu

Achim Rettinger
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: achim.rettinger@kit.edu

Abstract—In this paper, we address the task of inferring user

preference relationships about various objects in order to gen-

erate relevant recommendations. The majority of the traditional

approaches to the problem assume a flat representation of the

data, and focus on a single dyadic relationship between the

objects.

We present a richer theoretical model for making recommen-

dations that allows us to reason about many different relations

at the same time. The model is based on Markov logic, which is

a simple and powerful language that combines first-order logic

and probabilistic graphical models. We apply a hybrid, content-

collaborative merging scheme through feature combination. We

experimentally verify the efficacy of our theoretical model, and

show that our method outperforms state-of-the-art recommenda-

tion approaches.

Keywords—hybrid recommender; markov logic; rating predic-
tion; first-order probabilistic logic; markov logic networks; recom-
mendation system;

I. INTRODUCTION

Extensive work has been done in the field of recommender
systems to make use of the enormous online information of
user activities for inferring user preference relationships about
various products, books, web pages, or other information,
which we generically refer to as objects. In the recommen-
dation task, we are interested in predicting how likely a user
is interested in a particular object, given information about
this user, the other users’ historical behavior, and information
about the objects.

Traditional approaches to the problem derive from classi-
cal algorithms in statistical pattern recognition and machine
learning. The majority of these approaches assume a flat data
representation for each object, and focus on a single dyadic
relationship between the objects. In web usage analysis, for
example, the information sources might include user access
logs, the relationships between the web pages visited, reviews
written by the user, meta-data on the site and additional infor-
mation about the user. These information can be aggregated
in an e-commerce setting, where we include customers buying
patterns to make predictions about future purchases. In the
context of the World Wide Web, where there is often much
more relational information available than a single user-item
relationship, we need added modeling power to capture richer
relational information.

In this paper, we examine a richer model for making
recommendations that allows us to reason about many different

relations at the same time. It takes advantage of the recent
progress in statistical relational learning (a.k.a. multi-relational
data mining), which provides rich representations and efficient
inference and learning algorithms for non-i.i.d. data [4]. In
particular, we use Markov logic, which combines first-order
logic and Markov random fields [11], resulting in the refined
probabilistic models of Markov Logic Networks (MLNs),
which have emerged as a powerful and popular framework
combining logical and probabilistic reasoning.

A key advantage of MLNs is that they allow to express
semantically-rich formulae to capture a variety of dependencies
between entities in a seamless fashion. MLNs can be used for
reasoning about an entity using the entire rich structure of
knowledge encoded by the relational representation. The first-
order probabilistic model that we propose makes it possible
to combine many different objects and relations into a com-
prehensive solution to the recommendation task. We deploy
a hybrid approach for generating recommendations, based
on a content/collaborative merging scheme through feature
combination. The feature-combination hybrid recommender
takes into consideration collaborative data, but does not rely on
it exclusively. In addition, it considers the information about
the inherent similarity of items that are otherwise opaque to a
collaborative system.

To the best of our knowledge, this is the first work applying
markov logic for the task of recommendation, particularly in
a hybrid approach. The proposed theoretical model is generic
and allows to model any domain of interest. For clarity, we
illustrate in this paper an example of our model in the book-
rating domain. We apply efficient methods for inference and
parameter learning, as well as highlighting the rich modeling
power in addressing real-world recommendation tasks. In ad-
dition, we experimentally verify the efficacy of our theoretical
model for making recommendations.

II. RELATED WORK

The general recommendation problem is built on the user-
item matrix R of U users and I items, where the element
rij is the rating given by user u to item i. In the matrix, a
large scale of ratings are missing. Thus the recommendation
task is formalized to predict the missing values in the matrix.
The techniques are divided into content-based methods [8] and
collaborating filtering (CF) methods [7], [16].

There has been a plethora of approaches introduced in
the recommender systems field, but the factorization-based



method, as a kind of collaborative filtering methods, has been
demonstrated as most successful in performing the recommen-
dation task with large-scale datasets [1], [5]. A competitive
representative of one of the state-of-the-art approaches is the
probabilistic matrix factorization (PMF) model [12].

There is another line of works based on relational learning
to analyze the probabilistic constraints between the attributes
of entities and relationships. Xu et al. [15] extend the expres-
siveness of relational models by introducing for each entity
(or object) an infinite dimensional latent variable as part of
a Dirichlet process (DP) mixture model. In an earlier work,
Getoor et al. [3] present a conceptual model that allows one
to reason about many different relations in a domain based on
probabilistic relational models (PRMs). Yet, this work remains
conceptual in describing how PRMs can be applied to CF, and
its efficacy is not experimentally verified.

Our work differentiates from the existing approaches by
introducing a rich theoretical model that is able to capture
content-based, as well as CF-based aspects in a recommenda-
tion domain. We believe this is also the first work to apply
first-order logic to formulate such constraints. The approach is
also implemented and experimentally evaluated.

III. BACKGROUND

Markov Networks. A Markov network (also known as
Markov random field) is a model for the joint distribution of
a set of variables X = (X1, X2, ..., Xn). It is composed of an
undirected graph G and a set of potential functions �k. The
graph contains a node for each variable, and the model has
a potential function for each clique in the graph. The joint
distribution is P (X = x) = 1

Z

Q
x �k(x{k}), where x{k} is

the state of the the variables that appear in the k-th clique,
and Z is the partition function Z =

P
x

Q
x �k(x{k}).

Provided that 8x, P (X = x) > 0, Markov networks are
also conveniently represented as log-linear models P (X =
x) = 1

Z exp(
P

x wifi(x)). Each clique potential is replaced by
an exponentiated weighted sum of features of the state. There
is one feature, which may be any real-valued function of the
state, corresponding to each possible state x{k} of each clique,
with its weight being log. In such probabilistic models, the goal
is to find the most likely state of a set of query (unobserved)
variables given the state of a set of evidence variables (this
is inference), and to compute the conditional probabilities of
unobserved variables (marginal inference).

First-Order Logic A first-order knowledge base (KB) is
a set of sentences or formulae in first-order logic. First Order
Logic (FOL) formulae are composed of four types of sym-
bols: constants, variables, functions and predicates. Constants
represent objects in a domain of interest (e.g. people: Sara,
Bob, etc.). Variable symbols range over the objects. Predicate
symbols represent relations betwen objects (e.g. hasRating)
or attributes of objects (hasAge). Variables and constants may
be typed, in which case variables only range over objects of
the given type. A term is any expression representing an object
in the domain. It can be a constant, a variable, or a function
applied to a tuple of terms.

An atomic formula or atom is a predicate symbol applied
to a list of terms (e.g. hasRated(Anna, book1, 5). A term is

ground when it contains no variables, but all its arguments are
constants. A ground atom or ground predicate is an atomic
formula all of whose arguments are ground terms. Formulas
are recursively constructed from atomic formulas using logical
connectives and quantifiers. A possible world is an assignment
of truth values to all possible ground atoms.

Markov Logic Networks In first-order logic, the formulae
are hard constraints on the set of possible worlds: if a world
violates even one formula, it has zero probability. In many
applications, there is a need to soften these constraints: when
a world violates one formula in the KB it is less probable,
but not impossible. This is also the setting that Markov Logic
Networks provides. Each formula has an associated weight that
reflects how strong is this constraint.

A Markov logic network (MLN) [11] L is a set of pairs
(Fi, wi), where Fi is a formula in first-order logic and wi is a
real number. Given a set of constants C, it defines a Markov
Network ML,C as follows:
- ML,C contains one binary node for each possible grounding
of each predicate appearing in L. The value of the node is 1
if the ground predicate is true, and 0 otherwise.
- ML,C contains one feature for each possible grounding of
each formula Fi 2 L. The value of this feature is 1 if the
ground formula is true, and 0 otherwise. The weight of the
feature is the wi associated with Fi in L.

There is an edge between two nodes in ML,C , iff the
corresponding ground predicates appear together in at least
one grounding of one formula in L. An MLN serves as a
template for constructing Markov networks. The probability
distribution over the possible worlds is: P (X = x) =
1
Z exp(

PF
i=1 wini(x)) =

1
Z

QF
i=1 �i(x{i})

ni(x) where F is the
number formulas in the MLN, ni(x) is the number of true
groundings of Fi in x, and �i(x{i}) = ewi .

IV. HMLN PROBABILISTIC MODEL

A. Problem Statement

In our approach, the task of generating recommendations
consists in predicting the probability of the existence of a rela-
tion rij between user ui and object oj (e.g. likes(u1, page1) or
rates(u1, book1, 5)), and then choosing as recommendations
the set of objects with the highest probability value.

Let’s consider an example of a book rating domain as
illustrated in Fig. 1. Each user, with attributes such as address
and age, expresses own preferential feedback on objects (in
this case books) via ratings. User U1 has rated Book1 with
a score of 5. At the same time, she also assigns a tag with
annotation romantic to this book. The book has for author
another object, which is from the country US.

Similar relations are also occuring for user U2, who also
rates Book1 with score 5. The task is now to predict which
score he would give for Book2, considering the ratings simi-
larities of this user to the other users (i.e. collaborative-filtering
features), as well as the attributes of the book and the attributes
of the user (i.e. content-based features). We are also interested
to consider relations of this user to other objects, e.g. the tags
assigned and how they are similar to those of other users.

We present a model, referred here as hMLN, which is able
to capture these relationships in a richer way, yet be able to



El Palacio de La Luna 

title 

1999 

date 

Paul Auster 

author 

155 id 

Rumors 

title 

1992 

date 

Kate William 

author 

843 id 

Book1 
5 

1 
Book2 

El Palacio de La Luna 

title 

1999 

date 

Paul Auster 

author 

155 id 5 Book1 

27 
age 

barcelona, granollers, spain 

address 

27 

age 

premià de dalt, barcelona, spain 

address 

Book2 

U1 

U2 

? 

from 
US 

Link  
Prediction 

Tag1 

romantic 

text 

1188263755 
time 

Tag2 

romantic 

text 

1214944067 
time 

Fig. 1. Example of the prediction task in a relational model

yield correct prediction values of the missing relations (in
this case rating of user U2 for Book2). Based on this task
formulation, we present a model for the relationships between
user and objects using markov logic. The model is generic and
can be applied to any domain. For illustration of the model,
we continue to focus on the book-rating domain.

B. Semantics of hMLN

Conceptually, the model consists of three parts: (1) the
MLN program that contains the predicates and the first-order
logic formuale, (2) the evidence set, and (3) the query set. The
evidence set, used for the training, is a list of ground atoms
that are deemed to be true unless preceded by ”!”. The query
set is the testing set, which consists of atoms whose arguments
are variables. In our case, these define the relations we need
to predict.

1) Predicate Schema: In order to model the objects and
relations in a domain, we first need to define the predicate
schema. The schema consists of a list of predicate declarations.
Each predicate declaration specifies a predicate name with a
list of argument types. Each type is supported by a set of
constants. We distinguish between the following predicates:

• Object-Declaration Predicate

Objecti(oi)
e.g. User(person), Book(book)
with evidence such as User(”Anna”), etc.

• Object-Attributes Predicates

⇤hasAttributei(objectk, objectl)
or ⇤hasAttributei(objectk, c), where c is a con-
stant.
For example,
⇤hasAge(person, age)
⇤hasAuthor(book, author)

⇤hasCountry(person, country)
The attribute can be a literal or another object.

• User-Object Preference Relations

hasRelationi(person, object, score)
For example: hasRating(person, book, rating)
with an evidence like
hasRating(”Anna”, ”book2”, 2).
If the preference relation has a score other than
binary, then a predicate with three arguments is
defined. Instead of integer rating, we define levels of
preference scores, e.g. using the distribution:
L1={0-2},L2={3-4},L3={5-6},L4={7-8},L5={9-10}.

Other examples of user-preference relations are:
tagged, visited, liked, purchased, etc. A predi-
cate definition preceded by ”*” is considered as closed
world assumption, i.e. all its ground atoms not listed
in the evidence are false.

• Recommendation Features Predicates

To model the dependency between objects we define
a predicate, referred to as feature predicate:
shareFeaturei(objectk, objectl)
These features of dependencies may be qualitative
or logical, which define if the relationship exists or
not (e.g. sharePublicationDate(bookk, bookl)).
We distinguish between ObjectFeature and
UserFeature features, for example:
shareAuthor(”book1”, ”book2”): is a logical object
feature, the arguments are instances of objects.
shareCountry(”user1”, ”user2”): is a logical user
feature, the arguments are instances of users.
shareAge(”user1”, ”user2”): a logical user feature.
Figure I gives a sample of the model with an example
from the book rating domain 1.

• Identity Predicates

sameObjecti(objectk, objectk),
sameBook(book, book)
For exampe, sameUser(person, person)
with an evidence like sameUser(”Anna”, ”Anna”).

• Query Predicates

This is the preference relation, whose probability
needs to be predicted. The score may be the rating
value.
query relation(person, object, score)
For example, rates(person, book, rating)
with an evidence like rates(”Bob”, ”book1”, L5).

In order to generate the evidence dataset, we populate the
mentioned predicates with instantiations of the objects (i.e.
information on users, books, and ratings).

2) Hybrid Recommendation Formulae: A crucial part
of MNLs is the set of formulae defined to model the
dependencies between objects in the domain of interest. As
explained earlier, the formulae (also referred to as rules) can
be defined as hard or soft, and each has a particular weight.

1The goal is to find the highest probable rating (r 2 {1, ..., 5}) that Bob

gives to book1. We define the schema as a list of predicate declarations. As
evidence we are given profile information, as well as known ratings of Bob

and other users. Any variable not explicitly quantified is universally quantified.



We define the following formulae:

Features Formulae: Modeled as hard rules, these formuale
reflect the dependency of objects based on the attributes that
they have in common.
Formula F.1

hasAttributei(o1, a) ^ hasAttributei(o2, a)

^sameObjectk(a, a) ^ ¬sameObjectl(o1, o2)
=> shareFeaturei(o1, o2)

For example, in our running scenario we would have
the following formula to express the feature shareAuthor

between any two objects of type Book that have the same
Author in common:

hasAuthor(book1, auth1) ^ hasAuthor(book2, auth1)

^ sameAuthor(auth1, auth1) ^ ¬sameBook(book1, book2)
=> shareAuthor(book1, book2)

Content-based Dependency Formulae: These are rules
that express content-based dependency between the score of
the relation that we want to predict and the features of the
objects. These are soft rules, whose weight we learn with
parameter learning methods (Sec. IV-D).
Formula F.2

w2 hasRelationj(u, o1, r) ^ shareObjectFeaturei(o1, o2)

^ sameFeaturek(r, r) => query relationj(u, o2, r)

In our example, we would have the following rule:

0.8 hasRating(user, book1, r) ^ shareAuthor(book1, book2)

^ sameRating(r, r) => rates(user, book2, r)

Collaborative-filtering Formulae: These rules reflect the
similarity of behavior between user features and their rating
behavior/preferences.
Formula F.3

w3 hasRelationj(u1, o1, r) ^ shareUserFeaturei(u1, u2)

^ sameFeaturek(r, r) => query relationj(u2, o1, r)

An example of this formula in our scenario would be the
following rule, which implies that users of similar age rate
the same book similarly:
0.25 hasRating(user1, book, r) ^ shareAge(user1, user2)
^ sameRating(r, r) => rates(user2, book, r)

User-preference Dependency: These rules consider only the
dependency on the similarity of users preference behavior
with respect to the relation that we want to predict.
Formula F.4

w4 hasRelationj(u1, o1, r1) ^ hasRelationj(u2, o1, r1)

^ sameFeaturek(r1, r1) ^ sameFeaturek(r2, r2)

^ hasRelationj(u1, o2, r2) => query relationj(u2, o2, r2)

For example:

0.78 hasRating(u1, book1, r1) ^ hasRating(u2, book1, r1)

^ sameRating(r1, r1) ^ sameRating(r2, r2)

^ hasRating(u1, book2, r2) => rates(u2, book2, r2)

(a)Predicate Schema (b) Evidence

*Rating(rating)
*User(person)
*Book(obj)
*Author(pers)
*Rating(rating)
*Country(cntr)
*hasAge(person, age)
*hasCountry(pers, cntr)
*hasAuthor(obj, author)
*hasRating(pers, obj, rating)
*sameUser(pers, person)
*sameCountry(cntr, cntr)
*sameBook(obj, obj)
*sameAuthor(pers, pers)
*sameRating(rating, rating)
shareCountry(pers, pers)
shareAuthor(obj, obj)
shareAge(pers, pers)

*Rating(1)
*Rating(2)
*Rating(3)
*User(”Sara”)
*Book(”book1”)
hasCountry(”Sara”,”denmark”)
hasAge(”Sara”,32)
hasRating(”Sara”, ”book1”, 5)

sameUser(”Sara”,”Sara”)
*User(”Bob”)
hasAge(”Bob”,30)
hasCountry(”Bob”,”denmark”)
sameUser(”Bob”,”Bob”)
shareCountry(”Sara”, ”Bob”)
shareAge(”Sara”, ”Bob”)
...

(c) Query rates(”Bob”, ”book1”, r)
TABLE I. A SAMPLE OF THE PROPOSED HMLN MODEL

C. Probabilistic Inference

Our task is to predict the probability of the query predi-
cates, such as rates(”Bob”, ”book1”, r), given the evidence in
the system. As such, we perform marginal inference in order
to estimate the marginal probability of the atoms that compose
our queries. The inference process consists of two main steps:
grounding and then searching.

1) User Network Selection: When generating the MLNs
for large datasets, if we include all the users with whom a
particular user ui shares a relation (e.g. all the users who share
same ratings with ui), then the networks can become very large
and inference is easily intractable. As such, we propose the
following approach for network grounding in order to achieve
better scalability during inference.

A network (the set of evidence, rules, and query formulae)
is independently constructed for each user. This is what we
referr to as user graph Gi, which is centered around a
particular user ui. Each user graph Gi contains information
about the user ui, and the objects to which she has direct
relationships (e.g. books rated). We also include in the graph
a set K of ”neighboring” users and their respective profile
information, as well as the objects related to them.

The process of neighbor selection consists in filtering those
users that share relations with ui (e.g. rated same books, or
have the same age/country, etc.). Afterwards, the users are

shareFeature(ui, uj) 

hasRating(ui, bk, r) 

Object(bk) 

User(ui) u1 

u2 

u3 

u4 

u5 

u6 

b1 

b2 

b4 

b5 

b6 

b7 

b8 

b9 

b10 

b11 

b12 
b13 

b7 

b11 

b15 

b14 

b16 

Graph of user u1 

Fig. 2. Individual User Graph



ordered by a quantifiable measure of the relationship value they
share with ui, (e.g. number of co-rated books), and the top-K
set of neighbors is finally selected. The last step is to include
in the graph Gi all the objects to which every neighboring
user has direct relations (i.e. books rated). An illustration of
the user graph is depicted in Figure 2.

Note that grounding is now performed for each graph
independently. For each user we predict the relationship value
(e.g. rating) to a set of query objects. We have in the end the
set of all user graphs G1, Gi, ..., G|U |.

Grounding. For each user graph G, we fix its hMLN-
based schema � and domain of known constants C. Given
the hMNL-based set of formula F̄ = {F1, ..., FN} of G
(in clausal form) with weights w1, ..., wN , they define a
probability distribution over possible worlds.

To construct this probability distribution, the first step
is grounding: given a formula F with free variables x̄ =
(x1, ..., xm), for each constant c̄ 2 Cm we create a new
formula gc̄, called a ground clause, which denotes the result
of substituting each variable xi of F with ci. This process is
performed for each formula Fi (for i = 1...N ), where each
ground clause g of Fi is assigned the same weight wi. The set
of obtained ground clauses of F̄ corresponds to a hypergraph
where each atom is a node and each clause is a hyperedge. This
graph structure is a Markov network (Sec. III), also referred
to as Markov Random Field (MRF).

In a Markov network, for any possible world (instance) I ,
a ground clause g is violated if w(g) > 0 and g is false in
I , or if w(g)  0 and g is true in I . We denote the set of
ground clauses violated in a world I as V (I). The cost of the
world I is cost(I) =

X

g2V (I)

|w(g)|. A lowest cost world I

is called a most likely world. In order to find the most likely
world or estimate the marginal probabilities of its atoms, we
need to perform inference over the grounded network for each
user graph.

Marginal Inference. In our approach, we are interested to
compute the highest probabilities for the queries posed as part
of the relation prediction task. This consists in estimating the
marginal probability of the query atoms, which is the process
of marginal inference.

Inference in MLNs is often regarded as infeasible because
of the scalability issues associated with them. Yet, current
state-of-the-art implementations show remarkable progress in
overcoming these restrictions. We deploy marginal inference
based on the MC-SAT algorithm [10], which applies slice
sampling to Markov logic in combination with satisfiability
testing by calling a heuristic SAT sampler. We apply the
inference algorithm as implemented in the MLN inference
engine Tuffy 2, which is recently shown to outperform all other
engines in quality and efficiency [9].
D. Weight Learning

In our approach, we learn the weights of the formula
discriminatively (maximizing the conditional likelihood of the
query predicates given the evidence ones). Weight learning
takes as input a training dataset and an MLN program without

2http://hazy.cs.wisc.edu/hazy/tuffy/

weights, then tries to compute the optimal weights of the MLN
rules by maximizing the likelihood of the training data.

We use Diagonal Newton discriminative learner [6] as
implemented in Tuffy. In our approach, we learn the weights
for each user network separately, then use their mean for the
formulae that compose our final set.

V. EXPERIMENTAL EVALUATION

Evaluation methods for recommender systems are mani-
fold, comprising statistical techniques to measure deviations of
predicted and actual rating values, and approaches to estimate
the utility of the recommendation list for the active user, e.g.,
precision and recall known from information retrieval.

In order to provide a comprehensive evaluation, we per-
form experiments for both aspects. As such, we organize the
experiments in two parts: one for the recommendations utility

evaluation, and the other for the error deviation evaluation.
We chose to conduct experiments in three different datasets,
in order to show not only the feasibility, but also the empirical
expressiveness of our model.

A. Datasets

For the evaluation of error deviation, the experiments are
conducted on two publicly available datasets:
MovieLens

3: the original MovieLens dataset contains 10 mil-
lion ratings (1-5 scales) from 71576 users and 10681 movies.
For a better comparison with existing approaches, we follow
the evaluation procedure of Shi et al. [14], by selecting a subset
with the first 5000 users and 5000 movies according to the
identifiers in the original dataset. In the following, this dataset
is denoted as ML.
LibraryThing

4: the original LibraryThing dataset contains ca.
750 thousand ratings from 7279 users and 37232 books, and in
the subset we also select the first 5000 users and 5000 books.
This dataset is denoted as LT.

As in [14], we chose the subset selection procedure rather
than random selection, in order to ensure accurate performance
comparison and future experimental reproducibility. The statis-
tics of all the datasets are summarized in Table II.

TABLE II. STATISTICS OF THE DATASETS ML AND LT

Nr. users Nr. items Nr. Ratings Sparseness
ML 5000 5000 584628 97.70%
LT 5000 5000 179419 99.30%

For the utility evaluation case, we perform another set
of experiments on the following publicly available dataset
from the recent initiatives on information heterogeneity in
recommender systems [2]:
BookCrossing

5 is an online book club where users can rate
books . In prior work [17], book ratings were collected from
this site.6 We performed a cleanup of the data, since it is quite
noisy: there are invalid ISBNs, and some of the ISBNs in
the rating file cannot be found in the book description file.
Statistics of this dataset, denoted as BX, are displayed in Table
III. We tests with various subsets by filtering users based on
different numbers of minimal ratings.

3http://www.grouplens.org/node/73
4http://ir.ii.uam.es/hetrec2011/datasets.html
5http://www.bookcrossing.com
6http://www.informatik.uni-freiburg.de/cziegler/BX/



TABLE III. STATISTICS OF THE BOOKCROSSING DATASET (BX)

Min. ratings Nr. Users Nr. Books Nr. Ratings
5 5628 57,324 136,284
10 3056 52,528 119,563
30 1053 42,340 86,928
50 568 36,194 68,361

B. Experimental Setup

1) Experimental Protocol for Utility Case: We use
decision-support metrics to evaluate the effectiveness of as-
sisting users to select high-quality items from the overall
set of items. We intend to judge how relevant a set of
ranked recommendations is for the active user, thus, follow
a methodology that estimates the utility of recommendations.
As in Ma et al. [7], the first 50% of the ratings from each user
are utilized for training, and the rest are utilized for testing.

At first, we select the users with at least 5 ratings
(min ratings = 5). In addition, we perform other tests
applying different values of min ratings, in order to see how
the approach reacts to the cases when the users provide more
preference judgments. We generate top-10 recommendations
lists and perform 10-fold cross-validation. For this analysis
we use the BX dataset.

2) Experimental Protocol for Error Deviation Case: We
follow the experimental procedure of Shi et al. [14], which
even though focuses on the cross-domain recommendation
task, offers extensive evaluations of a single domain case such
as ours. The comparative analysis is performed on ML and LT
datasets, where each is divided into training set (60%), test set
(20%), and validation set (20%). For each user in the test set,
a small set of ratings (denoted as UPL for user profile length)
is held out and included in the training set. In our case, UPL
is set to 5. The rest of the ratings is used for testing applying
10-fold cross-validation.

3) Evaluation Metrics: For the utility evaluation case, we
use established metrics of precision and recall. The recall
metric [13] finds the percentage of test set objects in the dataset
To occurring in recommendation list Ro, with respect to the
overall number of test set objects |To|:

Recall = 100 · |To \Ro|
|To|

(1)

Precision represents the percentage of test set objects occurring
in the recommendation list, with respect to the size of the
recommendation list:

Precision = 100 · |To \Ro|
|Ro|

(2)

In addition, we report on the F1 measure as a combined metric
for precision and recall.

For the evaluation case of measuring error deviations, we
use mean absolute error (MAE) as the standard evaluation
metric [7], [14] for measuring recommendation performance
on rating-based recommender domains:

MAE =

P
|ru,o � r̄u,o|

|To|
(3)

where ru,o denotes the rating that user u gave to object o,
and r̄u,o denotes the rating that user u gave to object o which

ispredicted by our approach, and |To| denotes the number of
tested ratings.

4) Parameter Setting: For weight learning, we use the
following parameters: number of samples for MC-SAT is set to
50, and max. iterations to 100. For user network grounding, we
set the neighbor clustering parameter(Sec. IV-C1) to K = 20.

C. Performance Comparison

We compare the performance of the proposed hMLN with
a set of alternative recommendation approaches listed below:

• User-based Collaborative Filtering (UBCF) is a
representative of memory-based CF approaches, being
one of the most popular recommendation techniques,
because of its simplicity and high quality of recom-
mendations. We apply Pearson correlation for similar-
ity values and set neighborhood to 50.

• Item-based Collaborative Filtering (IBCF) is cho-
sen as another popular recommendation method. It is a
representative of model-based CF methods [13], which
in addition to CF considers the item-item similarities.

• Probabilistic matrix factorization (PMF) [12] is a
state-of-the-art model-based CF approach. The regu-
larization parameter is set to 0.01.

We summarize below the results of the comparative anal-
ysis and the observations regarding the hMNL approach.

TABLE IV. RECOMMENDATION PERFORMANCE ON DATASET BX

Metrics Min.Ratings=5
UBCF IBCF hMLN

Recall 5.76 7.32 5.12
Precision 3.69 3.64 4.67

F1 4.49 4.86 4.88

1) Results of Utility Evaluation: Results illustrated in Table
IV show that user-based CF and item-based CF exhibit almost
the same accuracy, indicated by the precision values. Their
difference in recall shows a behavior change with respect to
the types of users used in the scoring. Our approach, hMNL,
yields a recall value similar to the user-based method, but
outperformes the other methods in precision. hMLN also gives
the best F1 value. This can be explained by the fact that our
method is accurate in making predictions, but the restrictions
we have put in the size of networks per user cause a decrease
in the number of relevant items predicted. It means that our
choice on achieving scalability comes as a trade-off with recall.

0 

5 

10 

15 

20 

5 10 30 50 

Recall Precision F1 

Minimum required ratings / user 

Fig. 3. hMLN performance for varying min ratings

In Fig.3, we see that for increasing values of the minimum
ratings applied to the evaluation setting, hMLN provides much



higher accuracy of the recommendation results. In particular,
precision largely increases when we filter users that have 30-
50 ratings. From the observations, we draw a conclusion that
hMLN is precise in making relevant recommendations, but its
coverage is restricted to the scale of networks that we construct
for inferencing. With larger networks recall can increase, but
scalability needs to be always taken into consideration to
ensure tractable solutions.

2) Results of Error Deviations: Since IBCF is computa-
tionally expensive, we have used UBCF and PMF as better
representative of state-of-the-art for this comparative analysis.

TABLE V. RECOMMENDATION PERFORMANCE IN THE ERROR
DEVIATION CASE BETWEEN HMLN AND BASELINE APPROACHES

Metrics UBCF PMF hMLN
ML(MAE) 0.833 0.831 0.641

LT(MAE) 0.857 0.771 0.738

As can be seen in Table V, hMLN outperforms the other
approaches with regard to the mean absolute error in both
datasets ML and LT. Our approach ensures high accuracy
because of the power to handle the probability distributions of
the closest dependencies that help in defining users’ ratings.

VI. CONCLUSIONS

In this work, we present a generic model for generating
recommendations following a hybrid approach. The model
is based on Markov logic, which is a simple and power-
ful language that combines first-order logic and probabilistic
graphical models. We experimentally verify the efficacy of our
theoretical model, and demonstrate that our method achieves
better accuracy than other state-of-the-art recommendation
approaches. Experiments also show that precision largely in-
creases when considering users with more explicit preference
judgments (even when this number is not very high).

This work opens an avenue for future research, for exam-
ple, investigating how the scale of user graphs proposed for
MLN construction influence the recommendation performance
(w.r.t. recall). An interesting direction is to address methods
from structure learning for such solution. We also plan to show
the extent of the applicability of our model in various domains.

REFERENCES

[1] D. Agarwal and B.-C. Chen. Regression-based latent factor models.
In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’09, pages 19–28, New
York, NY, USA, 2009. ACM.

[2] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information
heterogeneity and fusion in recommender systems (hetrec 2011). In
Proceedings of the 5th ACM conference on Recommender systems,
RecSys 2011, New York, NY, USA, 2011. ACM.

[3] L. Getoor and M. Sahami. Using probabilistic relational models for
collaborative filtering. In In Workshop on Web Usage Analysis and

User Profiling (WEBKDD’99, 1999.
[4] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2007.
[5] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30–37, Aug. 2009.
[6] D. Lowd and P. Domingos. Efficient weight learning for markov logic

networks. In Proceedings of the 11th European conference on Principles

and Practice of Knowledge Discovery in Databases, PKDD 2007, pages
200–211, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for
collaborative filtering. In Proceedings of the 30th annual international

ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’07, pages 39–46, New York, NY, USA, 2007. ACM.
[8] R. J. Mooney and L. Roy. Content-based book recommending using

learning for text categorization. In Proceedings of the fifth ACM

conference on Digital libraries, DL ’00, pages 195–204, New York,
NY, USA, 2000. ACM.

[9] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: scaling up statistical
inference in markov logic networks using an rdbms. Proc. VLDB

Endow., 4(6):373–384, Mar. 2011.
[10] H. Poon and P. Domingos. Sound and efficient inference with prob-

abilistic and deterministic dependencies. In Proceedings of the 21st

national conference on Artificial intelligence - Volume 1, AAAI’06,
pages 458–463. AAAI Press, 2006.

[11] M. Richardson and P. Domingos. Markov logic networks. Machine

Learning, 62:107–136, 2006.
[12] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In

J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, NIPS. Curran
Associates, Inc., 2007.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application
of dimensionality reduction in recommender system – a case study. In
WebKDD Workshop, 2000.

[14] Y. Shi, M. Larson, and A. Hanjalic. Generalized tag-induced cross-
domain collaborative filtering. CoRR, abs/1302.4888, 2013.

[15] Z. Xu, V. Tresp, A. Rettinger, and K. Kersting. Social network
mining with nonparametric relational models. In Proceedings of the

Second international conference on Advances in social network mining

and analysis, SNAKDD’08, pages 77–96, Berlin, Heidelberg, 2010.
Springer-Verlag.

[16] Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling
for recommendation system. In Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in

information retrieval, SIGIR ’07, pages 47–54, New York, NY, USA,
2007. ACM.

[17] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving
recommendation lists through topic diversification. In Proceedings of

the 14th international conference on World Wide Web, WWW ’05, pages
22–32, New York, NY, USA, 2005. ACM.

View publication statsView publication stats

https://www.researchgate.net/publication/243459322

