
Modeling and Learning
Context-Aware Recommendation Scenarios

using Tensor Decomposition
Hendrik Wermser

Technische Universität München
Garching bei München, Germany

Email: wermser@cs.tum.edu

Achim Rettinger
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: rettinger@kit.edu

Volker Tresp
Siemens Corporate Technologies

Munich, Germany
Email: volker.tresp@siemens.com

Abstract—The task of recommending items, like movies, to
users is a core feature of many social networks. Standard
approaches either use item or user similarity to suggest the next
items users might be interested in. Recently, multivariate models
like matrix factorization have become popular to combine the
advantages of both perspectives. In addition, extensions have been
proposed to capture the dynamics of user interests over time, like
trends or recurrent user needs. While offering good predictive
performance, so far those models do not exploit possibly available
rich semantic context. Typically, only one implicit feature, like
user ratings, is tracked to give personalized recommendations.
However, with semantic data sources, like linked data, wealthy
background knowledge becomes available that could be leveraged
to improve predictive performance. We argue, that a more flexible
framework is needed to model and learn a greater class of
recommendation scenarios where rich context is available. Thus,
we propose a generic approach which generalizes state-of-the-
art methods based on pairwise interaction tensor factorization
by leveraging arbitrary background knowledge related to the rec-
ommendation situation. Our experiments on streamed semantic
data from a social network show that by adding varying sets of
context - like user information, sequential information or time
information - the ranking of potential items can be personalized
and the predictive performance can be improved.

I. INTRODUCTION

The availability of large semantic data sources is constantly
increasing. Most notably is the development around the Linked
Data1 (LD) initiative which interlinks data sources via derefer-
enceable Unique Resource Identifiers (URIs) on the Web. This
semantic data can provide valuable context information for
applications. It is particularly useful in supporting inductive
reasoning and Machine Learning (ML) applications. In LD
applications, typically subsets of the LD-cloud are retrieved
in repositories and some form of reasoning is applied to infer
implicit facts. However, one can certainly assume that there
are a huge number of likely facts which are neither known
to be true nor can be derived by deductive reasoning. The
approach taken in this work is to estimate the truth values of
facts by exploiting patterns in the data, i.e. to rank predictions
by their likelihood and apply this ranking to recommendation
tasks.

1http://linkeddata.org/

Recommender systems, such as movie recommenders or tag
recommenders, play an increasingly important role in today’s
social networks on the world wide web. They are for instance
used to increase sales on eCommerce sites (see e.g. Amazon2)
and at the same time facilitate the discovery of relevant content
for the user (see e.g. YouTube3). In such scenarios it cannot be
known for certain that a user will like an item unless the user
specifies it explicitly. Thus, most state-of-the-art approaches
use ML methods, e.g. to find items similar to the ones that
a user liked before. The data usually consists of one relation
specifying an interaction of users with items. This interaction
is captured by one observable feature, e.g. likes, buys, rates,
views, etc. Then, the goal is to suggest the most probable
items the user might also like, buy, rate or view in the future.

The most successful model classes for this task perform
a multivariate prediction of the unknown relation-instances.
Especially factorization methods based on matrix or tensor
decomposition have performed best on various benchmarks,
like the Netflix challenge4 [1]. It is quite apparent that con-
textual information has the potential to improve the prediction
accuracy. An example for considering additional context in-
formation is the Pairwise Interaction Tensor Factorization [2]
which still exploits only a minimum of semantic information.
In contrast, we generalize that approach to a greater class
of recommendation tasks where arbitrary contextual informa-
tion about the recommendation situation can be incorporated.
More specifically, any situations where an entity is to be
recommended given an arbitrary number of binary context
information can be covered. The model subsumes many other
factorization models, such as standard matrix factorization
(MF). Hence, we call our approach Context-Aware Recom-
mendation Tensor Decomposition (CARTD).

Our main contributions are as follows: We present an
intuitive modeling framework for a wide class of semantic
recommendation tasks which subsumes popular approaches
like [3] (see Sec. II). In Sec. II we also show how to utilize

2http://www.amazon.com/
3http://www.youtube.com/
4http://www.netflixprize.com/

context knowledge in recommendation tasks in order to model
a large class of possible recommendations scenarios. Next,
we derive a method to decompose and optimize the resulting
tensor according to a modified version of the Bayesian Person-
alized Ranking (BPR) criterion, which was introduced in [4]
(see Sec. III). In Sec. IV we provide examples on how common
recommendation scenarios can be modeled using CARTD. We
demonstrate the effectiveness of our approach on real world
data from a social network which provides a stream of user
recommendations accompanied by additional contextual clues.
Our results show that processing this kind of semantic data
can improve predictive performance (see Sec. V). Finally we
report on related work (see Sec. VI) and conclude in Sec. VII.

II. UTILIZING CONTEXT KNOWLEDGE IN
RECOMMENDATION TASKS

The task in recommender systems is to predict a list of most
likely entities, e.g. movies, a user might be interested in. For
example a movie recommender would recommend a list of
movies. A simple approach used in many applications is the
’most popular’ recommender which recommends the same set
of most popular movies to every user. Thus, this recommender
is not ’personalized’ and does not incorporate any context in-
formation. Another standard approach, known as Collaborative
Filtering (CF), uses only correlation in preference patterns to
predict a list of most relevant items [5], [6].

However, in many cases additional information is available
that could be utilized in order to improve recommendations.
With the Resource Description Framework (RDF) and its
broad uptake, e.g. within the Linked Data (LD) initiative,
an increasing amount of such graph-structured semantically
enriched data can be fetched from different data sources.

In this paper we will introduce the Context-Aware Recom-
mendation Tensor Decomposition (CARTD), which makes use
of such context information in a generic way. We focus on con-
text information as a set of entities that is not deterministically
dependent on the entity to be recommended but depends on the
situation where the recommendation needs to be performed.
From the perspective of a movie, context information like
this would be the user who watched it, the location where
it was watched, the time when it was watched, the movie
that was watched before by the user, etc. Deterministically
dependent context information would be the genre of the
movie (because it deterministically depends on the movie) or
the age of the user (because the user is already in the set and
the age deterministically depends on the user). Information
deterministically dependent like that is not focus of this work.
The distinction is illustrated in Figure 1.

A. Formalization

More formally, the task of item recommendation in our
scenario is to provide the user with a ranked list of entities
from a set Entity, where the goal is to rank the most
interesting item in the current situation at the top of the list.
Additionally n sets of contexts are given, each belonging to
a specific context type, i.e. Contexti, where i ∈ 1, . . . , n. In

Entity:
Movie

Context2:
Location

Agerecommen-
dation

Context3:
Time

Context1:
UserGenre

Fig. 1. ER-diagram showing an example of a context-aware recommendation
scenario. The dashed rectangle contains the not deterministically dependent
context and the elements outside the rectangle illustrate deterministically
dependent context.

the case of standard CF movie recommendation Entity would
be Movies and there would only be one context, namely

Context1 := User

But one could imagine that also

Context2 := MonthOfYear

which describes the month of the year when the recom-
mendation is supposed to be given could be a correlated
factor which might improve the recommendations. Clearly,
MonthOfYear conforms to our definition of not determinis-
tically dependent context information since it neither depends
on the movie nor on the user but only on the recommendation
relation (see Fig. 1). We give further examples and illustrations
of possible choices for these sets in section IV.

The formal task, is to recommend a list of entities
(e1, e2, . . . , em), where ei ∈ Entity, given some context
information (c1, c2, . . . , cn), where ci ∈ Contexti. In order
to train our model we assume a set D of training data to be
given, such that

D ⊂ Entity ×Context1 ×Context2 × · · · ×Contextn

We then define multisets (sets which can hold elements more
than once) for the individual relations between Entity and
the respective context Contexti:

ContextRelationi :=({
(e, ci)

∃c1, . . . ,∃ci−1,∃ci+1, . . . ,∃cn :
(e, c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ D

}
,#i

)
where #i denotes a function from the set (the first element of
the tuple) to N, indicating the number of occurrences of (e, ci)
in the training set D for a specific ci and with all other contexts
not considered fixed. Applied to our movie recommendation
scenario, this counts e.g. the number of times a movie was
watched at a certain location.

B. Ranking

So far, we have stated that we would like to recommend a
list of entities given certain context information. Following [4]

we now interpret a list of recommended entities as a ranking
over these entities. Then

>c1,c2,c3,...,cn
⊂ Entity2

is a ranking over all entities e ∈ Entity given the respective
context information (c1, c2, c3, . . . , cn), ci ∈ Contexti. We
abbreviate this ranking as >{c}. Usually only the top of the
list is interesting for real world applications. In a movie
recommender application for example only the 5 highest
ranked entities might be presented to the user.

We now want to optimize the posterior probability of some
set of parameters given a ranking, i.e.

p(Θ | >{c}) ∝ p(>{c} |Θ)p(Θ)

as described in more detail in [4]. In order to optimize for a
ranking specifically we define the augmented training data as
follows:

DA :=

{
(e, c1, . . . , cn, j)

(e, c1, . . . , cn) ∈ D
∧ ∀i : #i(e, ci) > #i(j, ci)

}
That means we define the training data to include a second
entity which less often appears in all respective context
relations. In the example from above this would mean the
additional movie in the training data was less often watched
by the respective user as well as less often watched in the
respective month.

If we assume that the contexts are independent of each other
and also that the ordering of each pair of items (e, j), where
e, j ∈ Entity, for a given set of contexts {c} is independent
of the ordering of all other pairs, we obtain the maximum a
posteriori (MAP) estimator

Θ̂MAP = arg max
Θ

∏
{DA}

p(>{c} |Θ)

= arg max
Θ

∏
(e,c1,...,cn,j)∈DA

p(e >{c} j|Θ)p(Θ)

of Θ .
In order to extend the BPR criterion [4] to our scenario we

need to further define p(e >{c} j|Θ). Therefore, item e is
ranked higher than item j according to >{c} if and only if
some x̂{c},e >R x̂{c},j , i.e.

e >{c} j :⇔ x̂{c},e >R x̂{c},j

and

p(e >{c} j|Θ) = p(x̂{c},e >R x̂{c},j)
= p(x̂{c},e − x̂{c},j >R 0)
:= σ(x̂{c},e − x̂{c},j)

where the x̂{c},e depends on Θ, i.e. x̂{c},e = x̂{c},e(Θ) and
where σ is the logistic sigmoid σ(z) := z

1+e−z .
Furthermore, we use a normally distributed prior over the

parameters, i.e. p(Θ) ∼ (0,ΣΘ) where we choose ΣΘ = λΘI

in order to reduce the number of hyper-parameters. Ultimately
our goal is to estimate Θ̂ via the log likelihood:

arg max
Θ

∑
(e,c1,...,cn,j)∈DA

lnσ(x̂u,e − x̂u,j)− λΘ||Θ||2Fro,

where || · ||Fro denotes the Frobenius norm of a matrix.
Note that this approach is generic and allows for an arbitrary

parametric model to be optimized according to this ranking
criterion. Only the x̂{c},e have to be defined by the model.
We will propose Context-Aware Recommendation Tensor De-
composition (CARTD) as our particular model to be optimized
(cf. section III). Similarly to [4] we use bootstrapped stochastic
gradient descent as the optimization procedure.

C. Interface

We have above defined the sets that the model works on.
These sets can be interpreted as an ”interface” between the
data and the model. In order to use the model for recommen-
dation tasks the problem has to be representable in form of
these sets in a meaningful manner. As we will see in section
IV, a great set of problems can be formulated in such a way.

III. CONTEXT-AWARE RECOMMENDATION TENSOR
DECOMPOSITION

Our goal is to model an entity together with multiple
contexts. The standard matrix decomposition models popular
for Collaborative Filtering approaches can be generalized to
higher-order relations in the form of tensor factorizations (TF)
[7]. In this section we show how context-aware recommenda-
tion tensors can be decomposed and optimized efficiently.

A. Decomposing Context-Aware Recommendation Tensors

Well-studied TFs include the Tucker decomposition as well
as Parallel Factor Analysis (PARAFAC) [7]. Since the ratio
of relations existent in the training data to possible relations
is extremely small (meaning the resulting tensor would be
extremely sparse) we use a special case of PARAFAC that
reduces to modeling pairwise interactions between the entity
and the corresponding context (cf. [2]):

x̂{c},e :=
n∑
i=1

〈
vE,Ci
e , vCi,E

ci

〉
,

so that an entry x{c},e is reconstructed as
x̂{c},e from the respective factorization matrices
Θ = {V E,C1 , V C1,E , V E,C2 , V C2,E , . . . , V E,Cn , V Cn,E}.
Here vE,Ci

e denotes the eth column of the factorization matrix
V E,Ci and analogously with the other matrices. The entries
in the factorization matrices Θ then are the parameters at our
disposal for learning the rankings. Obviously each pair of
matrices has to have corresponding inner dimensionality, i.e.
if V E,Ci ∈ R|E|×kE,Ci then V Ci,E ∈ R|Ci|×kE,Ci .

B. Optimizing Context-Aware Recommendation Tensors

Finally, we need to optimize CARTD by the BPR crite-
rion. Usual stochastic gradient descent will cycle trough the
training data and after every instance update the parameters
accordingly. The gradients of BPR with respect to a model
parameter θ and an instance of the augmented training data
(e, c1, c2, . . . , cn, j) ∈ DA are

∂

∂θ

(
lnσ(x̂{c},e − x̂{c},j)− λθθ2

)
=
(
1− σ(x̂{c},e − x̂{c},j)

) ∂
∂θ

(x̂{c},e − x̂{c},j)− 2λθθ,

which can be calculated analytically for the CARTD and
matrix factorization models. Instead of cycling through the
training data bootstrapped stochastic gradient descent opti-
mization is applied, i.e. (e, c1, c2, . . . , cn, j) ∈ DA is sampled
uniformly at random from the training data. As has been shown
in [4] this dramatically improves the convergence speed of the
algorithm.

IV. ENCODING COMMON CONTEXT-AWARE
RECOMMENDATION SCENARIOS

As mentioned, CARTD suits itself best to tasks where
binary context information can be exploited for the training
phase and is also available during prediction/recommendation.
We will show in the following that many common recommen-
dation tasks fall under this definition.

A. Time Information

In commercial recommender settings timestamps of the time
of purchase are usually recorded. These can be utilized as
additional context in several ways. In our evaluation we used
these timestamps to generate two contexts for a purchase (time
and sequence information). Here we consider the obvious case
of using the timestamps to define the hour of the day, the day
of the week or the month of the year as context when the
item was purchased. We define the generic sets of our model
as follows:

Entity := I all the available items
Context1 := U all the users
Context2 := M the months a of year

The context relation sets are constructed as stated in section
II-A:

ContextRel1 := ({(i, u) ∃m ∈M : (i, u,m) ∈ D},#u)

ContextRel2 := ({(i,m) ∃u ∈ U : (i, u,m) ∈ D},#m)

where D is the training data set and #u indicates how often
a user has bought a certain item and #m indicates how often
an item has been bought in the respective month.

B. Sequential information

In the previous section it was shown how to define sets
for time information gained from purchase timestamps. Here
we demonstrate how sequential information can be added. We
have the sets

Entity := I all the available items
Context1 := U all the users
Context2 := M the months a of year
Context3 := I all the available items (as last items)

ContextRelation3 can then be used to model interaction
between an item and the item previously purchased and is
defined as follows:

ContextRel3 := ({(i, l) ∃u ∈ U,∃l ∈ I : (i, u,m, l) ∈ D},#l)

with #l now indicating how often an item has been purchased
after another item (termed last item, because it was the last
item before the current).

C. Location Information

Apart from context gained from time there is another
common example for context information, namely location
information. In this case then we have sets

Entity := I all the available items
Context1 := U all the users
Context2 := L all the locations .

Here the location information is assumed to be given for
discrete entities, i.e. at home, at work, in a super market, etc.
for each purchase. Note, that it is straight forward to combine
location context with the above mentioned time and sequence
contexts. In general it can be expected that this would further
improve recommendations.

D. Tag Recommendation

Tag recommendation is another related example. Here, tags
get recommended while resources (e.g. text documents that
can be tagged) and users provide context information. The
sets of our model can for example be defined as follows:

Entity := T all the available tags
Context1 := U all the users
Context2 := R all the resources

Available tags are tags that have been used before by other
users. The context relation sets are defined accordingly. In [2]
a very similar approach has been applied to this problem. Use
cases like these motivate the definition of a generic model like
CARTD which does not need to be redesigned depending on
domain knowledge and the task at hand.

V. EMPIRICAL EVALUATION

In this section we investigate how CARTD is applied to
several combinations of possible contexts in a real world
recommendation scenario.

A. Get Glue Dataset
Our real-world context-aware recommendation scenario is

provided by the social network Glue5. Glue allows users to
share the experience of navigating the Web; as any social
network, it also allows users to connect to each other. Glue
uses semantic recognition technologies to automatically iden-
tify books, music, movies, wines, stocks, movie stars and many
other similar entities, and thus generates a continuous data
stream of such objects. Users can observe every data stream
and can receive recommendations from Glue about interesting
discoveries by their friends. Both, the social network data and
the real-time streams are accessible via a REST API6. For the
purpose of our experiments we used a set of wrappers [8] that
export Glue data in the form of Linked Data (LD).

We continuously sampled datasets through the Glue net-
work’s API. To ensure a focused analysis we gathered movie
ratings only. We sampled from 50 to 200 items per user to
experiment with different levels of data sparsity. Also, we
restricted samples to positive feedback on items by users
(leaving out the possible explicit negative feedback) in order to
deal with a pure binary ratings matrix - a scenario that is very
common in real world applications7. The specific dataset on
which we report our results has 3,076 users and 9,707 movies
and a single user gave up to 400 times positive feedback (i.e.
likes) on different movies. On average a user gave feedback
on 170 movies. The first date in the data lies in July 2006 and
users gave ratings over an average time interval of 98 days. The
median date in the data is 26th of October 2009. We pruned
the data to the 3-core, meaning every item was rated at least
3 times and each user rated at least 3 items. The resulting
training data is 98.21 % sparse, or in other words 98.21% of
the entries of the resulting user-movie-rating matrix are zero
entries representing missing/unknown information. Sequential
information (see section IV-B) is inferred from the timestamps
that are available as is the month in which the movie was rated
(see section IV-A).

B. Evaluation
We report results on the dataset described above for two

different recommendation settings. In the first scenario we split
5% of the data randomly as test data, without any preference
for any particular entities or contexts. This evaluation is very
generic and works for all the settings described in section IV.
In the second scenario we explicitly split those movies as test
data for which each user last gave positive feedback. This
simulates a likely real world scenario where the next movie in
a sequence of ratings is to be recommended. In both cases the
remaining data is taken as the training data. Items that were
in the training data do not appear in the predicted ranking,
as they are known already (we don’t want to recommend
known movies). This could be different for other applications,
where repeated ratings or purchases are possible (e.g. online
shopping).

5http://getglue.com
6http://getglue.com/api
7e.g. the ”like button” available on facebook

For each setting the ranking performance is evaluated
by two accuracy measures, the standard machine learning
measure Area Under the ROC Curve (AUC) and the HitRa-
tio measure. For the task of ranking, the AUC reduces to
AUC(i) = |I|−pos(i)

|I| , where pos(i) gives the position of
item i in the ranking, 0 being the best position and |I| the
worst. We report the average AUC over all test items. The
HitRatio determines whether the test movie is in the top k
of the given ranking. We then report the percentage of test
movies for which this was the case. We chose k = 10, as it
seems reasonable that a real world application might present
its users a list of 10 movies.

The particular combinations of context information that
were used in the different scenarios are described in the
following and depicted in Fig. 2. Note that the model (as
described in section III) is the same for all combinations, what
is altered is the context information taken into account.

10 25 50 100 150
2

4

6

8

dimensions

H
it
R

a
ti

most popular

Month

Sequence

Month+Sequence

MF

MF+Month

MF+Sequence

MF+Month+Sequence

Fig. 2. Different approaches compared in the experiments.

Month refers to ”month of year” information as described
in section IV-A, gained from the timestamps available in the
Get Glue datasets. The month context set obviously consists of
12 different contexts only, compared to 3,076 users and 9,707
movies. Thus the month is the context and the item-month
matrix is factorized.

Sequence refers to the last rated item as context related
to the current item. The sequence context set consists of all
9,707 movies. Thus the only context is the last item and the
item-lastItem matrix is factorized.

MF refers to standard Matrix Factorization (i.e. the user is
the context and as in most collaborative filtering approaches
the item-user matrix is factorized). In our case the Matrix
Factorization is optimized by the BPR criterion (as described
in section II-B).

Combinations The other scenarios are combinations of
the three contexts mentioned above. Thus, for example
MF+Month indicates that not only the user was taken as
context but also the month of the year in which the rating
took place (this would be exactly the use case given in section
IV-A). The factorizations above are special cases where only
one single context is considered.

most popular refers to the most popular baseline which
ignores any context and simply recommends movies in order
of the number of positive feedback they received.

10 25 50 100 150

0.89

0.9

0.91

0.92

0.93

0.94

dimensions

AU
C

Standard Test Data AUC

Fig. 3. Comparison of CARTD for different context information (see fig. 2)
on standard test data. The AUC is reported for inner factorization dimensions
10, 25, 50, 100 and 150.

Figure 3 shows that for standard test data evaluated via
the AUC measure every context information utilized by the
CARTD model apart from the Month alone, improves perfor-
mance compared to the most popular baseline. Furthermore
each additionally utilized context adds to the performance, al-
though the Month context is able to improve the performance
of the MF and MF+Sequence context settings only slightly.

10 25 50 100 150

0

5

10

15

20

dimensions

Hi
tR

at
io

 (%
)

Standard Test Data HitRatio

Fig. 4. Comparison of CARTD for different context information (see fig. 2)
on standard test data. The HitRatio (k = 10) is reported for inner factorization
dimensions 10, 25, 50, 100 and 150.

In figure 4 the HitRatio on the standard test data is reported.
Intuitively the most popular baseline should perform very
well for the HitRatio measure, because this baseline simply
recommends the most liked movies in every context and many
users will of course have liked exactly such a movie. This
is indeed the case, as even standard matrix factorization does
not significantly outperform the baseline for this measure. The
Month context information alone receives very low scores in
this setting and is not able to gain a lot in combination with
the other contexts either.

In figure 5 we report results of the context information
utilized by CARTD on the most current movie feedback test
data. This means for each user the most recently rated movie
is used as test movie and should appear in a high position
in the ranking given the context the user rated this movie
in. Please note, that Month+Sequence performs similarly to
the matrix factorization (MF), although the contexts used are
fairly different. Similarly for MF+Month and MF+Sequence.

10 25 50 100 150
0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

dimensions

AU
C

Newest Item Test Data AUC

Fig. 5. Comparison of CARTD for different context information (see fig.
2) on most current movie feedback test data. The AUC is reported for inner
factorization dimensions 10, 25, 50, 100 and 150. For a legend see fig. 2.

Not surprisingly, the combination of all the available context
information then outperforms all other settings.

Figure 6 shows the HitRatio results for the most current
movie feedback test data. Again, the percentage of test movies
that appeared in the top 10 for the particular context is
recorded. Once more, the most popular baseline performs
very well on this measure. It clearly outperforms the Month
context, the matrix factorization MF and even their combi-
nation. As should be expected the sequence information is
especially helpful in recommending the most current movie.
Thus, the settings involving the sequence perform especially
well, with the combination of all contexts again outperforming
all simpler combinations.

10 25 50 100 150
2

3

4

5

6

7

8

9

10

11

12

dimensions

Hi
tR

at
io

 (%
)

Newest Item Test Data HitRatio

Fig. 6. Comparison of CARTD for different context information (see fig.
2) on most current movie feedback test data (details see text). The HitRatio
(k = 10) is reported for inner factorization dimensions 10, 25, 50, 100 and
150. For a legend see fig. 2.

VI. RELATED WORK

As mentioned before there are two main research directions
in ML which try to expand the common feature vector
representation to more complex representations as desired for
the context-aware recommendation task in social networks.

First, there is the attempt to use semantic data representa-
tions - like graph-based (e.g., RDF(S)) or logic-based (e.g.,
OWL) formalisms - as the input to ML algorithms to capture
the context for e.g., the recommendation scenario [9]. The ML

area concerned with those kind of statistical models is known
as Statistical Relational Learning (SRL) [10]. The range of
techniques deployed in SRL is wide. This includes for instance
kernel methods for structured representations [11], multivari-
ate prediction models [12], [13], relational graphical models
(e.g., probabilistic relational models [14] or infinite hidden
relational models [15]) and first-order probabilistic learning
approaches (e.g., bayesian logic programs [16] or markov
logic networks [17]). For the task of item recommendation
multivariate prediction models like matrix decompositions
have been especially successful [1]. However, the mentioned
approaches are not capable of intuitively modeling context-
aware recommendation scenarios by integrating arbitrary con-
texts like sequential data. The approach proposed here is based
on tensor decomposition and offers a flexible framework for
modeling and learning in such situations.

Second, there exist ML approaches that are concerned
mainly with the statistical analysis of ordered sequences of
observations where common tasks are a) classification of
observations, b) prediction of future observations and analysis
of the temporal dynamics of the stream. Common applications
are concerned with anomaly detection, (long term vs. short
term) trend detection, changes in the regularities in the data
stream and evolution of social networks.

In our case we expect user preferences in a social network
to change over time. For example, in a movie recommender
system, users may change their preferred genre or adopt a new
viewpoint on an actor or director. In addition, they may alter
the assessment of their feedback. Besides that general trends
might influence the preferences of users in certain time frames.

Such dynamics are for instance investigated in [18]. Here,
a matrix factorization approach is applied in small time steps
on movie rating sequences and the authors show, that there is
a significant change in user preference over time. However,
they do not provide an integrated learning algorithm for the
dynamics and don’t handle additional relations or features
besides the ratings.

Just recently a combination of Markov chains with ma-
trix factorization was proposed by [3] and applied to next-
basket recommendation in eCommerce applications. In their
work the authors introduce a generic way to handle the
temporal information by factorizing a transition cube. Also
there has been work on context-aware collaborative filtering
via Tensor Factorization in [19].The approach proposed here
is an extension to [3] and generalizes it to a larger class
of recommendation scenarios which can model any context
like spatial and temporal data related to the recommendation
situation.

However, in the application presented here - besides the
dynamics - we are faced with the added complexity of ML in
the context of relational domains. The user might be involved
in a number of relationships such as interests in movies, books
and other items, the friendship relationships and the follows
relationship. In addition, relations of items can be modeled,
like genre or director of a movie.

Another related work is introduced by [20]. They study

event-based networks such as email traffic, telephone calls and
research publications (co-authorship events), and predict future
event co-participation of entities. In particular, they answer the
question given the previous event data, will a pair of entities
co-participate in at least one event in a future specified time
interval. This is modeled as a classification problem with two
classes co-participation and not co-participation. The features
are defined with respect to the entity pair and include two
categories: network-based (e.g., neighborhood features and
shortest weighted path features) and entity-based (e.g., entity
attribute similarity measures and geographic proximity). The
method is applied to analyze a publication event network
spanning 6-year time period, with 128,000 papers (events),
and 310,000 authors.

Both examples of time-varying link prediction models can
not be directly applied to sequential and personalized item
recommendation. Especially the model of [20] seems to be
specifically designed for their task. In contrast, we try to
propose a more generic model to predict relational temporal
data.

VII. CONCLUSION

In this paper we proposed a generalization of a state of
the art matrix factorization technique in order to extend its
applicability to a larger class of context-aware recommenda-
tion scenarios like the ones needed in social networks. This
kind of rich spatial and temporal information is becoming
increasingly available on the Semantic Web and - as our
experiments show - can be leveraged to improve predictive
performance. SW data typically is extremely sparse - in
our experiments 99.58% facts are missing/unkown for the
relation to predict. We counter this, by exploiting one of the
advantages of Linked Data (LD), namely the easily accessible
context. By extracting additional related information we can
reduce the sparsity of the transition cube which contains the
recommendations per user and item. While our approach can
be applied intuitively to many recommendation situations, in
our dataset this is achieved by modeling recommendations of
a user while considering the movies the user was interested
in before or the time when movies were watched. Our ex-
perimental results on a large real world data set suggest, that
our proposed generalization offers modeling capabilities for
various recommendation scenarios and can improve predictive
performance. In general, our application demonstrates, that LD
can provide important additional context to make Machine
Learning (ML) problems more context aware and efficient.

Our future work is concerned with providing a detailed
theoretical analysis of our approach and ultimately extending
the algorithm to an arbitrary LD graph.

REFERENCES

[1] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008, pp. 426–434.

[2] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factoriza-
tion for personalized tag recommendation,” in WSDM 2010: Proceedings
of the 2010 ACM International Conference on Web Search and Data
Mining. ACM, 2010.

[3] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized Markov chains for next-basket recommendation,” in Pro-
ceedings of the 19th international conference on World wide web. ACM,
2010, pp. 811–820.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: bayesian personalized ranking from implicit feedback,” in UAI
’09: Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence, 2009.

[5] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
Item-to-Item collaborative filtering,” IEEE Internet Computing, vol. 7,
no. 1, pp. 76–80, 2003.

[6] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in IEEE International Conference on Data Mining
(ICDM 2008), 2008, pp. 263–272.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.

[8] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“Continuous queries and real-time analysis of social semantic data with
c-sparql,” in Second Workshop on Social Data on the Web (SDoW2009),
2009. [Online]. Available: http://CEUR-WS.org/Vol-520/paper02.pdf

[9] A. Rettinger, M. Nickles, and V. Tresp, “Statistical relational learn-
ing with formal ontologies,” in Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases,
ECML/PKDD2009. Springer, 2009, pp. 286–301.

[10] L. Getoor and B. Taskar, Eds., Introduction to Statistical Relational
Learning. MIT Press, 2007.

[11] N. Fanizzi, C. d’Amato, and F. Esposito, “Learning with kernels in
description logics,” in Proceedings of the 18th International Conference
on Inductive Logic Programming, ILP2008, ser. LNAI, F. Zelezný and
N. Lavrač, Eds., vol. 5194. Springer, 2008, pp. 210–225.

[12] C. Lippert, Y. Huang, S. H. Weber, V. Tresp, M. Schubert, and H.-P.
Kriegel, “Relation prediction in multi-relational domains using matrix
factorization,” Siemens, Tech. Rep., 2008.

[13] Y. Huang, V. Tresp, M. Bundschus, and A. Rettinger, “Multivariate
structured prediction for learning on semantic web,” Proc. of the 20th
International Conference on Inductive Logic Programming (ILP 2010),
2010.

[14] D. Koller and A. Pfeffer, “Probabilistic frame-based systems,” in Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI),
1998.

[15] Z. Xu, V. Tresp, A. Rettinger, and K. Kersting, “Social network mining
with nonparametric relational models,” in Advances in Social Network
Mining and Analysis, ser. LNCS, H. Zhang, M. Smith, L. Giles, and
J. Yen, Eds. Springer, 2009.

[16] K. Kersting and L. De Raedt, “Bayesian logic programs,” Albert-
Ludwigs University at Freiburg, Tech. Rep., 2001.

[17] M. Richardson and P. Domingos, “Markov logic networks,” Journal of
Machine Learning Research, vol. 62, no. 1-2, pp. 107–136, 2006.

[18] Y. Koren, “Collaborative filtering with temporal dynamics,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[19] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering,” in Proceedings of the fourth ACM
conference on Recommender systems, ser. RecSys ’10. New
York, NY, USA: ACM, 2010, pp. 79–86. [Online]. Available:
http://doi.acm.org/10.1145/1864708.1864727

[20] J. O’Madadhain, J. Hutchins, and P. Smyth, “Prediction and ranking
algorithms for event-based network data,” ACM SIGKDD Explorations
Newsletter, vol. 7, no. 2, p. 30, 2005.

