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Abstract

Large-scale text corpora constitute a great opportunity and challenge for
natural language processing including machine learning. One state-of-the-
art approach, Unsupervised Semantic Parsing technique (USP), clusters
synonymic relations on a sentence level and has been shown to answer a
broad range of questions by exploiting these semantic clusters. In this pa-
per, we propose Distributed USP (DUSP), which improves USP’s ability to
handle large text corpora by distributing several of USP’s key algorithmic
steps over a cluster of commodity computers. In experiments with DUSP,
we processed a corpus that was over 13 times larger than the largest cor-
pus we were able to handle using USP. In addition, DUSP’s processing
speed was 284 documents per minute, versus 69.2 for USP.

1 Introduction

There has been progress in automated information extraction from large scale text corpora
like the Web [1], [5], [9]. While those approaches do not rely on deep linguistic analyses or
unsupervised extraction methods, there is also recent work on unsupervised extraction of
more expressive formal structures [10], [8], [3], unfortunately it lacks scalability to big data.

One of the latter approaches, called Unsupervised Semantic Parsing (USP)[7], aims at clus-
tering synonyms and synonymic expressions. A cluster contains several relations, which
are interchangeable in the same context. Thus, USP starts with a syntactic analysis, the
results of which are transformed into semantic content. USP is built under these assump-
tions: (i) the same meaning can be expressed in different forms; (ii) meaning is not encap-
sulated in just a single word, but in multiple words of arbitrary length; (iii) syntactic and
semantic parsing need to be closely integrated.

While USP has achieved impressive results on questions answering tasks, it is not able to
handle big data. To address this challenge, we have developed Distributed USP (DUSP),
which by distributing USP’s key algorithmic steps over a cluster of commodity computers
is able to process larger corpora. In experiments, USP processes a corpus with 11.900 sen-
tences in 2 hours and 52 minutes. DUSP, on the other hand, processes a corpus with five
times as many sentences during the same period of time. Further, USP is able to process
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just marginally more data before it reaches the maximal memory usage while DUSP can
handle a corpus that is more than 13 times larger.

While there is previous work on distributing text mining algorithms using software frame-
works like Hadoop [11], [2] these approaches focus on basic machine learning techniques
only. In the rest of this paper we discuss DUSP in more detail, present experimental results,
and finally conclude and outline future research.

2 Distributed Unsupervised Semantic Parsing

An input text corpus for USP contains sentences with POS tags for each word and depen-
dency relations for parts of each sentence [6]. From this information, the USP algorithm
creates a context of relations of each word and expression, which is later transformed into
semantic clusters. Each cluster represents a number of synonymic words or expressions.

The USP algorithm consists of three key steps: Initialize, CreateAgenda, and
ProcessAgenda. In experiments, we found that a bottleneck in USP is the number of
candidate operations created in the CreateAgenda step. Distributed Unsupervised Se-
mantic Parsing (DUSP), which follows the MapReduce programming model [4], addresses
this problem by distributing the computational load of CreateAgenda across multiple
worker nodes. DUSP requires the same inputs (text documents) and provides the same
outputs (semantic clusters) as USP.

In the first step, Initialize, the initial objects are created on the master node. During
this step, all initial Clust and Part objects are created, further all dependency references
between those objects are set, creating what we denote the Object Framework. This Object
Framework is required in later steps, in order to create candidate operations and for scoring
purposes. Since the next step is distributed over several computers, the Object Framework
is serialized and copied to each node participating in this next step.

The CreateAgenda step is executed on several computers (nodes) in parallel. On each
node, DUSP deserializes the Object Framework and creates candidate operations that
are placed in the agenda. The information in the agenda is saved into a database. The
databases from each worker node are copied to the master node, where the databases are
merged into one.

In the final ProcessAgenda step, DUSP retrieves the candidate operations from the
database. In contrast to USP, we just retrieve the operations which are most frequently
appearing in the agenda and therefore reduce the amount of memory needed. These can-
didate operations are loaded into the process agenda program, where the final clusters are
created and the MLN weights [7] as well as semantic parses are finalized.

The three steps of DUSP are summarized in Algorithm 1. DUSP takes as input the
text input files, the number of worker nodes, and the number of tasks. The tasks in-
dicate the number of separate parts the CreateAgenda step is divided into. First, the
Initialize step is executed. Next, the tasks are equally distributed among the worker
nodes, i.e. if we have 24 tasks and 8 worker nodes, each worker node gets 3 tasks to ex-
ecute. Each worker node deserializes the Object Framework to make it available to each
task of CreateAgenda. In the CreateAgenda step, only a part of the initial clusters are
being considered during each task, i.e. every task executes just every n-th cluster where
n is the number of total tasks. Each task of CreateAgenda writes the created candidate
operations with the respective count number to a database table. The tables created by
each task of a worker node are merged into one table per worker node. The worker node
tables are merged into one final table on the master node. Finally, the candidate operations
are read from the database and provided to the ProcAgenda step. For a detailed DUSP
architecture, see Figure 2.
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Algorithm 1 DUSP Algorithm
Input: text input files of documents, #tasks - number of tasks for CreateAgenda,

#workernodes - number of computers in network
Execute Initialize to create an objectFramework from text input files
Create serializedObjectFramework from objectFramework, assign tasks to workernodes
Execute CopyFiles: copy files from master to workernodes
for all workernodes wn do

Deserialize serializedObjectFramework on wn
for all tasks i of wn (n be the number of input tasks ) do

Execute CreateAgenda for every nth initial cluster, starting with cluster i
Write candidate operations from CreateAgenda to table twn,i in database

end for
MergeOnWorker: merge tables with candidate operations for all task into one, i.e.
merge all tables twn,i into table twn

end for
Copy table twn from all workernodes
MergeOnMaster: merge all workernode tables into one final table, i.e. merge all tables
twn into table T
Execute ProcessAgenda with the final table T as Agenda input
Output: MLN weights, Semantic Clusters, Semantic Parses

3 Experimental Evaluation

The DUSP algorithm was executed on a cluster of up to eight computers; the number of
computers used was varied. Each of the computer nodes runs a 64-bits Ubuntu system, on
a 2,5GHz Quad Core processor with 8GB memory. As text corpus, we used publications
from American Institute of Physics Journals1 covering the nanotechnology domain. The
entire corpus contains ca. 5.400 paper abstracts and paper bodies; this corresponds to ca.
23.000 sentences in the abstracts and 510.000 sentences in the bodies. Depending on the
experiment, the subset of the corpus processed was varied as indicated below.

3.1 USP versus DUSP

We compared the computation time and amount of memory used by USP and DUSP re-
spectively. USP was executed on one computer with 11.900 sentences (2.800 abstracts).
DUSP, specifically the CreateAgenda step, was executed on 8 computers with 21.300 sen-
tences (5.000 abstracts). Both DUSP and USP run Initialize and ProcessAgenda on
one computer.

The USP execution time was 02:52:14 while DUSP executed in 01:14:55. In other words,
DUSP was 2,5 times faster than USP, despite processing a corpus with nearly twice as many
sentences.2 Table 1 shows the average memory usage of USP and DUSP, respectively, for
the three main steps of the algorithms. The memory usage is provided by the output of the
Java Garbage Collector (GC). A key point is that USP has, after GC, an average memory
usage of 6.217MB compared to 2.727MB for DUSP, even though DUSP processed a corpus
with twice as many sentences as USP. This results confirms the hypothesized advantage of
the DUSP over USP in terms of memory usage, two factors being (i) the distribution of the
corpus and (ii) how DUSP ignores (the potentially long tail of) SearchOp objects with low
relevance.

1http://journals.aip.org/
2USP’s speed was 69.2 documents, while DUSP’s speed was 284 documents per minute
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Table 1: Measurement of average memory used for USP (on 11.900 document) versus DUSP
(on 21.300 documents).

3.2 Scalability of DUSP

DUSP is a distributed system and the number of computers (nodes) and tasks impact the
execution time. In this section, we report on experiments that investigate how execution
time varies when the number of computers and tasks are varied.

Figure 1a summarizes the best execution times for different number of nodes. With increas-
ing number of nodes, the execution times of CopyFiles and MergeOnMaster increase,
while CreateAgenda and MergeOnWorker decrease.
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(a) Optimized execution times (on y-axis) for
a varying number of nodes (on x-axis) when
processing a corpus with 22.000 sentences.
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(b) Execution times of DUSP (right y-axis) and its
component steps (left y-axis).

Figure 1

Figure 1b visualizes, for a varying number of nodes (on x-axis), the execution times of
DUSP (right y-axis) and its component steps (left y-axis) for a corpus with 22.000 docu-
ments. An empirically optimized number of tasks, which varies with the number of nodes
(computers in cluster), is employed. The plot suggests that the decrease of CreateAgenda
and MergeOnWorker execution times comes with an increase in MergeOnMaster execu-
tion time. The total execution time for DUSP decreases with growing number of nodes, as
hoped for. However, adding one additional node has a smaller impact on the overall DUSP
execution time with growing number of nodes.

4 Conclusion and Future Work

In order to address the limitation of USP when it comes to processing large corpora, we
have developed a distributed variant of USP, named DUSP, which uses a cluster of com-
puters as discussed in this paper. DUSP can process corpora at least 13 larger than USP,
and also significantly increases the speed of computation.

Still, DUSP could benefit from a better load-balancing mechanism (as provided by
Hadoop), which would enable DUSP to process even bigger corpora. In particular, our
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experimental results suggest that DUSP’s execution time increases super-linearly with cor-
pus size. DUSP currently assigns tasks to nodes in a static way, and there is no possibility
to reassign a task dynamically. Another area of future work is to better understand how
the increase in number of clusters created, as corpus size is increased, impacts question-
answering capabilities.
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Figure 2: DUSP architecture.

6


	Introduction
	Distributed Unsupervised Semantic Parsing
	Experimental Evaluation
	USP versus DUSP
	Scalability of DUSP

	Conclusion and Future Work
	Appendix

