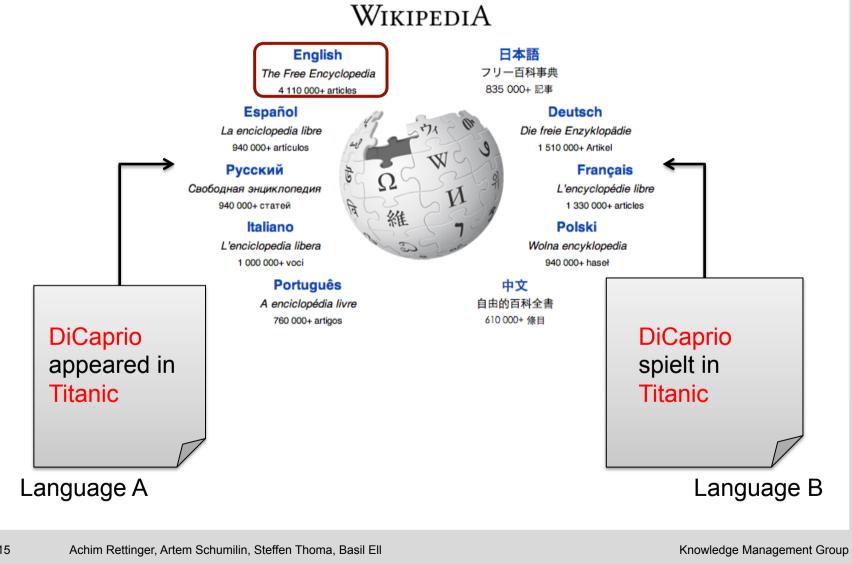


Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell

{rettinger, steffen.thoma, basil.ell}@kit.edu, artem.schumilin@student.kit.edu

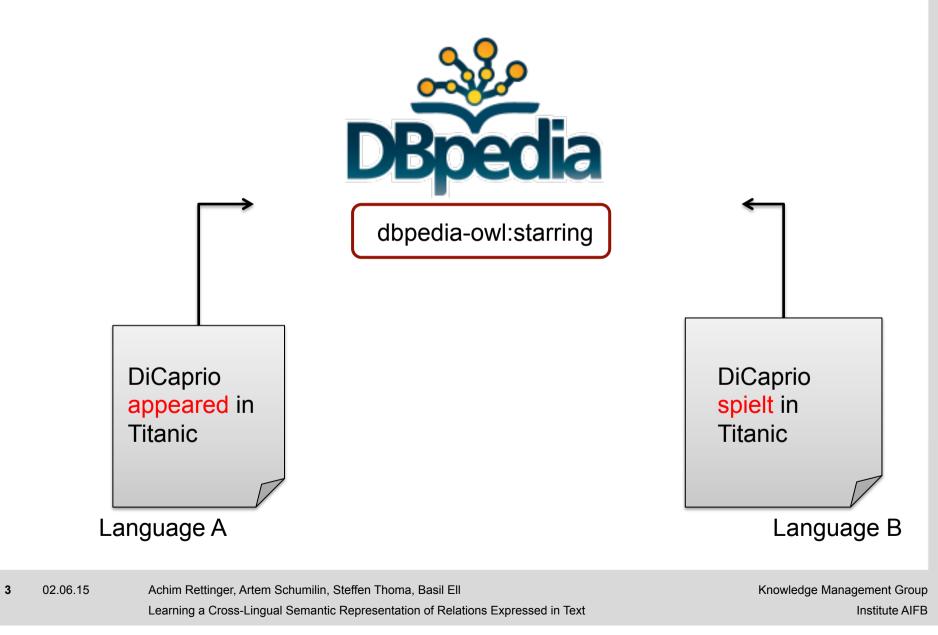
KNOWLEDGE MANAGEMENT GROUP INSTITUTE OF APPLIED INFORMATICS AND FORMAL DESCRIPTION METHODS (AIFB)



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Cross-lingual Entity Linking


2 02.06.15

Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

Institute AIFB

Cross-lingual Relation Linking

Entity vs. Relation Linking

- Named Entities similar across languages
- Many non-English labels

Lots of training data

- High variability how relation can be expressed
- One English predicate label per language
- No training data

➤ Hard

➤ Harder

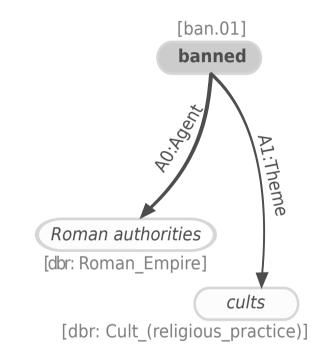
Representations of Entities vs. Relations

Cross-lingual Lexica

Deutsch	\$ 中文	100 results	resource	New York (Bundesstaat)

Examples: New_York New_York_(Bundesstaat) football (Label) ipad (Word)

Interlingual Resources	w.r.t. New	York
(Bundesstaat):		

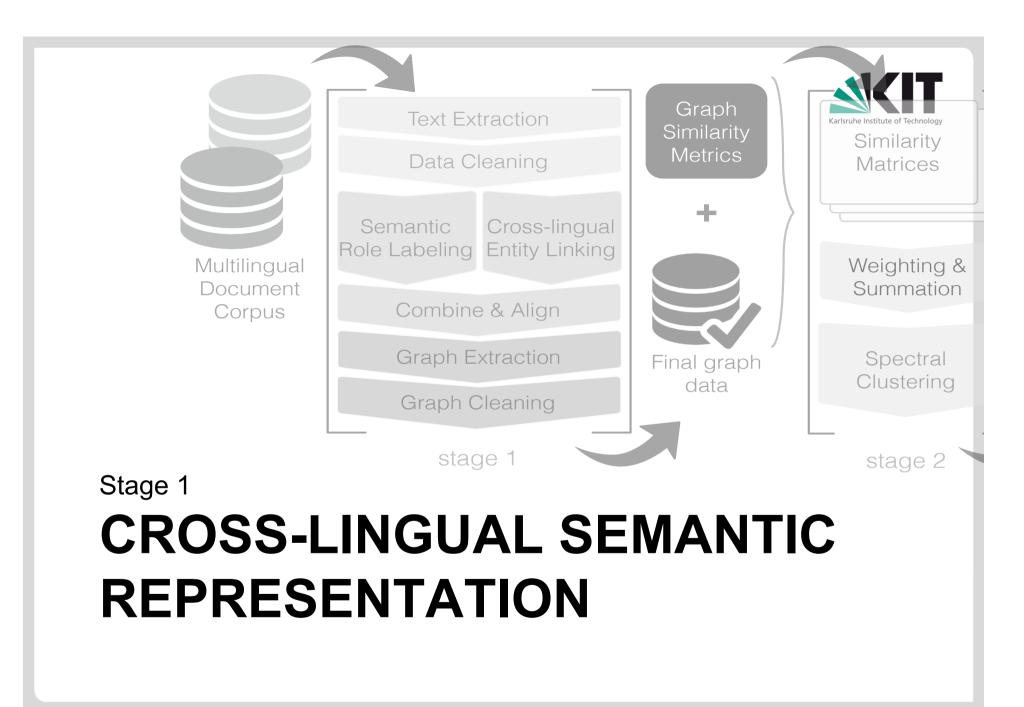

Language	Resource
de	New York (Bundesstaat)
zh	纽约州
en	New York
са	Nova York (estat)
es	Nueva York (estado)
eu	New York (estatua)
fr	État de New York
hr	New York (savezna država)
it	New York (stato)
pt	Nova Iorque (estado)
ru	Нью-Йорк (штат)
sl	New York (zvezna država)
sr	Њујорк (држава)

5

w	r.t. New York (Bundesstaat):						
	Label	P(llr)					
	紐約州	0.5149476831091181					
	纽约州	0.47832585949177875					
	紐約	0.007473841554559043					
	纽约	0.0029895366218236174					
	伊萨卡市	7.473841554559044E-4					
	帝國州	7.473841554559044E-4					
	紐約殖民地	7.473841554559044E-4					
	英屬紐約省	7.473841554559044E-4					

Label Resource Reference Association

Pattern formalism

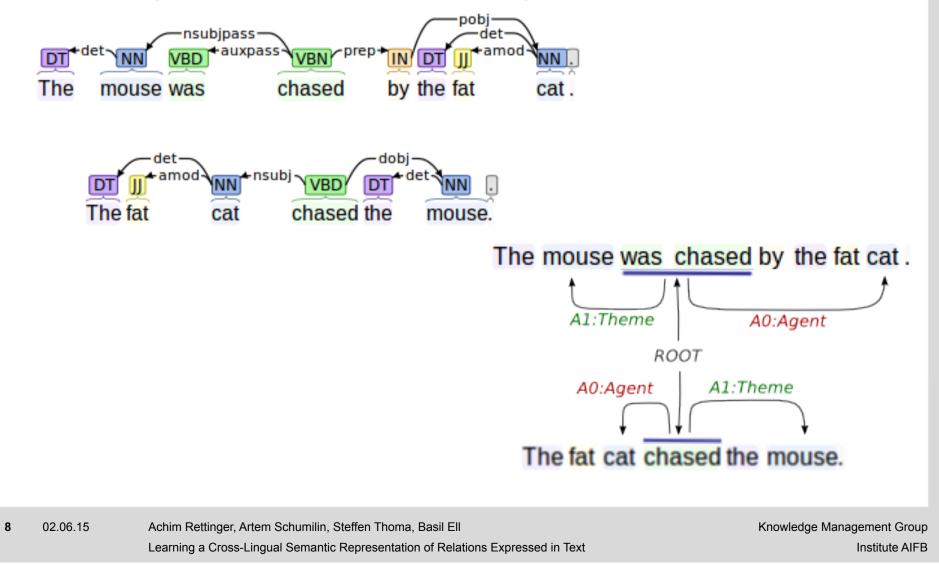

http://km.aifb.kit.edu/ services/nlp-dbpedia/

Output: List of graphs per relation

Cross-lingual Relation Clustering and Grounding - Pipeline Graph Text Extraction Similarity Similarity Metrics Data Cleaning Candidate Matrices DBpedia Properties properties Retrieval Semantic Cross-lingual Role Labeling Entity Linking Weighting & Multilingual Document Summation Combine & Align Corpus Properties Grounded Scorina & **Graph Extraction** Spectral Cross-lingual cross-lingual Final graph Ranking Clustering SRL graph SRL graph data Graph Cleaning clusters clusters stage 1 stage 2 stage 3

Stage 1. Extract crosslingual semantic representation of predicates **Stage 2.** Find similar graphs

Stage 3. Link clusters of similar graphs

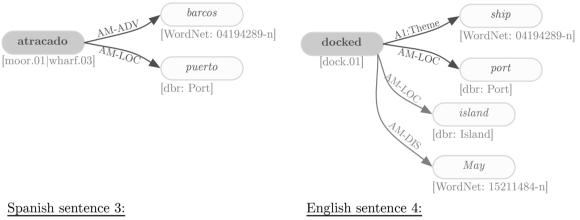

02.06.15 Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

7

Dependency Parsing vs Semantic Parsing

Advantage of a semantic over shallow syntactic representation

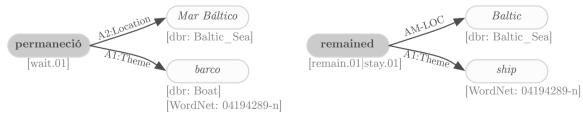
Multi-lingual SRL Graphs

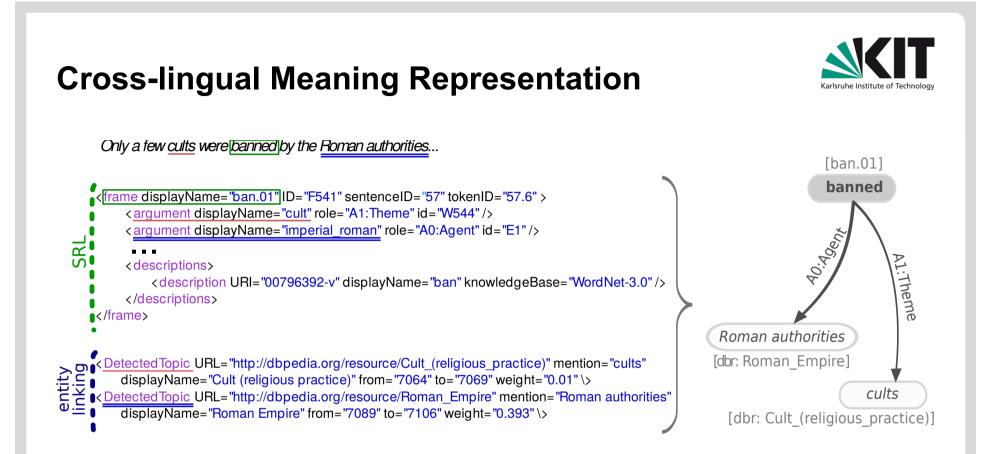


Spanish sentence 1:

En mayo de 1937 el Deutschland estaba atracado en el *puerto* de Palma, en Mallorca, junto con otros *barcos* de guerra neutrales de las armadas británica e italiana.

English sentence 2:

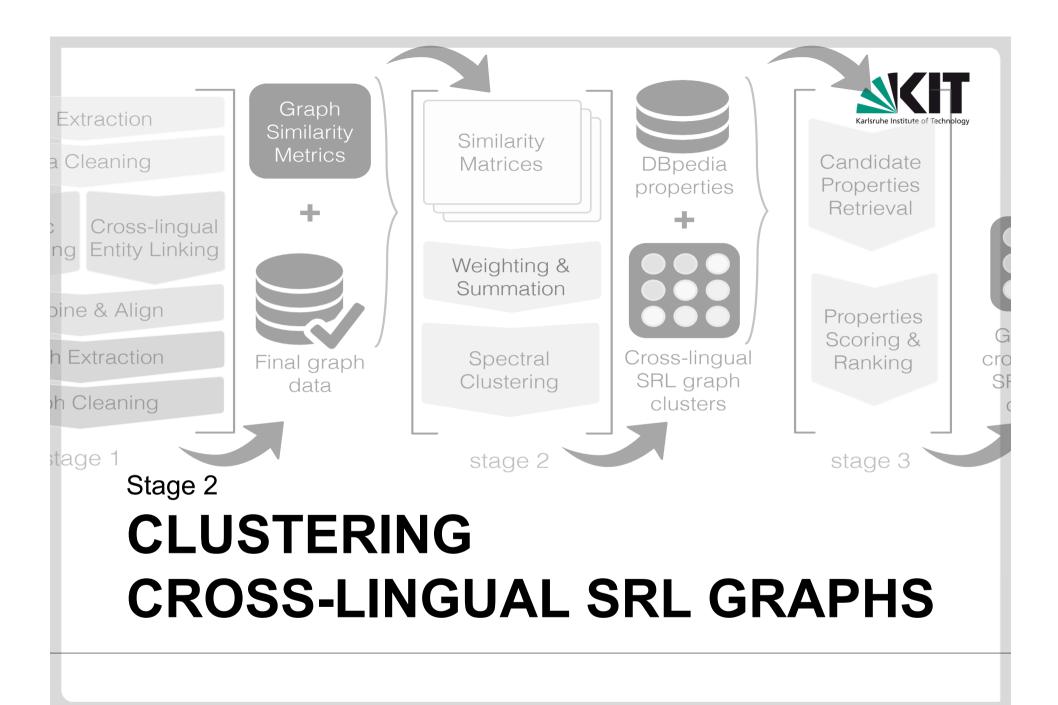

In May 1937, the ship was docked in the port of Palma on the *island* of Majorca, along with several other neutral warships, including vessels from the British and Italian navies.



Spanish sentence 3:

Los problemas en sus motores obligaron a una serie de reparaciones que culminaron en una revisión completa a fines de 1943, tras lo que el barco permaneció en el Mar Báltico.

Engine problems forced a series of repairs culminating in a complete overhaul at the end of 1943, after which the *ship* remained in the Baltic.



Entity Linking tool: https://people.aifb.kit.edu/lzh/xlisa/

02.06.15 Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

10

02.06.15 Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell

11

Knowledge Management Group Institute AIFB

Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

Similarity Metrics for SRL Graphs

- Three symmetric measures to quantify similarity of graph pairs
 - Compare root predicates p(g)
 - Jaccard similarity of the predicates' annotated argument sets A(g)
 - Jaccard similarity of the predicates' role label sets B(g)

$$m_1(g_i,g_j) := \begin{cases} 1 \ , p(g_i) = p(g_j) \\ 0 \ , else \end{cases}$$

$$m_2(g_i, g_j) := \frac{|A(g_i) \cap A(g_j)|}{|A(g_i) \cup A(g_j)|}$$

$$m_3(g_i, g_j) := \frac{|B(g_i) \cap B(g_j)|}{|B(g_i) \cup B(g_j)|}$$

Similarity Matrix

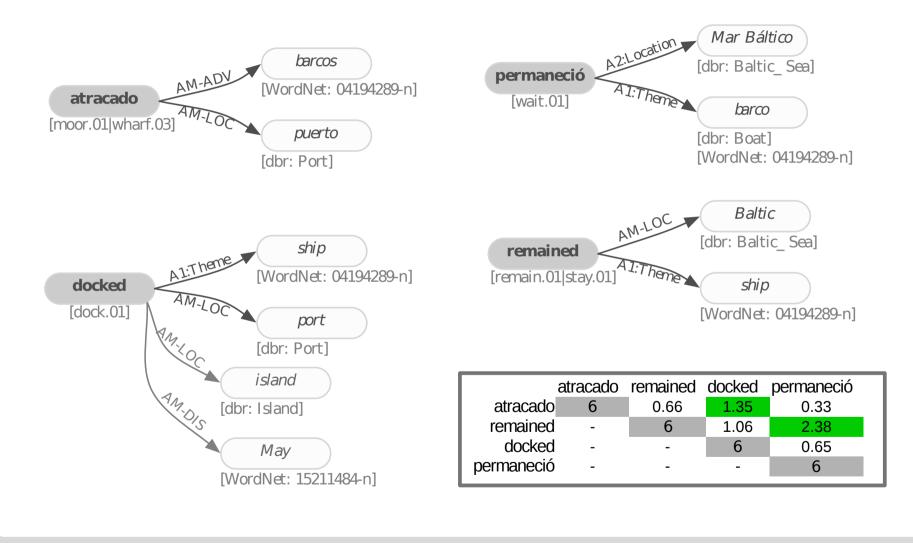
Extended Similarity Matrix *S1**

- Linear combination of *m*1, *m*2, *m*3
- Apply cross-lingual constraint
 - decrease weight of monolingual predicate graph pairs

$$W_{ij} = \begin{cases} w_{monolingual} \\ 1 \end{cases}$$

if i and j are monolingual if i and j are crosslingual

$$S_{ij}^* = W_{ij} \cdot S_{ij}$$


	atracado	remained	docked	permaneció
atracado	6	0.66	1.35	0.33
remained	-	6	1.06	2.38
docked	-	-	6	0.65
permaneció	-	-	-	6

monolingual inhibition w_{monolingual}=0.5

	atracado	remained	docked	permaneció
atracado	3	0.66	1.35	0.17
remained	-	3	0.53	2.38
docked	-	-	3	0.65
permaneció	- (-	-	3

Resulting Similarity Matrix

Result of Spectral Clustering

ClusterID 102

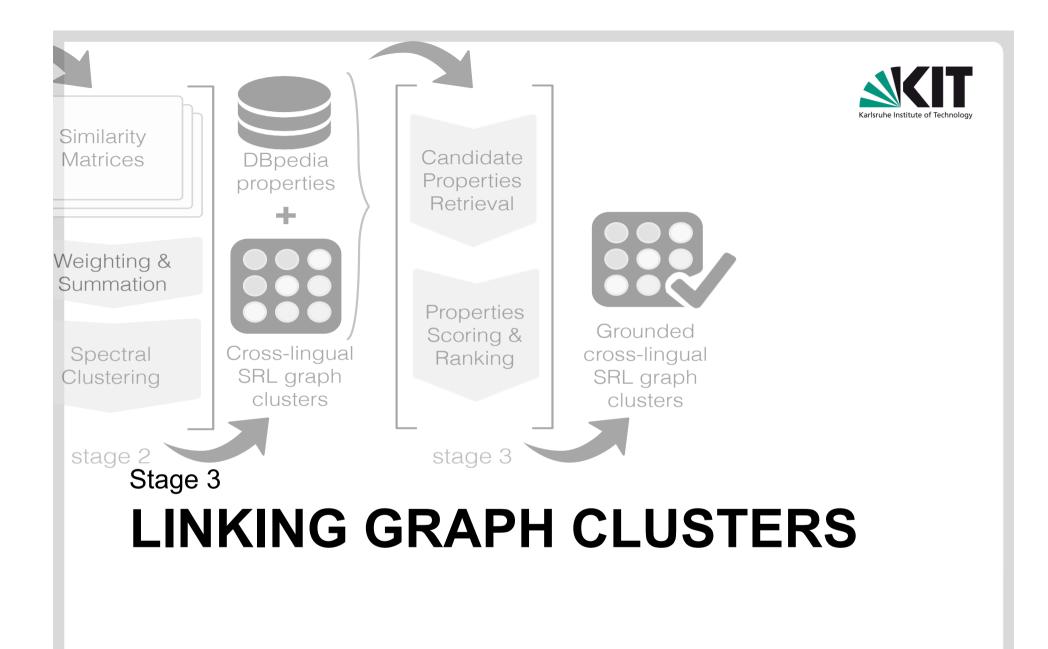
announce.01

proclamado(x3),proclamada,proclamadas,proclamó, anunció(x6),anuncia,anunciaron,announced(x2)

announce.00

announced(x2)

ClusterID 389

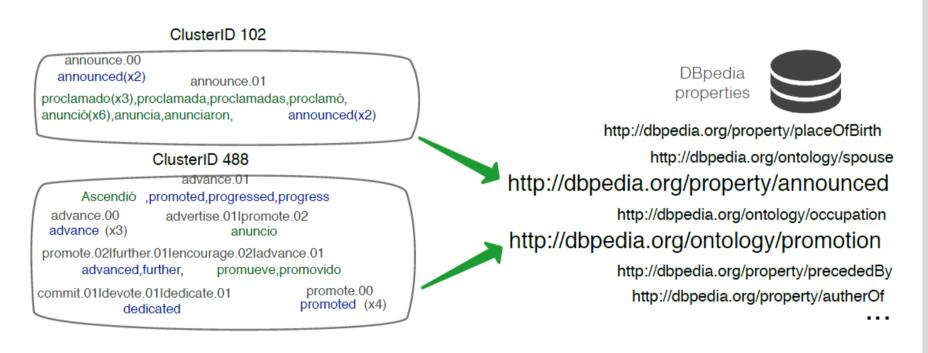

detect.01|notice.01|observe.01 identificar.00 identificadas

ClusterID 488

advance.01 Ascendió,promoted,progressed,progress

advance.00 promote.00 advertise.01|promote.02 advance(x3) promoted(x4) anuncio

> commit.01|devote.01|dedicate.01 dedicated



16

Linking Predicate Clusters to DBpedia Properties

- For a given cluster of predicate graphs, generate a list of candidate DBpedia properties
 - collect the contained entities
 - query DBpedia for the set of associated in- and outbound properties
 - Rank the candidates by their absolute frequency

EVALUATION QALD

18 02.06.15

Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

QALD Challenge

Identify the formal properties contained in a natural-language question

- Multilingual Question Answering over Linked Data 4 (Task-1 of QALD4)
 - 188 in-scope questions in EN and ES

QuestionID: 200

EN: Who produces Orangina?

ES: ¿Quién produce Orangina?

Gold-stdandard SPARQL query:

```
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE {
    ?uri dbo:product res:Orangina .
}
```

Baselines

- Baseline 1: String Similarity-based Property Linking
 - between the question tokens and all DBpedia property labels
 - Naive, mono-lingual due to labels mostly in EN
- Baseline 2: Entity-based Property Linking
 - Query properties of entities appearing in the given question
 - String similarity between property labels and question tokens
 - Two ways to extract entities from question:
 - WITHOUT SRL: Do plain entity linking
 - WITH SRL: Generate SRL graph and take only the annotated arguments

Results: Baseline Performance

Baseline1

Baseline 1	Precision	Recall	F1-measure
English	2.15%	10.68%	3.58%

Baseline 2

			string similarity threshold						
		0.4	0.5	0.6	0.7	0.8	0.9		
	precision EN [%]	2.2	5.0	11.3	19.3	21.9	21.6		
WITHOUT SRL	precision ES [%]	0.7	1.9	5.0	6.3	12.5	21.4		
WITHOUT SKL	F1-measure EN [%]	4.1	8.4	15.7	22.6	23.2	22.3		
	F1-measure ES [%]	1.4	2.9	6.0	6.8	14.3	22.0		
	precision EN [%]	3.2	6.7	16.8	24.3	23.5	22.5		
WITH SRL	precision ES [%]	0.7	1.9	5.6	3.2	10.0	0.0		
WITH SILL	F1-measure EN [%]	5.4	9.7	19.2	26.5	24.5	22.5		
	F1-measure ES [%]	1.2	2.5	6.2	3.1	10.5	0.0		

Table 5.2: Performance of Baseline 2 without and with SRL graph extraction for different string similarity threshold values.

Results: Effect of diversity of data

	Dataset 1: "lo	hort articles"		
	English	Spanish	English	Spanish
# documents	29	29	1,063	1,063
# extracted graphs	10,421	14,864	13,009	12,402
# mentioned DBpedia entities	2,065		13,870	
# unique DBpedia entities	1,379		6,300	

long		clustering configuration				performance [%]		
lang.	dataset	# clusters	# eigenvectors	$w_{monolingual}$	precision	recall	F1	
EN	2 (short)	200	100	0.0	27.09	26.25	26.67	
EN	2 (short)	200	50	0.0	24.12	23.85	23.98	
ES	2 (short)	200	100	0.0	28.70	27.47	28.07	
ES	2 (short)	200	50	0.0	27.68	26.50	27.07	
EN	l (long)	200	100	0.0	21.30	21.00	21.15	
EN	l (long)	200	100	0.0	20.38	20.19	20.28	
ES	l (long)	200	50	0.0	21.33	20.87	21.10	
ES	l (long)	200	50	0.0	18.98	18.64	18.81	

Table 4: Best performing results for "short articles" vs "long articles".

22 02.06.15

Results: Effect of # of eigenvectors

- More eigenvectors increases performance
- Outperforms Baseline 2 by ca. 6%
- Robust in terms of input language

long		clustering configuration				performance [%]		
lang.	dataset	#clusters	#eigenvectors	$w_{monolingual}$	precision	recall	F1	
EN	2 (short)	500	500	0.5	27.65	27.15	27.04	
EN	2 (short)	200	200	0.5	27.23	26.87	27.05	
ES	2 (short)	200	500	0.5	29.09	27.35	28.19	
ES	2 (short)	200	300	0.5	29.09	27.35	28.19	
EN	2 (short)	200	50	0.5	25.00	24.56	24.77	
EN	2 (short)	500	50	0.5	21.58	21.49	21.53	
ES	2 (short)	200	50	0.5	18.02	17.94	17.98	
ES	2 (short)	500	50	0.5	13.24	13.24	13.24	

Table 5: Best performing results in respect to number of eigenvectors.

SUMMARY

24 02.06.15

Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text

Cross-lingual Semantic Clusters of Relations

Extract relation expressions from different languages

Extracted expressions are embedded in a semantic graph, describing the context this expression appears in.

Semantically-related relation expressions and their associated context are disambiguated and clustered across languages.

If existing, relation clusters are linked to their corresponding property in the English DBpedia

Thank you! QUESTIONS?

26 02.06.15

Achim Rettinger, Artem Schumilin, Steffen Thoma, Basil Ell Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text