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Abstract. The amount of entities in large knowledge bases available on
the Web has been increasing rapidly, making it possible to propose new
ways of intelligent information access. In addition, there is an impending
need for technologies that can enable cross-lingual information access.
As a simple and intuitive way of specifying information needs, keyword
queries enjoy widespread usage, but suffer from the challenges including
ambiguity, incompleteness and cross-linguality. In this paper, we present
a knowledge base approach to cross-lingual keyword query interpretation
by transforming keyword queries in different languages to their semantic
representation, which can facilitate query disambiguation and expansion,
and also bridge language barriers. The experimental results show that our
approach achieves both high efficiency and effectiveness and considerably
outperforms the baselines.

1 Introduction

The ever-increasing quantities of entities in large knowledge bases (KBs), such
as Wikipedia, DBpedia, Freebase and YAGO, pose new challenges but at the
same time open up new opportunities of intelligent information access on the
Web. In recent years, many research activities involving entities have emerged,
such as entity tagging/extraction from texts and entity linking/disambiguation
with KBs. Furthermore, there is an increasing portion of Web search queries
involving entities. For example, through query log analysis, Pound et al. [1] found
that more than half of Web queries are related to entities. In this regard, the
exploitation of entities and their relations in information retrieval (IR) research
beyond the term-based paradigm has become an area of particular interest.
Recently, almost every major commercial Web search engine has announced
their work on incorporating entity information from knowledge bases into its
search process, including Google’s Knowledge Graph, Yahoo!’s Web of Objects
and Microsoft’s Satori Graph / Bing Snapshots.

Within the context of globalization, multilingual and cross-lingual access to
information has drawn increasing attention. Nowadays, more and more people
from different countries are connecting to the Internet and many Web users are
able to understand more than one language, e.g., more than half of the citizens
in the European Union can speak at least one other language than their mother
tongue. While the diversity of languages on the Web has been growing in recent
years, for most people there is still very little content in their native language.



As a consequence of the ability to understand more than one language, users are
also interested in Web content in other languages.

In addition, keyword search has proven to be a simple and intuitive paradigm
for expressing information needs of users. However, traditional keyword search
systems mainly suffer from the following challenges.

Ambiguity. Keyword queries are naturally ambiguous due to the fact that
keywords could refer to different things in different contexts. In the multilingual
and cross-lingual settings, this problem is more serious, e.g., “WM ” could refer
to the entity Windows Mobile in English and FIFA World Cup in German1.

Incompleteness. Keyword queries are often incomplete in the sense that
instead of the full entity names, only the aliases, acronyms and misspellings are
usually given in the queries. In addition, keyword queries might contain concept
names representing a set of entities, e.g., “Internet companies of China”.

Cross-linguality. Multilingual users probably formulate their information
needs using native language. However, they are interested in relevant information
in any language that they can understand. In some other cases, multilingual users
could issue queries consisting of keywords in multiple languages. For example,
Chinese users might represent a foreign company using its original name and a
local company using its Chinese name, such as “Google 百度” with the aim of
finding the relationship between Google and Baidu, the largest search engines
for English and Chinese, respectively. In addition, specifying the query language
should not be the burden of users, which poses new challenges since existing
techniques for language detection, such as the well-known character n-gram
probability language model, do not work well for short keyword queries [2].

In order to address these challenges, we present a knowledge base approach
to cross-lingual keyword query interpretation. The goal is to find entity graphs
in the KB matching the keyword query, called query entity graphs (QEG), which
reflect different semantic interpretations of the keyword query. More specifically,
our approach aims to eliminate the ambiguity of keyword queries by exploiting
the semantic graph of the KB to generate the top-k QEGs. It supports keyword
queries matching entities in their incomplete forms, such as aliases, acronyms
and misspellings instead of the full names. In addition, the matching concepts
in keyword queries are automatically expanded into sets of associated entities.
To the best of our knowledge, this is the first work that allows users to issue
keyword queries in any language, which can even contain keywords in multiple
languages, for finding the query interpretations grounded in any other languages.

It is noteworthy that this work has been incorporated into XKnowSearch!2, a
novel system to entity-based cross-lingual information retrieval (IR) [3]. With the
help of the resulting QEGs, XKnowSearch! allows users to further explore entity
relations to refine the queries. For bridging the language barriers between queries
and documents, XKnowSearch! leverages the cross-lingual query interpretation
technique in this paper and a cross-lingual semantic annotation system [4] to
construct semantic representation of keyword queries and documents in different
languages, which are then used for document retrieval.

1 WM is the abbreviation of Weltmeisterschaft in German, which means World Cup.
2 http://km.aifb.kit.edu/sites/XKnowSearch/
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The main contributions of this paper are: (1) the introduction of a knowledge
base approach to cross-lingual query interpretation by representing information
needs of users as entity graphs to address the challenges of traditional keyword
search; (2) a scoring mechanism for effective query interpretation ranking by
exploiting various structures in the multilingual KB; (3) a new top-k query graph
exploration algorithm aimed for efficient query interpretation generation; and (4)
a separate evaluation of the ranking mechanism and the top-k graph exploration
algorithm to show that both of them lead to a considerable improvement over
the baseline methods on effectiveness and efficiency, respectively.

The rest of the paper is organized as follows. We firstly introduce the problem
in Sec. 2 and provide an overview of our approach in Sec. 3. Details on the scoring
mechanism and the top-k query graph exploration algorithm are then presented
in Sec. 4 and Sec. 5, respectively. Experimental results are presented in Sec. 6.
Finally, we survey the related work in Sec. 7 and conclude in Sec. 8.

2 Problem Definition

We deal with the scenarios where queries formulated by users are sets of keywords
in any language or even in multiple languages, which are unknown in advance.
Given such queries, we first introduce the concepts of key term and key term set
and then define the query entity graph (QEG) as the interpretation of a query.

Definition 1 (Key Term and Key Term Set). Given a query Q consisting of
a sequence of keywords 〈k1, · · · , kn〉, a key term t = 〈ki, · · · , kj〉 is a subsequence
of Q with the start index start(t) = i and the end index end(t) = j, for which at
least one matching entity or concept can be found in the knowledge base. A key
term set T = {t1, · · · , tm} is a set of non-overlapping key terms resulting from
Q such that for any t and t′ in T either start(t) ≤ end(t′) or end(t) ≥ start(t′).
For example, the keywords “online companies of US” could result in many key
terms like online, companies, online companies, US and online companies of US,
which could lead to different key term sets, such as {online, companies, US}
and {online companies of US}. The key terms like online and US could refer to
the entities Online game and United States, respectively, while online companies
of US might refer to the concept Internet companies of the United States, which
has a list of associated entities belonging to it, such as Google, Yahoo! and EBay.

We consider the KB as a directed graph GKB(N,E), where each node n ∈ N
represents an entity and each edge e(ni, nj) ∈ E denotes the relation between
entities ni and nj . Given the key term sets resulting from a keyword query Q,
the query interpretation of Q, i.e., the query entity graph, is defined as follows:

Definition 2 (Query Entity Graph). A query entity graph (QEG) to a
keyword query Q, denoted by GQ = (NQ, EQ), is a subgraph of GKB(N,E),
which satisfies the following conditions: (1) there exists at least one key term set
T and for each key term t ∈ T there is at least one entity nt ∈ N that matches t.
The set of matching entities containing one for every t ∈ T is NT ⊆ NQ; (2) for
every possible pair ni, nj ∈ NT and ni 6= nj, there is a path ni ! nj, i.e., an
edge e(ni, nj) ∈ E or a sequence of edges e(ni, nk) . . . e(nl, nj) in E, such that
every ni ∈ NT is connected to every other nj ∈ NT .
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Fig. 1: Example QEGs generated by our system for the queries (a) “WM Götze”,
(b) “online companies of US NDX”, (c) “Google 百度” and (d) “eBay 马云”.

Problem. We are concerned with the computation of QEGs from keywords
in any language or even in multiple languages. Given a query Q, the goal is to
find the top-k ranked QEGs, where the ranking is produced by the application
of a scoring function S : GQ → s. For any given QEG GQ, S assigns a score s
that captures the degree to which GQ matches the information need of users.

Some examples of the top-ranked QEGs generated by our system for different
queries are shown in Fig. 1. To avoid the users’ burden of specifying the query
languages, our approach does not assume any input language given by users for
all the queries. In the query “WM Götze”, the keyword “WM ”, which could refer
to 212 entities in German and 11 entities in English, has been disambiguated
as FIFA World Cup based on the relation to Mario Götze. Regarding the query
“online companies of US NDX ”, the alias “online companies of US” referring
to the concept Internet companies of the United States has been resolved to the
entity Google, which is listed in NASDAQ-100 referred to by the acronym “NDX ”.
For the multilingual queries “Google 百度” and “eBay 马云”, our approach can
deal with them by supporting query keywords in multiple languages.

3 Overview of the Approach

In this section, we provide an overview of the off-line preprocessing and online
computation required in our approach to cross-lingual query interpretation.

Preprocessing. In this work, we use DBpedia as the knowledge base, which
is a crowd-sourced community effort to extract structured information from
Wikipedia in different languages. In the following, we briefly introduce the offline
cross-lingual grounding extraction, where we construct the cross-lingual lexica3

by exploiting multilingual Wikipedia to extract the cross-lingual groundings
of DBpedia entities and concepts, which correspond to Wikipedia articles and
categories, respectively. As Wikipedia provides several useful structures, such as
titles of pages, redirect pages, disambiguation pages and link anchors, which
associate entities and concepts in DBpedia with terms including words and
phrases, also called labels or surface forms, all of them can be used to refer to the
corresponding resources. In addition, Wikipedia pages in different languages that
provide information about the equivalent resources are often connected through

3 http://km.aifb.kit.edu/sites/xlid-lexica/
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the cross-language links. Based on the above sources, for each DBpedia entity
or concept grounded in one language we extract its possible surface forms in
different languages. More details can be found in our previous work [5,6]. The
cross-lingual lexica and the knowledge extracted from DBpedia are indexed for
online computation. Based on such indexed data, we are concerned with ranking
the query interpretations effectively and propose a scoring mechanism for it,
which will be discussed in Sec. 4.

Query Interpretation Computation. In order to compute the QEGs as
query interpretations for a keyword query Q, all the key terms are first extracted
from Q based on the cross-lingual lexica, which has been also used for finding
the matching entities nt for each key term t, where either t can be used to refer
to nt directly or nt belongs to a concept that can be referred to by t. Such key
terms then result in different key term sets, each of which reflects one possible
information need of users. For each key term set T and all the matching entities
of its key terms, the exploration of the knowledge graph GKB starts from each
matching entity nt of a key term t ∈ T to find a connecting element, denoted by
nc, namely an entity that connects at least one starting entity nt for all t ∈ T .
Once a connecting element nc is found, a QEG can be constructed from a set of
paths that start at each nt and meet at nc. This process of exploration continues
until the top-k QEGs have been achieved. In this paper, we are concerned with
performing this query interpretation computation efficiently and propose a new
top-k graph exploration algorithm, which will be discussed in Sec. 5.

4 Query Graph Scoring

A keyword query could result in many QEGs all corresponding to possible query
interpretations. This section introduces a scoring mechanism that aims to assess
the relevance of QEGs for effective query interpretation ranking.

4.1 Key Term Set Score

Our approach supports query keywords in multiple languages and we assume
that the languages of keywords in a query Q are unknown, such that key terms
extracted from Q could be entity/concept names in any language. Therefore,
for each language L, we define the probability P (tL) that the key term t in L,
denoted by tL

4, is an entity name or a concept name as

P (tL) =
countlink(tL)

countlink(tL) + counttext(tL)
(1)

where countlink(tL) denotes the number of links using t as anchor text and
counttext(tL) denotes the frequency of t mentioned in plain text without links
in Wikipedia of language L. This estimation is further smoothed by the Laplace
smoothing method for the zero probability problem. As the languages of query

4 We use t for a term whose language is not observed and tL for the same term t whose
language is considered as L.
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keywords are not specified, we define the probability P (t) that the key term t
refers to an entity or a concept for a set of supported languages L as

P (t) = max
L∈L

P (tL) (2)

All the possible key terms might result in many key term sets that reflect
different information needs. Therefore, we define the score of each key term set
in the following. Given a keyword query Q, for each resulting key term set T , we
take into account both its importance and informativeness. In general, the more
often a key term t is selected as anchor text for the corresponding resources,
i.e., t has larger P (t), the more likely that t is important. In addition, the more
keywords in Q are covered by all key terms t ∈ T , the more likely that T is
informative, since it can reflect more aspects of the initial keyword query. Based
on the above observation, we calculate the score of T as

S(T ) =

∑
t∈T P (t) ·

∑
t∈T |t|

|T |
(3)

where |t| is the number of keywords in t and |T | is the number of key terms
in T . While

∑
t∈T P (t) reflects the importance of T ,

∑
t∈T |t| captures its

informativeness. The denominator |T | is a normalization factor used to reduce
the advantage of T with more key terms. For example, {online, companies, US}
might result in a larger numerator compared with {online companies of US}.

4.2 Entity Matching Score

For each key term t, there might be many entities that can be referred to by
t. Assuming that t is in language L, denoted by tL, we define the probability
P (nL′ |tL) that tL refers to the entity nL′ grounded in the target language L′ as

P (nL′ |tL) =
countlink(nL, tL) · τ(nL, nL′)∑

nL∈NL
countlink(nL, tL)

(4)

where countlink(nL, tL) denotes the number of links using tL as anchor text
pointing to nL in Wikipedia of language L and NL is the set of entities that
have name tL. The language mapping function τ(nL, nL′) is defined as

τ(nL, nL′) =

{
1 if nL

LL↔ nL′ or nL = nL′ ,

0 otherwise
(5)

where nL and nL′ are considered to be an equivalent entity if they are connected

by cross-language links in Wikipedia, denoted by nL
LL↔ nL′ . Given a key term t,

for which the language is not specified, we calculate the matching score of entity
nL′ based on the maximal probability P (nL′ |tL) as

Sm(nL′ , t) = max
L∈L

P (nL′ |tL) (6)
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In addition, for each key term tL in language L that could be a concept
name, we first map tL to the matching concepts CL in the same language L
and then expand each CL into a set of associated entities in the target language
L′, denoted by N tL

L′ , based on the associations between entities and concepts as
well as the cross-language links between entities available in the KB (see more
details about concept matching and expansion in our TR [7]). Let |N tL

L′ | denote

the number of entities in N tL
L′ . For each entity nL′ ∈ N tL

L′ , we calculate its score

based on a uniform distribution over all entities in N tL
L′ , Similarly, the matching

score of entity nL′ is calculated based on the maximal score w.r.t. tL as

Sm(nL′ , t) = max
L∈L

1

|N tL
L′ |

(7)

4.3 Query Entity Graph Score

Given a key term set T extracted from a keyword queryQ and the set of matching
entities NT containing one for each key term t ∈ T , each QEG, denoted by GTQ,
is constructed from a set of paths that start at each ns ∈ NT matching a key
term t ∈ T and meet at a connecting element nc. Based on that, we introduce a
scoring function to assess the relevance of QEGs as follows

S(GTQ) =
∑

ns∈NT

S(T ) · Sm(ns, t) · S(Pns!nc
) (8)

where S(T ) is the score of key term set T defined in Eq. 3, Sm(ns, t) is the
matching score of entity ns defined in Eq. 6 and Eq. 7, and S(Pns!nc

) captures
the score of edges 〈ni, nj〉 along the path Pns!nc from ns to nc, defined as

S(Pns!nc
) =

∏
〈ni,nj〉∈Pns!nc

Sr(ni, nj) · (Sp(ni) + Sp(nj))

2
(9)

where Sr(ni, nj) measures the relatedness between entities ni and nj , and Sp(n)
reflects the popularity of entity n.

For each pair of entities ni and nj , we adopt the Wikipedia link-based
measure described in [8] to calculate their relatedness score as follows

Sr(ni, nj) = 1− log(max(|Ni|, |Nj |))− log(|Ni ∩Nj |)
log(|N |)− log(min(|Ni|, |Nj |))

(10)

where Ni and Nj are the sets of entities that link to ni and nj respectively, and
N is the set of all entities in the KB.

To measure entity popularity, we exploit both Wikipedia link structure and
page view statistics. The second source captures the number of times Wikipedia
pages are requested and can be treated as a query log of entities. By leveraging
the two sources, we calculate the frequency of entity n as

freq(n) = freqlink(n) + β · freqview(n) (11)
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where freqlink(n) denotes the number of links pointing to n in Wikipedia and
freqview(n) denotes the average number of page view requests on n per day.
While freqlink(n) represents the prior popularity of n in the KB, freqview(n)
captures the popularity of n based on user interests. Due to the different scales
between Wikipedia link frequency and page view request frequency, freqview(n)

is adjusted by a balance parameter β = total number of links in Wikipedia
average number of page views per day , which

accounts for the difference in frequencies of Wikipeida links and per-day page
view requests. Then the popularity score of each entity n ∈ N is calculated as

Sp(n) =
freq(n)∑

ni∈N freq(ni)
(12)

5 Top-k Query Graph Exploration

In this section, we present the top-k query graph exploration for efficient query
interpretation generation. The goal is to find top-k QEGs that connect at least
one entity for each key term in a key term set. For pragmatic reasons, existing
solutions [9,10,11] use a maximal path length dmax, such that only paths of
length dmax or less between entities ni and nj , denoted by ni !dmax nj , will be
taken into account. Such restriction has also been applied to graph exploration
in this work, where dmax is set as 6. The algorithm is shown in Alg. 1.

Input and Data Structures. The input to the algorithm comprises the list
of top-m key term sets LT = {T1, · · · , Tm} and the list LN = {Nt1 , · · · , Ntn},
where each Nti is a set of entities matching key term ti. And dmax is the maximal
path length applied to the graph exploration. For each entity n, we keep track of
the information of paths from an entity nstart matching tij ∈ Ti5 to n, where n.Stij
is used to store each pair of the starting entity nstart and the score snstart of the
path from nstart to n, n.stij and n.dtij are employed to store the maximal score

extracted from n.Stij and the length of shortest path from entities matching tij
to n, respectively. For each Ti, LQTi

is a list of NQtij , each of which is a priority

queue of entities on the paths starting at entities matching tij and UBTi
is a list

of upper bound scores ubtij for paths starting at entities matching all tij ∈ Ti.
For supporting top-k, R is used to keep track of the obtained candidate QEGs
during graph exploration and θ denotes the lowest top-k score of the QEG in R.

Initialization. Instead of starting at entities matching each query keyword
as described in [12,9,10,11], our exploration starts with each matching entity
nstart ∈ Ntj for a key term tij ∈ Ti (Line 1-3). For each starting entity
nstart, we first check its connectivity (Line 4) to avoid unproductive exploration,
which will be discussed later. When the connectivity condition is satisfied, we
initialize the score snstart stored in nstart.Stij , the maximal score nstart.stij and

the distance nstart.dtij (Line 5-8). Such starting entities nstart are then added

5 We use tij to denote a key term tj belonging to a specific key term set Ti, while tj
represents the same key term without considering the key term sets it belongs to.
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Algorithm 1: Top-k Exploration of QEGs
Input: LT = {T1, · · · , Tm}; LN = {Nt1

, · · · , Ntn}; dmax.
Data: n.S

ti
j
= {〈n1, sn1

〉, · · · , 〈nl, snl
〉}; n.s

ti
j
; n.d

ti
j
; LQTi

= {NQ
ti1
, · · · , NQ

ti|Ti|
};

UBTi
= {ub

ti1
, · · · , ub

ti|Ti|
}; S(GTi

Q ); R; θ.

Result: the top-k optimal QEGs.
1 foreach Ti ∈ LT do
2 foreach tij ∈ Ti do
3 foreach nstart ∈ Ntj

do

4 if ∀tik 6=j ∈ Ti, ∃n′start ∈ Ntk
: nstart !dmax n′start then

5 snstart ← S(Ti) · Sm(nstart);
6 nstart.Sti

j
.add(〈nstart, snstart 〉);

7 nstart.sti
j
← snstart ;

8 nstart.dti
j
← 0;

9 NQ
ti
j
.add(nstart);

10 end

11 end
12 ub

ti
j
← maxn∈NQ

ti
j

n.s
ti
j
;

13 end

14 S(G
Ti
Q )←

∑
ub

ti
j
∈UBTi

ub
ti
j
;

15 end
16 while not all NQ ∈ LQ are empty do

17 Ti ← argmaxTi∈LT S(G
Ti
Q );

18 tij ← argmax
tij∈Ti

ub
ti
j
;

19 n← NQ
ti
j
.pop();

20 foreach n′ ∈ n.neighbors() do
21 n′.d

ti
j
← n.d

ti
j
+ 1;

22 if n′.d
ti
j
< dmax and ∀tik 6=j ∈ Ti, ∃n′start ∈ Ntk

: n′ !
dmax−n′.d

ti
j n′start then

23 foreach 〈nstart, snstart 〉 ∈ n.Sti
j
do

24 s′nstart
← snstart ·

Sr(n,n′)·(Sp(n)+Sp(n′))
2 ;

25 n′.S
ti
j
.add(〈nstart, s

′
nstart

〉);

26 end

27 n′.s
ti
j
← n′.S

ti
j
.maxScore();

28 NQ
ti
j
.add(n′);

29 ub
ti
j
← maxn∈NQ

ti
j

n.s
ti
j
;

30 S(G
Ti
Q )←

∑
ub

ti
j
∈UBTi

ub
ti
j
;

31 if ∀tij ∈ Ti : n′.S
ti
j

is not empty then

32 R.add(newQEGsByMergingPath(n′));

33 if R.size() ≥ k and maxTi∈LT S(G
Ti
Q ) < θ then

34 return Top-k(R);

35 end

36 end

37 end

38 end

39 end
40 return Top-k(R);
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into the respective queue NQtij ∈ LQTi
(Line 9) and the upper bound score ubtij

for each tij is initialized as the maximal score for all nstart ∈ NQtij (Line 12).

Connectivity Checking. The aim of checking the connectivity (Line 4 and
Line 22) is to predict whether an entity n could participate in any QEGs. Given
an entity n with path of length n.dtij from nstart matching tij ∈ Ti to n, if it

cannot reach some entities n′start matching tik ∈ Ti (k 6= j) within distance
dmax − n.dtij , it is guaranteed not to be a connecting element and thus the

exploration involving n can be avoided. For efficient entity connectivity indexing,
we model paths between entities in GKB with length no larger than d as a
boolean matrix Md

KB , where each entry md
ij is 1, if there is a path between

entities ni and nj of length no larger than d; otherwise, md
ij is 0. The matrix

Mdmax

KB is constructed iteratively using the formula Mdmax

KB =Mdmax−1
KB ×M1

KB .

Upper Bound Principle. The upper bound principle captures the goal of
exploring only necessary entities for generating the top-k QEGs. The key is to
effectively bound the ultimate score of potential QEGs based on the currently
explored paths. Since the score of each edge 〈ni, nj〉 defined in Eq. 9 is less than 1,
the score of paths satisfy the subset monotonic property, namely S(Pnstart!n) ≥
S(Pnstart!n′) if Pnstart!n ⊆ Pnstart!n′ . This implies that the score of a path
cannot increase after path expansion during graph exploration and thus the
score of all paths starting at entities matching tij can be upper bounded by the
maximal score for all n ∈ NQtij . i.e., ubtij = maxn∈NQ

ti
j

n.stij , where n.stij =

n.Stij .maxScore(). These upper bound scores indicate the best the potential

QEGs resulting from Ti, denoted by GTi

Q , can eventually achieve, such that we

define the maximal possible score for all GTi

Q as S(GTi

Q ) =
∑
ub

ti
j
∈UBTi

ubtij , which

will guide our graph exploration and help with early termination.

Graph Exploration. The graph exploration starts with entities in NQ ∈
LQ (Line 16). To avoid the unnecessary exploration, our algorithm prioritizes the
entity by the maximal possible score of the potential QEGs. At each iteration,
the most promising Ti that could result in the optimal QEG and the key term
tij ∈ Ti with the largest upper bound score ubtij are selected (Line 17-18). Then

the entity n achieving the maximal score of paths from entities matching tij
to n is taken from NQtij (Line 19) and the algorithm continues to explore the

neighborhood of n, i.e., all adjacent entities n′. In case that the distance n′.dtij
does not exceed dmax and the connectivity condition is satisfied (Line 22), we
expand the path from each nstart to n by adding n′, and the score s′nstart

of
each expanded path is calculated and added into n′.Stij (Line 24-25), where

the maximal score n′.stij is extracted (Line 27). All newly explored entities n′

are then added into NQtij for further exploration (Line 28). Since the maximal

score of paths from entities matching tij might change after expansion, the upper

bound score ubtij and the maximal possible score S(GTi

Q ) of potential QEGs are

updated accordingly (Line 29-30). If n′ is verified to be an connecting element,
i.e., for all tij ∈ Ti, there exists a path from nstart matching tij to n′ (Line 31),
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the new QEGs generated by merging paths resulted from n′ are added into R
(Line 32). Finally, we check whether the exploration can terminate to retrieve
the top-k QEGs (Line 33-35), which will be discussed in the following.

Early Termination. The exploration terminates when one of the following
conditions is satisfied: (1) all possible entities have been explored such that there
are no further entities in any NQ ∈ LQ or (2) the top-k QEGs are guaranteed
to be obtained. With the goal of retrieving the top-k QEGs, all entities have
to be considered as connecting element in order to keep track of all possible
QEGs. However, the upper bound principle deals with the requirement of early

termination. The maximal possible score S(GTi

Q ) for all Ti indicates the best the
potential QEGs can achieve and the lowest top-k score of the obtained QEGs
captures the threshold θ such that only the QEGs with score higher than or
equal to θ have a chance to make into the top-k. To conclude that the current k
top-ranked QEGs in R are guaranteed to qualify for the final top-k and thus the

exploration can terminate, there should be at least k QEGs in R and S(GTi

Q ) for

all Ti must be below θ, i.e., maxTi∈LT S(GTi

Q ) < θ (Line 33-35).

6 Experimental Results

The experiments were conducted on a virtual machine with 8 Cores at 2.0GHz
and 40GB memory and our system is implemented in Java 8. To assess both
effectiveness and efficiency of our approach addressed by Sec. 4 and Sec. 5
respectively, we asked volunteers to provide keyword queries along with the
underlying information needs. It results in 21 English queries, 10 German queries,
5 Chinese queries and 14 multilingual queries6, where the query length ranges
from 2 to 7 with an average of 3.24. We assume that the language of each keyword
query is unknown and the target language of query interpretations is English7.

6.1 Effectiveness Evaluation

For evaluating the effectiveness of query interpretation ranking, which is mainly
addressed by Sec. 4, we consider the normalized Discounted Cumulative Gain at
rank k, denoted by nDCG@k, as quality criteria, which measures the goodness of
a retrieval model based on the graded relevance of the top-k results. According to
our query interpretation problem, the results are judged by the volunteers who
provide the keyword queries on 0-5 relevance scale based on the criteria such as
relevance, completeness and correctness w.r.t. the underlying information needs.

For a comparative analysis, we conducted the experiments with the following
approaches: (1) the baseline using an online machine translation service8 and a

6 It is a realistic phenomenon that queries consist of keywords in different languages,
especially for Chinese users, which is also reflected in the 14 multilingual queries in
our experiments, where only English and Chinese keywords are contained.

7 In our experiments, we use English as the target language of query interpretations,
but it can be easily extended to other languages.

8 In our experiments, we used Google Translate for translating queries in different
languages to English by selecting the input language option as “Detect language”.
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Fig. 2: Experimental Results of Query Interpretation Effectiveness.

keyword-based scoring function described in [11], denoted by MT+KS ; (2) the
baseline using our cross-lingual lexica for keyword-to-entity mapping and the
keyword-based scoring same as (1), denoted by CL+KS ; (3) the baseline using the
machine translation service same as (1) and an adaption of our query entity graph
scoring based on key term sets, denoted by MT+GS+KT ; (4) our approach using
the cross-lingual lexica for entity matching and the query entity graph scoring
based on key term sets as discussed in Sec. 4, denoted by CL+GS+KT.

Fig. 2(a) illustrates the nDCG@20 of different approaches for the individual
queries (Q1-Q50). Our approach CL+GS+KT achieves the best results for 38
queries, while MT+KS, CL+KS and MT+GS+KT perform the best for 9, 16 and
28 queries, respectively. Comparing the two methods with keyword-based scoring
function, i.e., MT+KS and CL+KS, it is observed that using our cross-lingual
lexica (CL) performs better than the machine translation service (MT) in most
cases (e.g., Q10-Q14). There is a similar conclusion for the approaches based
on our query entity graph scoring, i.e., MT+GS+KT and CL+GS+KT (e.g.,
Q27-Q31). Based on the further comparison between MT+KS and MT+GS+KT
as well as CL+KS and CL+GS+KT, our query entity graph scoring based on key
term sets (GS+KT) considerably outperforms the keyword-based scoring (KS)
(e.g., Q38-Q50). By taking advantage of both CL and GS+KT compared with
MT and KS, CL+GS+KT apparently achieves the best results in most cases.

Fig. 2(b) illustrates the impact of query length l, i.e., the number of keywords,
on query interpretation effectiveness. While our approach CL+GS+KT is stable
for different l, the results of other approaches change considerably when l varies.
More specifically, the performance of the approaches using keyword-based scoring
(KS), i.e., MT+KS and CL+KS, decreases rapidly when l increases. This is due
to the fact that when l is larger, the query entities are usually expressed by more
than one keyword such that the keyword-to-entity mapping doesn’t work well.

The impact of languages on query interpretation is shown in Fig. 2(c). For
English queries (EN), by comparing MT+KS with CL+KS and MT+GS+KT
with CL+GS+KT, MT and CL exhibit only minor differences because no
cross-lingual mapping is needed when the input and target languages are both
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Fig. 3: Experimental Results of Query Interpretation Efficiency.

English. However, MT+GS+KT and CL+GS+KT still considerably outperform
MT+KS and CL+KS respectively, because GS+KT has a clear advantage over
KS. For German queries (DE), all approaches achieve comparable results for two
reasons: (1) the entities in German queries are usually expressed by compound
keywords or their abbreviations, e.g., “Fußball-Weltmeisterschaft” or “WM ”
corresponding to “FIFA World Cup”, such that the keyword-based scoring yields
a similar performance to ours; (2) the machine translation service works well
when translating from German to English. For Chinese queries (ZH), CL+KS
and CL+GS+KT considerably outperform MT+KS and MT+GS+KT because
the machine translation service (MT) doesn’t work well for translating entity
names from Chinese to English compared with our cross-lingual lexica (CL).
In addition, in Chinese queries each entity is usually split by users as one
compound keyword such that CL+KS even yields slightly better results than
CL+GS+KT. Obviously, CL+GS+KT achieves the best results for multilingual
queries (ML), where MT+KS and MT+GS+KT perform the worst because the
machine translation service (MT) cannot deal with the keywords in multiple
languages simultaneously. The experimental results for different combinations of
the query languages are also shown in Fig. 2(c), where our approach CL+GS+KT
achieves the best results (with nDCG@20 > 0.9) for most cases.

Fig. 2(d) illustrates the results of nDCG@k for different k. We observe that
the performance of all approaches decreases slightly when k becomes larger.
Among these approaches, CL+GS+KT achieves the most stable performance,
e.g., MT+KS, CL+KS, MT+GS+KT and CL+GS+KT yield 15%, 10%, 8% and
2% performance degradation respectively, when k varies from 1 to 20.

6.2 Efficiency Study

For assessing the efficiency of query interpretation generation, which is mainly
addressed by Sec. 5, we conducted the experiments with several approaches: (1)
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the keyword-based exploration from each keyword matching entity [12], denoted
by KE ; (2) the top-k algorithm on top of the keyword-based exploration [11],
denoted by KE+Top-k ; (3) our key term set-based exploration starting from
the entities matching the extracted key terms, denoted by SE ; (4) our graph
exploration incorporating only connectivity checking, denoted by SE+CC ; (5)
our graph exploration incorporating only early termination, denoted by SE+ET ;
(6) our approach incorporating both connectivity checking and early termination
into the graph exploration as discussed in Sec. 5, denoted by SE+CC+ET.

We start with a comparison between different approaches for the individual
queries. The experimental results for computing the top-20 query interpretations
for Q21-Q50 with query length from 3 to 7 are illustrated in Fig. 3(a). For
the sake of space, we omit the results for Q1-Q20 with query length 2, where
individual times do not exhibit significant differences. Clearly, SE outperforms
KE for the long queries (e.g., Q36-Q50), where 42% performance improvement
has been achieved on average, while the performance of SE for short queries is
slightly better than KE (e.g., Q21-Q35) or similar to KE (e.g., Q1-Q20). Such
differences are primarily due to the number of starting entities for the graph
exploration as shown in Fig. 3(b). While both connectivity checking (CC) and
early termination (ET) contribute to the performance improvement individually,
the incorporation of both of them into SE yields the best results. Compared
with the baselines KE and KE+Top-k, our approach SE+CC+ET achieves a
considerable performance improvement in most cases.

We have investigated the impact of query length l on the performance of
different approaches. Fig. 3(c) shows the average processing time for different l.
Compared with KE, the processing time for SE is relatively stable. The reason
might be the number of starting entities generated by SE is less sensitive to l
as shown in Fig. 3(b). Furthermore, our approaches SE+ET and SE+CC+ET
are not sensitive to l due to the application of early termination (ET), while the
performance of other approaches changes with varying l.

Fig. 3(d) shows the average time for computing top-k query interpretations
for different k. The time needed by KE+Top-k, SE+ET and SE+CC+ET
decreases rapidly when k becomes smaller. For example, KE+Top-k, SE+ET
and SE+CC+ET yield 24%, 61% and 62% time reduction respectively, when k
varies from 20 to 1, while the performance of other approaches doesn’t change
with k since they have to process all results no matter what the value of k is.
In total, our approach SE+CC+ET outperforms KE by one order of magnitude
and is 5 times faster than KE+Top-k when k = 20, and it achieves even more
considerable performance improvement for smaller k, e.g., 22 times and 10 times
faster than KE and KE+Top-k respectively, when k = 1.

7 Related Work

We firstly present the related work to keyword query interpretation and then
review some existing work on cross-lingual and concept-based IR.

Keyword Query Interpretation. The main challenges in dealing with
keyword queries are their ambiguity and incompleteness. The use of thesauri
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to deal with the ambiguity of keywords has a long history. Most commonly,
WordNet thesaurus has been found beneficial in disambiguating keywords and
in choosing their senses [13]. There are also proposals for mapping keyword
queries to elements in an ontology [14], where the resulting semantics provides
the basis for identifying the search intents of users. In addition, graph-based
approaches [12,9,11] have been widely used to find substructures in structured
data, including relational, XML and RDF data. The recent work [15] also aimed
to boost the scalability of interactive query construction over large scale data
from the perspective of both user interaction cost and performance.

While existing methods only deal with individual keywords in the query, our
approach relies on the extracted key terms referring to entities in KBs, which
helps to improve both efficiency and effectiveness as shown in our experiments.
In addition, most existing methods only focus on the ambiguity of keywords.
The cross-linguality issue has not been studied in the previous work.

Cross-lingual and Concept-based IR. Traditional IR is normally based
on the bag-of-words (BOW) models, which have the limitation of retrieving
only the syntactically relevant but not the semantically relevant documents.
Meanwhile, they suffer from the vocabulary mismatch problem, i.e., queries and
documents, which are semantically very related, might contain only few terms
in common. This problem is more serious in cross-lingual IR due to the fact that
queries and documents in different languages rarely share common terms. In
order to address the problem, different concept-based solutions [16,17,18,19] and
their cross-lingual extensions [20,21] have been proposed. Instead of the BOW
models used in the classic IR, the goal is to capture queries and documents as
concepts, such that the relevance can be estimated in the concept space even in
the presence of vocabulary gap, especially for cross-lingual IR.

Unlike the previous studies, we developed XKnowSearch!, a novel system to
entity-based cross-lingual IR by exploiting multilingual knowledge bases. Based
on our cross-lingual query interpretation, XKnowSearch!, to the best of our
knowledge, is the first entity-centric system to cross-lingual IR, where users can
issue keyword queries in any language (even in multiple languages), for retrieving
documents related to the query entities in any other languages.

8 Conclusions and Future Work

We present a knowledge base approach to cross-lingual query interpretation by
transforming keywords in different languages to their semantic representation. As
the main contributions of this work, we propose a scoring mechanism for effective
query interpretation ranking and a top-k graph exploration algorithm for efficient
query interpretation generation. A separate evaluation on each of these two
aspects has been performed and it shows that our approach achieves promising
results w.r.t. both effectiveness and efficiency. In addition, this work has been
integrated into XKnowSearch!, a novel system for entity-based cross-lingual IR.
As future work, we would like to extend our approach by taking into account
entity relations expressed in keyword queries to construct the QEGs. And it
is essential to perform further evaluation to show the promising results of our
query interpretation can carry over to the performance of cross-lingual IR.
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