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ABSTRACT
Capturing knowledge via learned latent vector representations of
words, images and knowledge graph (KG) entities has shown state-
of-the-art performance in computer vision, computational linguis-
tics and KG tasks. Recent results demonstrate that the learning of
such representations across modalities can be beneficial, since each
modality captures complementary information. However, those
approaches are limited to concepts with cross-modal alignments in
the training data which are only available for just a few concepts.
Especially for visual objects exist far fewer embeddings than for
words or KG entities. We investigate whether a word embedding
(e.g., for “apple”) can still capture information from other modalities
even if there is no matching concept within the other modalities
(i.e., no images or KG entities of apples but of oranges as pictured in
the title analogy). The empirical results of our knowledge transfer
approach demonstrate that word embeddings do benefit from ex-
trapolating information across modalities even for concepts that are
not represented in the other modalities. Interestingly, this applies
most to concrete concepts (e.g., dragonfly) while abstract concepts
(e.g., animal) benefit most if aligned concepts are available in the
other modalities.
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1 INTRODUCTION
Unsupervised learning of latent vector representations (embed-
dings) for a set of concepts has become a key technique in different
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research communities to capture the raw information in a com-
putable representation. In Computer Vision visual object features
are learned from large image collections like ImageNet, in Com-
putational Linguistics word embeddings are extracted from huge
text corpora and in the Semantic Web community embeddings of
entities are obtained from large knowledge graphs (KGs). The exist-
ing embedding approaches have become increasingly sophisticated
and implementations have been extensively optimized and trained
on huge datasets. However, those well performing models only
integrate a subset of all available knowledge, e.g. only visual infor-
mation is considered when training an image classifier. The reason
is a limitation of available labeled or aligned training data.

Since the used raw encodings, methods and datasets are inher-
ently different in eachmodality, the learned embeddings (fixed sized
real-valued vectors) of such specialized models do capture different
knowledge about the represented concepts. We pose the question if
complementing knowledge can be transferred between concept em-
beddings from different modalities which were separately trained.
A scalable solution to this problem would facilitate multi-modal
enrichment procedures without adapting a domain specific model
or training task. This obviously has great potential since a model
could benefit from advances in the other fields, e.g., by increased
availability of training data or improved learning methods.

Figure 1: Schematic illustration of knowledge transfer from
a fused tri-modal space (arrow on the right). The differ-
ent circles depict the concept spaces (and quantity of rep-
resented concepts) of the single-modal embeddings.

For transferring knowledge between the embedding spaces, infor-
mation about the same concept has to be aligned across modalities.
The key limitation is that the intersection of concepts covered by
all embedding spaces is very small within today’s training data
(1.5k for our experiments). While word embeddings are available
for millions of words (in our data 3M, see Fig. 1), there exists only
a small sample of a few thousand image embeddings that can be
reliably mapped to word-level (2.8K). Thus, when trying to enhance
a large embedding space like text with information from much
smaller spaces like image embeddings the challenge becomes to
extrapolate to concepts not covered in the smaller image space.
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In this paper we aim to exploit existing embeddings from three
modalities (images, text and KG) in order to augment the space of
word embeddings with complementing knowledge from the other
two modalities (see Fig. 1). To achieve this, we first construct a tri-
modal concept space alike to [24] that is able to capture information
of concepts that are available in all modalities (Sec. 2). Next, we pro-
pose two approaches, called Feature Mask and Feature Rebuilding,
which transfer knowledge back into the single-modal embedding
space of words and thus circumvent the limitation of the small
multi-modal concept space in [24] (see Sec. 3).

In Sec. 4, we show that single-modal embeddings (e.g., the word
embedding of apple in the 3M word space) can benefit from trans-
ferred cross-modal knowledge even for concepts that are not explic-
itly represented in the tri-modal space (since there were no training
samples available in the other modalities).

Since those findings are quite remarkable we conducted more
experiments to shed some light on the obvious question: For which
type of concepts does this extrapolation of knowledge work? The
outcomes indicate that (i) homonyms benefit, since sharedmeanings
get disambiguated as shown in the semantic segmentation plots in
Sec. 4.2 and (ii) that the abstractness of concepts appears to be a
good indicator whether concepts benefit (see Sec. 4.3).

In Sec. 4.4, we briefly summarize our findings before we discuss
related work in Sec. 5 and conclude in Sec. 6.

2 CONSTRUCTING A TRI-MODAL CONCEPT
SPACE

In the following, embedding models for the textual, KG, and vi-
sual domain are introduced. Subsequently, methods for alignment
across modalities and fusion methods for these embeddings within
a shared cross-modal space are alike to [24]. This is the founda-
tion for our knowledge extrapolation approach which learns an
embedding augmentation from a common multi-modal embedding
space.

2.1 Single-modal Embeddings
For our work, we use the following well-known embedding ap-
proaches1:

• In the textual domain, the word2vec model proposed in [14]
has been successfully applied to large scale text corpora and
pushed state of the art for textual representations and NLP
processing. In this work the word2vec model is used for
latent vector representations of words and phrases which
are constructed from their context.

• KG-concept embeddings are constructed with TransE [2]
with type constraints [12]. Its objective function is based
on a link prediction task and it has shown to be scalable
to knowledge graphs with millions of vertices with good
results.

• For visual representations, Inception-V3 [23] is used which
was constructed to classify an image into one of multiple
available categories. Therefore, convolutional filters are ap-
plied in multiple layers, abstracting local features. In this

1Please note, our transfer method is not limited to these three approaches but also
applicable to any other embedding approach, like GLoVE [19] and HOLE [18].

work the last neural layer before the softmax function is
used as the latent representation for visual data.

2.2 Alignment to Multi-Modal Concept Space
To share the knowledge between the different embeddings, an align-
ment between them has to be established. Therefore we map all pre-
viously mentioned single-modal representations to a consolidated
tri-modal shared concept space. In this work, we chose WordNet
lexemes (words) as common concepts since numerous evaluation
datasets for word similarity tasks are available.

• Textual representations of word2vec do not have to be ad-
justed since they are already on word-level.

• The alignment of TransE representations is performed by
mapping KG-entities (addressable with a unique DBpedia
URI) to words. Therefore each KG-concept is mapped to the
most commonly used ‘surface form’ (word) for referring to
the KG-concept.

• For aligning the visual embeddings to the word-level, single
image representations from ImageNet-1k [22] are aggregated
to WordNet synset representations via a featurewise max op-
erator (alike to [11]). This is done for all images in a certain
synset category. Additionally, 396 more abstract synset rep-
resentations were built by combining the representation of
its child nodes from the WordNet hierarchy. The alignment
of these synset representations to lexemes can be performed
with WordNet directly, since WordNet lexemes are assigned
to at least one synset.

2.3 Modality Fusion in a Shared Space
To obtain a consolidated tri-modal shared space, that captures
knowledge of all modalities in one representation, modality fusion
is used. The aligned corpus of n different lexemes is represented
in three matrices containing the latent vector representations of
the three modalities: textual T , knowledge graph G, and visual V .
After normalization of each concept vector to unit length, the rep-
resentations are weighted individually, with weightswT ,wG , and
wV .

Mweiдhted =


wT ·T
wG ·G
wV ·V

 , wT +wG +wV = 1

Besides simple concatenation (CONC) of concept vectors from
different modalities, modalities can be fused using dimensionality
reduction methods like PCA or SVD. These transformation meth-
ods can be computed on the stacked matrixMweiдhted . Thus, the
dimension of multi-modal concept vectors can be reduced and sta-
tistical smoothing effects can contribute to an overall performance
improvement for those fused embeddings. See [25] for an evaluation
of performance gains within the tri-modal concept space.

3 TRANSFERRING MULTI-MODAL
KNOWLEDGE TO SINGLE MODALITIES

When fusing multi-modal information sources, the size of the com-
mon multi-modal space is a limiting factor for useful applications.
In our case, the aligned tri-modal concept space has only 1523 con-
cepts. Hereby the visual domain presents the major bottle neck
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since humans have to annotate objects in images according to a
classification task. In order to overcome the limitation of a small
common concept space, we introduce our approach of transferring
knowledge from the multi-modal space back into the single-modal
space of the utilized models. Neither complex multi-modal learn-
ing from aligned corpora, nor extensive multi-modal training on
hand-labeled samples is needed. Instead, we rearrange the embed-
ding space of a single model to mimic the superior multi-modal
embedding.

In the following, the transfer approaches are subdivided into a
fitting and a transfer procedure. For fitting, all n samples in the
shared concept space can be utilized. Afterwards, the transfer can
be performed with any embedding of the fitted single modality.2

3.1 Feature Mask
In the Feature Mask approach, factors for correcting the features
of a single-modal embedding are approximated from the common
concept space. The features from the original embedding are mul-
tiplied with the learned feature mask in order to re-scale features
(see Fig. 2a).

Fitting: An artificial similarity dataset is computed for all possible
concept pairs in the common concept space. Thereby, the similarity
is defined by the cosine vector similarity of the embedding pairs in
the shared concept space. For the construction of fused multi-modal
embeddings, any combination technique mentioned in section 2.3
can be utilized. The set of these similarity scores sim ∈ R

n·(n−1)
2 is

then used as supervised training set.
Consider an embedding esinдle = (f1, ..., fm ) from a single

modality,m denotes the number of features fi ∈ R for this modal-
ity. For each concept pair in the common concept space, the two
single-modal embeddings [esinдle1 , esinдle2 ] are known. A differ-
ence vector d between these vector pairs is computed with

d =
esinдle1 ⊙ esinдle2

∥esinдle1 ∥ · ∥esinдle2 ∥
(⊙ is element wise multiplication)

resulting in n ·(n−1)
2 difference vectors. These are stacked in the

matrix D ∈ R
n ·(n−1)

2 ×m where di refers to the i-th column of matrix
D. With these difference vectors, a scaling factor si can be estimated
for each feature fi . A high scaling factor indicates that feature i is
useful to differentiate concepts according to the similarity scores
in sim. A vector of such scaling factors s ∈ Rm can be approxi-
mated via pair wise correlation so that si = corr (di , sim). Another
approach is using the coefficients of a multivariate linear regression
of the form sim ∼ D · s .

Transfer: A transformation for all features of a single-modal em-
bedding is computed by using the scaling factor with an activation
function д:

esinдle_transf = esinдle ⊙ д(s)
A standard activation function is the sigmoid function which

also works for negative values si . We tested many alternatives and
the sigmoid function turned out to be the most reliable and yielding

2Besides the presented transfer approaches, we also tested information transfer via
fitted PCA and SVD transformations on the multi-modal concept space. These methods,
however, yielded poor results for information abstraction to concepts outside of the
shared space.

(a) Feature mask multiplication. (b) Multi-modal feature rebuilding.

Figure 2: Information transfer approaches for a single
modal embedding.

the best results. Note that the value range of s should be adjusted
according to the activation function.

3.2 Feature Rebuilding
Let’s consider the simplistic example in which fruits would be only
differentiated with one specific feature. If the single-modal em-
bedding would assign feature values from high to low to ‘apple’,
‘coconut’ and ‘pear’, the entity ‘apple’ could, by simply re-scaling of
the fruit feature, never become more similar to ‘pear’ with regard to
cosine similarity than to ‘coconut’ (’coconut’ would stay between
‘apple’ and ‘pear’). In such cases, reordering is needed which can
be achieved by adding additional features to a single-modal em-
bedding with our Feature Rebuilding approach. These additional
features approximate features from the shared concept space but
are only constructed with features of the single-modal embedding
(see Fig. 2b).

Fitting: Starting point is a common concept space with k feature
dimensions which is obtained by any combination technique from
section 2.3. The transfer function is then learned with input from
the single-modal embedding esinдle with m features. Therefore
all features from the common concept space are rebuilt with the
input of the single embedding. These reconstructed features are
further referred to as artificial features. For each artificial feature
i ∈ [1, 2, ...,k], a reconstruction function ri : Rm → R is learned.
These functions ri can be fitted via any regression method. In this
work we use linear regression and a neural network.

Transfer: For a given embedding esinдle , all artificial features
are computed subsequently and are combined to an artificial em-
bedding:

ear tif icial = (r1(esinдle ), ..., rk (esinдle ))
The transformed embedding is then obtained by concatenating

the normalized original embedding and the normalized artificial
embedding3:

esinдle_transf = ( esinдle
∥esinдle ∥ ,

ear t i f icial
∥ear t i f icial ∥ )

3Note that normalization is important since differences in the vector dimensions and
value ranges would not be meaningful otherwise. See [25] for more details on the
effect of normalization.
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4 EVALUATION
In the following, we evaluate the fused multi-modal embeddings on
standard word similarity evaluation datasets and compare them to
the single modal embeddings of word2vec, TransE, and Inception-
V3. Thereafter, knowledge transfer methods are applied to improve
the word2vec embeddings for words outside of the shared con-
cept space. For this work, pre-trained models are utilized in case
of Inception-V34 (trained on 1.3 million images) and word2vec5
(trained on 100 billion words). Since no KG entity representations
for a complete KG were readily available, we trained the KG rep-
resentations by running TransE on the DBpedia KG6, resulting in
over 7 million KG-concept representations.

4.1 Concept Similarity
For evaluation, we considered the extended list of [4] for word
pair similarities and relatedness tasks. Therefore, we construct for
each word similarity dataset, the relevant subset, for which concept
representations are available in all three modalities. Due to the low
sample size of some subsets, only MEN [3],WS-353 [5], SimLex-999
[10] and MTurk-771 [9] can be used for validation of our tri-modal
embeddings. These subsets are also available online7.

For the fusion methods presented in Sec. 2.3, we use 100 dimen-
sions as we discovered that 100 dimensions are sufficient to encode
the relevant information of all aligned representations for the word
similarity task. Further, the weighting of the modalities when com-
bining them was optimized over all evaluation subsets. This is an
intermediate step to learn the weighting proportions also for the
following knowledge transfer. The resulting optimal weight triples
are reported in Table 1, exhibiting a similar modality proportion
for all combination approaches.

Table 1: Weights for combination methods

WT ext WKG WV isual

CONC 0.25 0.15 0.60
SVD 0.25 0.10 0.65
PCA 0.30 0.05 0.65

In Table 2, the performance of the weighted multi-modal combi-
nation methods is reported. Weighted combination methods sub-
stantially outperform single-modal embeddings onMEN and SIMLEX-
999. Overall, the weighted fusion of modalities successfully im-
proves single-modal embeddings in the tri-modal concept space.

Next, we evaluate our augmented word2vec embeddings as de-
scribed in Sec. 3 for out-of-training data instances that are not
covered by multi-modal concepts. This includes the list of [4]: MC-
30 [15],MTurk-287 [20], RG-65 [21], RW-STANFORD [13], VERB-143
[1] and YP-130 [28], which were not used for validation of the fused
tri-modal concepts. Therefore, we subdivide these datasets into
‘in-sample’ word pairs, which are covered with concepts in the
tri-modal shared space, and ‘out-of-sample’ word pairs as the set of
remaining word pairs.
4https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_
2015.zip
5https://code.google.com/archive/p/word2vec
6http://wiki.DBpedia.org/services-resources/datasets/data-set-39
7https://people.aifb.kit.edu/sto/Transfer

Table 2: Spearman rank correlation score on subsets of the
evaluation datasets. Combined embeddings were normal-
ized and weighted.

MEN WS-353 SimLex- MTurk-
999 771

Inception-V3 0.619 0.526 0.522 0.308
word2vec 0.740 0.707 0.423 0.594
TransE 0.423 0.425 0.246 0.275
CONC 0.806 0.726 0.586 0.589
SVD 0.847 0.687 0.616 0.618
PCA 0.836 0.760 0.586 0.568

FeatureMask. The artificial similarity set of the feature mask
method is created via concatenation of embeddings from all three
modalities and fusion with PCA8. The single-modal embeddings
are normalized and weighted with the weight triple (wtext ,wKG ,

wvisual ) = (0.3, 0.05, 0.65) which is derived from in-sample ex-
periments (see Table 1). With the 1523 concepts from the shared
tri-modal space, cosine similarities were computed for over 2.3 mil-
lion different concept pairs. The scaling factors were approximated
with feature wise pearson correlation (MaskP ) and multivariate
linear regression (MaskR ), as introduced in Sec. 3.1. The obtained
scaling factors s were adjusted with s ′ = 2·(s−median(s))

max (s)−min(s) .
The performance of the MaskP and the MaskR knowledge trans-

fer approach with a sigmoid activation function are reported in
Table 3. On the in-sample subsets, MaskR outperforms MaskP on all
evaluation sets, also improving the original word2vec embeddings
on all subsets except for SIMLEX-999. However, both approaches
exhibit a relative small performance increase on most of the full and
out-of-sample evaluation sets compared to the word2vec embed-
ding. While the knowledge transfer via MaskR works for entities
within the common concept space, neither MaskR nor MaskP ex-
trapolate information well to unseen concepts.

Feature Rebuilding. The multi-modal representations for
the feature rebuilding approach are constructed via concatenation
of embeddings from Inception-V3 and TransE, which are normal-
ized, weighted with wvisual = 0.95 and wKG = 0.05 and trans-
formed to a 100 dimensional embedding via PCA9. Including TransE
with a weight ofwKG = 0.05 improved results compared to visual
features only. Excluding the textual domain when learning the
transfer function for the word2vec embeddings showed superior
results. The textual information is incorporated by concatenating
word2vec with the artificial embeddings after the reconstruction.

For feature approximation of this 100-dimensional multi-modal
embedding space, two different approaches are examined: RebuildL ,
for which a linear regression was applied to each artificial feature
and RebuildN , for which a neural network with 10 hidden units
was trained for each artificial feature. The results for RebuildL and
RebuildN are reported in Table 3.

Both approaches successfully improve word2vec embeddings on
all in-sample subsets, thus effectively encoding knowledge from

8Note that PCA produces linearly decorrelated features which facilitates feature wise
approximations.
9We performed a grid search with step size 0.05 on in-sample evaluation sets.

https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip
https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip
https://code.google.com/archive/p/word2vec
http://wiki.DBpedia.org/services-resources/datasets/data-set-39
https://people.aifb.kit.edu/sto/Transfer
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Table 3: Spearman rank correlation of knowledge transfer approaches on word similarity evaluation sets. Thereby, all refers
to the complete evaluation sets, in to in-sample and out to out-of-sample subsets. For RW-STANFORD only the covered subset
of 1863/2034 word pairs in word2vec were evaluated. For VERB-143 and YP-130 no in-sample word pairs exist.

MEN WS- SimLex- MTurk- MC- MTurk- RG- RW- VERB- YP-
353 999 771 30 287 65 STANFORD 143 130

word2vec all 0.762 0.700 0.442 0.671 0.788 0.687 0.750 0.529 0.474 0.559
out 0.762 0.685 0.442 0.676 0.791 0.677 0.763 0.530 - -
in 0.740 0.707 0.423 0.594 - - - - - -

MaskP
all 0.768 0.699 0.448 0.678 0.809 0.688 0.776 0.523 0.467 0.546
out 0.768 0.686 0.448 0.683 0.815 0.677 0.786 0.525 - -
in 0.743 0.702 0.409 0.598 - - - - - -

MaskR
all 0.769 0.702 0.444 0.674 0.805 0.682 0.756 0.527 0.490 0.555
out 0.767 0.689 0.444 0.676 0.790 0.672 0.759 0.528 - -
in 0.770 0.744 0.420 0.646 - - - - - -

RebuildL
all 0.779 0.697 0.464 0.680 0.816 0.641 0.766 0.530 0.424 0.580
out 0.772 0.678 0.458 0.678 0.780 0.628 0.743 0.532 - -
in 0.838 0.770 0.581 0.691 - - - - - -

RebuildN
all 0.799 0.703 0.467 0.692 0.854 0.648 0.812 0.517 0.381 0.560
out 0.794 0.686 0.461 0.690 0.855 0.638 0.800 0.518 - -
in 0.824 0.736 0.588 0.711 - - - - - -

the multi-modal concept space. When applying the transfer func-
tion to unknown data to overcome the limitation of a small multi-
modal concept space, the RebuildN method extrapolates better than
RebuildL . Also RebuildN dominates the linear regression approach
for the full evaluation sets except for RW-STANFORD, VERB-143, and
YP-130. Furthermore, RebuildN improves the performance of the
initial word2vec embeddings on all evaluation sets but MTurk-287,
RW-STANFORD, and VERB-143. Also, this enhancement of word2vec
embeddings is not caused by a local improvement of concept em-
beddings covered in the tri-modal space, since we can observe a
consistent performance improvement on the out-of-sample sub-
sets. Interestingly, RebuildN shows a large performance dip of the
initial word2vec embeddings on VERB-143, which indicates that
the representation of verbs in word2vec might be systematically
different from representations of the WordNet nouns for which
visual features are available in the tri-modal shared space. This
adds up with the effect that a verb maintains a dependency relation
with its syntactic arguments (subject and object) and can there-
fore not as easily be modeled as a noun [8]. Also for MTurk-287
and RW-STANFORD, the knowledge transfer fails due to a higher
abstraction complexity. MTurk-287 is a collection of entities from
DBpedia with distant relations while RW-STANFORD contains rare
and complex words exclusively.

4.2 Semantic Segmentation
To illustrate the improvement of out-of-sample embeddings we
provide an entity segmentation plot in Fig. 3 with two DBpedia
entity types: land vehicles and birds. For that we calculated the
first two PCA components of the respective embeddings of the two
types.

In the pure textual embedding space of word2vec (Fig. 3a), the
different types of land vehicles and birds are not as well separated
as in the other three plots. Fig. 3b shows a better separability in the

tri-modal space which can be only shown for entities which have a
representation in all three modalities text, image, and KG (red ’x’
and blue ’+’). Fig. 3c and Fig. 3d show that the better separability of
the tri-modal space can be transferred to the out-of-sample entities
of the types land vehicles and birds which are shown with black ’x’
and green ’+’. For MaskP and MaskR we omit the corresponding
plots since they were inferior when extrapolating to out-of-sample
instances.

When we look at the outliers of the clusters, we see that ’harrier’
gets closer to the land vehicles and that ’turkey’ and ’albatross’ get
farther away from the bird cluster. This phenomenon is caused by
the ambiguity of the words, i.e. harrier, turkey, and albatross are
also respective names for a military jet, a country, and a plane. So it
is only natural that harrier as an air vehicle gets closer to the other
vehicles and turkey and albatross get farther away from the bird
cluster.

In summary, this indicates that the tri-modal fused embeddings
exhibit a better entity clustering and separation than word2vec
alone. This structural improvement is successfully transferred to
uni-modal concepts with the RebuildN approach, so concept rep-
resentations are, in this example, indeed augmented in a more
intuitive way.

4.3 Concept Abstractness
Further we investigated which word pairs benefit most from the
transfer. The performance is measured by the rank difference of the
predicted rank and the true rank (similarity) of a given word pair in
an evaluation set. A relative performance improvement compared
to word2vec is achieved, if the predicted rank of a word pair comes
closer to the human provided gold standard ranking. Examples for
out-of-sample word pairs with high performance gains relative to
word2vec can be seen in Table 4 while word pairs which do not
benefit or even decrease in performance are shown in Table 5. We



K-CAP 2017, December 4–6, 2017, Austin, TX, USA Fabian Both, Steffen Thoma, and Achim Rettinger

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey harrier

albatross

(a) word2vec

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

albatross

(b) tri-modal space

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey harrier

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey

harrier

albatross

(c) RebuildL

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey harrier

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey

harrier

albatross

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

rover

turkey

harrier

albatross

(d) RebuildN

Figure 3: First two PCA components for various land vehicles (red and black ’x’) and birds (blue and green ’+’). The red ’x’ and
blue ’+’ are represented in the tri-modal space while the black ’x’ and green ’+’ do not have a tri-modal representation. The
segmentation of these two different concept types is improved in the tri-modal space (b) and the improvements are successfully
transferred back by both RebuildL (c) and RebuildN (d).

investigated the best and worst changes due to the transfer and
found an indication that the more concrete a word pair the better
the transfer result.

To make “concreteness” quantifiable we calculated a proxy of
abstractness based on the WordNet hierarchy. For a given word we
compute the depth of the subtree of hyponyms for all word senses
that are listed for this particular word in theWordNet hierarchy. We
weight these depth scores by theirWordNet sense number (depths of
frequently encountered word senses are more important), resulting
in an average abstractness score for each word. A high score means
that a word aggregates many more specific meanings and is thus
a proxy for the abstraction level of the word. Our investigations
regarding the word type i.e. verb, adjective, noun and so on were
inconclusive.

Table 4: Examples for word-pairs with performance gains.

data set word pair abstractness
MEN (bloom,rose) 1.527

(dragonfly,underwater) 1.000
(guy,rusty) 1.337

RW-STANFORD (angrier,huffy) 1.000
(kingship,rank) 1,234
(princedom,rank) 1,234

VERB-143 (strike,says) 1.525
(affected,apply) 1.513

Since the abstractness seems to be a good indicator for the trans-
fer success, we analyzed how the different modalities deal with
different levels of abstractness. To illustrate the effect, we calculated
the mean abstractness score for the 10 most and 10 least improved
word pairs relative to word2vec in each evaluation dataset10. In
Table 6, you can see the abstractness scores within the tri-modal
space and in Table 7 for the textual space for which no tri-modal
representations were available.
10We average abstractness scores of both words in a word pair.

Table 5: Examples for word-pairs with performance de-
creases.

data set word pair abstractness
MEN (animal,zoo) 2.792

(cute,mammal) 3.888
(nest,reptile) 3.638

RW-STANFORD (regionalisms,address) 2.128
(membership,relationship) 2.056

(brandish,expose) 1.707
VERB-143 (happens,produce) 3.273

(providing,showing) 2.667

You can observe that augmented word embeddings can deal
very well with word pairs of high abstractness within the tri-modal
space. Especially representations of abstract concepts benefit from
this more holistic modelling through complementary information
sources caused by the ability of the transfer function to incorporate
multi-modal information. Since the textual word2vec embeddings
struggle with those abstract concepts, the performance gain is most
prominent in these cases. The visual space is good in capturing the
similarity of abstract concepts which is presumably partly caused
by the use of the WordNet hierarchy of the ImageNet-1k dataset
while the KG results are inconclusive.

When evaluating augmented word embeddings of concepts out-
side of the tri-modal concept space, an interesting shift can be
observed as depicted in Table 7. Overall, concrete out-of-sample
word pairs are improved the most. Even for evaluation sets with
similar concepts to the transfer training space (e.g. out-of-sample
word pairs of MEN), relations between concrete words are improved
the most by knowledge extrapolation. This makes sense since rep-
resentations of abstract concepts are presumably incomplete in
word2vec. Thus, the learned transfer function is confronted with
inaccurate concept representations which impose additional noise
apart from approximation errors outside of the tri-modal space.
While multi-modal embeddings are well structured with respect
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Table 6: Mean abstractness scores of word pairs in the shared tri-modal space of respective evaluation datasets. For text, visual
and KG embeddings the 10 best and 10 worst performing word pairs are averaged. In case of RebuildL and RebuildN , the relative
improvement through multi-modal information is captured by averaging the abstractness scores of the 10 most and 10 least
improved word pairs. Ranking improvement is measured relative to word2vec, i.e. whether the ranking came closer to the
human provided gold standard ranking.

text visual KG RebuildL RebuildN
top bottom top bottom top bottom top bottom top bottom

MEN 1.871 2.659 2.312 1.790 2.560 2.153 2.552 2.106 2.694 2.222
WS-353 2.236 2.259 2.507 2.287 2.019 2.907 2.415 2.424 2.508 2.243
SimLex-999 1.619 2.028 1.603 2.006 1.863 2.242 2.166 1.773 2.140 1.846
MTurk-771 1.825 2.392 2.232 2.197 2.222 2.108 2.199 1.990 2.505 1.979

Table 7: Mean abstractness score for the 10most and 10 least
improved out-of-sample word pairs of the respective evalu-
ation datasets. Ranking improvement is measured relative
to word2vec.

RebuildL RebuildN
top bottom top bottom

MEN 1.665 1.977 1.809 2.401
WS-353 2.009 1.992 1.869 1.932
SimLex-999 1.995 1.559 2.377 1.781
MTurk-771 1.943 2.103 2.040 2.162
MC-30 1.813 1.978 1.820 1.992
MTurk-287 1.774 1.571 1.995 1.620
RG-65 1.834 1.914 1.851 1.896
RW-STANDFORD 1.578 2.132 1.446 1.717
VERB-143 1.634 1.960 1.722 1.960
YP-130 2.090 2.043 2.224 2.010

to abstract concepts, this information is difficult to transfer to the
word2vec embedding and restructuring the word2vec space is most
challenging in these scenarios with high abstractness scores.

4.4 Summary of Key Findings
Our key findings provide interesting insights for knowledge repre-
sentations of concepts in general and for concept embeddings in
particular:

Concept Similarity: Concept representations fused across three
modalities come closer to the human notion of similarity
than single-modal embeddings. Less self-evident is that word
embeddings without matching concepts in other modalities
can be improved by transferring abstract knowledge from
the other modalities.

Semantic Segmentation: The tri-modal space improves the
semantic segmentation of concepts, specifically for homo-
nyms. Again, not self-evident is that this also extrapolates
to the transfer space.

Concept Abstractness: Abstract words improvemost by com-
bining embeddings from different modalities. When transfer-
ring multi-modal knowledge to out-of-sample embeddings
of word2vec, more concrete words benefit.

5 RELATEDWORK
In recent years two lines of research in representation learning
for exploiting information across modalities have emerged: On the
one hand, the fusion of embeddings is achieved after independent
training of each modality. On the other hand, embeddings for each
modality or the fused embedding space are jointly optimized. Our
approach is of the first category and – to the best of our knowledge –
the first approach that can exploit available embeddings of more
than two modalities and extrapolates cross-modal knowledge from
concepts not covered by all modalities.

Examples of the first category include [11] which construct bi-
modal concept representations by concatenating independently
trained visual and textual representations. Instead of visual repre-
sentations, Goikoetxea et al. [7] use textual embeddings trainedwith
a text corpus and embeddings of a hierarchical structure learned
fromWordNet. These embeddings are then concatenated and trans-
formed with various statistical methods (e.g. PCA). Obviously, the
fusion approaches above do not include visual, textual and struc-
tural knowledge at the same time. An approach that does combine
three sources, i.e., multiple languages and images is [16]. However,
since text is represented as polylingual topics, the task is reduced to
learning bi-modal embeddings. Bruni et al. [3] extend a word rep-
resentation with knowledge from images with the same tag. While
tag based image datasets cover a larger number of concepts than
ImageNet, these also introduce noise in the training and alignment
steps and still cannot cover enough concepts so that our knowledge
transfer approach would become obsolete.

An example for a joint-optimization approach from the second
category is [27], in which word embeddings are enriched with in-
formation from a knowledge graph. Another approach for joint
learning of word embeddings and KG embeddings which are rep-
resented in the same vector space is investigated in [26]. They
link word embeddings and knowledge graph embeddings during
training with an alignment function. But none of the joint learning
approaches mentioned so far is able to deal with instances with
missing information in some modalities. A joint-optimization ap-
proach that is related to our approach in this aspect is [6], since they
address (bi-modal) information transfer for instances that are not
covered by all modalities. They use a deep visual-semantic embed-
ding model which learns image and tag embeddings simultaneously.
They are able to improve visual embeddings of unseen image cate-
gories through information encoded in the co-occurrence of words
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in a text corpus. In [17], the combination of embeddings of audio
and video sources is examined. They apply an encoder and decoder
system for joint learning of these embeddings which is also able
to handle missing data from one of the modalities during training.
In contrast to us, these joint-optimization approaches are dealing
with missing information of bi-modal embeddings through a jointly
learned common embedding space, instead of infusing knowledge
after training. This imposes restrictions on the learning objective
and embedding dimension. In addition, all joint learning approaches
so far are restricted to two modalities and do not exploit available
pre-trained embeddings. Another drawback of joint-optimization
approaches in real-world application is that the embeddings learned
from an aligned corpus of unstructured content are harder to in-
terpret by humans, since they cannot be related to concepts with
explicit semantics. For instance, entity segmentation plots like Fig. 3
cannot be directly constructed.

6 CONCLUSIONS AND FUTUREWORK
This work contributes to the area of knowledge transfer between
multi-modal concept representations. Our approach is able to fuse
unstructured information of concepts from text and images with
structured information from KGs in a meaningful way. This aims to-
wards making computational knowledge representations get closer
to a human like perception of concepts.

In order to overcome the restricting number of concepts avail-
able in certain modalities (like the visual modality), a novel transfer
approach for multi-modal information is presented which extrap-
olates information from a small common concept space of only
1523 concepts to a large space of another modality (in our case to 3
million word embeddings).

Interestingly, word embeddings do benefit from extrapolating
information across modalities even for concepts that are not repre-
sented in the other modalities. Our studies indicate that this applies
most to concrete concepts and homonyms.

We are confident that our findings will spawn more research in
cross-modal knowledge capture. Both, in order to extend the quality,
expressiveness and coverage of cross-modal representations but
also to obtain a fine-grained understanding of which knowledge
benefits how and why.

In the (near) future, we would like to broaden our empirical eval-
uation to tasks in other modalities, like link prediction in knowledge
graphs. Also, extending the number of concepts in the tri-modal
space could highly improve the transfer results. Including visual
representations of image tags might help to validate that.
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