
Bilingual Word Embeddings from Parallel and Non-parallel Corpora for
Cross-Language Text Classification

Aditya Mogadala
Institute AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

aditya.mogadala@kit.edu

Achim Rettinger
Institute AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

rettinger@kit.edu

Abstract

In many languages, sparse availability of re-
sources causes numerous challenges for tex-
tual analysis tasks. Text classification is one of
such standard tasks that is hindered due to lim-
ited availability of label information in low-
resource languages. Transferring knowledge
(i.e. label information) from high-resource to
low-resource languages might improve text
classification as compared to the other ap-
proaches like machine translation. We intro-
duce BRAVE (Bilingual paRAgraph VEctors),
a model to learn bilingual distributed repre-
sentations (i.e. embeddings) of words with-
out word alignments either from sentence-
aligned parallel or label-aligned non-parallel
document corpora to support cross-language
text classification. Empirical analysis shows
that classification models trained with our
bilingual embeddings outperforms other state-
of-the-art systems on three different cross-
language text classification tasks.

1 Introduction

The availability of language-specific annotated re-
sources is crucial for the efficiency of natural lan-
guage processing tasks. Still, many languages lack
rich annotated resources that support various tasks
such as part-of-speech tagging, dependency parsing
and text classification. While the growth of multi-
lingual information on the web has provided an op-
portunity to build these missing annotated resources,
but still lots of manual effort is required to achieve
high quality resources for every language separately.

Another possibility is to utilize the unlabeled
data present in those languages or transfer knowl-

edge from annotation-rich languages. For the
first alternative, recent advancements made in
learning monolingual distributed representations of
words (Mikolov et al., 2013a; Pennington et al.,
2014; Levy and Goldberg, 2014) (i.e. monolin-
gual word embeddings) capturing syntactic and se-
mantic information in an unsupervised manner was
useful in numerous NLP tasks (Collobert et al.,
2011). However, this may not be sufficient for
several other tasks such as cross-language informa-
tion retrieval (Grefenstette, 2012), cross-language
word semantic similarity (Vulić and Moens, 2014),
cross-language text classification (CLTC, hence-
forth) (Klementiev et al., 2012; Xiao and Guo, 2013;
Prettenhofer and Stein, 2010; Tang and Wan, 2014)
and machine translation (Zhao et al., 2015) due to
irregularities across languages. In these kind of sce-
narios, transfer of knowledge can be useful.

Several approaches (Hermann and Blunsom,
2014; Sarath Chandar et al., 2014; Gouws et al.,
2015; Coulmance et al., 2015) tried to induce
monolingual distributed representations into a lan-
guage independent space (i.e. bilingual or multilin-
gual word embeddings) by jointly training on pair
of languages. Although the overall goal of these
approaches is to capture linguistic regularities in
words that share same semantic and syntactic space
across languages, they differ in their implementa-
tion. One set of methods either perform offline
alignment of trained monolingual embeddings or
jointly-train both monolingual and cross-lingual ob-
jectives, while the other set uses only cross-lingual
objective. Jointly-trained or offline alignment meth-
ods can be further divided based on the type of par-



Cross-Language Setups
Objective Method Tasks Parallel Corpus

(Klementiev et al., 2012) CLDC Word-Aligned
(Zou et al., 2013) MT,NER Word-Aligned

Monolingual+ (Mikolov et al., 2013b) MT Word-Aligned
Cross-lingual (Faruqui and Dyer, 2014) Word Similarity Word-Aligned

(Lu et al., 2015) Word Similarity Word-Aligned
(Gouws and Søgaard, 2015) POS,SuS Word-Aligned
(Gouws et al., 2015) CLDC,MT Sentence-Aligned
(Coulmance et al., 2015) CLDC,MT Sentence-Aligned

Cross-lingual (Hermann and Blunsom, 2014) CLDC Sentence-Aligned
(Sarath Chandar et al., 2014) CLDC Sentence-Aligned
(Luong et al., 2015) Word Similarity, CLDC Sentence-Aligned
(Pham et al., 2015) CLDC Sentence-Aligned

Table 1: Summary of bilingual or multilingual embedding methods that support Cross-language Document Classification (CLDC), Machine Trans-
lation (MT), Named Entity Recognition (NER), Part-of-Speech Tagging (POS), Super Sense Tagging (SuS).

allel corpus (e.g. word-aligned, sentence-aligned)
they use for learning the cross-lingual objective. Ta-
ble 1 summarizes different setups to learn bilingual
or multilingual embeddings for the various tasks.

Methods in the Table 1 that use word-aligned
parallel corpus as offline alignment (Mikolov et
al., 2013b; Faruqui and Dyer, 2014) assume sin-
gle correspondence between the words across lan-
guages and ignore polysemy. While, the jointly-
train methods (Klementiev et al., 2012) that use
word-alignment parallel corpus and consider poly-
semy perform computationally expensive operation
of considering all possible interactions between the
pairs of words in vocabulary of two different lan-
guages. Methods (Hermann and Blunsom, 2014;
Sarath Chandar et al., 2014) that overcame the
complexity issues of word-aligned models by us-
ing sentence-aligned parallel corpora limits them-
selves to only cross-lingual objective, thus mak-
ing these approaches unable to explore monolin-
gual corpora. Jointly-trained models (Gouws et al.,
2015; Coulmance et al., 2015) overcame the issues
of both word-aligned and purely cross-lingual ob-
jective models by using monolingual and sentence-
aligned parallel corpora. Nonetheless, these ap-
proaches still have certain drawbacks such as us-
age of only bag-of-words from the parallel sen-
tences ignoring order of words. Thus, they are
missing to capture the non-compositional meaning
of entire sentence. Also, learned bilingual em-
beddings were heavily biased towards the sampled
sentence-aligned parallel corpora. It is also some-

times hard to acquire sentence-level parallel corpora
for every language pair. To subdue this concern,
few approaches (Rajendran et al., 2015) used pivot
languages like English or comparable document-
aligned corpora (Vulić and Moens, 2015) to learn
bilingual embeddings specific to only one task.

This major downside can be observed in other
aforementioned methods also, which are inflexible
to handle different types of parallel corpora and
have a tight-binding between cross-lingual objec-
tives and the parallel corpora. For example, a
method using sentence-level parallel corpora can-
not be altered to leverage document-level parallel
corpora (if available) that might have better per-
formance for some tasks. Also, none of the ap-
proaches do leverage widely available label/class-
aligned non-parallel documents (e.g. sentiment la-
bels, multi-class datasets) across languages which
share special semantics such as sentiment or corre-
lation between concepts as opposed to parallel texts.

In this paper, we introduce BRAVE a jointly-
trained flexible model that learns bilingual embed-
dings based on the availability of the type of cor-
pora (e.g. sentence-aligned parallel or label/class-
aligned non-parallel document) by just altering the
cross-lingual objective. BRAVE leverages para-
graph vector embeddings (Le and Mikolov, 2014)
of the monolingual corpora to effectively conceal
semantics of the text sequences across languages
and build a cross-lingual objective. Method closely
related to our approach is by Pham et al. (2015)
who uses shared context sentence vector across lan-



guages to learn multilingual text sequences.
The main contributions of this paper are:

• We jointly train monolingual part of parallel
corpora with the improved cross-lingual align-
ment function that extends beyond bag-of-word
models.

• Introduced a novel approach to leverage non-
parallel data sets such as label or class aligned
documents in different languages for learning
bilingual cues.

• Experimental evaluation on three different
CLTC tasks, namely cross-language docu-
ment classification, multi-label classification
and cross-language sentiment classification us-
ing learned bilingual word embeddings.

2 Related Work

Most of the related work can be associated to the
approaches that aim to learn latent topics across lan-
guages or distributed representations of the words
and larger pieces of text for supporting various
cross-lingual tasks.

2.1 Cross-Language Latent Topics
Various approaches have been proposed to identify
latent topics in monolingual (Blei, 2012; Rus et al.,
2013) and multilingual (Mimno et al., 2009; Fuku-
masu et al., 2012) scenarios for cross-language se-
mantic word similarity and document comparison.
Extraction of cross-language latent topics or con-
cepts use context-insensitive (Zhang et al., 2010)
and context-sensitive methods (Vulić and Moens,
2014) to build word co-occurrence statistics for doc-
ument representations.

2.2 Distributed Representations
Continuous word representations (Bengio et al.,
2003; Mikolov et al., 2013a; Pennington et al., 2014)
was further extended to multilingual (Hermann and
Blunsom, 2014; Kočiský et al., 2014; Coulmance
et al., 2015), bilingual (Gouws et al., 2015; Vulić
and Moens, 2015; Luong et al., 2015) and polylin-
gual (Al-Rfou et al., 2013) settings by projecting
multiple or pair of languages into the shared seman-
tic space. Also, word representations were extended
to meet larger textual units like phrases, sentences

and documents either monolingual (Socher et al.,
2012; Le and Mikolov, 2014) or bilingual (Pham et
al., 2015). Some approaches fine tuned the embed-
dings for specific tasks such as cross-lingual senti-
ment analysis (Zhou et al., 2015b), cross-language
POS tagging (Gouws and Søgaard, 2015), machine
translation (Cho et al., 2014) etc.

3 BRAVE Model

In this section, we present the BRAVE model along
with its variations whose aim is to learn bilingual
embeddings that can generalize across different lan-
guages.

3.1 Bilingual Paragraph Vectors (BRAVE)

Most of the NLP tasks require fixed-length vectors.
Tasks like CLTC also require fixed-length vectors to
incorporate inherent semantics of sentences or doc-
uments. Distributed representation of sentences and
documents i.e. paragraph vectors (Le and Mikolov,
2014) are designed to out-perform certain text clas-
sification tasks by overcoming constraints posed by
the bag-of-words models.

Here, we leverage paragraph vectors distributed
memory model (PV-DM) as the monolingual objec-
tive M(·) and jointly optimize with bilingual reg-
ularization function ϕ(·) for learning bilingual em-
beddings similar to the earlier approaches (Gouws
et al., 2015; Coulmance et al., 2015). Equation 1
shows the formulation of the overall objective func-
tion that is minimized.

L = min
θl1 ,θl2

∑
lε{l1,l2}

∑
Cl

Ml(wt, h; θl) +
λϕ(θl1 , θl2)

2

(1)
Here, C l represent the corpus of individual lan-

guages (i.e. l1 or l2 ). Given any sequence of words
(wl

1, w
l
2...w

l
T ) in C l, wt is the predicted word in a

context h constrained on paragraph p (i.e. sentence
or document) and sequence of words.

Formally, the first term (i.e. M(·)) in the Equa-
tion 1 maximizes the average log probability based
on word vector matrix W l and a unique paragraph
vector matrix P l. Equation 2 represents the average
log probability.

Ml(wt, h; θl) =
ΣT−k
t=k y

l
wt
− log(

∑
i e

yli)

T
(2)



where each yli is log-probability of predicted word
i and is given by Equation 3.

yl = b+ Uh(wl
t−k....w

l
t+k;W l, P l) (3)

To optimize for efficiency, hierarchical soft-
max (Mnih and Hinton, 2009) is used in training
with U and b as parameters. Binary Huffmann tree
is utilized to represent hierarchial softmax (Mikolov
et al., 2013a). Analogous to Pham et al., (2015),
we also derive h by concatenating paragraph vec-
tor from P l with the average of word vectors in W l.
This helps to fine tune both word and paragraph vec-
tors independently.

Now, to capture the bilingual cues, the regulariza-
tion function (ϕ(·)) is learned in two different ways.
In the first approach a sentence-aligned parallel cor-
pora is used, while in the second approach a label-
aligned document corpora.

3.2 BRAVE with Sentence-Aligned Parallel
corpora (BRAVE-S)

To compute the bilingual regularization func-
tion ϕ(·), we slightly deviate from earlier ap-
proaches (Gouws et al., 2015). Instead of simply
performing L2-loss between the mean of word vec-
tors in each sentence pair (sl1j ,sl2j ) of the sentence-
aligned parallel corpus (PC) at each training step.
We use the concept of elastic net regularization (Zou
and Hastie, 2005) and employ linear combination of
L2-loss between sentence paragraph vectors SP l1

j

and SP l2
j ∈ Rd precomputed from the monolin-

gual term M(·) with L2-loss between the mean of
word vectors observed in sentences. This induces
a constraint on the usage of monolingual part of
parallel training data to learn M(·). At the same
time, it has an advantage of using combination of
paragraph and word vectors which combines com-
positional and non-compositional meanings of sen-
tences.

Also, it eliminates the need for word-alignment
and makes an assumption that each word observed
in the sentence of language l1 can potentially find its
alignment in the sentence of language l2. Theoret-
ically, low value of ϕ(·) ensures that words across
languages which are similar are embedded closer
to each other. Equation 4 shows the regularization

term.

α||SP l1j −SP
l2
j ||

2+(1−α)|| 1
m

m∑
wiεs

l1
j

W l1
i −

1

n

n∑
wkεs

l2
j

W l2
k ||

2

(4)
Where W l1

i and W l2
k represent word embeddings

obtained for the words wi and wk in each sentence
(sj) of lengthm and n in languages l1 and l2 respec-
tively.

3.3 BRAVE with Non-Parallel Document
Corpora (BRAVE-D)

Sometimes it is hard to acquire sentence-aligned
parallel corpora for many languages. Availability
of non-parallel corpora such as topic-aligned (e.g.
Wikipedia) or label/class-aligned document corpora
(e.g. sentiment analysis and multi-class classifica-
tion data sets) in different languages can be lever-
aged to learn bilingual embeddings for perform-
ing CLTC. Earlier approaches like CL-LSI (Du-
mais et al., 1997) and CL-KCCA (Vinokourov et
al., 2003) were used to learn bilingual document
spaces for the tasks comparable to CLTC. Although
these approaches provide decent results, they face
serious scalability issues and are mostly limited
to Wikipedia. Cross-lingual latent topic extraction
models (Vulić and Moens, 2014) showed promising
results for the tasks like word-level or phrase-level
translations, but have certain drawbacks for CLTC
tasks.

Here, we propose a two step approach to build
bilingual embeddings with label/class-aligned doc-
ument corpora.

• In the first step, we perform manifold align-
ment using Procrustes analysis (Wang and Ma-
hadevan, 2008) between sets of documents be-
longing to same class/label in different lan-
guages. This will help to identify the closest
alignment of a document in language l1 with a
document in another language l2.

• In the second step, we use the pair of partially
aligned documents belonging to same class or
label in different languages to extract bilin-
gual cues similar to the approach mentioned in
§ 3.2. Only difference being paragraph vector
is learned for the entire document.



Step-1:
Let Sl1 and Sl2 be the sets containing languages l1
and l2 training documents associated to label or a
class. Below, we provide the three step procedure
to attain partial alignment between the documents
present in these sets.

• Learning low-dimensional embeddings of the
sets (Sl1 , Sl2) is key for alignment. We
use document paragraph vectors (Le and
Mikolov, 2014) to learn low-dimensional em-
beddings of the documents in each language.
Let X l1 and X l2 be the low-dimensional em-
beddings of Sl1 and Sl2 respectively.

• To find the optimal values of transformation,
Procrustes superimposition is done by translat-
ing, rotating and scaling the objects (i.e. rows
of X l2 is transformed to make it similar to the
rows of X l1). Transformation is achieved by

– Translation: Taking mean of all the
members of set to make centroids
(
∑|Sl1 |

i=1
Xl1

|Sl1 | ,
∑|Sl2 |

i=1
Xl2

|Sl2 | ) lie at origin.

– Scaling and Rotation: The rotation and
scaling that maximizes the alignment is
given by orthogonal matrix (Q) and scal-
ing factor (k). They are obtained by
minimizing orthogonal Procrustes prob-
lem (Schönemann, 1966) and is provided
by Equation 5.

arg min
k,Q
||X l1 −X l2

∗ ||F (5)

where X l2
∗ a matrix of transformed X l2

values given by kX l2Q and ||.||F is the
Frobenius norm constrained over QTQ =
I .

• If Sl2
∗ represents the new document set obtained

after identifying the close alignment among
documents in Sl1 and Sl2 with cosine similarity
betweenX l1 andX l2

∗ , then the partially aligned
corpora {Sl1 , Sl2

∗ } contains one-to-one corre-
spondence between the two languages docu-
ments that are used to learn bilingual cues in
the second step.

From perturbation theory of spectral
spaces (Kostrykin et al., 2003) it can be under-
stood that the difference between low-dimensional

embedding subspaces (i.e. X l1 and X l2
∗ ) is always

bounded, thus the new alignment obtained between
document sets {Sl1 , Sl2

∗ } is insensitive to perturba-
tions. Which also means that Procrustes analysis
has provided best possible document alignments.
Step-2:
Now, document pairs (dl1j ,dl2j ) of the partially-
aligned corpus (PAC) is used to compute bilingual
regularization function ϕ(·). At each training
step, L2-loss of precomputed document paragraph
vectors DP l1

j and DP l2
j ∈ Rd obtained from

the monolingual term M(·) is combined with
the L2-loss between vector of words weighted by
the probability of their occurrence in a particular
label/class of entire PAC. Consideration of word
probabilities will help to induce label/class specific
information. Equation 6 provides the regularization
term.

α||DP l1j −DP
l2
j ||

2

+ (1− α)||
m∑

wiεd
l1
j

pwi
W l1
i∑

m pwi

−
n∑

wkεd
l2
j

qwk
W l2
k∑

n qwk

||2 (6)

Where wi,wk are words and their embeddings
W l1

i ,W l2
k observed in each document (dj) of length

m and n in languages l1 and l2 respectively. While,
pwi and qwk

represents probability of occurrence of
words wi and wk in a specific label/class of entire
PAC. Figure- 1 shows overall goal of both the ap-
proaches.

4 Experiments

In this section, we report results on three differ-
ent CLTC tasks to comprehend whether our learned
bilingual embeddings are semantically useful across
languages. First, cross-language document classi-
fication (CLDC) task proposed by Klementiev et
al. (2012) using the subset of Reuters RCV1/RCV2
corpora (Lewis et al., 2004). Second, a multi-label
CLDC task with more languages using TED corpus1

of Hermann et al. (2014) . Subsequently, a cross-
language sentiment classification (CLSC) proposed
by Prettenhofer et al., (2010) on a multi-domain sen-
timent dataset.

1http://www.clg.ox.ac.uk/tedcorpus



Figure 1: Bilingual word embeddings learned using sentence or document paragraph vectors (SP/DP) along with word vectors.

4.1 Parallel and Non-Parallel Corpora

For sentence-aligned parallel corpora, Europarl-
v7 2(EP) is used as both monolingual and parallel
training data. While for label-aligned non-parallel
document corpora, only training and testing collec-
tions of the cross-language multi-domain Amazon
product reviews(CL-APR) (Prettenhofer and Stein,
2010) corpus with sentiment labels is used.

4.2 Implementation

Our implementation launches monolingual para-
graph vector (Le and Mikolov, 2014) threads for
each language along with bilingual regularization
thread. Word and paragraph embeddings matrices
are initialized with normal distribution (µ = 0 and
σ2 = 0.1) for each language and all threads access
them asynchronously. Following Pham et al. (2015)
suggested combination (P=5*W) of paragraph and
word embeddings, we chose paragraph embeddings
with dimensionality of 200 and 640 when word em-
beddings are of 40 and 128 dimensions respectively.
Asynchronous stochastic gradient descent (ASGD)
is used to update parameters (i.e. P l,W l,U and b)
and train the model.

For each training pair in parallel or non-parallel
corpora, initially monolingual threads sample con-
text h with window size of 8 from a random para-
graph (i.e. sentence or document) in each lan-
guage. Then the bilingual regularization thread
along with monolingual threads make update to pa-
rameters asynchronously. Learning rate is set to
0.001 which decrease with the increase of epochs,
while α is chosen to be 0.6 (can be fine tuned based
on empirical analysis) to give more weight to para-
graph vectors. All models are trained for 50 epochs.

2http://www.statmt.org/europarl/

4.3 Document Representation
Documents are represented with tf-idf weighted sum
of embedding vectors of the words that are present
in them.

4.4 Results
The experimental results for each of the CLTC tasks
are presented separately.

4.4.1 Cross-language Document Classification
(CLDC) - RCV1/RCV2

Goal of this task is to classify target language doc-
uments with the labeled examples from the source
language. To achieve it, we used the subset of
Reuters RCV1/RCV2 corpora as the training and
evaluation sets and replicated the experimental set-
ting of Klementiev et al. (2012). From the En-
glish, German, French and Spanish collection of the
dataset, only those documents are selected which
was labeled with a single topic (i.e. CCAT, ECAT,
GCAT and MCAT). For the classification experi-
ments, 1000 labeled documents from source lan-
guage are selected to train a multi-class classifier
using averaged perceptron (Freund and Schapire,
1999; Collins, 2002) and 5000 documents were used
as the testing data.

English-German, English-French and English-
Spanish portion of EP corpora (i.e. each with
around 1.9M sentence-pairs) is used both as mono-
lingual and parallel training data with BRAVE-S
approach to build vocabulary of around 85k En-
glish, 144k German, 119k French and 118k Spanish.
While training and testing collections belonging to
all domains in English-German, English-French lan-
guages of CL-APR ((i.e. around 12,000 document-
pairs)) was used both as monolingual and partially
aligned data with BRAVE-D approach to build vo-
cabulary of around 21k English, 22k German and



Model Dim en→ de de→ en en→ fr fr→ en en→ es es→ en
Majority class 40 46.8 46.8 22.5 25.0 15.3 22.2
MT 40 68.1 67.4 76.3 71.1 52.0 58.4
I-Matrix (Klementiev et al., 2012) 40 77.6 71.1 74.5 61.9 31.3 63.0
BAE-cr (Sarath Chandar et al., 2014) 40 91.8 74.2 84.6 74.2 49.0 64.4
CVM-Add (Hermann and Blunsom, 2014) 40 86.4 74.7 - - - -
DWA (Kočiský et al., 2014) 40 83.1 75.4 - - - -
BilBOWA (Gouws et al., 2015) 40 86.5 75 - - - -
UnsupAlign (Luong et al., 2015) 40 87.6 77.8 - - - -
Trans-gram (Coulmance et al., 2015) 40 87.8 78.7 - - - -
BRAVE-S(EP) 40 88.1 78.9 79.2 77.8 56.9 67.6
BRAVE-D(CL-APR) 40 69.4 67.9 64.1 56.5 - -
CVM-BI (Hermann and Blunsom, 2014) 128 86.1 79.0 - - - -
UnsupAlign (Luong et al., 2015) 128 88.9 77.4 - - - -
BRAVE-S(EP) 128 89.7 80.1 82.5 79.5 60.2 70.4
BRAVE-D(CL-APR) 128 70.4 70.6 66.2 57.6 - -

Table 2: CLDC Accuracy with 1000 labeled examples on RCV1/RCV2 Corpus. en/de, en/fr and en/es results of Majority class, MT, I-Matrix and
BAE-cr are adopted from Sarath Chandar et al., (2014)

18k French. Further, documents in the training and
testing data of RCV1/RCV2 corpora are represented
as described in § 4.3 with the vocabulary built. Ta-
ble 2 shows the comparison of our approaches with
the existing systems.

4.4.2 Multi-label CLDC - TED Corpus

To understand the applicability of our approaches
to wider range of languages3 and class labels, we
perform experiments with the subset of TED cor-
pus (Hermann and Blunsom, 2014). Aim of this
task is same as § 4.4.1, but experiments were con-
ducted with larger variety of languages and class la-
bels. TED Corpus contains English transcriptions
and their sentence-aligned translations for 12 lan-
guages from the TED conference. Entire corpus is
further classified into 15 topics (i.e. class labels)
based on the most frequent keywords appearing in
them.

To conduct our experiments, we follow the single
mode setting of Hermann et al. (2014) (i.e. embed-
dings are learned only from a single language pair).
Entire language pair (i.e. en→L2) training data of
the TED corpus is used both as monolingual and
parallel training data to learn bilingual word embed-
dings with dimensionality of 128 using BRAVE-S
approach. Bilingual word embeddings of 128 di-
mensions learned with EP and CL-APR are also

3Our goal is not to evaluate shared multilingual semantic
representation.

used for comparison. Documents in the training and
testing data of TED corpus are represented as de-
scribed in § 4.3 using each of these embeddings.
A multi-class classifier using averaged perceptron is
built using training documents in source language to
be applied on target language testing data for pre-
dicting the class labels. Table 3 shows the cumula-
tive F1-scores.

4.4.3 Cross-language Sentiment Classification
(CLSC)

The objective of the third CLTC task is to iden-
tify sentiment polarity (e.g. positive or negative)
of the data in target language by exploiting the
labeled data in source language. We chose sub-
set of publicly available Amazon product reviews
(CL-APR) (Prettenhofer and Stein, 2010) dataset
mainly English(E), German(G) and French(F) lan-
guages belonging to three different product cate-
gories (books(B), dvds(D) and music(M)) to con-
duct our experiments. For each language-category
pair, corpus consists of training, testing sets com-
prising 1000 positive and 1000 negative reviews
each with an additional unlabeled reviews varying
from 9,000 to 170,000.

We constructed 12 different CLSC tasks using dif-
ferent languages (i.e. E,G and F) for three categories
(i.e. B,D and M). For example, EFM refers English
music reviews as source language and French mu-
sic reviews as target language. Bilingual word em-
beddings with dimensionality of 128 learned with



Method de es fr it nl pt po ro ru tr
en→ L2
MT-Baseline 0.465 0.518 0.526 0.514 0.505 0.470 0.445 0.493 0.432 0.409
DOC/ADD 0.424 0.383 0.476 0.485 0.264 0.354 0.402 0.418 0.448 0.452
DOC/BI 0.428 0.416 0.445 0.473 0.219 0.400 0.403 0.467 0.421 0.457
BRAVE-S(TED) 0.484 0.436 0.456 0.507 0.328 0.506 0.453 0.488 0.456 0.491
BRAVE-S(EP) 0.418 0.365 0.387 0.418 0.284 0.454 0.412 0.424 - -
BRAVE-D(CL-APR) 0.385 - 0.212 - - - - - - -
L2→ en
MT-Baseline 0.469 0.486 0.358 0.481 0.463 0.374 0.460 0.486 0.404 0.441
DOC/ADD 0.476 0.422 0.464 0.461 0.251 0.338 0.400 0.407 0.471 0.435
DOC/BI 0.442 0.365 0.479 0.460 0.235 0.380 0.393 0.426 0.467 0.477
BRAVE-S(TED) 0.492 0.495 0.465 0.475 0.384 0.388 0.442 0.464 0.457 0.484
BRAVE-S(EP) 0.458 0.404 0.437 0.443 0.338 0.312 0.374 0.418 - -
BRAVE-D(CL-APR) 0.366 - 0.278 - - - - - - -

Table 3: Cumulative F1-scores on TED Corpus using training data in English language and evaluation on other languages (i.e. German (de),
Spanish (es), French (fr), Italian (it), Dutch (nl), Portugese (pt), Polish (po), Romanian (ro), Russian (ru) and Turkish (tr)) and vice versa. MT-
Baseline, DOC/ADD, DOC/BI represents single language pair of Hermann et al., (2014) as document features. Underline shows the best results
amongst embedding models.

Cross-Language Sentiment Classification (en→L2 and Vice versa)
Task CL-SCL CL-SSMC CL-SLF CL-DCI100 BSE BRAVE-S BRAVE-D

(EP) (CL-APR)
EFB 79.86±0.22 83.05±0.26 82.61±0.25 82.30 - 72.24±0.31 82.57±0.33
EFD 78.80±0.25 82.70±0.20 82.70±0.45 82.40 - 74.95±0.25 82.90±0.35
EFM 75.95±0.31 80.46±0.20 80.19±0.40 81.05 - 72.80±0.20 80.70±0.45
FEB 77.26±0.22 80.05±0.26 80.48±0.33 - - 75.45±0.38 80.28±0.21
FED 76.57±0.20 79.40±0.28 78.76±0.38 - - 73.75±0.26 79.80±0.15
FEM 76.76±0.25 78.82±0.17 79.18±0.33 - - 73.66±0.17 78.56±0.33
EGB 77.77±0.28 81.88±0.42 79.91±0.47 81.40 80.27±0.50 75.95±0.16 81.75±0.45
EGD 79.93±0.23 82.25±0.20 81.86±0.31 79.95 77.16±0.30 78.30±0.42 81.56±0.26
EGM 73.95±0.30 81.30±0.20 79.59±0.42 83.30 77.98±0.51 75.95±0.33 81.20±0.17
GEB 77.85±0.27 79.06±0.23 78.61±0.34 - - 72.25±0.20 80.23±0.17
GED 77.83±0.33 80.89±0.16 80.27±0.35 - - 73.28±0.23 80.78±0.20
GEM 77.37±0.34 79.85±0.17 79.80±0.26 - - 74.41±0.22 79.77±0.36

Table 4: Average classification accuracies and standard deviations for 12 CLSC tasks. Results of other baselines are adopted from CL-SCL (Pret-
tenhofer and Stein, 2010), CL-SSMC (Xiao and Guo, 2002), CL-SLF (Zhou et al., 2015a), CL-DCI100 (Esuli and Fernandez, 2015) and BSE (Tang
and Wan, 2014)

BRAVE-S and BRAVE-D are used to represent each
review as described in § 4.3. To have fair compari-
son with earlier approaches, sentiment classification
model is then trained with libsvm4 default parame-
ter settings using source language training reviews5

to classify target language test reviews. Table 4
shows the accuracy and standard deviation results
after we randomly chose subset of target language
testing documents and repeated the experiment for

4https://www.csie.ntu.edu.tw/ cjlin/libsvm/
5We do not use 100 labeled target language reviews in model

training, as it was shown by earlier approaches that 100 labeled
target language reviews does not have much impact.

10 times for all CLSC tasks.

5 Discussion

First CLTC task (i.e. CLDC) results presented in Ta-
ble 2 shows that BRAVE-S was able to outperform
most of the existing systems. Success of BRAVE-
S can be attributed to its ability to incorporate both
non-compositional and compositional meaning ob-
served in entire sentence and the individual words
respectively. Thus making it different from other
models which use only bag-of-words (Gouws et al.,
2015) or bi-grams (Hermann and Blunsom, 2014).

Similarly, second CLTC task (i.e. multi-label



Top-3 Nearest Neighbors (Euclidean Distance)
English Words Models German French
great wachstum éminent

BRAVE-S super maintenus
spielen m’efforcerai
schärfe festival

BRAVE-D mögen interressante
kraftvolle attachant

bored boykottiert ennuyé
BRAVE-S leere précédera

ausgehen compromettent
ableben réserve

BRAVE-D lichtblick intensité
traurigen consterné

Table 5: Nearest Neighbors for English Words in German and French.

CLDC) results presented in Table 3 shows that
BRAVE-S learned with the training data of TED cor-
pus outperformed single mode DOC/* embedding
models (Hermann and Blunsom, 2014), BRAVE-
S learned with EP and BRAVE-D. The BRAVE-
S(TED) was able to capture better linguistic regu-
larities across languages that is more specific to the
corpus, than the general purpose bilingual embed-
dings learned with EP. Though in some cases, all
our embedding models could not outperform ma-
chine translation baseline. This can be due to the
asymmetry between languages induced by the lan-
guage specific words which could not find its equiv-
alents in English.

Also, it can be apprehended from the Table 2 and
Table 3 that BRAVE-D results are not as expected.
Though being a general approach like BRAVE-S
which can capture both non-compositional and com-
positional meaning from larger pieces of texts, min-
imal overlap of vocabulary learned with BRAVE-
D using cross-language sentiment label-aligned cor-
pora with other domains (i.e. Reuters and TED) pro-
duce unfavorable results. Thus, we understand that
the choice of label/class-aligned corpora is crucial.

Final CLTC task (i.e. CLSC) results presented
in Table 4 shows that BRAVE-D outperforms other
baseline approaches in most of the cases. As
BRAVE-D learns bilingual word embeddings us-
ing CL-APR, it was able to inherently encom-
pass sentiment label information effectively like ear-
lier approaches (Tang and Wan, 2014; Zhou et
al., 2015b) than the general purpose embeddings
learned using BRAVE-S with EP and similar ap-

proaches (Meng et al., 2012). Thus making it
more suitable for sentiment classification task. Also
unlike CL-SSMC (Xiao and Guo, 2002) and CL-
SLF (Zhou et al., 2015a), BRAVE-D is not highly
parameter dependent where the results of the for-
mer approaches show big variance based on the pa-
rameter settings. To visualize the difference in em-
beddings learned with BRAVE-S and BRAVE-D,
we selected sentiment words and identified cross-
language nearest neighbors in Table 5. It can be
observed that BRAVE-D was able to identify better
sentiment (either positive or negative) word neigh-
bors than BRAVE-S.

6 Conclusion and Future Work

In this paper, we presented an approach that lever-
ages paragraph vectors to learn bilingual word em-
beddings with sentence-aligned parallel and label-
aligned non-parallel corpora. Empirical analysis ex-
hibited that embeddings learned from both of these
types of corpora have shown good impact on CLTC
tasks. In future, we aim to extend the approach
to learn multilingual semantic spaces with more la-
bels/classes.
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