
Noname manuscript No.
(will be inserted by the editor)

Interactive Relational Reinforcement Learning of Concept
Semantics

Matthias Nickles · Achim Rettinger

the date of receipt and acceptance should be inserted later

Abstract We present a framework for the machine learning of denotational concept seman-
tics using a simple form of symbolic interaction of machines with human users. The capa-
bility of software agents and robots to learn how to communicate verbally with human users
would obviously be highly useful in several real-world applications, and our framework is
meant to provide a further step towards this goal. Whereas the large majority of existing
approaches to the machine learning of word sense and other language aspects focuses on
learning using text corpora, our framework allows for the interactive learning of concepts
in a dialog of human and agent, using an approach in the area of Relational Reinforcement
Learning. Such an approach has a wide range of possible applications, e.g., the interactive
acquisition of semantic categories for the Semantic Web, Human-Computer Interaction, (in-
teractive) Information Retrieval, and Natural Language Processing.

Keywords: Reinforcement Learning, Concept Learning, Symbol Grounding, Statistical
Relational Learning, Interactive Learning, Meaning Disambiguation

1 Introduction

The large majority of existing approaches to the machine learning of aspects of language
and communication focuses on how to learn the semantics of words and other language
constructs in a textual context, typically from large text corpora. These approaches can nei-
ther take into account the dynamic behavioral context of the word use nor do they learn
in interaction with the human user who conceptualizes the respective word. Arguably, an

M. Nickles
Department of Computer Science
Technical University of Munich
E-mail: nickles@cs.tum.edu
Tel: +49-3212-1187769, Fax: +49-89-28917207

A. Rettinger
Institute AIFB
Karlsruhe Institute of Technology
E-mail: rettinger@kit.edu

2 Matthias Nickles, Achim Rettinger

important reason for this lack is that relevant approaches to machine learning (in particu-
lar Reinforcement Learning (RL)) typically still do not cope well with the complexity of
high-level, symbolic interaction. Our approach aims at this issue by seamlessly combining
approaches to Reinforcement Learning with rich yet computationally effective formal (log-
ical) representation and reasoning capabilities. Being a form of Relational Reinforcement
Learning (RRL) [1, 2, 27], our approach provides a more natural representation format and
even logical reasoning capabilities in complex environments with a rich relational structure,
such as realistic communication domains (compared to traditional Reinforcement Learn-
ing). While our implementation currently focuses “only” on the interactive learning of the
denotational formal semantics of uninflected concept names (i.e., using machine learning
in order to make the connection between a symbol and its initially unknown formal mean-
ing), our approach already allows for the computationally efficient integration of logically
represented knowledge into the learning process. Furthermore, our approach aims at the
learning of context-sensitive policies for the incremental querying of concepts from human
users, i.e., learning of sequences of questions and answer suggestions with which the learn-
ing agent tries to determine the formal semantics of a word (vs. some informal concept) in
a dialog with a human user or another agent. Thus, our work has a strong pragmatic focus.
Empirical results from extensive experimentation indicate the applicability of our approach
and directions of future research.
While this work introduces our general framework, we envisage a wide area of potential
application fields for our approach, such as the interactive acquisition of category semantics
for the (Semantic) Web and semantic technologies in general, communication grounding
and disambiguation in Human-Computer Interaction, interactive Information Retrieval, and
Natural Language Processing.

This article significantly extends [19], which briefly outlines the basic framework and
provides results from a single preliminary experiment. In contrast to [19], this article presents
a wider range of experiments with improved setups and detailed result analyses. Further-
more, the description of the learning framework is vastly extended, including full algorithms
and formal definitions.

The remainder of this paper is organized as follows: The next section presents related
works. Section 3 describes the general learning task, the formal calculus being used, and
other preliminaries. Section 4 and 5 introduce the formal learning framework, in particular
the learning algorithms, with a general approach (Section 4) instantiated for concept learning
(Section 5). Section 6 presents and discusses empirical results from the implementation of
our framework, and Section 7 concludes with a discussion of our approach and outlines
directions of future research.

2 Related Works

We are not aware of any other approaches to interactive Relational RL of concept semantics.
However, various approaches to supervised and unsupervised disambiguation of word sense
exist (see, e.g., [20, 25]), including approaches in the area of Statistical Relational Learning
(e.g., [31]). Conceptually related to our approach are also approaches to grounded language
acquisition, where the meaning of words is grounded in observable environment states or
events (e.g., [24, 21]). Most of these do not combine grounding with a dialogical learning
setup as we do, although some (e.g., [24]) enhance the learning process with the capacity fo

Interactive Relational Reinforcement Learning of Concept Semantics 3

perform ask/tell interaction (but do not learn to act in such dialogues). The challenging task
of learning to label words in natural language sentences with existing concepts (that is, their
identifiers) is tackled in [9]. In contrast to all of these approaches, our work puts a strong
emphasize on learning an interaction policy from reinforcements, in order to determine con-
cept semantics in an interactive decision process.
Pioneering work in the area of computational emergence and evolution of language se-
mantics in interactive settings was done by Luc Steels [22]. Although technically not very
closely related, his work had a significant influence on ours and many other contemporary
approaches to semantics learning.

Not many approaches to interactive learning in a MDP or POMDP setting exist (note
that this is not the same as multi-agent learning, as it will become clear later in this paper),
and to our best knowledge none of these aims at concept learning. [16] and various others
propose approaches to Interactive RL where some “human teacher” provides rewards for a
learning robot (which is a special case of our approach). [7] takes a more general look at
Interactive RL and investigates the precise meaning of this term. [11] presents an approach
to decision function learning from instructions provided in natural language, which contrasts
with most other approaches (including ours) where machine learning uses labelled examples
or rewards. However, there is some overlapping with our framework in that what our learning
agent interacts with could also be seen as a sort of (semi-)supervisor which serves as a human
teacher in support of the actual reinforcement learning task. Learning the ground meaning
of human concepts or human instructions can also take the form of demonstrations (tackled
typically using Inverse Reinforcement Learning), as, e.g., in [13]. An example for an early
statistical approach to dialogue learning in a MDP setting is [4]. More recent results and an
extensive survey regarding the use of (Hierarchical) RL for spoken dialogue optimization are
provided in [28], mainly addressing core Natural Language Processing (NLP) problems such
as uncertainty in speech recognition (which we do not aim at). [17] proposes an interesting
approach to Hierarchical Reinforcement Learning of communication, with an emphasize on
the optimization of communication needs for coordination, given the communication cost.
[5] uses RRL in an agent communication scenario, but in contrast to us they aim at learning
with whom to communicate. Apart from the latter, none of the aforementioned approaches
uses formal logic, and none deals with concept semantics learning.
Although the framework presented in this paper does not aim at general RRL but rather at
an application of RRL to interactive concept learning, an interesting detail of our approach
is its use of an ASP solver as a formal reasoner for MDP state updates and for reward and
action set computations, whereas other approaches to RRL typically either do not compute
states, rewards and action alternatives using formal reasoning (but focus on other aspects of
RRL instead) or use Prolog for these computations, such as [18].
We do not focus on classification (in the traditional sense) with this work, but in a certain
sense, the example problems presented in Section 6 could be seen as sequential classification
tasks, if we view the process of establishing a certain possible world as the grounding of a
certain concept as classification. A related approach to sequential classification is proposed
in [8], where classification is supported by a decision process where rewards are used to
determine the features to be incorporated for each data-point. Similarly to our approach, this
approach uses two kinds of actions: actions which affect the object domain and meta-level
interactions (for feature determination), which appear to correspond to actions which affect
the so-called interaction state, as described in Section 4. However, apart from these aspects,
the underlying techniques appear to be quite different and the precise relation to our model
is still open.

4 Matthias Nickles, Achim Rettinger

3 Preliminaries

3.1 Learning task and overall technical approach

Before we introduce the details of our learning framework, we want to outline our general
learning task and the overall technical approach to this task.

The machine learning task addressed by this paper can be best described as reinforce-
ment learning of interaction policies for the interactive learning of concepts (more precisely:
the formal semantics of concepts) by querying human users. In other words, the task is to let
a learning agent learn optimal (or near-optimal) dialogue act sequences consisting of ques-
tions (and answer suggestions) with which the agent tries to determine the unknown formal
semantics of one or more concepts in dialogue with a human interaction partner (or multiple
partners). The interaction partner knows the concept meaning, but cannot communicate it to
the agent easily for some reason, e.g., because of a lack of knowledge of an adequate formal
language, whereas the agent lacks knowledge of natural language.
So, the term “learning” has a twofold meaning here: learning concepts from users and learn-
ing how to do that.

The focus of our work is clearly more on the pragmatic aspects of learning semantics
than on classic NLP aspects (such as data mining in large corpora). We also do not focus on
the learning of complex concept structures (such as ontologies), syntax, or speech recogni-
tion, but on the learning of interaction trajectories usable for the learning of formal concept
semantics.

In our framework, each concept consists of a number of instances. We define the formal
semantics of a single instance to be a formal representation of a certain possible world (con-
figuration) of the object domain (the domain the interaction partners talk about), or a con-
sistent fragment thereof. In the framework, this is always a so-called answer set (also called
stable model), as explained later in detail. The formal semantics of the concept (sometimes
simply denoted as “the concept”) is then the set of the formal semantics of its instances.
As one can see, our learning framework abstracts away from properties of concepts (if we
would want to define a concept intentionally) and also does intentionally not say anything
about the object domain, since a concretization of these aspects is not required in the learn-
ing process.
Learning concept semantics using our approach thus actually means to learn which object
domain constellation(-s) the interaction partner has in mind when using a word which names
the respective concept. At this, potential problems such as homonymy and inconsistent con-
cept instance semantics are dealt with to some degree (using the machine learning concept
of non-stationarity), as explained later.

The learning agent and its interaction partner(s) initially share only a very limited set of
simple words with mutually known semantics. The agent uses these words in querying the
interaction partner in order to learn the semantics of new words (concept names). After a
new concept has been learned, it can also be used in questions to the user.
The agent’s task is to find out the semantics of concepts by more or less intelligently search-
ing the space of all possible configurations of the object domain. The virtual or possibly even
physical movements of the learning agent from one state to another are modeled directly as
a Markov Decision Process (MDP). The agent can ask the human user simple questions ac-

Interactive Relational Reinforcement Learning of Concept Semantics 5

cording to schemas such as “Does concept c1 resemble the known concept c2?” or “Is the
wanted semantic related to the current state by the relative concept c?” (relative concepts
being comparatives such as “bigger” or “lower”). Depending on the answer provided by the
human, the agent proceeds to a new candidate state of the object domain, until the human
user, who is able to observe the current state, identifies the state as the correct (partial or
full) semantics of the concept being learned.
Only a simple interaction protocol is imposed (e.g., demanding that questions have to be
answered) - everything else, in particular, when to use which question, needs to be learned
by the agent from episodes of experience with its human interaction partner(s). Additional
challenges here which we will deal with are humans who give inconsistent answers and the
case that there might be multiple different interaction partners who possibly assign different
meanings to the same word. However, we do not deal with noise and other errors on the
level of technical signal transmission (such as dropped messages or speech recognition).
The names of the concepts (i.e., the actual words) also do not matter much, only the actual
concept behind the word is important. Concept identifiers might be provided by the human
user or be automatically generated according to some scheme.

As a motivating example, consider the following learning task:

Let’s suppose the learning agent lives in a so-called blocks world, consisting of a number
of movable blocks and a table. The user wants the agent to reconfigure the blocks world. He
has some idea (informal concept) of what “nice” blocks world configurations would look
like, but the agent does not have a clue yet. A blocks world configuration is a specific ar-
rangements of blocks and acts as a ground instance of the respective concept (see the four
example instances of the concept “high” depicted in Figure 1). Unfortunately, the human
user cannot communicate his idea to the agent in a single, precise message, since the blocks
world is large and complex, and the concept might consist of several possibilities (various
different configurations). Also, the user might not be able to formalize concepts anyway.
Furthermore, the agent, being an artificial agent, understands only pretty simple symbolic
commands and questions, but no natural language sentences. For all these reasons, the hu-
man needs to teach the agent iteratively in a simple step-by-step dialogue how a desired
blocks world configuration looks like, by means of giving rewards for improvements of the
blocks world and by answering questions received from the agent. Fortunately, user and
agent can share a set of concepts whose semantics (formal groundings) are already known
to the agent. Even more, after having learned a new concept, the agent memorizes its se-
mantics and can use this concept subsequently within questions directed to the user. E.g.,
the agent might already know what “lower” means (a blocks world configuration is lower
than another in terms of the height of towers of stacked blocks) and can thus ask the user
whether the desired configuration is lower or not, compared to the current configuration. So,
the agent acts by asking questions (using already learned or predefined shared concepts), but
also by presenting the user at each step a new, improved (or sometime worse) blocks world
configuration, until the user is happy with it.
The learning task is actually twofold: firstly, the agent learns what a concrete “nice” configu-
ration is, and secondly and more importantly, the agent learns (over multiple such episodes)
to improve its action policy (how to accumulate reward, which questions to ask, how to build
parts of the configuration...). Each blocks world configuration has a precise formal represen-
tation which is taken as the actual semantics of the concept “nice blocks world” as soon as
the user is satisfied with it (or as an instance of the semantics, in case there is more than one

6 Matthias Nickles, Achim Rettinger

“nice” blocks world configuration).

a

b

d

c

c

e

b

d

b

e

d

a

…

e a c

a

b

c

d

e

Fig. 1 Four example instances (blocks world configurations) of the concept “high (building)” in a blocks
world which consists of five blocks altogether (a,b,c,d,e)

In our experiments, all learning takes place in an interactive setting - however, our frame-
work allows for the integration of any kind of formal background knowledge and data from
other information sources, as long as it is provided in form of first-order logic, and provided
the respective object domain is finite (a restriction shared with most other approaches in the
field of Statistical Relational Learning, such as Markov Logic Networks [6]).

We believe that this scenario is basically realistic - in many real-world software applica-
tions, e.g., in the HCI area or in dialogical information retrieval, users need to communicate
with machines using a simple yet flexible vocabulary, in case the user is not able to pro-
vide commands and other communications using some complex formal language, whereas
software is typically not easily equipped with sufficient or any NLP capabilities. Having an
artificially intelligent facility for learning (or disambiguating) the meaning of words from
the user is supposed to be highly useful here.

A core technical theme of our paper is the efficient utilization of formal knowledge
during the statistical learning process. A combination of logical knowledge representation
and statistical learning is not only a necessity for the space efficient representation and pro-
cessing of large state/action spaces, but is also required in order to utilize large or complex
amounts of knowledge for the learning process, such as given interaction protocol specifica-
tions, guidance for the human interaction partner(s), information from external sources such
as databases, and formal rules which constrain agent behavior. Furthermore, our framework
needs to deal with formal knowledge acquired during the interaction process (in particu-
lar memorizing the semantics of concepts already learned). We address these requirements
using a form of Relational Reinforcement Learning (RRL) supported by Answer Set Pro-
gramming (ASP). ASP also neatly supports automated planning [14], which comes handy

Interactive Relational Reinforcement Learning of Concept Semantics 7

later in our framework (Section 5).

Being part of the increasingly popular area of Statistical Relational Learning (SRL) [35],
Relational Reinforcement Learning [1, 2] uses relational representations of Markov states
and actions (e.g., formal-logically). This allows for a rich formal characterization of com-
plex domains whose complex structural properties would otherwise be inaccessible to RL.
Various approaches to Relational RL exist, including [2, 32]; for an extensive survey, please
see [27].
While we do not aim at improving RRL as such with this work (but rather aim at applying
it for interactive concept semantics learning), our framework differs from traditional Rela-
tional RL approaches in its human-agent interaction component and by the use of a highly
efficient approach to the employment of formal rules as background knowledge, namely an
Answer-Set Programming (ASP) implementation of the Event Calculus (EC) [39]. The ba-
sic learning algorithm is a variant of Relational Q-learning [10]. Besides the general benefit
of Relational RL (i.e., the ability to represent and learn in structurally very complex do-
mains), the main advantage of this hybrid approach is that it seamlessly integrates logical
reasoning and RL. Concretely, the use of the Event Calculus (EC) significantly simplifies
the modeling of logical conditions, contexts and effects for/of agent and human actions, and
the use of ASP facilitates a computationally efficient computation of reasoning tasks in the
EC, including planning (a discussion of efficiency issues will be presented in Section 5).

3.2 The Event Calculus

The Event Calculus [38, 37] and its cousin, the Situation Calculus (SC) [26], are popular
and easily implementable formal calculi for reasoning about actions and other events and
their effects in dynamic systems. EC and SC are close relatives: both can be implemented in
a logic programming environment, both provide efficient means for dealing with the frame
problem (the old AI problem of formalizing domain dynamics without having to make ex-
plicit all non-effects of actions), and syntactical schemas for translating one into the other
exist. The reason for using the EC instead of the SC (or other related formalisms, such
as temporal action logics) in this work is thus to some degree a matter of taste. However,
technically, the EC’s provision of a discrete time structure simplifies the specification of dy-
namic systems such as MDPs, whereas the main strength of the SC over the EC (its better
suitability for hypothetical reasoning) seems not so important for our use case. A detailed
comparison of EC and SC can be found in [37]
There are several variants of the EC. We make use of the so-called Circumscriptive Event
Calculus [38], which is arguably one of the most popular forms of the EC (circumscription
is a specific way of solving the frame problem).
The EC defines a first-order language with reified fluents (conditions which can change over
time, such as “the green block lies on the table”) from which only the knowledge of the
following predicates is required for understanding this paper. In our framework, the back-
ground knowledge base of the learning agent consists entirely of EC formulas.

HoldsAt(f , t) denotes that fluent f is true at time point t.
Happens(e, t) denotes that event e occurs at time point t. For us the most important events

are the actions performed by the learning agent.
Initiates(e, f , t) specifies that fluent f becomes true at time t + 1 in case event e occurs at

time t.

8 Matthias Nickles, Achim Rettinger

Terminates(e, f , t) specifies that fluent f becomes false at time t + 1 if event e occurs at
time t.

Clipped(t1, f , t2) denotes that fluent f is terminated between times t1 and t2.
Declipped(t1, f , t2) means that fluent f is initiated between times t1 and t2.

However, for understanding most of this paper, the knowledge of the following predicates
should suffice: HoldsAt(f ,t), Happens(e,t), and Initiates(e, f ,t).

Time points are discrete, linearly ordered, and can refer to the past, the present, and the
future.
Although fluents look much like predicates, they are in fact reified. As such, they can be
quantified over.

3.2.1 Blocks world domain formulated using the EC

As a running example for an object domain, we use the well-known blocks world (BW),
which is arguably the most frequently used benchmark domain in the context of RRL. Al-
though straightforwardly representable using the Event Calculus and easy to explain, the
BW is highly scalable and far from trivial from a computational point of view. BWs are
ideal for use with RRL, because unless the BW is very small, it can be compactly repre-
sented only using a relational language with variables.
A BW is a relationally structured domain in which an agent observes and acts in a sort of
grid with discrete positions. At each position there can be either a block (named as blockA,
blockB, ...), or the table, or nothing. The fact that some block x is on top of some other block
y is expressed with on(x,y). on(x, table) means that block x is directly on the table. clear(x)
denotes that there is currently no block on top of block x. Fluent clear seems redundant (it
can always be expressed in terms of on, provided the BW is finite and its size is fixed), but
clear is helpful as a short-cut for an equivalent configuration of fluents with predicate on.
The agent acts in the BW by moving blocks using a “stacking” action, conditioned by certain
pre- and post-conditions (e.g., both the moved block and the target of the move need to be
clear in beforehand). A stacking action which moves block x on top of block y is expressed
with stack(x,y). If the action succeeded, subsequently on(x,y) holds.
Our BW is finite and fully observable both for the learning agent and the human interaction
partners.

Using the EC, the truth of statements about which block is where is time-dependant
and dynamic, that is, these statements are fluents. E.g., HoldsAt(on(blockC,blockB),25)
denotes that blockC lies on blockB at time 25. We can also quantify over blocks and time
steps:
∃block.HoldsAt(on(block, table),12)
denotes that there is at least one block on the table at time step 12.
As another example,
Happens(stack(blockA,blockB),T +1) :−Happens(stack(blockB, table),T)
specifies that if blockB has been put on the table at time T (a universally quantified variable),
blockA needs to be stacked on top of blockB at the following time step.
Events are not restricted to action events, but in our framework, the only types of events are
actions performed by the learning agent in the object domain (such as stack(blockB, table)),
speech acts addressed to its interaction partner(s), and speech acts performed by interaction
partners.

Interactive Relational Reinforcement Learning of Concept Semantics 9

Actions in the object domains are precisely those events which transform the current Markov
state (informally, a set of fluents from the object domain, such as {on(blockA, table),
on(blockB,blockA)}) into another state during the search for the semantics of some concept.
Speech acts also cause state transitions, but we will later see how to separate “object domain”
states (e.g., blocks world configurations) from “interaction domain” states.

3.2.2 Reasoning in the EC

Reasoning in this calculus is first order reasoning based on a set of certain axioms. For a
detailed description and the reasons behind these axioms, please see [38].

Clipped(t1, f , t2)↔∃a, t.Happens(a, t)∧ t1 ≤ t < t2∧
Terminates(a, f , t)

(1)

Declipped(t1, f , t2)↔∃a, t.Happens(a, t)∧ t1 ≤ t < t2∧
Initiates(a, f , t)

(2)

HoldsAt(f , t2)← Happens(a, t1)∧ Initiates(a, f , t1)

∧t1 < t2∧¬Clipped(t1, f , t2)
(3)

¬HoldsAt(f , t2)← Happens(a, t1)∧Terminates(a, f , t1)

∧t1 < t2∧¬Declipped(t1, f , t2)
(4)

HoldsAt(f , t2)← HoldsAt(f , t1)∧ t1 < t2
∧¬Clipped(t1, f , t2)

(5)

¬HoldsAt(f , t2)← ¬HoldsAt(f , t1)∧ t1 < t2
∧¬Declipped(t1, f , t2)

(6)

EC reasoning can take many concrete forms, including the use of Prolog and the use
of Answer Set Programming [39]. The ASP approach currently provides the fastest form of
reasoning in the Event Calculus for standard benchmark problems, and for finite domains,
the ASP-based implementation of the EC is fully equivalent to the Circumscriptive EC [39].
We utilize an interplay of EC and ASP, because they add up to an ideal combination of
reasoning about dynamic systems and the efficient practical realization of such reasoning. A
shortcoming of this solution is that it restricts us to finite domains (a restriction shared with
most current approaches to Statistical Relational Learning).
The ASP-solver computes a finite set of so-called answer sets or stable models of the agent’s
EC knowledge base (a form of satisfying logical models in form of sets of propositional
formulas). From now on, if not indicated otherwise, we will use the term “model” as in ASP-
terminology, i.e., to denote a stable model. Readers not familiar with ASP may conceive
“model” quite safely as ground “possible world” or as “Herbrand interpretation” within the
scope of this work. Related to the EC, a model is a set of fluents which hold at a certain time
step.

10 Matthias Nickles, Achim Rettinger

4 Learning framework

In the following, we will specify our learning framework, in two steps: in this section, a
number of interactive and non-interactive RRL algorithms are presented, and in Section 5,
the utilization of those algorithms for concept semantics learning is introduced. The latter
part is achieved almost entirely in form of logical programming (facts and rules formalized
using the EC) and is in no way fixed - virtually any sort of logical specifications could be
“plugged into” the learning algorithms in order to provide different learning settings or prior
knowledge.

4.1 Basic learning algorithms

As already pointed out, in our scenario the learning agent learns how to act optimally in
its environment. As a part of that, it learns to communicate with one (human) interaction
partner at a time.
Apart from what is needed for the learning process, no assumptions or requirements are im-
posed on the agent’s cognitive, reasoning or sensing capabilities.

Before we introduce our interactive learning algorithms, which are based on general
RRL algorithms introduced in [1, 2, 10, 15], let us briefly recapitulate general Relational
Reinforcement Learning (RRL): Reinforcement Learning (RL) aims at learning an optimal
behavior policy, that is, which action is preferred in any given state of the learning agent’s
environment in order to maximize future rewards. The difference between standard RL and
RRL [1] is that the latter uses a relational representation format for states and actions (or
even a formal logic) and makes use of this format in order to improve learning, for example
by employing some relational regression mechanism or by enabling a compact relational
representation of the approximated value function.

The basic algorithm (Algorithm 1) which we build upon is plain Q-learning, but de-
manding a relational (e.g., logical) format for states and actions, which will be utilized in
concrete instances of the algorithm later in this paper.
We assume full observability of the environment, which allows us to represent the underly-
ing state progression as a Markov Decision Process (MDP).

Definition 1 (Value-based Relational RL) Let

– S be a set of possible domain states, represented in a relational format,

– A be the set of all agent actions, represented in a relational format,

– As : S→ 2A result in a set of agent actions possible in a certain state, represented in a
relational format,

– PS : S×A×S→ [0;1] be a state transition probability function (typically unknown), and

– R : S×A→ R be a real-valued reward function.

The agent’s goal is to learn an optimal action selecting policy π∗ : S→ A which max-
imizes the discounted return Rπ∗

t = ∑
∞

k=0 γkrt+k+1 from any time step t. rt = R(st ,at) is

Interactive Relational Reinforcement Learning of Concept Semantics 11

the reward received after action at has been performed in state st at time t. In other
words, the return is the cumulative reward obtained in the future, starting in state st .
Future rewards are reduced by some discount factor γk ∈ [0;1]. The optimal Q-function
Q∗Rel : S×A→ R yields the value (Q-value) of taking a certain action in a certain state,
and is estimated using a form of Relational Q-learning [10] in our framework. The cur-
rent estimate is the Q-function (or Q-table) QRel . The subindex Rel should indicate that
we will later use a relational means in order to improve the estimation of Q-values (see
Section 4.3.1). Also, state updates and various other operations will make use of the
relational format of states and actions in later instances of the basic algorithms.
The optimal policy follows directly from Q∗Rel (that is, choose in each state the action
with the highest Q-value according to Q∗Rel).

Algorithm 1 (Relational Q-Learning)

loop
Initialize QRel

Specify start state s
repeat

a← π(s), where π is some policy based on QRel (e.g., ε-greedy)
Perform action a, observe new state s̄
Observe reward r← R(s̄,a)
if s̄ is not a goal state then

QRel(s,a)← r+γmaxā∈As(s̄)QRel(s̄, ā) (learn: correct the Q-value by updating the
old value using new information (value iteration update))

else
QRel(s,a)← r (learn)

end if
s← s̄

until s is a goal state
end loop

Definition 2 (Interactive Relational RL)
From now on, reward will be given directly by the interaction partner (or more pre-

cisely: they are determined from the state of the interaction), the partner’s actions will be
made explicit in the algorithms (as opposed to being just visible as ordinary observations
in the environment), and the partner’s actions can constrained by the agent. The following
algorithm (Algorithm 2) for Interactive Relational RL (IRRL) is nevertheless not an exten-
sion or modification of (Relational) Q-learning, but just a notational variant where states are
split into domain and interaction states. However, externalization of reward-giving to some
human user and letting the state depend on human-generated events have important conse-
quences wrt. stationarity of the environment and the reward function, as elaborated below.
Furthermore, we now allow for guidance: the agent computes the set of possible actions
allowed to be performed by the human interaction partner and lets the human perform only
an action from this set, i.e., the agent constraints its environment. (Note that letting the inter-
action partner provide reward is also a form of guidance, however, we use the term guidance
only in the aforementioned sense in this paper.)
Let

– OS be a set of object domain states, each represented as a set of object domain fluents
(represented in a relational format). In our running example domain, these are the pos-

12 Matthias Nickles, Achim Rettinger

sible constellations of the blocks world.

– IS be a set of interaction states, each represented as a set of interaction fluents (in a
relational format). Informally, an interaction state is a “state of communication affairs”,
as opposed to states of the object domain (e.g., “The interaction partner has demanded
that...” or “The interaction partner has replied positively”). In other words, interaction
states are meta-states referring to social interaction and speaking about the lower-level
object domain. In particular, this comprises all relevant information the learner has about
the interaction with its human partner, determined from the course of speech acts which
have been performed so far.
Formally, a fluent is an interaction fluent in our framework simply if it is not a condition
of the object domain.

Later, we will simply combine OS and IS into a single notion of state, but for now we
keep them separated in order to emphasize the different content levels of OS and IS.

– A be a set of all possible actions of the learning agent, represented in a relational format,

– Es : OS×IS→ 2A give a set of agent actions possible in a certain combined domain/interaction
state, represented in a relational format,

– IA be a set of all possible actions of the interaction partner, each represented in a rela-
tional format,

– EHs : OS× IS→ 2IA give a set interaction partner action events possible in a certain
combined domain/interaction state, represented in a relational format,

– θ :N×OS× IS×A× IA→ IS be the interaction state determination function (see be-
low),

– RIS : IS→ R be a real-valued reward function which determines the rewards from inter-
action state using formal reasoning,

– π : OS× IS× 2A → A be the policy function of the learning agent. There are several
possibilities to define this function (see, e.g., [2]). In Definition 3, we will propose a
concrete instance.

– QRel : OS× IS×A→ R simply corresponds to QRel(os∪ is,a) in Definition 1.

(Other symbols as in regular Relational Q-learning, see Definition 1)

Rewards depends here on some external, possibly unreliable source (human, robot or
software agent). That is, the reward function is not necessarily stationary and thus conver-
gence of the Q-learning value estimation process to an optimal policy is no longer guar-
anteed; this issue is also a known obstacle in Multiagent Learning (where one or more of
the interaction partners also explicitly learn, and not just a single agent as in our scenario),
which we do not consider here.

Even more, we possibly have a non-stationary model of the environment where the state
transitions (as for the IS) depend on time and history. This also means that learnability might

Interactive Relational Reinforcement Learning of Concept Semantics 13

be impossible or severely restricted, depending on the “stationarity” of the interaction part-
ner. In particular, observe that the result of the interaction state transition function θ depends
also on a time point. We use θt(os, is,a,ah) to stress that the other agent or human reacts on
the recent action a of the learning agent, but also that this is not the only determining factor.

Later, we will tackle this issue by means of so-called profiles and by a form of general-
ization.

The idea of having “interactive states” is borrowed from [12] (similar ideas can be found
in the area of Multiagent Learning), but with the difference that we do not aim at modeling
the interaction partner’s cognitive state (in terms of nested beliefs or the like), but only those
aspects of the human-agent interaction which do not directly relate to the object domain.
Note that both types of state (both IS and OS) are assumed to be fully observable for the
learning agent.

Algorithm 2 (Interactive Relational Q-Learning)

loop
Initialize QRel (the Q-function, cf. Def. 1)
Specify start state os, is, start time t
repeat

a← π(os, is,A)
Perform action a
Observe new object domain state os
Provide guidance: Let interaction partner choose her action ah solely from set EHs(os, is)
Let interaction partner perform ah
Determine new interaction state: is← θt(os, is,a,ah)
t← t +1
Obtain reward: r← RIS(is)
if os is not a goal state then

QRel(os, is,a)← r+ γ maxā∈Es(os,is)QRel(os, is, ā) (learn)
else

QRel(os, is,a)← r (learn)
end if
os← os
is← is

until os is a goal state
end loop

4.2 ASP-supported Relational RL

We now present the (non-interactive) ASP-supported variant of RRL, an instance of RRL
which makes use of Answer Set Programming for all state updates and action set and reward
computations, based on an approach introduced in [15].

Before we show the actual algorithm (Algorithm 3), we need to explain how it deals with
formal knowledge: syntactically, our learning agent’s knowledge base (KB) is a disjunctive
logic program, and all reasoning is done using an Answer Set Programming (ASP) reasoner

14 Matthias Nickles, Achim Rettinger

(“solver”). The learning algorithm performs certain monotonic extensions of the KB deter-
mined by the agents interaction with its environment, and possibly further revisions of its
KB depending on the agent’s cognitive architecture (which we do not specify).
The ASP-solver is invoked in each learning step in order to compute a finite set of so-called
stable models (answer sets) of the learning agent’s KB. These are types of satisfying logical
models in form of sets of ground atoms. Fluents and actions are present within stable models
as ground atoms of the form HoldsAt(f luent, time) and Happens(event, time). The function
of the ASP-solver at each learning step is manifold: most important, it computes the new
state in the MDP, given the agent’s recent action and observation. It does so with help of
static background knowledge, such as post-/preconditions of actions formulated in the EC,
and optionally further rules which are domain-specific, such as the physics of the blocks
world.
Furthermore, the solver computes the set of actions which are logically possible at the next
time step and from which the learning agent chooses its next action.

ASP is arguable a more convenient way for computing the set of alternative actions and
the updated state, compared to traditional logic programming used in RRL, since the stable
models obtained from the ASP-solver are already complete sets of ground atoms which
cover the entire requested information set (and ASP-solvers are, like SAT-solvers, optimized
for computing such sets). No further computation needs to be performed for this, just a set of
formal rules is required. Furthermore, ASP currently provides the fastest form of reasoning
in the EC for standard benchmark problems, and translations of FOL EC into ASP (logic
programs using stable model semantics) are fully equivalent to the Circumscriptive EC [39]
for finite domains like ours.

Definition 3 (ASP-supported RRL)
Let

– S the set of all possible states,

– A be the (global) set of all possible actions of the learning agent, each represented in a
relational format,

– QRel : S×A→R be the Q-function (as in Definition 1),

– KB be the set of all possible knowledge bases,

– kb be the knowledge base of the learning agent. This comprises all kinds of rules and
facts the agents happens to know or comes to believe (including information about ac-
tions and observed events).

– models : KB→ 2M be a function which computes all stable models of a knowledge base,
with M being the set of all Herbrand-interpretations of KB1.

– Es : 2M×N→ 2A computes the set of all actions of the learning agent which are possible
according to at least one given model. M as defined above.

1 In order to avoid a lengthy formal introduction of the term stable model here, which would be out of
scope.

Interactive Relational Reinforcement Learning of Concept Semantics 15

If the current state corresponds to time step t, an action is considered possible if it might
happen at time t. Formally:
a ∈ Es(M, t)↔∃m ∈M : Happens(a,t) ∈ m.

– fluents : 2M ×N→ S be a function which computes from stable models the set of all
fluents which hold at a certain time t. This subset of the entire stable model constitutes
a state. It does not contain any “time stamps”, i.e., if a fluent appears as ground atom
HoldsAt(f luent, time) within the stable model, the state contains just fluent.
If the argument of fluents is a non-empty set (nondeterminism), one model is picked
(“observed”), according to some probability distribution. M as defined above.

– R : S→ R be a real-valued reward function.

– π : S×2A→ A be the policy function with

π(s,A′) = argmaxa∈A′QRel(s,a)

(A′ being a subset of A)
Instead of argmax, Boltzmann-softmax or ε-greedy action selection can be used in the
body of π, in order to foster exploration. In our experiments, we used ε-greedy with an ε

of 0.2, meaning that the action with the highest value is picked with probability 1−0.2,
and another action is randomly selected with probability 0.2. Note that this is not the
only source of randomness (and therefore exploration) in action selection: the list of
stable models (and legal actions) retrieved from the ASP-solver in each learning step is
in unspecified order and the initial state in each episode is chosen randomly.

Algorithm 3 (ASP-supported Relational Q-learning)

loop
Specify start state (possibly empty, but normally a random sample of all logically con-
sistent states): s = f luents(m), with M = models(kb)
Start time: t← 0
repeat

a← π(s,Es(M, t))
Perform action a
Retrieve new state s:

kb← kb∪Happens(a,t +1)
M← models(kb)
s = f luents(M, t +1)
if M is nondeterministic wrt. the next state2 then

kb← kb∪ s (fix the choice of the new state in the knowledge base)
end if

Get reward: r← R(s)
if s not a goal state then

QRel(s,a)← r+ γ QRel(s, ā) (learn)
else

QRel(s,a)← r (learn)

2 Formally: M is called nondeterministic in our framework wrt. the state at some time t iff ∃m,m′ ∈M :
m |= holdsAt(f , t)∧m′ 6|= holdsAt(f , t) for some fluent f .

16 Matthias Nickles, Achim Rettinger

end if
s← s
t← t +1

until s is a goal state, or some maximum reward sum is exceeded, or some maximum
number of time steps is reached

end loop

Possiblecnewcstatec1

holdsAtNfluent5N…ryctx1r
holdsAtNfluent9N…ryctx1r

…

Possiblecnewcstatec2

- holdsAtNfluent5N…ryctx1r
- holdsAtNfluent9N…ryctx1r

…

Possiblecnewcstatec3

- holdsAtNfluent5N…ryctx1r
holdsAtNfluent9N…ryctx1r

…

Modelc1/possCcactioncactX

- holdsAtNfluent5N…ryctx1r
holdsAtNfluent9N…ryctx1r

…
happensNactXyctx1r

Modelc2/possCcactioncactY

- holdsAtNfluent5N…ryctx1r
holdsAtNfluent9N…ryctx1r

…
happensNactYyctx1r

Timect

Agentcknowledgecbasec

CCC
holdsAtNfluent5N…ryctr
holdsAtNfluent9N…ryctr

…
happensNactionyctr

Statect

Nondeterministic
statectransition

Selectioncofcnewcstatec

ASPcsolverccallcN1r ASPcsolverccallcN2r

Statectx1

actY

Selectioncofcnextcactionc
tocperform

Modelscherecdiffercforc
timestampctx1conlycwrtCc

possiblecnextcactions:

Performcnextcaction

Any actions happening at time t

Computationcofcset E (set of possible next agent actions)

Fig. 2 State and action selection steps in the learning process (somewhat simplified, omitting profiles). Note
that the formula prefix “-” means negation. Further note that actions happening at time t (left hand side)
comprise agent as well as human actions.

The previous algorithm contains non-trivial model and action selection steps. After the
agent has performed its most recent action, the ASP solver provides it with a set of models M
from which the next state is selected. The transition of states is possibly nondeterministic,
namely in the case when multiple candidates for the next state exist (e.g., think of rules
which say (informally): “After tossing a coin, the outcome is either heads or tails. If it is
heads, stack blockA on top of blockB. Otherwise, put blockA on the table.” - such rules can
be easily specified in the EC using disjunction and various other choice constructs). To make
the process more intuitive, the major steps involved here are depicted graphically in Figure
2 (somewhat simplified compared to the full algorithms).

4.3 ASP-supported Interactive Relational RL

Merging the previous algorithms, we obtain our approach to ASP-supported Interactive
RRL. As a further ingredient, we add the possibility of non-monotonic knowledge base

Interactive Relational Reinforcement Learning of Concept Semantics 17

modifications by means of so-called profiles.

Profiles and states

Profiles address the problem of possible non-stationary behavior of interaction partners
- these might change their ostensible beliefs and intentions during conversation (or more
concretely, the intended meaning of a concept name), in which case the state of interaction
becomes inconsistent and the Q-table might contain misleading values obtained from earlier
learning phases. Also, the problem of homonymy (the same word spelling is used for differ-
ent concepts) is dealt with using profiles.

Profiles work similarly to cookies from the viewpoint of web servers: they allow the
learner to adapt its learning process to the respective partner and its current behavioral pro-
file. A profile is basically a “tag” in form of adequate ground atoms and therefore profiles are
part of the states of the MDP. But in contrast to ordinary formulas which are part of the state,
profiles are automatically carried over to the next learning episode, by incorporating them
at runtime into the agent’s background knowledge base (until they are updated or removed).
Furthermore, they are automatically removed from the knowledge base when they become
logically inconsistent with the rest of the agent’s knowledge (e.g., when the profile becomes
negated in response to some agent action or the behavior of the interaction partner). Finally,
profiles do not only structure the Q-table (as all components of the Markov state do), but
they also limit the computation of similar state/action-pairs (using k-nearest neighbor in the
instance-based learning mechanism, cf. Section 4.3.1) to those pairs whose states belong to
the same profile-determined partition of the Q-table. Doing so, a profile can provide a sim-
ple, continually revisable model of the current communication partner (or any other aspect
of the learner’s environment) during all those learning episodes where the respective profile
is set. This allows for the learning algorithm, e.g., to account for mutually-inconsistent hu-
man behavioral patterns, by “switching” between those non-stationary patterns. In contrast
to techniques for dealing with semantic drift, this also accounts for recurring patterns (e.g.,
dealing with different, mutually-inconsistently acting partners who take turns in talking to
the learning agent). However, profiles are not a mechanism for concept (meaning) evolution
(as in Luc Steels’ works [22]), since they do only affect the learning of the agent’s action
policy, not the learned concepts as such.

By incorporating profiles into Q-table entries, profiles can be used to “partition” the
Q-table into subsections, each corresponding to a certain profile. If the learner changes the
current profile whenever it has obtained relevant new information (e.g., detection of incon-
sistent ostensible beliefs of the interaction partner, as in an example shown in Section 6), it
switches to the appropriate partition of the Q-table. Sufficiently fine grained and loaded with
information from the observation history, profiles might even enable the learner to deal with
simple POMDPs, like an approximation of continuous space belief-MDPs (but we haven’t
investigated this possibility).

Altogether, our learning agent deals at each step of a learning episode with the following
information sets:

1. the learning agent’s current knowledge base KB ,
2. the stable models of KB (sets of ground atoms deduced from KB, corresponding to

possible worlds),

18 Matthias Nickles, Achim Rettinger

3. the (observable) object domain states OS and the interaction states IS, and
4. the current profile.

Together, these information pools form a hierarchy (with KB being at the root) from which
the stable models are derived by the ASP solver. From the stable models, the domain state,
the interaction state and the profile are obtained by selecting the appropriate fluents.
Each Markov state combines domain state, interaction state and the current profile. The first
two are not conceptually different from the point of view of Reinforcement Learning.

Definition 4 (ASP-supported IRRL)
Let

– OS as in Definition 2,

– IS as in Definition 2,

– S : OS× IS (all possible states, combining object domain and interaction states),

– P the set of all those ground atoms which can possibly be used in profiles,

– A be the (global) set of all possible actions of the learning agent, each represented in a
relational format,

– QRel : S×P×A→R be the Q-table. Note that the actual state is from OS× IS, whereas
the profiles provide a sectioning of the Q-table in sub-Q-tables, each for a different pro-
file. Below we will propose a mechanism for a more elaborate representation of Q-values
which makes use of prediction.

– IA be a set of all possible action events that can be performed by the interaction partner,
each represented in a relational format,

– KB be the set of all possible knowledge bases,

– kb be the knowledge base of the learning agent. This comprises all kinds of rules and
facts the agents happens to know or comes to believe (including information about ac-
tions and observed events).

– models : KB→ 2M be a function which computes all stable models of a knowledge base,
with M being the set of all Herbrand-interpretations of KB3.

– Es : 2M×N→ 2A computes the set of all actions of the learning agent which are possible
according to at least one given model. M as defined above.

If the current state corresponds to time step t, an action is considered possible if it might
happen at time t. Formally:
a ∈ Es(M, t)↔∃m ∈M : Happens(a,t) ∈ m.

3 In order to avoid a lengthy formal introduction of the term stable model here, which would be out of
scope.

Interactive Relational Reinforcement Learning of Concept Semantics 19

– EHs : 2M ×N→ 2IA be conceptually the same as Es, but for action event emitted by
the interaction partner (as a sort of soft constraining or guidance for the partner). M as
defined above.

– fluents : 2M ×N→ S be a function which computes from stable models the set of all
object domain and interaction fluents which hold at a certain time t. This subset of the
entire stable model constitutes a state. It does not contain any “time stamps”, i.e., if a
fluent appears as ground atom HoldsAt(f luent, time) within the stable model, the state
contains just fluent.
If the argument of fluents is a non-empty set (nondeterminism), one model is picked
(“observed”), according to some probability distribution. M as defined above.

– R : S→ R be a real-valued interactive reward function.
Obviously, the direct provision of reward by the interaction partner (as in conventional
Interactive RL [7, 16]) is a special case of this.

– π : S×2A×2M → A be the policy function with

π
profile(s,A′) = argmaxa∈A′Q

profile
Rel (s,a)

(A′ being a subset of A)
Instead of argmax, Boltzmann-softmax or epsilon-greedy action selection can be used
in the body of π, as described before.

Algorithm 4 (Interactive ASP-supported Relational Q-learning)

profile←{}
loop

Specify start state (possibly empty, but normally a random sample of all logically con-
sistent states): s = f luents(m),
with M = models(kb∪profile)
Start time: t← 0
repeat

a← πprofile(s,Es(M, t))
Perform action a
Retrieve new state s:

Provide guidance: Let partner choose action ah solely from EHs(M, t)
Let interaction partner perform ah
kb← kb∪Happens(a,t +1)∪Happens(ah,t +1)
M← models(kb∪profile)
if M empty (i.e., kb∪profile unsatisfiable) then

profile←{}
M← models(kb)

end if
s = f luents(M, t +1)
if M is nondeterministic wrt. the next state4 then

kb← kb∪ s (fix the choice of the new state in the knowledge base)

4 Formally: M is called nondeterministic in our framework wrt. the state at some time t iff ∃m,m′ ∈M :
m |= holdsAt(f , t)∧m′ 6|= holdsAt(f , t) for some fluent f .

20 Matthias Nickles, Achim Rettinger

end if
Get reward: r← R(s)
profile← {atom ∈ model,model ∈M}∩P (update profile from recent set of stable
models 5)
if s not a goal state then

Qprofile
Rel (s,a)← r+ γ Qprofile

Rel (s, ā) (learn)
else

Qprofile
Rel (s,a)← r (learn)

end if
s← s
t← t +1

until s is a goal state, or some maximum reward sum is exceeded, or some maximum
number of time steps is reached

end loop
Remark: Any update of the interaction state is determined by the learning agent’s KB, the
learning agent’s recent action, and of course the recent action of the interaction partner.

We also provide a SARSA-variant of the previous learning algorithm (Algorithm 5). It
is based on the core (non-interactive) Relational SARSA algorithms presented in [10, 15].
The difference between this algorithm and Algorithm 4 is precisely the difference between
regular Q-Learning and SARSA-learning. Algorithm 5 can be found in Appendix A.

4.3.1 Adding regression

We provide the previous algorithms with an (optional) form of relational generalization over
similar state/action-pairs, in order to facilitate learning even if the agent has seen only a small
number of learning examples yet.
For this, we use an instance-based regression mechanism QRIB, which provides value pre-
dictions for learning examples. Like the Relational-Instance-Based learning (RIB) approach
presented in [2], QRIB is for predicting the Q-values of examples (s,a), calculated using a
k-nearest-neighbor (kNN) estimator as follows. (s̄, ā) denotes examples which are already
in memory (and in the same partition as s) and which are used as a kind of “prototypes” in
the estimation of Q-values for “similar” new examples, as follows:

Qp
Rel(os, is,a) = Qp

RIB(os∪ is,a) (7)

Qp
RIB(s,a) =

∑(s̄,ā)∈p
Qp

RIB(s̄,ā)
d((s,a),(s̄,ā))

∑(s̄,ā)∈p
1

d((s,a),(s̄,ā))

(8)

At this, d((s,a),(s̄, ā)) is a distance or pseudo-distance between state/action pairs. In
the literature, various such metrics have been proposed (e.g., [2, 10]). Most of them are
in some way heuristically tailored to a concrete learning task in some concrete domain.
A discussion of these various approaches is out of the scope of this paper. After various
experiments, we found the following approach to work quite well (as indicated by our eval-
uation results), namely a weighted editing distance for Herbrand interpretations. This kind

5 I.e., a profile is set simply by picking from the current models one or more atoms which hold in these
models (and which must also be in the set P). Note that the previous profile became part of M in an earlier
step.

Interactive Relational Reinforcement Learning of Concept Semantics 21

of distance comes handy here, because we already need to deal with certain Herbrand inter-
pretations, simply in form of the stable models delivered by the ASP solver. More precisely,
we calculate the distance between state/action pairs as follows:

d((s,a),(s̄, ā)) = γ(1− |s∩ s̄|
max(|s|, |s̄|)+ ε

+

{
0 if a = ā
1 else

) (9)

At this, ε is some very small constant value in order to prevent division by zero. γ is a nor-
malization factor which should be proportional to the size of the domain (in our experiments,
we used 8.5n for a blocks world with n blocks).

Complexity issues with this regression mechanism will be discussed in Section 5 below.

5 Framework instantiation for concept learning

We will now take the previously introduced general algorithms and utilize them for interac-
tive concept semantics learning. This instance algorithm is virtually entirely realized using
formal rules in the EC. This is worth noticing, because it puts quite a lot of workload on the
formal reasoner, that is, it motivates the use of the ASP solver. As mentioned earlier, in con-
trast to other types of reasoning (e.g., using Prolog), the focus is here on the computationally
efficient computation of a potentially large number of satisfying models (interpretations) at
each step of the learning process, which contain allowed agent and human actions at that
time as well as possibly nondeterministic sets of candidate states after state updating ac-
tions. These models need to fulfil a relatively large number of constraints (formal rules).

More concretely, the formal context within which the previously presented core learn-
ing algorithms operate comprises 1) the specification of the concept domain (e.g., the blocks
world), 2) the specification of rewards which the learning agent receives, 3) the specification
of a communication protocol and any other constraints and rules regarding the behavior of
the agent and the human interaction partner (including guidance), and 4) the formal seman-
tics of already learned concepts, in order to utilize this knowledge in communication with
the human interaction partner. Optionally, it is also possible to provide a simulation of hu-
man behavior in form of formal rules.
However, our framework do not impose any specific kind of formal context. Therefore, the
following aspects can basically be varied without the need to adapt the fundamental frame-
work.

As pointed out earlier, interactive concept semantics learning can be seen as an interac-
tive, guided search task in the space of all possible concept domain instantiations - guided
both on the side of the searching (learning) agent and on the side of the human user from
whom the agent wants to know the semantics. The most recent search state is identified with
the most recent Markov state, and (full) reward is given by the human in case the agent has
successfully identified a state which corresponds to the (partial) semantics of the concept
currently being learned.
At each step in the learning process, the agent either “breaks down” the search space or asks
the human user a question (as simple as possible) about the unknown concept. This goes
on until the agent has identified the correct denotation (a subset or a set of subsets of the
domain). What is being learned are mainly 1) which questions to ask, and which sequence

22 Matthias Nickles, Achim Rettinger

of questions and other actions is optimal, 2) how to deal with different human interaction
partners which use different meanings for the same word, or how to deal with a certain
human who varies the meaning for the same word, and 3) how to utilize dynamically ac-
quired knowledge about concepts (or single instances of concepts) which have already been
learned for the learning of new concepts (or new instances of concepts). The latter point
comprises both reinforcement learning and memorize and recall - the agent updates its KB
with newly acquired denotations and learns by trial-and-reinforcement/error when to use
already learned words in questions addressed to the human (e.g., “Is the wanted concept X
similar to concept Y?”). Item 2) makes use of the profiles introduced earlier.

Concept instances do not need to exhaustively describe exactly a single certain domain
state - instead, they can also denote sets of states (such as all blocks world configurations
where the red block is on top of the green block) and, in case of predefined concepts, a
meaning which is relative to the current state (comparatives such as “higher” or “lower”) .

Note that the learning of a certain concept or concept instance might span over several
episodes. At this, we implicitly assume that all instances of the same concept are somewhat
similar, in order to make agent’s questions useful if they refer to already learned concepts.
Also, in case multiple different concepts are being learned in the same experiment (over
multiple episodes), it is helpful for learning success if those concepts are also mutually sim-
ilar to some degree, since the same Q-table is used for learning all these concepts (profiles
do not help here). How such “similarity” can look like in practice will be explained in the
next section (evaluation).

Further note that we do not name concepts but identify them by numbers, or more pre-
cisely, symbols of the form Ci, j, where i is the concept number and j is the number of the
respective concept instance. While it would be trivial to enhance the agent-human dialogue
with phrases such as “Learn the meaning of word!”, within the scope of this work this would
be a purely cosmetic “improvement” over the use of numerical concept and instance indices.
However, if we were to learn the semantics of words which exist in real languages, it would
of course make sense to expose those words to the learning agent, e.g., in order to retrieve
further information about their meaning from other sources, such as the Internet.

Algorithm 6
profile←{}
i← 0, j← 0 (i is the number of the currently learned concept, j will be the number of the
next learned instance of concept i)
loop

Specify start state (possibly empty or random): s = f luent(m),
with M = models(kb∪profile)
Start time: t← 0
repeat

Perform action a and let interaction partner perform action ah, as described in Algo-
rithm 4
Update state s, kb and pro f ile, and get reward, as described in Algorithm 4
t← t +1
if ah = Happens(tell(happyI), t) then

kb← kb∪ [Ci, j := os(s)] (add learned concept instance and its semantics (os) to
agent’s memory)

Interactive Relational Reinforcement Learning of Concept Semantics 23

j← j+1 (start learning a new instance of the currently learned concept)

else if ah = Happens(tell(happyC), t) then
kb← kb∪ [Ci, j := os(s)] (add learned concept instance and its semantics (os) to
agent’s memory)
i← i+1 (start learning a new concept)

end if
until ah = Happens(tell(happy∗), t) or maximum number of time steps is reached

end loop

The meaning of the symbols is as in Algorithm 4, except for the following:

– os : S→ OS yields the non-interaction part of a state.

– PC is a number of helper concepts whose meaning is a priorly agreed among agent and
human. They can be used to help directing the agent towards the wanted semantics (e.g.,
if the concept “lower” is in PC, the agent might ask “Is the wanted state lower than the
current state?”), as explained above.

– A = DA∪{Happens(ask(applies(p)), t),Happens(ask(akinTo(Ci)), t),
Happens(ask(akinTo(Ci,j)), t) : p ∈ PC}. The agent can make use of akinTo questions
to ask the human whether the concept is similar (or equal) to an already learned con-
cept or concept instance. Sometimes, we will use ask(p) as a shorthand notion for
ask(applies(p)).
At this, DA is the set of agent actions which directly affect the object domain (vs. the
interaction state), such as stacking actions in the blocks world. In particular, we require
that the agent knows how to perform special goto(Ci, j) and ensure(p) actions. These ac-
tions are performed by the agent after a positive answer given by the human in response
to questions of the form akinTo(Ci, j)?, akinTo(Ci)?, or applies(p)?, respectively.
With goto(Ci, j), the agent (that is, the concept search process) immediately jumps to
(or “builds”) a domain state which corresponds to concept instance Ci, j (provided this
concept instance has already been learned, of course).
With ensure(p), the agent transforms the state according to the predefined helper con-
cept p ∈ PC. So what ensure(p) does depends on p. As a simple example, a predefined
“relative” blocks world concept p =“lower” could be implemented as a stacking action
which puts some random block (which is currently not on the table) on the table, after
the user gave the answer “yes” to the question applies(lower)?.

However, the use of logical reasoning and in particular ASP allows for further reaching
possibilities. In our evaluation, an ensure(XonY) action (with X and Y being blocks)
does not immediately stack block X on block Y, since this could be counter-productive in
case later there also needs to be some block Z put underneath of Y. Instead, ensure(XonY)
ensures that at the end of the learning episode, X is on Y. This causes that all models
computed by the ASP solver ensure a coherent sequence of actions leading from the
current state to a state where block X is on block Y, including eventualities such as
putting blocks below block Y. Technically, ensure(XonY) adds a planning goal to the
agent’s knowledge base, and the reasoner automatically finds this plan, which is then
executed by the learning agent, enforced by the normal constraining of agent actions
using Es(M, t). Details on how this precisely works are out of the scope of this paper

24 Matthias Nickles, Achim Rettinger

and can be found in [14].

– IA = {< noAction >,Happens(tell(yes), t),Happens(tell(no), t),
Happens(tell(dontKnow), t),
Happens(tell(happyI), t),Happens(tell(happyC), t) : t ∈ [1..max time]}.
tell(happyI) is uttered by the human interaction partner after the agent has successfully
identified one instance of the currently learned concept. The only difference between
happyI and happyC is that in the latter case the human acknowledges that the entire
concept (i.e., all its instances) has been learned by the agent. < noAction > means the
human does not say anything at the respective time step.

– Es(M, t) =

{goto(Ci, j)}, if Happens(ask(akinTo(Ci,j)), t−1) ∈ kb
∧Happens(tell(yes), t−1) ∈ kb

{goto(Ci, j)}, if Happens(ask(akinTo(Ci)), t−1) ∈ kb
∧Happens(tell(yes), t−1) ∈ kb
with j picked randomly from learned instances of Ci

{ensure(p)}, if Happens(ask(applies(p)), t−1) ∈ kb
∧Happens(tell(yes), t−1) ∈ kb

A\{Happens(ask(akinTo(Ci)), t) : ¬∃ j.[Ci, j := ∗] ∈ kb}
\{Happens(ask(akinTo(Ci,j)), t) : [Ci, j := ∗] /∈ kb} otherwise

Remark: theoretically, rules such as these could also be learned (e.g., from examples).
But since rule learning is out of the scope of this paper and covered by other approaches
such as Inductive Logic Programming, we leave it out here.

– EHs(M, t)= {< noAction>} if the agent action at time t is from DA, and IA\{< noAction>
} otherwise

– R(s) should normally result in a large reward for interaction states reached with a happyI
or happyC act emitted by the human interaction partner. In our experiments, we found
it also useful to give a small positive intermediate reward for each tell(yes) event and a
small negative reward for tell(dontKnow).

The SARSA-variant of this (Algorithm 7) is omitted in this paper - the difference com-
pared to Algorithm 6 is completely analogous to the difference between Algorithms 4 and
5.

5.1 Rule specification

The next section provides extensive examples which illustrate these algorithms.

All the various formal aspects are uniformly and flexibly given in form of EC rules and
facts in the learning agents knowledge base KB. We cannot present the entire set of rules
used for the prototypical implementation, but just a few examples. Note that these rules are
not formalized in Prolog, but as ASP rules (AnsProlog), which are semantically quite dif-
ferent despite their similar syntax.

Action alternatives are specified using disjunctions, for example:

Interactive Relational Reinforcement Learning of Concept Semantics 25

Happens(tell(dontKnow),T) | ... | Happens(tell(happyC),T)
:− Happens(ask(...), T).

Happens(stack(a,table),T+1) | ... | Happens(stack(g,table),T+1))
:− Happens(ask(isLower), T), Happens(tell(yes), T).

Rewards (being mere fluents in our framework) are specified using ordinary rules too, e.g.:

HoldsAt(reward(-10),T) :− Happens(tell(dontKnow),T).

All event handling makes use of EC axioms, e.g.:

Initiates(stack(X,Y),on(X,Y),T)
:− T < maxtime, not HoldsAt(on(X,Y),T).

The informal meaning of the last rule is that the fluent “block X is on top of block Y”
starts to hold after the stacking action stack(X,Y) has been performed at time T, provided
block X is not yet on top of block Y at this time. X, Y and T are variables which are
instantiated with any block or time step, respectively.

5.2 Efficiency issues

A note on the time complexity of the presented algorithms: as with reinforcement learning
in general, reaching a goal state can take a number of agent actions (time steps) which is
exponential in the number of states. Specific to RRL, as instantiated in our algorithms, is
the complexity of ASP solver calls for state updates and action set computations, and the
complexity of the optional regression mechanism (Section 4.3.1). As for solver calls, it is
difficult to state their precise complexity, since it depends on the concrete ASP solver which
is used (that is, the solving algorithm), its configuration, and various model search heuristics
applied by this solver. Generally, the downside of all logic-programming approaches is that
computing stable models (answer sets) is NP-hard and ∑

P
2 if there are disjunctions in rule

heads [3], which is a typical case in our scenario in order to model nondeterminism. The
upside is that ASP-solvers are optimized to deal with this high complexity and that ASP does
not have Prolog’s non-termination issues. Also, the high complexity corresponds to high
expressiveness, e.g., representability of problems which cannot be polynomially reduced
into SAT. As for the concrete base rule set used in our framework, there is currently no
faster approach to typical benchmark problems for the (discrete) EC than ASP [39].
As for the instance-based regression mechanism described in Section 4.3.1, prediction of a
single Q-value from all existing Q-values (using a k-nearest-neighbor approach) can become
problematic for large state/action spaces. On the other hand, learning using this approach
typically requires much less state/action examples and actually improves scalability, so this
issue is mitigated (it wasn’t any problem in our experiments). Otherwise, several means
exist in order to reduce the inflow of state/action pairs [2] which could be easily added to
our algorithms. All in all, instance-based regression usually performs comparably well as
the much more complicated use of relational kernels and performs generally better than the
classic approach to RRL (TILDE) [2]. In our own experiments (cf. next section), use of
regression outperformed the non-generalizing variants of our algorithms.

26 Matthias Nickles, Achim Rettinger

6 Evaluation

To illustrate the potential of our learning framework in the domain of learning semantics, we
have picked two concept learning tasks for empirical experiments. First, various dimensions
of the learning of simple concept semantics are investigated (see Sec. 6.1), namely learning
of different concepts (see Sec. 6.1.1), scalability issues (see Sec. 6.1.2), analysis of commu-
nication actions (see Sec. 6.1.3) and non-stationarity (see Sec. 6.1.4). Then, a scenario with
more complex concepts is investigated (see Sec. 6.2).

At this, our intention is to give a proof-of-concept by showing how our approach can
learn in a range of different problems using a uniform learning approach, rather than com-
paring its performance to other, more specialized and thus restricted algorithms.

6.1 Learning of simple concept semantics

As a first series of experiments, we present a relatively simple learning task situated in the
blocks world domain (this is basically the same task as the motivating example presented
in Section 3). The agent’s goal is to find out the denotation of the term “nice building”,
as conceptualized by users. To achieve this, the agent can in each step either move one
block, or ask a question and the user then answers these questions (although not necessarily
correctly or in a consistent fashion). In our initial experiments, we simulate the behavior
of the interaction partners to avoid manual training. Here, two users are simulated: The first
user wants the agent to build a “nice building” which for this user means arranging a number
of blocks next to each other on the table. We denote this task lowBuild. For the other user
a “nice building” is achieved by building a tower with all blocks on top of each other. We
denote this task highBuild.

Each reinforcement learning episode starts with blocks randomly placed on top of each
other. Then, in each time step the agent can rearrange one block or in turn ask questions
such as ask(isHigher) (to build a higher building), ask(isXonY) (to put block X on Y, us-
ing a subset of block combinations). Potential user responses can be tell(yes), tell(no),
tell(dontKnow), and tell(happy). The simulated user truthfully answers “yes” and ”no” when
being asked “isHigher” or “isLower”, and “dontKnow” otherwise, until the desired building
is achieved by the agent (answer “happy”). In this series of experiments, we use Algorithms
6/7, but without the possibility to learn more than one concept and without memorization of
previously learned concepts.

For a tell(dontKnow) the agent receives a small punishment (−0.1), for a tell(yes) a
small reward (0.2) and a large reward (1.0) if the interaction partner responds that the de-
sired blocks world constellation was reached (“happy”). The maximum number of steps per
epoch is up to 20. The overall goal is on the one hand to learn to ask the right questions
in the right sequence and on the other hand to learn the meaning of “nice (building)” and
to “build” it. Note that at the end of a successful learning process, the final state contains a
formal representation of the learned concept, i.e., it’s formal meaning (e.g., a blocks world
constellation where all blocks are on the table).

6.1.1 Learning high vs. low buildings

We ran Algorithm 7 (i.e., the SARSA variant of Algorithm 6) on this setup for 10 trials with
500 episodes each and monitored the sum of rewards and number of steps performed in each
episode. Relational Instance Based Regression (RIB), a form of generalization (see Section

Interactive Relational Reinforcement Learning of Concept Semantics 27

4.3.1) was activated and an ε-greedy action selection strategy has been used (with an ε of
0.2, as explained in Definition 3). Fig. 3 shows the average reward over all trials for the task
highBuild and Fig. 4 the averaged steps required to reach a reward of 1 or larger. Similarly,
Fig. 5 shows the average reward over all trials for the task lowBuild and Fig. 6 the averaged
steps. In both cases the numbers of blocks are set to 7.

0 45 91 136 182 227 273 318 364 409 455 500
-0.50

-0.00

0.50

1.00

Episodes

R
ew

ar
d

su
m

s

Fig. 3 Learning of task highBuild with 7 blocks: Re-
wards (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

15.0

Episodes
S

te
ps

 p
er

fo
rm

ed

Fig. 4 Learning of task highBuild with 7 blocks:
Steps (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

0 45 91 136 182 227 273 318 364 409 455 500

0.00

0.50

1.00

Episodes

R
ew

ar
d

su
m

Fig. 5 Learning of task lowBuild with 7 blocks: Re-
wards (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

Episodes

S
te

ps
 p

er
fo

rm
ed

Fig. 6 Learning of task lowBuild with 7 blocks:
Steps (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

The results clearly indicate that in both setups the agent learns to build a “nice building”
after fewer steps with an increasing number of training epochs. The task highBuild seems to
be harder to learn than lowBuild in terms of steps needed. We attribute this to the fact that
finding lowBuild at random is more likely. More steps also means more chances to collect
reward which explains the higher level of reward of highBuild in the end.

6.1.2 Learning 4 vs. 7 vs. 10 block buildings

To test how the performance reacts to the scale of the domain, we changed the number of
blocks and repeated the experiments.

In our baseline setting, we tried to learn the task lowBuild where the size of the building
consists only of 4 blocks. The number of rules for this problem was about 60, including

28 Matthias Nickles, Achim Rettinger

0 45 91 136 182 227 273 318 364 409 455 500
0.00

0.50

1.00

Episodes

R
ew

ar
d

su
m

Fig. 7 Learning of task lowBuild with 4 blocks: Re-
wards (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

Episodes

S
te

ps
 p

er
fo

rm
ed

Fig. 8 Learning of task lowBuild with 4 blocks:
Steps (y-axis) over epochs (x-axis); Dots show av-
erage over 10 trials. Polynomial curves are fitted to
the dots.

12 Event Calculus axioms (please note: the sheer number does not tell much about the
reasoning complexity. The number of blocks is much more important here).
As before, we ran this 4 blocks setup for 10 trials with 500 episodes each and monitored the
sum of rewards and number of steps performed in each episode. Fig. 7 shows the average
reward over all trials and Fig. 8 the averaged number of steps required. Again, the results
clearly indicate that the agent learns to build a “nice building” after fewer steps with an
increasing number of training epochs.

0 45 91 136 182 227 273 318 364 409 455 500

0.00

0.50

1.00

Episodes

R
ew

ar
d

su
m

Fig. 9 Learning of task lowBuild with 10 blocks:
Rewards (y-axis) over epochs (x-axis); Dots show
average over 10 trials. Polynomial curves are fitted
to the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

Episodes

S
te

ps
 p

er
fo

rm
ed

Fig. 10 Learning of task lowBuild with 10 blocks:
Steps (y-axis) over epochs (x-axis); Dots show aver-
age over 10 trials. Polynomial curves are fitted to the
dots.

In addition to the 7 and 4 blocks scenario we tried to scale our experiments to 10 blocks
which increases the reasoning complexity considerably. A blocks world with 10 blocks has
around 58 million states which means it is extremely hard to tackle with regular Q-learning.
Again, we ran this setup for 10 trials with 500 episodes each and monitored the sum of
rewards and number of steps performed in each episode. Fig. 9 shows the average reward
over all trials and Fig. 10 the averaged number of steps required. Although considerably
slower, the results show again that the agent learns to build a “low building” more often
with an increasing number of training epochs.

In order to illustrate the difference Fig. 11 shows the rewards over all setups and Fig. 12
the number of steps required. Compared to the 7 block setup the 4 blocks setup is consider-
ably easier, which is as expected. More interesting is the observation that 10 blocks seems
not to be that much harder compared to 7 blocks. Thus, a linear increase in blocks, which
means an exponential increase in blocks world constellations, does result in a sub-linear

Interactive Relational Reinforcement Learning of Concept Semantics 29

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500

R
ew

ar
d

su
m

Episode

4 Blocks
7 Blocks

10 Blocks

Fig. 11 Comparison of task lowBuild with 4 vs 7 vs
10 blocks: Rewards (y-axis) over epochs (x-axis).

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

St
ep

s
pe

rfo
rm

ed

Episode

4 Blocks
7 Blocks

10 Blocks

Fig. 12 Comparison of task lowBuild with 4 vs 7 vs
10 blocks: Steps (y-axis) over epochs (x-axis).

decrease in learning efficiency. This is an encouraging result as this indicates that commu-
nication and reasoning seems to be increasingly beneficial with increasing complexity.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 blocks 7 blocks 10 blocks

R
un

tim
e

(h
)

Fig. 13 Comparision of task lowBuild with 4 vs 7 vs 10 blocks: Runtime (y-axis) over blocks (x-axis), all
trials.

Finally, one has to consider that an increase in blocks also increases the complexity of
reasoning as the number of blocks world constellations grows exponentially. To investigate
this, Fig. 13 shows the number of hours needed to run a full experiment with 500 episodes
and 10 trials.

6.1.3 Learning to ask vs. to stack

So far we could prove that our approach can indeed learn the semantic of the concept “nice
building” with different meaning. While the good scalability might indicate that our com-
munication framework has a beneficial effect for large domains, those experiments do not
show to which amount and effect the agent uses communication to ease the task. To inves-
tigate the extend to which communication helps, we compared our scenario with a setup
where communication actions do not trigger any valuable response by the simulated com-
munication partner (denoted No Interposed Questions). To avoid an advantage of the setup
used so far with helpful responses, no intermediate rewards where given for answers like
tell(yes) (denoted No Intermediate Rewards) in both setups. This way there is no bias in
the reward-baseline and the results purely show the effect of mutual communication. In this

30 Matthias Nickles, Achim Rettinger

scenario we chose 5 blocks as this was a convenient compromise between complexity of the
task and runtime of the experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

R
ew

ar
d

su
m

Episode

No Intermediate Rewards
No Interposed Questions

Fig. 14 Comparison of task lowBuild (5 blocks)
with (No Interposed Questions) vs without
(No Intermediate Rewards) communication:
Rewards (y-axis) over epochs (x-axis). Numbers
are first averaged over 10 trials and then fitted with
polynomial curves.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

St
ep

s
pe

rfo
rm

ed

Episode

No Intermediate Rewards
No Interposed Questions

Fig. 15 Comparison of task lowBuild (5 blocks)
with (No Interposed Questions) vs without
(No Intermediate Rewards) communication:
Steps (y-axis) over epochs (x-axis); Numbers are
first averaged over 10 trials and then fitted with
polynomial curves.

Fig. 14 shows the reward and Fig. 15 the number of steps required for both setups. Both
No Intermediate Rewards-curves are clearly better than No Interposed Questions which
proves the positive effect of communication. The agent not only learns quicker with com-
munication, but also has an advantage right from the beginning. This is due to a reduction
of the set of potential models that need to be explored, as soon as just one question has been
asked (randomly) and answered. Thus, the chances of finding the right building are clearly
higher with communication.

0
1
2
3
4
5
6

0 100 200 300 400 500 600

N
um

be
r o

f a
ct

io
ns

Episodes

stacking actions

communication actions

Fig. 16 Number of actions (y-axis) performed over 500 episodes (x-axis). Dashed curves shows number of
stacking actions and solid curve communication action. Counted during learning of task lowBuild with 4
blocks.

In a final set of experiments we investigated the number of communication acts vs. the
number of stacking actions performed by the agent while learning task lowBuild with 4
blocks (cmp. Fig. 7 and Fig. 8). With this evaluation, we want to test if communication is
used differently over time. Fig. 16 shows the number of actions (y-axis) performed over
500 episodes. Apparently, the agent learns in the first 100 episodes to ask questions about
the shape of the tower and then increasingly us this knowledge to learn the best strategy to
build this tower. After about episode 200, communication is not needed anymore and most

Interactive Relational Reinforcement Learning of Concept Semantics 31

actions are used to build the correct structure. This behavior appears to be an intuitively
optimal strategy to solve this task.

6.1.4 Learning to deal with non-stationarity

As a second series of experiments on the baseline task, we tested the effect of profiles (cf.
Section 4) as part of Markov states in order to improve non-stationarity handling (Fig. 17).

0 36 73 109 145 182 218 255 291 327 364 400

0.00

0.50

1.00

Episodes

50

R
ew

ar
d

su
m

s

Fig. 17 Non-stationarity handling in the ’nice building’ domain. Black/squares: using Algorithm 7.
Red/triangles: Algorithm 7 with profiles deactivated. Green/stars: finite window, size 100. Blue/circles: fi-
nite window, size 50. (Color figure online)

We conducted four experiments: in these experiments, the human user does not have
only a single preference, but switches back and forth between two different semantics of
the word “nice” within the same trial. At the end of each episode it is determined from the
user’s communication whether (s)he has preferred a “high building” or a “low building”
in this episode. Of course, instead of a single interaction partner, this fluctuating semantics
could likewise be produced by several users with different, mutually-inconsistent conceptu-
alizations for the word “nice”.

In our simulation, a certain user preference is maintained for 50 episodes and changes
then from “high building” to “low building” or vice versa.

The respective preference is added to the profile, which carries this information across
episodes and sections the Q-table. We reduced the maximum number of time steps to 11, in
order to make learning more difficult.

In the first experiment, again Algorithm 7 is used. In the second experiment, the same
algorithm is used, but profiles are omitted from the Q-table. In the third experiment, a so-
called finite window approach (a standard approach to non-stationarity handling in RL) is
used: at each learning step, only the most recent 100 entries in the Q-table are maintained,
older entries are deleted. Experiment four does the same but with a window size of 50.
The results are depicted in Fig. 17. They show a significant performance gain by use of the
profile-based approach over both finite window approaches. The finite window approach
with size 100 eventually performs well too (with a extraordinary jump upwards near the
end), but not during most of the episodes.

32 Matthias Nickles, Achim Rettinger

6.2 Learning of more complex concept semantics

To move towards a more realistic scenario, we generalized the “nice building” task (Sec-
tion 6.1) to the “complex towers” task. This task again uses Algorithms 6/7 (and again the
SARSA version was used to achieve the results), and includes the memorization and re-use
of already learned concepts and concept instances, making it much more realistic than the
“nice building” scenario.

In each trial, the learning agent is supposed to learn 10 unknown concepts. Each concept
is represented by four instances, each instance being one concrete but random arrangement
of blocks (with a total number of four blocks). Each instance is randomly generated at the
beginning of each trial. E.g., an instance might be (informally) “blockC is on blockB, blockB
is on blockA, blockA is on the table, blockD is also on the table”.

All instances of the same concept are similar to each other (they need to be identical in at
least three ground atoms (out of five) to one instance of the same concept). Furthermore, we
require that each instance must be similar to at least one other concept (in 2.5 ground atoms
on average over all instances of the other concept). This is required in order to make mul-
tiple concepts reasonably learnable using a single, moderate-length reinforcement learning
task. On a side note, this also demonstrates that the learning approach has a certain transfer
capability.

Concepts are learned in random order, but learning of a new concept only starts after
all instances of the previous concept have been successfully learned. Also the instances
representing each concept are learned in an arbitrary order. The learning of a certain concept
instance can take several episodes which do not have to be one after another.

In its questions to the user, the agent can use the predefined comparatives “isLower?”,
“isHigher?”, “isXonY?”, but also questions which refer to just learned concepts and in-
stances, namely ask(akinToCi) and ask(akinToCi,j). On a positive reply to the latter two
questions, the agent recalls and activates a previously learned concept instance. The user
answers with tell(yes), tell(no), tell(dontKnow), or with tell(happyI) or tell(happyC) (an in-
stance or a concept has been recognized). Please refer to Section 5 for the detailed meaning
of these utterances. It is particularly noteworthy that a positive answer to the ask(isXonY)
questions lead to an automated planning process, described in the scope of Algorithm 6.

“happyI” or “happyC” carry a reward of 2.0. After all 10 concepts have been fully
learned (i.e., for each of them, all its four instances have been learned), for the remain-
ing episodes of the trial the maximum single reward (2.0) is given.

We run two experiments with this scenario: with and without the use of Relational
Instance Based Regression (RIB). Fig. 18 shows the development of gained rewards per
episode over 500 episodes and 10 trials, with each episode lasting maximally 13 time steps
(or until a reward sum of at least 2 has been reached), using Algorithm 7 with RIB deacti-
vated (a default Q-value of 0.1 was used for unknown state/action examples). Fig. 19 shows
the number of required steps. Figs. 20 and 21 show rewards and step numbers for the same
setup, but with RIB active.
While “complexTowers” are learned quite fast even without RIB, the gain from using gener-
alization is very significant. The likely reason why generalization works so well here is that
multiple similar concepts are being learned in the same trial. Even without experimentation,
we can safely say that without any concept similarities, reinforcement learning across mul-
tiple concepts would be seriously hampered or impossible, since experience could not be

Interactive Relational Reinforcement Learning of Concept Semantics 33

reused (but remember that two sorts of learning are happening with Algorithms 6/7: RRL
plus learning by memorizing and recall of already learned concepts).

0 45 91 136 182 227 273 318 364 409 455 500
0.00

0.50

1.00

1.50

2.00

Episodes

R
ew

ar
d

su
m

Fig. 18 Learning of task complexTowers: Rewards
(y-axis) over epochs (x-axis); Dots show average
over 10 trials. Polynomial curves are fitted to the
dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

Episodes

S
te

ps
 p

er
fo

rm
ed

Fig. 19 Learning of task complexTowers: Steps (y-
axis) over epochs (x-axis); Dots show average over
10 trials. Polynomial curves are fitted to the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.00

1.00

2.00

Episodes

R
ew

ar
d

su
m

Fig. 20 Learning of task complexTowers with gen-
eralization: Rewards (y-axis) over epochs (x-axis);
Dots show average over 10 trials. Polynomial curves
are fitted to the dots.

0 45 91 136 182 227 273 318 364 409 455 500
0.0

5.0

10.0

Episodes

S
te

ps
 p

er
fo

rm
ed

Fig. 21 Learning of task complexTowers with general-
ization: Steps (y-axis) over epochs (x-axis); Dots show
average over 10 trials. Polynomial curves are fitted to
the dots. Note that the number of steps approaches
zero, because in this experiment, several concepts are
learned over an entire trial - as soon as all concepts
have been successfully learned, there remains nothing
to do for the agent and maximum reward is obtained.

7 Conclusion

We have presented an approach to Relational Reinforcement Learning for the interactive
learning of concept semantics in a dialogical setting, with a focus on the integration of Q-
/SARSA-Learning on the one hand and EC/ASP-based formal reasoning about the state
of interaction and the set of possible actions on the other. RRL is still a relatively young
research direction, and we believe that such a hybrid approach of combining classic ap-
proaches to RL with rich yet computationally efficient relational representation formats and
temporal reasoning capabilities is most promising in order to adequately model complex
learning domains.

34 Matthias Nickles, Achim Rettinger

An extensive empirical evaluation has been conducted. Results are mostly positive and
indicate the applicability and significance of the presented learning framework for realistic
semantic learning tasks. We could show that a) the agent can learn different meanings of
a concept, b) scale to different levels of complexity, including a very ambitious 10 blocks
block world, c) use communication to ease the task, d) deal with non-stationarity and e)
more complex scenarios.

However, our experiments leave room for more complex use cases and experimental se-
tups. In particular, we plan to research next to what extent the concept semantics learning
strategies facilitated by our framework can be applied in real-world scenarios, and which
modifications need to be applied in order to facilitate such use, if any. Applications of in-
terest are, e.g., interactive information retrieval on the Web and interactive concept and on-
tology learning from a large number of users on the Web. Furthermore, we are currently
investigating the use of alternative approaches to RRL, such as relational policy gradient
approaches, in our framework.

Acknowledgements. This work was partially supported by Deutsche Forschungsgemein-
schaft (DFG).
We would like to thank the reviewers for their very helpful and detailed comments.

References

1. S. Dzeroski, L. De Raedt, H. Blockeel: Relational reinforcement learning. Procs.
ICML’98. Morgan Kaufmann, 1998.

2. K. Driessens: Relational Reinforcement Learning. PhD thesis, Katholieke Universiteit
Leuven, 2004.

3. T. Eiter, G. Gottlob: On the Computational Cost of Disjunctive Logic Programming:
Propositional Case. In Annals of Mathematics and Artiicial Intelligence 15(3-4), p. 289-
323, 1995.

4. E. Levin, R. Pieraccini: A stochastic model of computer-human interaction for learning
dialog strategies. In Procs. of the European Conference on Speech Communication and
Technology (Eurospeech), p. 1883-1886, 1997.

5. M. Ponsen, T. Croonenborghs, K. Tuyls, J. Ramon, K. Driessens: Learning with whom
to communicate using relational reinforcement learning. Procs. AAMAS’09, 2009.

6. M. Richardson, P. Domingos: Markov Logic Networks. In Machine Learning, 62
(2006), pp 107-136.

7. T. Yamaguchi, T. Nishimura, K. Sato: How to Recommend Preferable Solutions of a
User in Interactive Reinforcement Learning? Procs. SICE Annual Conference, 2008.

8. G. Arnold-Dulac, L. Denoyer, Ph. Preux, P. Gallinari: Datum-wise classification. A
Sequential Approach to Sparsity in Machine Learning and Knowledge Discovery in
Databases. Procs. European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML PKDD 2011). Springer, 2011.

9. A. Bordes, N. Usunier, R. Collobert, J. Weston: Towards Understanding Situated Nat-
ural Language. Procs. International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

10. Ch. Rodrigues, P. Gerard, C. Rouveirol: Relational TD Reinforcement Learning, Procs.
EWRL’08, 2008.

11. D. Goldwasser, D. Roth: Learning from Natural Instructions. Proceedings of Interna-
tional Joint Conference of Artificial Intelligence, 2011.

Interactive Relational Reinforcement Learning of Concept Semantics 35

12. J. Gmytrasiewicz, P. Doshi: Interactive POMDPs: Properties and Preliminary Results.
Procs. AAMAS’04, 2004.

13. J. MacGlashan, M. Babes-Vroman, K. Winner, R. Gao, M. desJardins, M. Littman, S.
Muresan: Learning to Interpret Natural Language Instructions. In Procs AAAI-2012
Workshop on Grounding Language for Physical Systems, 2012.

14. V. Lifschitz: Answer Set Planning. In D. D. Schreye (ed.), Procs. of the 16th Interna-
tional Conference on Logic Programming (ICLP?99), pp. 23?37. The MIT Press, 1999.

15. M. Nickles: Integrating Relational Reinforcement Learning with Reasoning about Ac-
tions and Change. Proceedings of the 21st International Conference on Inductive Logic
Programming (ILP 2011). Springer LNAI, 2012.

16. W. B. Knox, P. Stone: Augmenting Reinforcement Learning with Human Feedback.
Procs. ICML 2011 Workshop on New Developments in Imitation Learning, 2011.

17. M. Ghavamzadeh, S. Mahadevan: Learning to Communicate and Act Using Hierarchi-
cal Reinforcement Learning. Procs. AAMAS’04, 2004.

18. J. Méhat, T. Cazenave: Combining UCT and Nested Monte Carlo Search for Single-
Player General Game Playing. In IEEE Transactions on Computational Intelligence and
AI in Games 2(4): 271-277, 2010.

19. M. Nickles, A. Rettinger: Towards Interactive Relational Reinforcement Learning of
Concepts. Abstract paper presented at the “Learning Semantics” Workshop at the 25th
Annual Conference on Neural Information Processing Systems (NIPS 2011), 2011.

20. R. Navigli: Word Sense Disambiguation: A Survey. ACM Computing Surveys, 41(2),
2009.

21. D. L. Chen, R. J. Mooney: Panning for Gold: Finding Relevant Semantic Content for
Grounded Language Learning. In Procs. MLSLP, 2011.

22. L. Steels: Grounding Symbols through Evolutionary Language Games. In A. Cangelosi,
D. Parisi: Simulating the Evolution of Language. Springer, 2001.

23. W. Kerr, P. R. Cohen, Y.-H. Chang: Learning and Playing in Wubble World. Procs.
AIIDE, 2008.

24. R. Mihalcea: Unsupervised Large Vocabulary Word. Sense Disambiguation with Graph-
based. Algorithm for Sequence Data Labeling. Procs. of the Conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing (HLT’05),
2005.

25. R. Reiter: The frame problem in the situation calculus: a simple solution (sometimes)
and a completeness result for goal regression. In Vladimir Lifshitz (ed.), Artificial intel-
ligence and mathematical theory of computation: papers in honour of John McCarthy,
San Diego, USA. Academic Press Professional, 1991.

26. M. Van Otterlo: The Logic of Adaptive Behavior. IOS Press, Amsterdam, 2009.
27. H. Cuayahuitl: Hierarchical Reinforcement Learning for Spoken Dialogue Systems.

Ph.D. Thesis, School of Informatics, University of Edinburgh, 2009.
28. L. Specia et al: Word Sense Disambiguation Using Inductive Logic Programming. In

Selected papers from the 16th International Conference on Inductive Logic Program-
ming, Springer, 2007.

29. T. Croonenborghs, J. Ramon, M. Bruynooghe: Towards informed reinforcement learn-
ing. Procs. of the Workshop on Relational Reinforcement Learning at ICML’04, 2004.

30. L. Getoor, B. Taskar, eds. Introduction to Statistical Relational Learning. MIT Press,
2007.

31. K. Van Belleghem, M. Denecker, D. De Schreye: On the relation between situation
calculus and event calculus. Journal of Logic Programming Vol. 31 (1-3), pp. 3-37.
Elsevier, 1997.

36 Matthias Nickles, Achim Rettinger

32. M. Shanahan: A Circumscriptive Calculus of Events. Artificial Intelligence, 1995: 249-
284, 1995.

33. T.-W. Kim, J. Lee, R. Palla: Circumscriptive event calculus as answer set programming.
Procs. IJCAI’09, 2009.

A Algorithm 5 (Interactive ASP-supported Relational SARSA-learning)

loop
Specify start state s = f luents(m),
with M = models(kb∪profile)
Start time: t← 0
Retrieve possible actions: A′← Es(M, t +1)
a← πprofile(s,A′)
Memorize the most recent action of the learner: la← a
repeat

Perform action a
Retrieve new state:

Provide guidance: Let partner choose action ah solely from EHs(M, t)
Let interaction partner perform ah
kb← kb∪Happens(a,t +1)∪Happens(ah,t +1)
M← models(kb∪profile)
if M empty (i.e., kb∪profile unsatisfiable) then

profile←{}
M← models(kb)

end if
s = f luents(M, t +1)
if M is nondeterministic wrt. the next state then

kb← kb∪ s (fix the choice of the new state in the knowledge base)
end if

Get reward: r← R(s)
profile←{atom ∈ model,model ∈M}∩P (set new profile from recent set of stable models)
ā← πprofile(s,Es(M, t +1))
if s not a goal state then

Qprofile
Rel (s, la)← r+ γQprofile

Rel (s, ā) (learn)
else

Qprofile
Rel (s, la)← r (learn)

end if
s← s
a← ā
if a was an action of the learning agent then

la← a
end if
t← t +1

until s is a goal state, or some maximum reward sum is exceeded, or some maximum number of time
steps is reached

end loop

