
Partially Observable Markov Decision Processes
with Behavioral Norms

(Extended abstract)

Matthias Nickles1 and Achim Rettinger2

1 Department of Computer Science, University of Bath
Bath, BA2 7AY, United Kingdom
m.l.nickles@cs.bath.ac.uk,

2 Department of Computer Science, Technical University of Munich,
D-85748 Garching bei München, Germany

achim.rettinger@cs.tum.edu

Abstract. This extended abstract discusses various approaches to the
constraining of Partially Observable Markov Decision Processes (POMDPs)
using social norms and logical assertions in a dynamic logic framework.
Whereas the exploitation of synergies among formal logic on the one hand
and stochastic approaches and machine learning on the other is gaining
significantly increasing interest since several years, most of the respective
approaches fall into the category of relational learning in the widest sense,
including inductive (stochastic) logic programming. In contrast, the use
of formal knowledge (including knowledge about social norms) for the
provision of hard constraints and prior knowledge for some stochastic
learning or modeling task is much less frequently approached. Although
we do not propose directly implementable technical solutions, it is hoped
that this work is a useful contribution to a discussion about the useful-
ness and feasibility of approaches from norm research and formal logic
in the context of stochastic behavioral models, and vice versa.

Keywords: Norms, Partially Observable Markov Decision Processes, De-
ontic Logic, Propositional Dynamic Logic

1 Introduction

This extended abstract discusses various approaches to the constraining of Par-
tially Observable Markov Decision Processes (POMDPs) using social norms and
logical assertions in a dynamic logic framework. Whereas the exploitation of
synergies among formal logic on the one hand and stochastic approaches and
machine learning on the other is gaining significantly increasing interest since
several years, most of the respective approaches fall into the category of rela-
tional learning in the widest sense [12], including inductive (stochastic) logic
programming. In contrast, the use of formal hard constraints and prior knowl-
edge for other stochastic modeling or machine learning tasks is relatively sel-
dom approached (”hard” constraint in the sense that the constraint cannot be

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009/1913

2

overwritten, ignored or weakened). Among the existing approaches which al-
low for the specification of hard constraints of stochastic tasks are [5, 11], and,
closer to our work, various extensions of Golog, such as [7, 6]. [7, 6] allow for the
logic-based partial specification of a program and the automatic and optimal
completion of this program, which is viewed as a Markov Decision Process (re-
spectively a POMDP in case of [7]). In contrast to these approaches, we propose
to take an ordinary POMDP (which could be manually created or automati-
cally learned) and a set of ”ordinary” modal logic formulas, and use the latter
in order to modify the given POMDP and/or a standard algorithm for solving
this POMDP (i.e., the search for an optimal behavior policy) so that certain ac-
tion sequences become impossible or less probable (because they would violate a
norm), or obligatory. Besides this, our approach uses a variant of dynamic logic,
whereas Golog is based on the situation calculus. We find dynamic logic more
useful for dealing with complex actions (patterns and compositions of elemen-
tary actions) than the situation calculus, and specifically for the specification of
norms about complex actions.
We believe that the normative constraining of a stochastic model of an agent’s
environment would be useful for various potential applications. Agents in a mul-
tiagent system are potentially subject to social norms (respectively, sanctions in
case of norm violating behavior) and need to take these norms into consideration
when they plan their behavior. If the environment is noisy and/or only partially
accessible to the agent’s perception, or - more generally - if the agent is uncertain
about the state of its environment, it needs to maintain a stochastic model of
this environment and act in dependency from uncertain beliefs - including the
compliance or intentional noncompliance with any of the norms. While it would
be possible for the agent to consult its ”norm base” (or to query the norma-
tive system in some way) at each step, it appears to be much more efficient to
embed the knowledge about norms directly into the stochastic decision model
of the agent, in terms of expected positive or negative rewards in case of norm
obedience or failure to do so, respectively.
Although we do not propose directly implementable technical solutions in this
paper, it is hoped that this work is a useful contribution to a discussion about
the usefulness and feasibility of approaches from norm research and formal logic
in the context of stochastic uncertainty modeling, and vice versa.

The remainder of this work is organized as follows: the next section describes
the deontic logic we use to represent behavioral norms. Section 3 provides a brief
introduction of POMDPs. Section 4 outlines and discusses various possibilities
for the logical constraining of POMDPs using our formal framework. Section 5
concludes.

2 Representing Norms Using Dynamic Logic

We use Propositional Deontic Logic (PDeL) [1] to represent the norms [10] which
the agent is subject to as well as the agent’s knowledge. PDeL is a variant of

3

Propositional Dynamic Logic (PDL) [14, 2], and has as such properties which
are very handy in our context: it is not only a well-researched language with a
sound axiom system, but its Kripke-style semantics is also relatively close to the
representation of Markov processes we will use later. More precisely, our seman-
tics of PDeL uses Kripke structures where the meaning of a certain construct
is defined in terms of the current state and actions which define transitions to
one ore more other states. We will use this later to constrain a Partially Ob-
servable Markov Decision Process (POMDP) [4, 8, 13]. Furthermore, PDeL deals
well with conflicting obligations and avoids several paradoxes known from other
deontic logics [1].

And finally, it can be shown that certain description logics are syntactic
variants of PDL [3], a fact which might be useful in order to represent PDeL
encodable norms and knowledge on the Semantic Web. However, we have not
investigated this possibility in this work.

PDeL is a normal modal logic K with additional axioms for actions. The only
modal operator [α] has more or less the same meaning as in standard dynamic
logic and corresponds to an action-annotated necessity multi-modality �action.
I.e., [α]φ denotes a sufficient precondition for φ after action α has been per-
formed. Obligation, permission and prohibition are derived from this modality
together with a special proposition V which is used as a marker for undesir-
able states. Although this appears at a first glance as a kind of work-around
compared to deontic logics with a dedicated deontic modality, it is actually an
elegant solution which nicely reflects the agent’s rationale for observing a norm
and furthermore allows for a straightforward mapping of Kripke states to the
reward-annotated (i.e., more or less desired) states of a POMDP. We are aware
of the limitations arising from the fact that our logical framework (but of course
not the POMDPs) only has neutral and undesirable states but cannot express
positive rewards directly. That is, we can only model negative sanctions. Future
versions might overcome this limitation.

We assume in this paper that there is a single agent which would be nega-
tively sanctioned if it would not observe all given norms as far as possible (that
is, under the provision that the respective desired states are reachable), and that
all norms are equally preferred. However, there is no principled reason why these
assumptions could not be dropped, at the price of a technically somewhat more
complex model.

In the following, we present an abbreviated account of PDeL; for full details
please refer to [1]. First, we introduce the following sets:

– A non-empty set Act of action expressions. Although PDeL is not identical
with PDL, we make use of the PDL terminology and refer to the elements
of Act as programs.

– A non-empty set Act0 of atomic actions.
– A non-empty set Φ of formulas.

4

which are the smallest sets satisfying the following conditions (with α, α1, α2 ∈
Act, φ, φ1, φ2 ∈ Φ):

1. A0 ⊂ Act
2. ∅ ∈ Act, Any ∈ Act (∅ stands for ”failure” (an impossible action with no

successor state), Any for ”any actions” (some non-deterministically choosen
atomic actions are performed simultaneously.))

3. α1;α2 ∈ Act (sequential composition)
4. α1 ∪ α2 ∈ Act (choice. Perform either α1 or α2.)
5. α1&α2 ∈ Act (joint action. Perform α1 and α2 concurrently.)
6. φ→ α1/α2 ∈ Act (conditional action. If φ holds in the current state, perform
α1, and α2 otherwise.)

7. α ∈ Act (negated action. Not action α)
8. V ∈ Φ (the special proposition which marks ”unpleasant states”)
9. φ1 ∨ φ2, φ1 ∧ φ2, φ1 → φ2, φ1 ≡ φ2,¬φ ∈ Φ

10. [α]φ,< α > φ ∈ Φ (with <> being the dual of [], with σ |=< α > φ ⇔def

σ |= ¬[α]¬φ)

Norms can be specified using the following abbreviations:

Prohibition σ |= Fα⇔def σ |= [α]V (we say that it is forbidden to do α)
Obligation σ |= Oα⇔def σ |= Fα (we say that the agent is obliged to do α)
Permission σ |= Pα⇔def σ |= ¬Fα (we say that it is permitted to do α)

2.1 Semantics and Axioms of PDeL

The Kripke-style semantics, based on the semantics of PDL, is outlined in Sec-
tion 4.1.

Axioms (in addition to those of propositional logic):

[α](φ1 → φ2)→ ([α]φ1 → [α]φ2) (1)
[α1;α2]φ ≡ [α1]([α2]φ) (2)

[α1 ∪ α2]φ ≡ [α1]φ ∧ [α2]α (3)
[α1]φ ∨ [α2]φ→ [α1&α2]φ (4)

[φ1 → α1/α2]φ2 ≡ (φ1 → [α1]φ2) ∧ (¬φ1 → [α2]φ2) (5)
< α > φ ≡ ¬[α]¬φ (6)

[α1;α2]φ ≡ [α1]φ ∧ [α1][α2]φ (7)
[α1]φ ∨ [α2]φ→ [α1 ∪ α2]φ (8)

[α1&α2]φ ≡ [α1]φ ∧ [α2]φ (9)

[φ1 → α1/α2]φ2 ≡ (φ1 → [α1]φ2) ∧ (¬φ1 → [α2]φ2) (10)
[α]φ ≡ [α]φ (11)

[∅]φ (12)

5

3 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) model an agent’s
decision problems in some environment where the agent’s perception is limited
or noisy [4, 8, 13]. The primary goal of the agent is to find an optimal action
policy, that is, to find a sequence of decisions regarding its behavior such that
its reward is maximized.

Formally, a POMDP is a tuple (S,A0, T,R,O,Ω), where

– S is a finite, non-empty set of world states, denoted in this paper as ”states”
or ”Markovian states” (the latter in demarcation from the larger set of world
states used in the Kripke structures),

– A0 is the finite set of atomic actions,
– T : S ×A0 → Π(S) is the state-transition function. For each state and each

(atomic) agent action a ∈ A0 it yields a probability distribution over states.
T (σ, a, σ′) stands for the probability that the agent ends in state σ′ given it
starts in state σ and performs atomic action a.

– Ω is the set of all possible observations the agent can make in its environment.
– R : S ×A0 → R is the agent’s reward function. It yields for each action and

each state the immediate reward R(s, α) for taking this action.
– O : S ×A0 → Π(Ω) is the observation function, which gives for each action

and each resulting state a probability distribution over possible observations.
O(σ′, a, o) stands for the probability of making observation o after perform-
ing atomic action a ∈ A0 and ending with this action in state σ′.

We use the same symbol A0 for the set of atomic actions in PDeL, since
both sets are actually identical in our framework. S should correspond to a set
of states (worlds) in the Kripke-structures (cf. the next section).

The next state and the reward depend only on the current state and the
performed action. That is, POMDPs fulfil the Markov property.

A POMDP models an uncertain part of the agent’s subjective and dynamic
beliefs about a noisy environment in which the agent takes action. However,
we do not make this explicit in our logical framework (which would require us
to introduce inter alia a doxastic modality and a probability distribution over
states, as in, e.g., [9]). Instead we will later update a given, inaccurate POMDP
with certain knowledge from our PDeL knowledge base (KB). The KB and the
POMDP can then either co-exist, or only the POMDP is maintained.

Given a POMDP, the agent’s tasks are i) to update its belief state in de-
pendency from its previous belief state, the agent’s current observation, and the
agent’s last action and ii) to generate optimal actions, depending on the belief
state and expected rewards.

A belief state is a probability distribution over world states. It can be seen
as a roundup of the agent’s initial belief state updated by its past experiences.
Because of this, it is not required to take into account the history of past actions
and observations explicitly for decision making. However, there are infinitely
many belief states.

6

Formally, a belief state is a function b : S × [0; 1] and b(s) is the probability
that the agent is in state s, with

∑
s∈S b(s) = 1.

Computing a new belief state b′ = τ(b, α, o) given the old belief state b,
an action α and an observation o (state estimation) is not very complicated.
τ(b, α, o) is called the belief state transition function.

b′(s′) = Pr(s′|o, α, b) (13)

=
Pr(o|s′, α, b)Pr(s′|a, b)

Pr(o|α, b)
(14)

=
Pr(o|s′, α)

∑
s∈S Pr(s

′|α, b, s)Pr(s|a, b)
Pr(o|α, b

(15)

=
O(s′, α, o)

∑
s∈S T (s, α, s′)b(s)

Pr(o|α, b)
(16)

The belief states together with their updating function form a certain kind
of observable Markov Decision Process, a so-called continuous state space belief-
MDP. This insight is crucial for solving a POMDP, since it allows to formulate
the solution of the POMDP (i.e., the optimal behavioral policy) as the solution
of this kind of MDP.
The belief-MDP is defined as a tuple (B,A0, τ, r), with:

– B being the set of belief states, as defined above,
– A0 being the same action set as for the POMDP,
– τ being the belief state transition function, and
– r : B ×A0 → R, the reward function of the belief states, with
r(b, a) =

∑
s∈S b(s)R(s, a) (R is the agent’s reward function as defined for

the POMDP, i.e., operating on actual world states instead of uncertain beliefs
about such states).

The so-called optimal value function V ∗ finally yields the agent’s subjective value
of being in a certain belief state. Many POMDP solving approaches compute or
approximate this function using dynamic programming updates of sub-optimal
value functions and derive from the optimal (or good enough) value function the
optimal (or good enough) action policy (e.g., [4, 13]). There are also algorithms
which search the space of policies directly for the optimal policy (e.g., [8]). The
latter type of algorithms nevertheless also requires to know the corresponding
value functions of policies, in order to evaluate policies and to single out the
optimal policy (or a good enough approximation). The following recursive defi-
nition of V ∗ is called the dynamic programming equation of the POMDP (γ is
a discount factor):

V ∗(b) = maxα∈A0(r(b, a) + γΣo∈OPr(o|b, a)V ∗(τ(b, a, o))) (17)

Unfortunately, the belief-MDP is over a continuous state space, which poses
various problems. But fortunately, POMDP solvers can exploit the fact that the

7

MDP for which the optimal value function is a solution is a converted POMDP,
a fact which yields certain useful properties of the function.

4 Modal-Logical Constraining of POMDPs

We assume a given POMDP and a knowledge base (KB) of PDeL assertions.
The task of combining these two in order to retrieve a new, normatively and
assertively constrained POMDP is twofold:

– Obtaining a constrained belief estimator from prior knowledge in the KB
and

– pruning the set of potentially optimal action policies when solving the POMDP
in order to observe the the norms encoded in the KB.

4.1 Assigning Propositions to Markovian States

The states of a POMDP don’t tell us anything about the values of the propo-
sitional variables in the respective states. In contrast, the KB basically tells us
which propositions hold after a certain program has terminated. A Kripke model
K is defined by K = (K,mK, |=), with (K,mK) being the Kripke frame consisting
of the set of world states K, and the meaning of each atomic formula and each
atomic action, given as a mapping mK of this formula/action to a subset of the
world states (that is, the states where the formula holds) or set of pairs of world
states, respectively (that is, the ”input state” which is mapped to the ”output
state” via an action). mK can be extended inductively to work with any formula
and complex actions (programs) too.

Formally:

mK(ψ) ⊂ K foreach ψ ∈ Φ, and (18)
mK(α) ⊂ K ×K foreach α ∈ Act (19)

With this, we can define the semantics of PDeL formulas based on the se-
mantics of PDL [2], like:

σ |= [α]ψ ⇔def ∀σ′ : if (σ, σ′) ∈ mK(α) then σ′ |= ψ (20)

Theoretically, we could use this semantics directly i) to update the POMDP
state transition matrix with definite transitions, ii) to set an element (subjective
state probability) of a POMDP belief state to zero if the respective state would
be logically impossible, and iii) to gain knowledge about the values of proposition
variables after each belief update. In case i) and ii), the given POMDP is treated
as possibly partially invalid, and the invalid parts are precisely those which are
”overwritten” with definite prior knowledge deductively obtained from the KB.
We treat approaches iii) and i) as mutually exclusive: iii) ”believes” the result
of the POMDP state estimation, whereas i) possibly extinguishes a result of the

8

probabilistic state estimation.

ii) is expressed as follows:

if σ |= [a]ψ, a ∈ A0 and σ′ 2 ψ then b′(σ′) = 0, (21)

with b′ = τ(b, a, o), for any observation o. In addition, a re-normalization of the
probabilities of the other states is required, so that the sum of the probabilities
becomes 1 again - which means that it is not possible to make all states impos-
sible states at the same time!

For iii), we need to extend our notion of belief states to logically-annotated
belief states bΦ : S × ([0; 1]× Φ). Then we have the rule

if σ |= [a]ψ, a ∈ A0 then b′Φ(σ′) = (
O(σ′, a, o)

∑
σ∈S T (σ, a, σ′)b(σ)

Pr(o|a, b)
, ψ), (22)

for any observation o.

The retrieval of formal knowledge about a possible state during state esti-
mation can be useful for the acting agent, provided it can interpret the logical
annotations.

i) can be expressed using the rule

if σ |= [a]ψ, a ∈ A0 and σ′ 2 ψ then T (σ, α, σ′) = 0 (23)

(again, this would require normalization of the belief state to make it represent
a probability distribution).

Practically, it would make sense to consider only formulas which hold in all
states:

|= ψ ⇔def ∀σ ∈ K : σ |= ψ

The constraining of belief updates does then not depend on the respective
previous states anymore.

But still the approaches i)-iii) have obviously two shortcomings: firstly, we
do not know the mapping of Markovian states to states in K. Secondly, they
work only with atomic actions.

The first problem could be solved by considering POMDPs with logically-
annotated Markovian states (not to be confused with the logically-annotated
belief states above). If we would annotate a subset of the states with a set of
formal assertions each, we could nullify those parts of the current belief state
which are logically inconsistent w.r.t. the KB. Let φ : S → 2Φ be a function

9

which maps a Markovian state to a (possibly empty) set of assertions which are
known by the agent to hold in this state. Then

if |= [a]ψ, a ∈ A0 and |= ¬(ψ ∧
∧

f∈φ(σ′)

) then b′(σ′) = 0, (24)

with b′ = τ(b, a, o), for any observation o and any previous belief state b.

Getting rid of the second shortcoming would be a bit more tricky: we deal
with state transitions instead of action histories: each Markovian state is a suf-
ficient statistics in the sense that the probability distribution of successor states
depends only on this state (and the current action and observation) and not on
any preceding states or action history.

4.2 Constraining the Optimal Action Policy using Norms

Each atomic actions sequence which leads to a world state where the special
proposition V holds should be removed from the set of candidates for the opti-
mal action policy, or the value (utility) of such states should be reduced. With
this, it becomes more unlikely than otherwise (but not necessarily impossible)
that the solution of the POMDP tells the agent to run into a norm-violating
state.

In the most simple case, the agent is forbidden to take a single atomic action.
In POMDP terms, this can be taken into account by reducing the respective re-
ward of performing this action in any state:

if |= Fa, a ∈ A0 then ∀σ ∈ S : R(σ, a) = %. Here, the reward is simply set
to some negative value % in order to make action a less desirable.

We could alternatively annotate all states but one which are reachable via a
with ¬V . However, a POMDP does not allow us to make a certain action always
lead to an ”impossible” Markovian state.

The general case of prohibited (obligatory, allowed) complex actions is sig-
nificantly more complicated:

The sequences of atomic actions described by a certain action expression can
be represented as so-called s-traces (synchronicity traces) [1]. To represent the
set of all s-traces for a certain action expression, we use the notation [[α]]. The
exact definition of this function can be found in [1]. Each s-trace s ∈ [[α]] is a
sequence S1, ..., Sn, ... of so-called synchronicity sets (s-sets) Si. A single s-set if
a subset of Act0. Intuitively, a single s-set represents a number of atomic actions
which are performed concurrently (if the set contains more than one action), or
a single atomic action. We call each possible sequence of atomic actions within
[[α]] a run of α.

10

To enact the prohibition of a complex action α using its s-traces, we propose
the following alternative approaches:

1. Modify the optimal policy directly, in order to make the execution of any
action sequence within [[α]] impossible.

2. Modify (decrease) the values of the belief states which are reachable using
action sequences in [[α]].

3. Modify (lower) those vectors which contribute to the value function com-
puted during value or policy iteration and which represent an action within
an action sequence in [[α]] (see below).

Both policy search and value function search algorithms for solving a POMDP
require the computation of value functions (cf. Section 3), from which the opti-
mal policy can be derived directly. For approach 1, we assume that the optimal
policy (ignoring norms) is already given, in form of a finite-state machine (FSM).
A FSM can always be used to represent the optimal behavioral policy of a finite-
horizon POMDP, which appears to be a reasonable restriction in our context
[8].

Fig. 1. A simple FSM representing a policy

Figure 1 depicts a FSM which represents a policy for some POMDP as fol-
lows: each node (FSM state, labeled with a number inside of the respective node)
is annotated with an action ai which the agents takes in this FSM state. If the
policy is optimal, this action is optimal in the respective FSM state. State 1
is the start state. Each arc represents a possible observation zi following the
respective action and leads to a new FSM state. There can be more FSM states
than world states.

Assume we have |= F (a1; a1); a2. The s-trace of the forbidden program would
then simply consist of a single, deterministic run of atomic actions. Removing
this sequence from the FSM could yield the new FSM depicted in Figure 2 (with
the dashed arc not being part of the FSM). Of course, this FSM is just one

11

Fig. 2. An updated FSM representing a policy with forbidden paths

among many possible updated FSMs. The major shortcoming of approach 1 is
obviously that the agent is not prevented from starting a forbidden action se-
quence. The sequence is simply cut off before it finishes and makes the agent
stop then. Re-directing the agent to some random state instead appears not to
be an improvement.

Approach 2 requires us to keep track of actions during the iterative belief state
updates, provided the used POMDP solving algorithm allows us to do this. We
assume again that |= F (a1; a1); a2. The set of belief states the agent might end
in after performing run a1 ◦ a1 is computed as Ba1◦a1 = {τ(τ(bs, a1, o1), a1, o2)
for all possible observations oi and initial belief states bs}.

After(!) having computed the optimal value function, the agent can incre-
mentally update its belief state and compute at each step the optimal action
from the optimal value function. Should the agent run into one of the belief
states in Ba1◦a1 , and the optimal action policy (ignoring norms) suggests to
take action a2 next, it could, as with approach 1, avoid doing so. Again, this
approach is rather unconvincing. To be more interesting appears a reduction of
the values of the belief states {τ(τ(τ(bs, a1, o1), a1, o2), a2, o3)} during the search
for the optimal value function. This way, the agent is more likely to be prevented
of running into a forbidden sequence of acting, since the value of a certain state
includes the values of succeeding states.

Finally, approach 3 makes use of the fact that each state of a (possibly yet
sub-optimal) FSM representing a policy during the search for an optimal policy
(using one of the POMDP solvers which search the policy space directly for the
optimal policy) corresponds to a vector vi(s) of the piecewise linear and convex
value function which can be computed from this FSM under certain conditions
[8]. The value function is the solution of the following system of equations, with
one equation for each pair of FSM state i and Markovian state σ:

vi(σ) = R(σ, a(i)) + γ
∑
σ′,z

Pr(σ′|σ, a(i))Pr(z|σ′, a(i))vl(i,z)(σ
′) (25)

12

Performing a forbidden sequence of atomic actions as determined by the FSM
and observations yields a resulting FSM state which corresponds to exactly one
of these vectors vi, which is associated with the optimal action in this state.
Lowering this vector, i.e., modifying the value function at this place, would lower
the value of this FSM, and would, as we assume, lead in the next policy search
step to a FSM which is closer to norm-observing behavior. The advantage of this
approach is that from a modified set of vectors (which is then in addition also
improved by a dynamic programming update) a new FSM can be constructed
very easily [8]. However, this approach would require extensive experimental
evaluation in order to judge whether it would actually make sense in a concrete
scenario.

5 Conclusion

In this extended abstract we have proposed various initial means for the embed-
ding of knowledge about norms and formal knowledge in general into POMDPs,
hoping to initiate a new line of future research. Although we have hopefully
given some initial insight into the challenge, a lot of work remains to be done:

– Identification of application scenarios which are on the one hand rich enough
to allow for a more or less realistic normative system, but which are on the
other hand still approachable by contemporary POMDP solver.

– Detailed empirical and theoretical analysis of the constraining task, with a
detailed comparison of the proposed and further ways of incorporating norms
into POMDPs and stochastic decision processes in general.

– Detailed empirical and theoretical analysis of how the constraining affects
the POMDP solving algorithm.

– Consideration of more complex kinds of norms, such as norm hierarchies and
preferences among norms.

References

1. J.-J. Meyer. A Different Approach to Deontic Logic: Deontic Logic Viewed as a
Variant of Dynamic Logic. Notre Dame Journal of Formal Logic, 29, 1988.

2. D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
3. P. Blackburn, J. van Benthem, F. Wolter (Eds.). Handbook of Modal Logic. Else-

vier, 2006.
4. L. P. Kaelbling, M. L. Littman, A. R. Cassandra. Planning and Acting in Partially

Observable Stochastic Domains. Artificial Intelligence 101(1-2): 99-134, 1998
5. K. Wagstaff, C. Cardie. Clustering with Instance-level Constraints. In Proceedings

of the 17th International Conference on Machine Learning (ICML 2000), 2000.
6. C. Boutilier, R. Reiter, M. Soutchanski, S. Thrun. Decision-Theoretic, High-level

Agent Programming in the Situation Calculus. AAAI 2000, 2000.
7. A. Farinelli, A. Finzi, Th. Lukasiewicz. Team Programming in Golog under Par-

tial Observability. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007). AAAI Press / IJCAI, 2007.

13

8. E. Hansen. Solving POMDPs by Searching in Policy Space. In Proceedings of
the Fourteenth International Conference on Uncertainty In Artificial Intelligence
(UAI-98), 1998.

9. F. Fischer, M. Nickles. Computational Opinions. In Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence (ECAI-06), IOS Press, 2006.

10. G. Boella, M. Singh, G. Pigozzi, H. Verhagen (Eds.). Proceedings of the Third
International Workshop on Normative Multiagent Systems (NorMAS), 2008.

11. I. Davidson, S. S. Ravi. The complexity of non-hierarchical clustering with instance
and cluster level constraints. Data Mining and Knowledge Discovery 14(1), 2007.

12. L. Getoor, B. Taskar (Eds.). Introduction to Statistical Relational Learning. The
MIT Press, 2007.

13. M. Littman. Solving Partially Observable Markov Decision Processes via VFA. In
J. A. Boyan, A. W. Moore, R. S. Sutton (Eds.), Proceedings of the Workshop
on Value Function Approximation, Machine Learning Conference 1995, Technical
report CMU-CS-95-206, 1995.

14. M. Fischer, R. Ladner. Propositional Dynamic Logic of Regular Programs, Journal
of Computer and System Sciences, 18: 194-211.

