

Efficient Graph-based Document Similarity

Christian Paul, Achim Rettinger, Aditya Mogadala, Craig A. Knoblock, Pedro Szekely

Institute of Applied Informatics and Formal Description Methods (AIFB)

KIT - Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft

Common task: Related-document Search

Query document

Apple breaks laptop sales record

Document Collection

He drinks apple juice during half-time break

All-time high in MacBooks sold

U2 record pre-installed on iPhones

Matching words do not always indicate similarity

Word co-occurrence can be misleading, too

Semantic Technologies: resolve ambiguity & exploit relational knowledge

Semantic Technologies: resolve ambiguity & exploit relational knowledge

Related Work

Bridging the gap

Core Contributions

- Scalable related-document search process
 - Graph traversal during pre-processing
 - Light-weight tasks at search time

We achieve similar computational efficiency as statistical approaches

Core Contributions

- Scalable related-document search process
 - Graph traversal during pre-processing
 - Light-weight tasks at search time

We achieve similar computational efficiency as statistical approaches

- > Bag-of-entities document model & similarity
 - > Document similarity as combination of pairwise entity similarities
 - > Exploits hierarchical & transversal knowledge graph relations

In our experiments, we achieve higher correlation with human notion of document similarity than the competition

Related-document Search using Graph-based Similarity

• Enrich query document with relational knowledge

2) Inclusion in corpus

- Store & index *expanded* document
- 3) Pre-search
 - Use inverted index to generate candidate set
- 4) Full search
 - Entity-level, path-based similarities

Semantic Document Expansion

- Enrich document annotations
- Hierarchically
 - Categories & their ancestors + hierarchical depths
- Transversally
 - Weight neighboring entities based on
 - number of paths
 - length of paths

$$w(e) = \sum_{l=1}^{L} \beta^{l} * \left| paths_{a,e}^{(l)} \right|$$

Pre-Search: Generate Candidate Set

- Inverted index from entities to documents
 - Retrieve candidates efficiently
- Assumption: Entity overlap
 → contextual similarity
 - Coarse, document-level assessment

Full Search: Graph-based Document Similarity

• For each candidate document, reconstruct query-candidate annotation subgraph - hierarchical & transversal

- Compute all pairwise entity similarity scores
- > **Combine** into document score

Hierarchical entity similarity

• Using stored ancestors & depths to compute

$$hierSim_{dps}(x, y) = \frac{d(root, lca(x, y))}{d(root, lca(x, y)) + d(lca(x, y), x) + d(lca(x, y, y), y)}$$

•

Transversal entity similarity

• Use stored neighbors & weights to compute:

Document similarity: bipartite graph of entity similarities

- 1. Annotation pair similarity: Combine transversal & hierarchical scores
- 2. Determine *maxGraph:* for each annotation, choose max. score edge (bold)

3. Compute document score based on max. edges $(a_{1i}, matched(a_{1i}))$ for each annotation a_{1i} of Doc A:

$$docSim(docA, docB) = \frac{\sum_{a_{1i} \in A_{1}} (entSim_{ent}(a_{1i}, matched(a_{1i})))}{|A_{1} + |A_{2}|}$$

$$docSim(docA, docB) = \frac{0.53 + 0.92 + 0.43 + 0.53 + 0.58 + 0.81}{3 + 3} \approx 0.63$$

(AIFB)

Evaluation

- Task: Measure correlation with human notion of similarity
- Datasets
 - **Document similarity**: Lee50^[1]
 - Sentence similarity: 2012-MSRvid-Test^[2], 2015-Images^[3]

[1] https://webfiles.uci.edu/mdlee/LeePincombeWelsh.zip

[2] http://research.microsoft.com/en-us/downloads/38cf15fd-b8df-477e-a4e4-a4680caa75af/

[3] http://ixa2.si.ehu.es/stswiki/index.php/

Document Similarity: Lee50 corpus

- 50 short news articles (51 to 126 words)
- Gold standard set of full pairwise document similarity scores
- Outperforming baselines
 & competition:
 - Statistical (LSA, ESA, SSA)
 - Knowledge-based (GED)

		Correlation		
		r	ho	μ
Baseline	TF - IDF	0.398	0.224	0.286
	AnnOv	0.59	0.46	0.517
Related	LSA	0.696	0.463	0.556
	SSA	0.684	0.488	0.569
	GED	0.63	-	-
	ESA	0.656	0.510	0.574
Ours	$GBSS_{r=2}$	0.712	0.513	0.596
	$\mathbf{GBSS}_{r=3}$	0.704	0.519	0.598

Sentence Similarity

Compared to related unsupervised approaches (on texts with one or more extracted entities)

- · 2012-MSRvid-Test: Video descriptions from MSR Video Paraphrase Corpus
- · 2015-Images: Flickr image descriptions
- Outperforming baselines & competition

Statistical (Polyglot)

 Knowledge-based (Tiantianzhu7, IRIT, WSL)

		Sentence Semantic Similarity		
		2012-MSRvid-Test	2015-Images	
Baseline	STS-12	0.299	-	
	STS-15	-	0.603	
Related	Polyglot [3]	0.052	0.194	
	Tiantianzhu7 [24]	0.594	-	
	IRIT [6]	0.672	-	
	WSL [22]	-	0.640	
Ours	$\operatorname{GBSS}_{r=2}$	0.666	0.707	
	$GBSS_{r=3}$	0.673	0.665	

Related-document Search: Pre-Search, Full Search & Efficiency

Ranking score (nDCG) improves from Pre-Search to Full Search

- > Computation time grows linearly with candidate set size
- Here: candidate set of size ~15 achieves high performance

Conclusion & Outlook

- Efficient Graph-based Document Similarity
 - ... combines hierarchical & transversal relational knowledge
 - ... outperforms related distributional & knowledge-based approaches, on both articles and sentences
 - ... is computationally **efficient**: related-document search
- Lessons learned
 - Value of DBpedia for semantic similarity
 - > The more entities (at least one) per document, the better:
 - > Few entities: disambiguation helps
 - > Many entities: *maxGraph* entity pairing emphasizes meaningful relations
- Resources (code, data, documents):

http://people.aifb.kit.edu/amo/eswc2016/

References I

- [TMS08] Thiagarajan, Manjunath, Stumptner. Computing semantic similarity using ontologies. In ISWC 08, the International Semantic Web Conference (ISWC), 2008.
- [LD08] Lemaire, Denhière. Effects of high-order co-occurrences on word semantic similarities.
- [GM07] Gabrilovich, Markovitch. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606–1611, 2007.
- [HM11] Hassan, Mihalcea. Semantic relatedness using salient semantic analysis. In AAAI, 2011.
- [SP14] Schuhmacher, Ponzetto. Knowledge-based graph document modeling. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM '14.
- [NKF⁺13] Nunes, Kawase, Fetahu, Dietze, Casanova, Maynard. Interlinking documents based on semantic graphs. *Procedia Computer Science*, 22:231–240, 2013.
- **[PSA08]** Potthast, Stein, Anderka. A wikipedia-based multilingual retrieval model. In *Advances in Information Retrieval*, pages 522–530. Springer, 2008.
- [SHY+11] Sun, Han, Yan, Yu, Wu. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. *VLDB'11*, 2011.
- [SKH+14] Chuan, Xiangnan, Yue, Yu, Bin. Hetesim: A general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge & Data Engineering.
- [PVH⁺13] Palma, Vidal, Haag, Raschid, Thor. Measuring relatedness between scientific entities in annotation datasets. In *Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics*, BCB'13.
- [ZR14] Zhang, Rettinger. X-lisa: Cross-lingual semantic annotation. Proceedings of the VLDB Endowment (PVLDB), the 40th International Conference on Very Large Data Bases (VLDB).
- **[KJC+15]** Pavan Kapanipathi, Prateek Jain, Chitra Venkataramani, Amit Sheth. Hierarchical interest graph, 21 January 2015. wiki.knoesis.org/index.php/Hierarchical_Interest_Graph, last accessed 07/15/2015

• [LIJ+15] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167-195 (2015)