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Abstract. Trust learning is a crucial aspect of information exchange,
negotiation, and any other kind of social interaction among autonomous
agents in open systems. But most current probabilistic models for com-
putational trust learning lack the ability to take context into account
when trying to predict future behavior of interacting agents. Moreover,
they are not able to transfer knowledge gained in a specific context to
a related context. Humans, by contrast, have proven to be especially
skilled in perceiving traits like trustworthiness in such so-called initial
trust situations. The same restriction applies to most multiagent learn-
ing problems. In complex scenarios most algorithms do not scale well
to large state-spaces and need numerous interactions to learn. We argue
that trust related scenarios are best represented in a system of relations
to capture semantic knowledge. Following recent work on nonparametric
Bayesian models we propose a flexible and context sensitive way to model
and learn multidimensional trust values which is particularly well suited
to establish trust among strangers without prior relationship. To evaluate
our approach we extend a multiagent framework by allowing agents to
break an agreed interaction outcome retrospectively. The results suggest
that the inherent ability to discover clusters and relationships between
clusters that are best supported by the data allows to make predictions
about future behavior of agents especially when initial trust is involved.

Keywords: Trust in Multiagent Systems, Information Agents, Agent Ne-
gotiation, Initial Trust, Relational Learning

1 Introduction

The assessment of trust values is getting increasingly important in distributed in-
formation systems since contemporary developments such as the Semantic Web,
Service Oriented Architecture, Information Markets, Social Software, Pervasive
and Ubiquitous Computing and Grid Computing are targeted mainly at open
and dynamic systems with interacting autonomous entities. Such entities possi-
bly show a highly contingent behavior, and it is often not feasible to implement
effective mechanisms to enforce socially fair behavior as pursued in mechanism
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design or preference aggregation. Although computational trust has been fo-
cussed by research in Artificial Intelligence for several years (for an overview
see [1]), current approaches still lack certain features of human trustability as-
sessment which we consider to be of high importance for the computational
determination of trust values in open systems. E.g., recent studies in psychology
[2] have shown that people can robustly draw trait inferences like trustworthi-
ness from the mere facial appearance of unknown people after a split second.
Although seemingly neither the time span nor the available information allow
to make a well-founded judgement, the derived trust (or distrust) provides af-
ter all a foundation for immediate decision making, and a significant reduction
of social complexity especially under time pressure . Whereas the ”quality” of
such so-called initial trust (i.e., trusting someone without having accumulated
enough experiences from relevant past behavior of the trustee) might be limited
in the described scenario, this example shows that humans are able to estimate
the trustability of others using information which are at a first glance unrelated
to the derived expectation. (e.g., the facial appearance, or any contextual in-
formation in general). In contrast, the vast majority of approaches to empirical
trust value learning in Artificial Intelligence lack this ability, as these approaches
strongly rest on well-defined past experiences with the trustee, from which it is
directly concluded that the trustee will behave in the future as he did in the
past, regardless of the concrete context (cf. Section 6 for related work). These
approaches come to their limits in cases where the trustor could not make such
experiences and thus has to rely on “second order” information such as the
context of the respective encounter instead. In order to make such initial trust
computationally feasible, we not only need to relate trust values to a specific
context, but we also need to provide a mechanism in order to take over contex-
tualized trust to a new, possibly somewhat different context.

In particular, the general requirements that we wish to meet are:

Context sensitivity and trust transfer: Contextual information that might
be related to the trust decision to be made needs to be incorporated. This
shall include attributes of the person one needs to trust, attributes of the
external circumstances under which the trust decision is made, and actions
and promises the person has given to seek one’s confidence. Furthermore,
specific trust values gained in a certain context need to be transferrable to
new, unknown ”trigger” situations.

Multi-dimensionality: Most trust models assign a single trust value per
agent. This ignores the fact that human trust decisions are made in relation
to a whole spectrum of aspects (e.g., what a person is likely to do, such as
the expected outcome of some information trading, even in the same context.
For instance a certain information supplier agent might be trustworthy in
terms of delivery date, but not in terms of information quality (e.g., preci-
sion, topicality, credibility...). Combining several trust related measures as in
our approach is considerably much more flexible. In contrast, most existing
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approaches to trust still relate trust to ”whole persons” only instead of their
contextualized behavior.

At this, we focus on interaction-trust (i.e., (dis-)trust formed by agents during
the course of an interaction regarding their opponents’ behavior) in order to
tailor our model to the specifics of the probably most relevant application field
for empirical trustability assessment.

The remainder of this work is organized as follows: The next two Sections
describes the basic scenario underlying our approach. Section 4 introduces our
model for relational learning of initial trust, and Section 5 explores the general
capabilities of our model with example data. Section 6 presents an application
of initial trust learning in the context of simulated social interaction in order to
provide a concrete evaluation of our approach. Section 7 discusses related work,
and Section 8 outlines future research directions and concludes.

2 Modeling Interactions

Our scenario can be based on one of the most general frameworks for learning
interactions in multiagent systems namely general-sum stochastic games (see
[3]). A stochastic game can be represented as a tuple (A,C, Ac, R, T )3. A is the
set of agents, C is the set of stage games (sometimes denoted as states), Ac is
the set of actions available to each agent, R is the immediate reward function
and T is a stochastic transition function, specifying the probability of the next
stage game to be played.

It is in the nature of trust that we are dealing with incomplete and partially
observable information. We neither assume the knowledge of the reward func-
tion R of the opponent nor their current state C. In fully observable games with
perfect monitoring, incentives to betray can be estimated and trust becomes
irrelevant because agents can be punished effectively [5]. Furthermore trust de-
cisions require general sum games where joined gains can be exploited. Both
zero-sum (e.g., [6]) and common-payoff (e.g., [7]) games are not relevant because
either there are no joint gains or the agents’ interests do not conflict.

Building on that formal setting our goal is to predict trust values Oe as-
sociated with the expectation of the next actions Ac given agent A and state
C. We neither are trying to learn a strategy or policy nor are we interested in
finding equilibria or proofing convergence. But we make contributions on how
to scale MAL to more complex scenarios and show how an opponent model can
be learned efficiently:

Predicting the next action of an opponent is an essential part of any model-
based approaches to MAL [4]. The best-known instance of a model-based ap-
proach is fictitious play [9] where the opponent is assumed to be playing a sta-
tionary strategy. The opponent’s past actions are observed, a mixed strategy is
3 Our notation differs slightly from the commonly used ones, where A denotes actions

and S states. Our notation should become clear in the next section
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calculated according to the frequency of each action and then the best response is
played, accordingly. This technique does not scale well to a large state-space |C|
as we experienced in our second experiment (Section 6): The same stage game
is on average not observed before 400 interactions. Thus, this kind of naive ap-
proach does not allow to make an informed decision before 400 interactions and
is obviously not suited for initial trust scenarios.

In our approach we make use of two techniques to face this issue. First,
we allow to model any context related to the next trust-decision in a rich re-
lational representation. This includes non-binding arrangements among agents
also known as “cheap talk” [5] which take place before the actual interaction Oe

is carried out and which are denoted as Op. Second, we make use of techniques
from the mature field of Transfer Learning [10] to reuse knowledge from previous
interactions for potentially unknown future actions.

3 Modeling Interaction-Trust

The basic precondition for the emergence of trust are entities and social inter-
actions between those entities. Hence, we chose a scenario that is interaction-
centered as seen from the perspective of one agent who needs to trust (trustor)
in someone/something (trustee). As usual in agent trust scenarios, (dis-)trust
is related to the expected occurrence of some promised outcome (e.g., the com-
munication of correct and precise information as negotiated before with some
information trading agent, or the delivery of some other kind of product at the
agreed price). The basic interaction-trust scenario then consists of:

1. A set of agents A (trustees) that are willing to interact with the trustor,
each characterized by a set of observable attributes AttA. An agent can be
considered as a person or more general any instance that can be trusted, like
an information source, a company, a brand, or an authority.

2. A set of external conditions or state C with corresponding attributes AttC .
An apparent condition would be the type of service provided by the trustee,
for instance a specific merchandize or an information supply in case of infor-
mation trading agents. Moreover this implies all external facts comprising
this particular state like the trustor’s own resources or the current market
value of the merchandize in question.

3. A relation interacts(a, c) with a set of relationship attributes AttO captur-
ing all negotiable interaction issues depending on a specific agent a ∈ A
and specific conditions c ∈ C. In general those attributes can be directly
manipulated by the interacting agents and separated into two different sets:
(a) Promised outcome Op: Attributes AttO

p

of this set are (in general) ob-
servable before the trust-act is carried out.
A typical attribute of this category is for example the price for the mer-
chandize or the scope of the services offered, such as the amount and
precision of information in case of a negotiation among agents regarding
the delivery of information. A promised outcome op ∈ Op is an assign-
ment of values to the corresponding attribute vector AttO

p

, which can be
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negotiated by the trustor and trustee. In game theory this kind of non-
binding negotiations among agents before the actual interaction takes
place is known as “cheap talk” [5].

(b) Effective outcome Oe: The set of attributes AttO
e

are not observable until
the trust-act has been carried out. Those attributes act as a feedback
or judgment for the trustee in respect to his expectations. AttO

e

can be
thought of as quality aspects of the merchandize, like the delivery time.
From a decision theoretic point of view those attributes are the objectives
or interests of the trustor and need to be optimized in a multi-criteria
optimization problem. From a MAL perspective AttO

e

depends on the
actions Ac carried out by the opponent.

This way of modeling interaction-trust scenarios allows us to capture almost
any context relevant for trust-based decision making.

Our goal is to learn the value function op → oe that allows to predict oe from
a given op offered by agent a under external conditions c. Moreover, it might be
possible to calculate the utility of the trustor for a given oe. Hence, the ultimate
objective is to find the utility function op → [0, 1]. If this function is known
the trustor knows what assignment to Op he should try to achieve (e.g., in a
negotiation) to maximize its payoff / reward.

4 Infinite Relational Trust Model

Relational models are an obvious formalization of requirements arising from the
relational nature of entities in social, biological, physical and many other fields.
The benefits of the relational model for multiagent learning include amongst
others:

1. Relational models exhibit flexible and sophisticated modeling capabilities.
For typical interaction scenarios in the real world there are more than two
types of players and the number of players in each single interaction is flex-
ible or unknown beforehand. In this case propositional models can hardly
describe the data and its behavior. Relational models represent correlations
both, between the features of an entity and between features of related en-
tities.

2. By transforming the data into a flat representation, also known as propo-
sitionalization, the structural information can get lost. Moreover, there is
no standard procedure for propositionalization. In [11] manifold proposi-
tionalization approaches and their disadvantages are analyzed. In general
propositionalization causes high computational costs , since the complex-
ity increases exponentially in parameters, attributes and relations. Another
problem of the propositionalization process is the generation of too many ir-
relevant features. The low quality of propositional features becomes increas-
ingly problematic in more complex interaction models. In contrast, relational
models do not need this preprocessing phase at all and do not generate re-
dundant information.
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Fig. 1. Infinite Relational Trust Model

3. Relational models and its dynamics can be intuitively visualized by graph-
ical model. This makes complex models more comprehensible and easier to
analyze.

Recently [12] and [13] independently introduced infinite relational models
(IRM), which express interactions via a potentially infinite number of hidden
variables associated with entities instead of difficult structure learning in PRM.
Those latent variables play a key role and comprise the inherent structure of
the data. As additional features of entities they can improve the accuracy of the
learned model.

Considering the properties of nonparametric probabilistic relational models
our approach intuitively follows from the interaction scenario that we want to
model:

Entity and relationship classes are the two basic building blocks of such a
model. In our scenario agents A and states C are both modeled as entities with
a corresponding relation interacts(A,C). As a visual representation we make
use of the DAPER model (cf. [14]). Figure 1 illustrates the DAPER model for
the interaction scenario. Entity classes A and C are depicted as rectangles and
the relationship class as a rhombus. Actual evidence Att is modeled as attribute
classes of entities and relationships (oval). Local distribution classes denoting
the parameters and hyperparameters of the probability distributions are shown
in small gray circles. The direction of arrows shows the statistical dependency
or the sampling process.

The most distinctive feature of our approach are the hidden variables Z
(circles). They provide clustering capabilities of entities with a potentially infinite
number of clusters. Assuming for every entity class one hidden variable our model
contains ZA and ZC with ra and rc clusters, respectively.
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4.1 Sampling and Inference

Given the model the essential goal is to infer the conditional distribution

P (ZC , ZC |AttA, AttC , AttO)

of cluster assignments ZA and ZC given evidence about relationship at-
tributes AttO

p

and AttO
e

. This posterior distribution can be formed from the
generative models by

P (AttO
e

1 , ..., AttO
e

k , zA
1 , ..., zA

m, zC
1 , ..., zC

n ) =
k∏

l=1

P (AttO
e

l |zA
1 , ..., zA

m, zC
1 , ..., zC

n )
m∏

i=1

P (zA
i )

n∏
j=1

P (zC
j )

where we have k actions carried out by m agents and n states. Similar for-
mulas hold for the joint distributions of P (AttO

p

, ZA, ZC), P (AttA, ZA) and
P (AttC , ZC).

The prior on cluster assignments πA and πC is a Dirichlet distribution with
hyperparameters αA

0 and αC
0 respectively, where sampling of both ZA and ZC

can be induced by a Chinese Restaurant Process: Z|α0 ∼ CRP (α0). By the use
of the Chinese Restaurant Process the number of clusters can be determined
in an unsupervised fashion. Entities are assigned to (potentially new) clusters
corresponding to the size of the existing clusters. Entity attributes AttA and
AttC are samples from multinomial distributions with parameters θA ∼ GA

0 =
Dir(·|βA), θC ∼ GC

0 = Dir(·|βC) and are generated for each cluster in ZA and
ZC . The same applies for the relationship attributes AttO

p

and AttO
e

which
can be induced by a multinomial distribution with parameters γOp ∼ GOp

0 , and
γOe ∼ GOe

0 . However, γ needs to be generated for every combination of entity
attribute clusters, resulting in rA × rC parameter vectors.

Now inference can be carried out based on Gibbs sampling by estimating
P (Z|Att) ∝ P (Att|Z)P (Z). For instance the probability of agent i being as-
signed to cluster k is proportional to P (zA

i = k|ZA
j 6=i, AttAi , θA, γOp

, γOe

, ZC) ∝
NkP (AttAi |θA

k , γOp

k,∗, γ
Oe

k,∗) where Nk is the number of agents already assigned to
cluster k and γk,∗ notes the relation parameters of agent cluster k and all state
clusters. Finally, standard statistical parameter estimation techniques can be
used for estimating γOe

kA,kC from given cluster assignments.
The parameters α0 and β affect the number of clusters and the certainty

of priors and can be tuned. However, we experienced that results were quite
robust without extensive tuning. Moreover, our experiments are rather targeted
at feasibility than absolute performance, so we fixed αA

0 , αC
0 = 10 and βA, βC =

20 in all our experiments.
For a detailed description of the algorithm we refer to [12]. We extended the

algorithm, as just described, to enable the handling of more than one relationship
attribute. Using an arbitrary number of relationships is essential to enable a rich
representation of the interaction context and multidimensional trust values.
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Fig. 2. Results on experiment 1: Synthetic data, setup 1 and 2. Top row graphs show
the classification error metric (CE), subjacent graphs show the related accuracy (AC).

4.2 Implications

The ultimate goal of the model is to group entities into clusters Z. A good set
of partitions allows to predict the value of attributes AttO

p

and AttO
e

by their
mere cluster assignments. Hereby, our model assumes that each entity belongs
to exactly one cluster. It simultaneously discovers clusters and the relationships
in-between clusters that are best supported by the data, ignoring irrelevant at-
tributes.

Although the value of attributes is determined entirely by the cluster as-
signment of associated entities, there is no need for direct dependencies between
attributes or extensive structural learning. The cluster assessment of a entity is
influenced by all corresponding attributes and cluster assessments of related en-
tities. This way information can propagate through the whole network while the
infinite hidden variables Z act as “hubs”. As shown in [12] this allows for a col-
laborative filtering effect. Cross-attribute and cross-entity dependencies can be
learned which is not possible with a “flat” propositional approach that assumes
independent and identical distributed (i.i.d.) data.

At the same time the number of clusters needs not to be fixed in advance.
Thus, it can be guaranteed that the representational power is unrestricted.

5 Experiment 1: Synthetic Data

To explore the learning and modeling capabilities of our IRTM we generated
synthetic data and evaluated its ability to find clusters in this data. For this
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purpose we constructed an interaction-trust scenario with the fixed number of
2 entity attributes per entity and 2 relationship attributes, one for Op and one
for Oe. The number of entities |A| and |C| was prespecified but varied in dif-
ferent runs, as well as the underlying clustersize ra and rc for Za and Zc. Each
entity was randomly assigned to a cluster and its attributes were sampled from
a multinomial distribution with 4 possible outcomes and parameter vector θ
each. θ in turn, was once randomly generated for each cluster. Accordingly,
ra × rc Bernoulli-parameters γ for relationship attribute attO

p

and attO
e

were
constructed.

In Figure 2 and 3 two different error metrics measuring the performance
of IRTM averaged over 10 runs are shown. The top row graphs visualize the
classification error metric (CE) for clusterings while the bottom row depicts
the accuracy (AC) of classifying attO

e

correctly. Both are supplemented by a
95% confidence interval. CE reflects the correspondences between the estimated
cluster labels and the underlying cluster labels measuring the difference of both
(cf. [15]). A value of 0 relates to an exact match, 1 to maximum difference. In this
experiment AC is a binary classification task and denotes the ratio of classifying
attO

e

correctly. Results are averaged over both hidden variables Za and Zc.

5.1 Evaluation

We considered three different experimental setups:

1. We analyzed the performance for different numbers of entities with fixed
cluster sizes ra = rc = 4. The performance shown in Figure 2-1 expectedly
suffers for small numbers of entities |A| = |C| < 20. Nonetheless, this result
suggests that the IRTM is quite robust even with few training samples. This
makes it especially interesting for initial trust problems as discussed in the
next Section.

2. Correctly recovering different cluster sizes ra and rc while the number of
entities was fixed to |A| = |C| = 50 was the goal of setup 2. In Figure 2-2
we see that the IRTM underestimates the cluster sizes if ra = rc > 16. This
suggests that the number of combinations in such a simple scenario is not
enough and entities from different clusters tend to become alike. Still, the
AC is almost perfect. Besides that the number of entites per cluster (|A|/ra

and |C|/rc, respectively) gets so small that not all clusters are represented
in the training set.

3. Finally, missing and noisy data sets were used in two different ways for
training:

(a) Half of the relationship attribute Oe data was omitted while missing
values for Op was varied. The variance of all measures in figure 3-3a
increases with the increase of missing values. Still, the AC is good al-
though cluster correspondences deviate. This clearly shows that depen-
dencies across relationship-attributes have a significant effect on the per-
formance and can be exploited by IRTM. As mentioned before, standard
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Fig. 3. Results on experiment 1: Synthetic data, setup 3a-c. Top row graphs show the
classification error metric (CE), subjacent graphs show the related accuracy (AC).

techniques working with a “flat” vector-based attribute-value represen-
tations cannot use such information. In contrast IRTM can propagate
information through the network.

(b) First, evidence for Oe was partially omitted. The AC in Figure 3-3b
expectedly drops because less training samples of the effective outcome
that is to be predicted are available. Still, clustering abilities are hardly
affected because other attributes can replace the missing information .

(c) Second, in order to measure the influence of the entity attributes we
added noise to AttA and AttC . With the used parameter settings IRTM
did obviously (see Figure 3-3c) not suffer in predicting AC. However the
ability to infer the correct clusters was slightly hindered.

6 Experiment 2: Negotiation Data

Finding an agreement amongst a group of conflicting interests is one of the core
issues of distributed Artificial Intelligence. For instance auctions, information
markets, preference aggregation and judgement aggregation, game theory and
automated negotiations are all research areas that deal with those kind of prob-
lems. However most of the approaches neglect the fact that finding the best
agreeable solution is not sufficient if the execution of the negotiated outcome
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can not be enforced by the interaction mechanism. Especially in open systems
where agents can enter and leave or change their identity at will, initial trust
plays an important role in this regard. The purpose of the IRTM is to make pre-
dictions about AttO

e

which can be utilized by the agent to adjust its negotiation
strategy or trading decisions.

In order to investigate this issue we extended the implementation of a multia-
gent negotiation framework by an additional trading step. As defined before, let
Op be the promised outcome the agents are negotiating over (e.g., the punctual
delivery of information some information agents requested or offered to supply,
respectively). This outcome is without loss of generality specified by a set of dis-
crete attributes AttO

p

. Now given an assignment of values Op that two agents
have agreed on and promised to fulfill the agents enter an additional trading
step where each of them is free to change the assignments of values related to
their commitments. Doing so, the agent can decide whether to stick to a bargain
or break it at will. One interaction round in this negotiation framework consists
of three phases:

1. Negotiation: A strategy that calculates a possible outcome Op both parties
can agree on (e.g., an exchange of goods).

2. Trading: The decision made by every agent whether to stick to a bargain
or break it (possibly only partially). The outcomes regarding the agent’s
obligations are executed according to the agent’s decision.

3. Evaluation: The agents can review the effective actions AttO
e

of the opponent
by observing the received goods and draw conclusions for future interactions

This procedure is repeated over a specified number of rounds with different
types of agents.

6.1 Evaluation

Four different agent types were used as opponents in the negotiation game. Every
round the negotiation outcome Op and the effective outcome Oe was recorded.
To keep it simple, all agent types follow the same static negotiation strategy but
each one acts differently in the trading phase. The agent denoted Greedy always
maximizes its utility regardless of Op. Sneaky-agent only deviates from Op if
it increases its utility by a large margin, while Honest-agent always sticks to
Op. Finally, the agent named Unstable deviates only slightly from Op (by giving
away +/-1 amount) if its utility is increased hereby.

As the negotiation strategies were the same for all agent types the negotiation
outcome was modeled as attributes of C and not of Op. Furthermore no specific
attributes for A were available except for its identity. Besides the raw negotiation
outcome and the state of the own resources, features describing the risk of losing
utility and the chance of gaining utility were extracted and added to AttC . AttO

e

was set to be the binary classification task whether the utility would increase
less than negotiated or not. This way about 120 interactions were carried out per
agent type containing a total of 165 different negotiation outcomes alltogether.
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Fig. 4. Results on experiment 2: Negotiation data. Top left shows final clustering of
agent types. Bottom left visualizes P (Oe) for each pair of clusters (the darker the more
probable). Bar graph shows AUC for classifying P (Oe).

1/3 of the data was randomly withhold and used for testing. Again, all results
are averaged over 10 runs.

The predictive performance was measured by calculating the area under the
ROC curve (AUC). We compare the results of IRTM to two content based ap-
proaches, namely a support vector machine (SVM) using a PolyKernel and a
Decision Tree (DecTree, ID3). The SVM and DecTree got an additional input
by assigning each agent in A an unique ID number. This way the relational
model did not have more information than a “flat” model. We also evaluated
the clustering abilities by plotting the most frequent assignment of cluster by
the IRTM.

In the top left of Figure 4 one can see that in the end the four agent types
(rows) were clustered into three groups in ZA (columns). Interestingly, the as-
signment of Sneaky- and Honest-agent to the same cluster suggests that it is a
good strategy to act reliable and provide confidence most of the time in order
to convince an opponent of the own trustworthiness. But if it is clear that the
gain is really worth it one should betray the opponent’s trust.

The rectangles in the lower left corner of Figure 4 visualize P (Oe|ZA, ZC).
From the 165 different negotiation outcomes and external conditions 8 clusters
emerged in ZC . Each row indicates one condition-cluster ZC

i , each column an
agent-cluster ZA

i . Thus, each element stands for P (Oe) given the cluster assign-
ments. Brighter rectangles indicate a lower probability for a utility increase as
negotiated. As expected the first column (Greedy-agent cluster) is on average
brighter than the third column (Unstable-agent cluster) which in turn is brighter
than the middle column (Sneaky- and Honest-agent).

The overall performance, shown in the bar graph on the right of Figure 4,
demonstrates that IRTM has a slightly better performance in classifying P (Oe)
than the SVM and the DecTree.

The inherent clustering of the IRTM suggests that it is especially well suited
for initial trust situation when unknown but related agents and conditions are
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Fig. 5. Results on experiment 2: Negotiation data. Graph shows AUC for different
number of samples in an initial trust setup.

observed. Actually, entities can be correctly assigned to a cluster without having
seen a single effective outcome related to this entity just by their attributes. To
check this assumption we gathered data from interactions with another Unstable
type agent and evaluated the performance for different numbers of training sam-
ples. In the top graph of Figure 5 the AUC is plotted for different numbers of
training samples. Especially for a small sample size ≤ 10 the performance of
IRTM is clearly better than those of the content based approach.

7 Related Work

As already pointed out, connecting trust to the trusted agent alone without con-
sidering contextual and different aspects (dimensions) of trust is not sufficient
in many scenarios. Whereas much research on trust concede the importance of
context information, most of them do not actually use such information for the
calculation of trust degrees in a general and automatic way [16]. To our knowl-
edge using contextual information for initial trust assessment and the transfer
of trust between contexts is completely new.

Regarding its dimensionality, most work represent trust as a single discrete or
continuous variable associated with one specific agent. Modeling trust in multiple
dimensions is only considered by a few elaborate approaches such as [17]. We
leave it to the actual scenario how trust needs to be modeled in this respect.
In principle, IRTM can handle an arbitrary number of trust variables, each
associated with one aspect of the trustor’s expectations and represented with
any probability distribution needed.

Analogously, we argue that a fine grained modeling of relations between
agents and their environment is essential to capture the essence of trust, es-
pecially in initial trust situations. There exist a few approaches that can take
relationships into account when modeling trust. But in most of this research such
relationships are either only considered as reputation or recommendations [18],
or as interactions between a group of agents (e.g., [19]). The manifold different
kinds of relations that exist between two agents in a specific situational context
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are not modeled in detail. In addition, most learning techniques are “improvised”
for one specific scenario only.

Assessing initial trust values for unknown agents based on pre-specified mem-
bership to a certain group has been addressed by [22]. A group-based reputation
architecture is proposed here where new agents are assessed according to their
pre-specified membership to a certain group of agents. Likewise, the TRAVOS-
C system proposed by [16] includes rudimentary ideas from hierarchical Bayes
modeling by assigning parameter distributions to groups of agents but doesn’t
come to the point to give a fully automated and intuitive way of how to build
clusters.

8 Conclusions and Future Work

In this work, we presented an Infinite Relational Trust Model (IRTM) for interaction-
trust and have shown how interactions can be modeled and learned in theory
and in two experimental setups. We believe that our model will be especially use-
ful for trust learning in initial trust situations, where the trustor interacts with
other agents without having recorded sufficiently enough relevant past experi-
ences in order to judge trustability using traditional methods. E.g., this would
typically be the case in short-lived communities of practice, where information
agents gather in a kind of ad-hoc manner in order to exchange knowledge, or
in open information markets, where mutually more or less unknown information
sellers and buyers interact with each other.

IRTM is more powerful and flexible in representing intial trust and fine
grained contextual relations, adding a new level of semantics to trust learning.
The experimental results suggest that IRTM shows a performance comparable
to a “flat” feature-based machine learning approach if trained with independent
and identical distributes (i.i.d.) data. We expect to see superior performance of
IRTM if no i.i.d. assumption is made and cross-attribute and cross-entity depen-
dencies can be exploited. However, our second experiment shows that in initial
trust situations the IRTM can outperform a traditional feature-based approach
even if the i.i.d. assumption is made. Besides that, IRTM can handle missing at-
tribute values and enables a clustering analysis which is not possible in existing
feature-based trust learning approaches.

Furthermore the experiments deliver preliminary insights into the effect of
different strategies on trustworthiness in negotiations. We plan on continuing our
work in this direction. Furthermore we intend to address issues like reputation
and recommendations which should naturally fit in our relational model.
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