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Abstract.
This paper outlines the implementation of a new scoring policy for

the agents of the Simulated Robot Soccer team from the University of
Koblenz, called RoboLog. The applied technique is capable of acting
in real time in the dynamic environment of the RoboCup Simulation
League and uses data obtained from prerecorded soccer games for
supervised neural network learning. The benchmark used for testing
this approach is the Optimal Scoring Problem stated as finding the
point in the goal where the probability of scoring is the highest when
the ball is shot to this point in a given situation. Goalshot situations
from numerous logfiles are extracted and employed for the training
of two independent multi layered perceptrons. Beside the usage as
training patterns the gained data is evaluated statistically and pro-
vides interesting general insights into goalshots carried out lately in
Simulated Robot Soccer.

The results obtained after extensive testing of the new policy are
presented. Furthermore, general issues of learning from observed
logfile data and starting points for future work are discussed.

1 INTRODUCTION

Scoring goals is essential for winning games not only in real soc-
cer but also in the RoboCup Simulated Soccer League. The purpose
of the RoboCup Simulated Soccer League is to provide a standard-
ized problem domain for Artificial Intelligence research based on a
soccer simulation called the RoboCup Soccer Server [2]. Teams of
soccer agents programmed by researchers from all over the world
can compete with each other by using this simulator.

This paper outlines the implementation of a new scoring policy
for the RoboLog team from the University of Koblenz. Searching for
a scoring policy is a comparably simple task. Although the proper-
ties of the environment provided by the RoboCup Soccer Server are
inaccessible, non-deterministic, dynamic and continuous (see [6]),
the success of a goalshot can directly be evaluated. In most other
problems within the RoboCup domain the outcome of actions cannot
be estimated as simple because the actions only result in intermedi-
ate and therefore not easily evaluable states. Contrary to that, a goal
is definitely a success for the attacking team and final reward can
be assigned. This makes the Optimal Scoring Problem a well suited
benchmark for various techniques.

Accordingly, we chose the Optimal Scoring Problem for evaluat-
ing the innovative use of supervised learning from existing data. The
data needed for this kind of inductive learning was obtained by an-
alyzing relevant situations in prerecorded games. The automatically
learned heuristic was intended to replace the analytical algorithm ap-
plied so far in the RoboLog team which based its decision whether to
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shoot and where solely on human consideration. In the old approach,
manually adjusted thresholds gave the striker the positions, relative
to goal and opponents, in which he was supposed to shoot.

1.1 Problem statement

The Optimal Scoring Problem is stated as follows (see [4]):”Find
the point in the goal where the probability of scoring is the highest
when the ball is shot to this point in a given situation.”

When observed in more detail another side of this problem appears
to be essential for finding an optimal scoring policy:Given the point
to shoot, determine the probability of scoring if the ball is shot to
this point in a given situation.Although, this heuristic is especially
interesting for deciding whether to shoot or not, it is not mandatory
for finding the point to shoot in our approach.

Both problems can be correlated to each other. If you can solve the
first problem you know which point to test for the second problem.
But if you can solve the second problem you can also find a good
solution to the first problem by comparing numerous different points
and taking the one with the highest probability of scoring. Thus, the
second problem seems to be an intermediate step to solve the first
statement of the Optimal Scoring Problem.

In this paper solutions to both problems will be presented which
are not dependent on each other.

1.2 Related work

As the Optimal Scoring Problem is well suited for Machine Learning
techniques previous work has been carried out in this area.

A detailed implementation of the scoring policy used by the UvA
Trilearn 2001 team is described in [4]. Here, data is generated from
repeated experiments where a striker is placed somewhere in front
of the goal, the opponent goalie somewhere in the goal. Then the
ball is shot to some position in the goal. The outcome of this shot
is evaluated statistically. In the end, a function is presented that can
calculate the probability of scoring if shot to a given point in the
goal. Finally, the best point to shoot at is determined by computing
the probability for some discretized scoring points on the goal line
and by choosing the global maximum of the results.

In comparions to [4] our approach differs in three major points.
First, the training data is not generated by simulating situations but
by extracting already existing data from prerecorded soccer games
(logfiles). Second, far more influencing factors of a goalshot situ-
ation, not just one forward and one goalie are taken into account.
Third, two separate modules are developed to solve both in section
1.1 mentioned problems independently from each other. Thus, there
is no need for testing discretized shooting points.



In [1] high level actions are based on Neural Networks which are
trained to learn success rates. In this case the ”shoot2goal” action
will compute the probability of scoring which is later on used for
decision support by ranking the success rates of all actions in a pri-
ority list. This paper does not mention how to find the best point to
shoot at. Again, training data was obtained by repeated generations
of situations.

In contrast to that, a tool for the analysis of games played by a
certain soccer team is presented in [5]. Special game situations (like
goalshots) are identfied in logfiles on this selected team only. The
patterns obtained are fed into a decision tree induction algorithm re-
sulting in a set of rules which describe classes of successful scoring
attempts and classes of unsuccessful attempts, respectively. After-
wards, those rules are used for a perturbation analysis that can give
recommendations for changes in the goalshot heuristic used in this
certain team.

Although logfiles were used for obtaining data in [5] and, among
others, goalshot situations were extracted the crucial difference to
the method outlined here is that the knowledge obtained was used
for recommending changes to an already existing behavior (like the
scoring policy) of a certain team. In contrast to that, we intended to
find a universal and optimal scoring policy from scratch.

By combining data acquisition from logfiles with neural network
learning two promising techniques are combined in the approach de-
scribed in this paper. In addition to that, not only are success rates
learned, but the best point in the goal to aim at is determined di-
rectly by a module independent from the success rate module. This
redundantizes the test of several different scoring points as done in
previous work.

2 APPLICATION

The application of our approach can be separated in three phases.
First obtain the training data by extraction from logfiles, second an-
alyze this data by supervised neural network learning and last eval-
uate the performance of the heuristic, in this case the feed forward
networks.

2.1 Extraction of data

To obtain training samples, goalshot situations must be identified in
logfiles. It is not enough to find successful scoring attempts because
positive and negative training samples are required for classifying the
success rate. The characteristics of a potential goalshot, identifiable
from logfile data, are:

• A forward has kicked the ball.
• The forward is in a reasonable distance to the opponent goal.
• The shot has the potential to reach the opponent goal (reasonable

power and direction).

Even if all those conditions apply, further tests need to be done to
make sure that it is a valid goalshot and to obtain information about
the outcome of this scoring attempt. To determine that, the successive
cycles are scanned and checked individually:

• Can the situation be classified as goal, out, goalie catch or offsite?
In this case it is a valid shot and the outcome is known.

• But, if the ball was kicked by another player it could also be clas-
sified as passing (if kicked by a player from the own team) or
dribbling (if kicked by the same striker again) and thus not as a
scoring attempt. If kicked by an opponent defender or opponent

goalie though, it is interpreted as a valid but unsuccessful goal-
shot.

total ratio

games analyzed 996
goalshots extracted 9315 shots/game 9.352

successful
successful goalshots 3745 goals/game 3.760

unsuccessful
intercepted by goalie 4305 goalie/game 4.322

intercepted by defender 993 defender/game 0.997
out 203 out/game 0.204

other reasons for miss 69 others/game 0.069

Table 1. Statistical evaluation of analyzed goalshots

All those heuristics can be no guarantee for identifying and classi-
fying all scoring attempts correctly, as the internal state of the striker
cannot be reconstructed from logfiles precisely. It is impossible to
restore the intentions of a player in a specific situation only by ob-
serving the visual outcome of its actions. Nevertheless evaluation by
hand showed that most of the shots a human observer would clas-
sify as scoring attempts were equally categorized by the automatic
extractor. Besides that, the classification accuracy is, in that case, not
essential for the purpose of neural network learning as long as the ac-
tion holds valuable information. On this account, successfull shots,
never intended to be scoring attempts (but e.g. passes), are important
as well.
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Figure 1. Position of striker while kicking; successful shots

Those heuristics were finally applied to all recorded games from
the last RoboCup in Padua (2003) and games from the Simulated
Soccer Internet League. Plenty of interesting information can be



gained from statistical analysis of the obtained goalshot situations.
An overview is given in Tab 1.

It is interesting to know that 40.2% of the identified scoring at-
tempts were successful and 77.3% of the unsuccessful ones were
caught by the goalie. As expected, the goalie is the main factor in
intercepting goalshots but it also becomes apparent that the opponent
defenders should not be neglected. After all, they are responsible for
17.8% of the inhibited attempts.

The extracted goalshot data can give even more interesting in-
sights. Fig 1 shows the upper right quarter of a soccer field when
looked at in top view and landscape format. One half of the oppo-
nent goal is drawn as a filled black rectangle in portrait format at the
lower right part of the figure. Accordingly, one of the corners is pre-
sumed in the top right. The white lines denote parts of the goal line,
the side line, the goal area and the penalty area, respectively. The
axis refer to the coordinates used in the Soccer Server. The scattered
black dots indicate the position of the forward at that point in time
when the successful goal kick was carried out.

In contrast to that, Fig 2 marks the position of the forward at the
moment of a goal kick that turned out to be unsuccessful. Obviously
the dots are spread more widely as expected.
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Figure 2. Position of striker while kicking; unsuccessful shots

Note that all goalshot situations are mirrored to this upper right
quarter of the soccer field not only for visualization reasons, but mir-
roring is also essential for avoiding the aliasing problem. While train-
ing, the network could get confused if apparently different patterns
have the same outcome, if mirrored.

Fig 3 shows where successful goalshots crossed the goal line.
Darker areas denote more crossings. This time the goal is drawn in
landscape format as a white rectangular boundary; scaling and mir-
roring is applied accordingly. As it can be easily seen, most of the
shots were aimed at the corners of the goal, especially to the goal
pole which was closer to the attacker.
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Figure 3. Goal line crossings: dark areas denote more crossings

2.2 Learning

As mentioned before, two basic 3-layered backpropagation neural
networks were trained to solve the two tasks. The first network is
required for predicting the point to shoot at that maximizes the like-
lihood of scoring in a specific situation. The second network should
be able to classify the success rate of scoring, given a specific sit-
uation and the point to shoot. Diverse issues need to be addressed
concerning the pragmatics of neural learning.

In the following, some considerations of the decisions that needed
to be made shall be presented. One main issue is whether to use ob-
jective world data taken from the logfiles directly (accessible envi-
ronment) instead of trying to simulate the subjective world model
of a specific soccer agent (inaccessible environment). In the later
case, the objective world data from logfiles like the exact ball po-
sition would have to be reduced und altered according to the limited
subjective world model of an agent. On the one hand, it seems rea-
sonable to use incomplete and noisy data for training because in a
real simulated soccer game an agent would only get incomplete data
as well. There is already previous work providing a method for es-
timating the internal state of RoboLog agents in a specific situation
from logfile data only. Thus, it would be easy to use this data as in-
put to the machine learning technique, every agent could be prepared
with a specific decision module for its specific procedure of con-
structing its world knowledge. Unfortunately, it is still impossible to
make sure that the reconstructed subjective world model precisely
matches the original model from the recorded situation. Thus it is
likely that the recorded action is not appropriate to the interpreted
world model. Additionally, there is another fundamental shortcom-
ing of using subjective data. As soon as the way a player constructs
his world knowledge is changed, all the training needs to be redone.
Therefore objective world data was used for learning to take advan-
tage of this more general approach.

Another issue is the question which format of the input data would
be the most suited one for this kind of problem. A polar representa-
tion of the positions was favored over a Cartesian representation be-
cause polar coordinates implicitly express relations between objects
which could be more useful for the networks to generalize over the
seen examples.

Besides that, the search for the most significant relations in the
data remains a challenge, independent from the representation. As
most design decisions involved in neural learning are still consid-
ered an empirical art (see [3]), the final selection and representation
of inputs was found by comparing the results of numerous trained
networks using three set cross-validation. A visualization of the fi-
nal inputs is given in Fig 4. The indices refer to Fig 6. The attacker is
drawn in yellow, the goalie in dark grey, the ball is a white circle. De-
fender 1 to Defender 3 (marked blue) are the three opponents which



can reach the ball first2. All variables were scaled to range between
0 and 1 and assigned to one input node each.
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Figure 4. Visualization of input variables; left: best-scoring-point net,
right: success-rate net

The target value of the best-scoring-point network is the y-
coordinate on the goal interval. The output, goal or no-goal, of the
success-rate network is a binary class variable. As the classes are
separable, two output nodes - one for goal and the other one for
no goal - are used. In the end, both values are combined again to
get a success rate between 0 and 1 by using the simple formula:
(((output for no goal)− (output for goal))/2) + 0.5.

The final topology of the best-scoring-point network and the
success-rate network derived from cross validation, is 15-53-1 and
19-80-2, respectively. For the first network only positive samples
were used partitioned into three data sets for cross validation
purposes (sample size: 2060, 936 and 748). The stratified sets of the
second network contained equal proportions of positive and negative
samples (sample size: 4494, 1693 and 1302). The stopping criteria
is based on a calibration interval of 200 (total of training patterns
processed per event), where training stops when the last minimum
on the testing set (second data set) has occurred 50000 events ago.

After tweaking the various parameters involved in neural network
learning, the prediction accuracy of both networks on the evaluation
set (third data set) showed promising results.

The best-scoring-point network gave a mean average error of 1.4
units, which is reasonable if taken into account that the goal is more
than 14 units wide. So the deviation on average is 10%. Fig 5 visu-
alizes the performance using a scattered graph. The horizontal axis
denotes the actual value and the vertical axis the interpreted output.
Optimal predictions would result in a line from bottom left to top
right. It can be observed that there is no bias towards a certain point
in the predictions. The success-rate network achieved a remarkable
85.4% classification accuracy of the goal/no-goal patterns.

Calculating the contribution factor for each input variable is an-
other way to get information about the networks’ performance3. Fig

2 Those three defenders are determined by using a method from the RoboLog
code, based on a Newton iteration.

3 Contribution factors are a rough measure of the importance of a variable in
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Figure 5. performance of the best-scoring-point net

6 exemplarily shows the contribution factors for the success-rate net-
work. ”X” denotes a Cartesian x-coordinate and ”Y” denotes a Carte-
sian y-coordinate, respectively. A ”D” denotes distance in polar co-
ordinates and ”A” angle in polar coordinates. This nomenclature also
corresponds to Fig 4.

Most of the values correspond to common sense. For instance
the most important input is the angle and the distance between the
ball and the goalie. Regarding the opponent defenders, the distance
is more important than the angle and the closest defender has the
biggest influence.

2.3 Evaluation

A feed forward version of both networks, using the learned weights,
was finally integrated in the RoboLog framework. Two methods are
provided to the soccer agents. If an agent decides that he is in a po-
sition where it makes sense to consider a goalshot he makes use of
both methods. The first is required to find the best-scoring-point and
the second to get the probability of scoring with this shot.

The threshold indicating whether an agent risks a shot or not has
to be found by experiment. An observation that thereby needs to be
taken into account is the following: The closer the striker gets to the
goal the more unlikely it is that he can improve his position for a
goalshot. This is because the resistance of the defenders is more con-
centrated around the goal. This fact cannot be taken into account by
a neural network as used here. There is no temporal component that
could give feedback about the quality of future states. Consequently,
a region model was introduced. From the plot of the coordinates of
successful goalshots (see Fig 1) we specified three regions according
to the number of goalshots. Region 1 is closest to the goal and most
of the goals were scored here. Region 2 is more spacious but still

predicting the network’s output, relative to the other input variables in the
same network.
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Figure 6. Contribution factors of the success-rate net

covers lots of goalshots. Region 3, finally, is the most wide-spread
only containing a few positive data patterns (see Fig 7). From Re-
gion 3 down to Region 1 we gradually decreased the threshold that
is used for the final decision whether to shoot or not. We observed
that these rules could successfully prevented the agent from trying to
score a goal when he is far from the goal and there is enough time
and space to improve its scoring position.

Figure 7. Zone model

For the purpose of finetuning and evaluating the performance, 400
test games were played. To allow for a meaningful comparison this
was done by letting the conventional RoboLog team play against a
RoboLog team with the new neural modules. As the performance

of an agent is dependent on the available computational power the
goalshot extraction heuristic described in section 2.1 was once again
used for automatically evaluating all games played. Thus, the ratio of
scored goals to scoring attempts could also be calculated and so the
real performance without the deviation of server related performance
losses could be determined.

Tab 2 shows the average performance over the 440 test games
played. Statistics of all games played are summarized on the left half
and the final 60 games on the right half of the table. This distinction
is due to the fact, that we tried different parameter-settings for the
networks and the zone model in the first 380 games. This resulted
in fluctuations of the performance. The best set of parameters was
finally used for the last 60 games.

average test average final
conventional ANN conventional ANN

games total 440 60
games won 121 130 11 21

ratio won/total 0.275 0.295 0.183 0.35
shots total 578 556 75 83

shots goals 172 216 23 33
ratio goals/shots 0.298 0.388 0.307 0.398

Table 2. Results for test phase and final settings

The ratio of successful shots to scoring attempts is significantly
better for the team with the neural networks. Although most of the
games still were a draw, in the end the new goalshot module could
clearly outperform the conventional module by winning twice as of-
ten.

Another indication for the potentials of this approach is the per-
formance of the RoboLog team at the RoboCup German Open 2004
where the new module was used in a competition for the first time.
Even though, the overall results were not good and therefore don’t
look promising on the first sight the performance of the module
becomes obvious after having a closer look at the logfiles. There
were hardly any chances to score for the RoboLog team because
the RoboLog strikers rarely got close to the opponent goal. So once
more the ratio of goals to scoring attempts was calculated by using
the goalshot extractor described in section 2.1. This more signifcant
benchmark turned out to be exactly 50% which means that every sec-
ond shot was successfull. In addition to that, a RoboLog agent for the
first time managed to score against the Brainstormers04 team. Brain-
stormers04 ranked third in the end and conceded only two more goals
in the whole competition.

3 CONCLUSION

This paper outlined a technique that uses data obtained from pre-
recorded soccer games for supervised neural network learning. The
benchmark used for testing this approach is the Optimal Scoring
Problem. The problem was tackled by decomposing it into two sub
problems which where both individually addressed with one multi-
layered perceptron each, resulting in a variety of applications. The
results show that observational learning from logfiles using neural
networks delivers a promising performance while providing a series
of advantages compared to previous work on this field.

• The time consuming step of generating training data from repeated
experiments is not required.



• Training patterns obtained from prerecorded games provide uni-
versal information about the observed situations. The data is not
limited by a specific agent used for data generation.

• The features used for training can be easily extended. There is no
fundamental limitation due to complexity if further input variables
are added to the networks.

Besides that, the extensive statistical analysis of goalshots pro-
vided in this paper should arouse interest of everyone dealing with
simulated robot soccer.

3.1 Future work

It is obvious that the presented work is not able to provide a really
optimal scoring policy.

First of all, there are starting points to improve the module with-
out making fundamental changes. More sophisticated inputs to the
networks, like speed, acceleration and body/view-angle of moving
objects on the field, would most likely result in more accuracy. In
addition, putting more effort into the learning process and providing
more training data would also help the networks to better generalize
over the seen samples.

But it becomes apparent, that all those straightforward improve-
ments will never be able to result in an optimal scoring policy. To
achieve that all future situations on the soccer field and the strategies
of both teams would have to be taken into account. The work intro-
duced in this project would in that case only provide a solution to a
sub task in a broad decision support system. For a holistic solution, a
prediction of the next actions of the opponent team (opponent model-
ing) and the own team needs to be made in order to set up an optimal
scoring strategy. Only then, would it be possible to decide whether
there will be a better position to score if the attacker performs some
action, like dribbling first, and then tries to score instead of shooting
right away. This cannot be achieved by a simple zone model with
thresholds.

Steps in this direction could be to rank success rates of various
actions of all team-mates (see [1]) or to use an auction protocol to
decide on the next action to be carried out. However, it is very dif-
ficult to take all relevant future actions into account in this rapidly
changing environment. But a one-step optimization has not the po-
tential of being optimal.

Besides that, there are other interesting aspects to think about. Ob-
taining data by generation as done in previous work has the capability
of finding situations not observed in prerecorded games. This could
help to round off areas with sparse logfile training data or test uncon-
ventional strategies. Thus, if possible, a combination of both kinds of
data acquisition seems to be the most promising approach.

Finally, a policy more specific to an opponent team could be ad-
vantageous and achieved in two ways. For one thing, training data
from shots against one specific team could be emphasized in the
training process to bias the network. This would result in a specific
network for each opponent team. For another thing, online learning
could most dynamically handle new situations and is as promising as
challenging.
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