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Abstract. In many Semantic Web domains a tremendous number of
statements (expressed as triples) can potentially be true but, in a given
domain, only a small number of statements is known to be true or can be
inferred to be true. It thus makes sense to attempt to estimate the truth
values of statements by exploring regularities in the Semantic Web data
via machine learning. Our goal is a “push-button” learning approach that
requires a minimum of user intervention. The learned knowledge is ma-
terialized off-line (at loading time) such that querying is fast. We define
an extension of SPARQL for the integration of the learned probabilistic
statements into querying. The proposed approach deals well with typical
properties of Semantic Web data. i.e., with the sparsity of the data and
with missing data. Statements that can be inferred via logical reasoning
can readily be integrated into learning and querying. We study learning
algorithms that are suitable for the resulting high-dimensional sparse
data matrix. We present experimental results using a friend-of-a-friend
data set.

1 Introduction

In many Semantic Web (SW) domains a tremendous amount of statements (ex-
pressed as triples) might be true but, in a given domain, only a small number of
statements is known to be true or can be inferred to be true. It thus makes sense
to attempt to estimate the truth values of statements by exploring regularities
in the SW data with machine learning, which is the topic of this contribution.
The presented work is an integral part of the LarKC project [1] for the develop-
ment of large-scale reasoning and learning for the SW. In LarKC a number of
requirements have been stated. First, machine learning should be “push-button”
requiring a minimum of user intervention. Second, learning time should scale well
with the size of the SW. Third, the statements and their probabilities, which are
predicted from machine learning, should easily be integrated into SPARQL-type
querying. Finally, machine learning should be suitable to the data situation on
the SW with sparse data (e.g., only a small number persons are friends) and
missing information (e.g., some people don’t reveal private information).

A number of algorithms have been proposed in the past for learning in the
SW, many of which are based on recent work in statistical relational learning
(see [2] for a recent overview). One family of approaches formulates a global



probabilistic model for a segment of a Semantic Web knowledge-base (SW-KB)
and is able to predict the probability of statements in the domain (examples
are [3–6]). In these approaches, the states of probabilistic nodes in a graphical
model represent the truth values of statements. Although these approaches are
quite attractive, we fear that the sheer size of the SW and the huge number
of potentially true statements make these approaches inappropriate in many
large-scale applications. The second family of approaches consists of conditional
models. Here, a classification problem is defined and one attempts to derive
appropriate relational features that can be used for predicting the target class.
These approaches include Inductive Logic Programming (ILP) [7, 8] and proposi-
tionalized ILP approaches [9, 10]. Since the sample size be controlled, scalability
is easily achieved but conditional models have problems with missing data.

In this paper we pursue a compromise between global probabilistic models
and the conditional models. As in some of the global probabilistic models, we
introduce probabilistic nodes whose states reflect the truth value of the cor-
responding statements. We derive a data matrix for model training. This data
matrix is typically high-dimensional and sparse and we apply recently developed
matrix completion approaches for estimating the missing information. Since the
data matrix is typically independent or only weakly dependent on the overall
size of the SW, training time is essentially independent of the overall size of the
SW.

The paper is organizes as follows. In the next section we discuss related work
and in Section 3 we review relevant facts about the SW and discuss reasoning
via inferred closure. In Section 4 we discuss how machine learning can be applied
to derive probabilistic weights for statements whose truth values are unknown
and introduce our approach. In Section 5 we discuss extensions to SPARQL that
would lead to sensible queries and include the probabilistic values derived from
machine learning. In Section 6 we present experimental results using friend-of-a-
friend (FOAF) data. Finally, Section 7 contains conclusions and outlines further
work.

2 Related Work

The work on inductive databases [11] pursues similar goals but is focussed on the
less-problematic data situation in relational databases. In [12] the authors de-
scribe SPARQL-ML, a framework for adding data mining support to SPARQL.
SPARQL-ML was inspired by Microsoft’s Data Mining Extension (DMX). A
particular ontology for specifying the machine learning experiment is developed.
The SRL methods in [12] are ILP-type approaches based on a closed-world as-
sumption (relational Bayes Classifier (RBC) and Relational Probabilistic Trees
(RPT)). This is in difference to the work presented here, which maintain more
of an open-world assumption that is more appropriate in the context of the SW.
Also, the matrix completion approaches used in our approach have been demon-
strated to provide superior performance in many high-dimensional relational
prediction tasks [13]. Another difference is that in the work presented here, both



model training and statement prediction is performed off-line (at loading time).
As a result, in the presented approach, querying can be very fast.

3 The Semantic Web Data Model

3.1 RDF: A Data Model for the SW

The recommended data model for the SW is the Resource Description Frame-
work (RDF). It has been developed to represent information about resources on
the WWW (e.g., meta data/annotations) where a resource stands for a thing
that can be uniquely identified via a uniform resource identifier, URI. The basic
statement is a triple of the form (subject, property, property value) or, equiv-
alently, (subject, predicate, object). A triple can graphically be described as a
directed arc, labeled by the property (predicate) and pointing from the subject
node to the property value node. A complete database (triple store) can then be
displayed as a directed graph.

RDF Schema (RDFS) and various dialects of OWL (ontology web language)
can be used to encode semantic constraints. Concepts and simple relationships
between concepts are defined in RDFS, while OWL ontologies build on RDF/RDFS
and add expressiveness. More details on SW standards can be found in [14, 15].

3.2 The Query Language SPARQL

SPARQL is a new standard for querying RDF-specific information and for dis-
playing querying results. In its basic function a SPARQL query searches for graph
patterns but it also contains the ability to formulate more expressive query pat-
terns, to apply filters and to format the output. A small SPARQL query might
contain a PREFIX statement for specifying the name space, a SELECT statement
that determines the output pattern (typically a table of variable bindings) and
a WHERE statement that specifies the searchable graph pattern and might con-
tain variables. More complex queries are possible via grouping, optional patterns
and alternative patterns. Filters can be used to further restrict the search pat-
tern. Filters might include numerical comparisons (<,>,=), special operators,
boolean operators, and arithmetic operations. The output format can be mod-
ified via CONSTRUCT, DESCRIBE and ASK. With CONSTRUCT the output can be
formatted as an RDF document. MODIFY can be used to manipulate the output
pattern. The keywords ORDER BY, DISTINCT can be used to reduce redundancy
in the result set.

3.3 Inferred Closure

One way of making querying more powerful is to include in SPARQL not only
statements explicitly stated in the data base but also statements that can be de-
rived via reasoning and a number of tools provide that option. Inferred closure is
defined as follows: it consists of the extension of a SW-KB with all the implicit



statements, that could be inferred from it, using the enforced semantics [16]. In
a strategy called materialization, after each update to the SW-KB made, the
repository assures that the inferred closure is computed or updated and made
available for query evaluation or retrieval. As a reasoning strategy, total material-
ization is adapted in a number of the popular SW repositories, including some of
the standard configurations of Sesame and Jena (http://jena.sourceforge.net/).
In the next section, we describe probabilistic materialization, i.e., the material-
ization of statements weighted by their estimated probabilities. In the following
we will assume that logical materialization has been performed prior to learning
such that the statements that can logically be inferred are available for learning.

4 Machine Learning for the SW

There have been a number of publications on learning with SW-data, e.g., [17–
21]. The focus here is on machine learning approaches that permit the derivation
of probabilistic statements.

4.1 Global Probabilistic Models

There are a number of approaches for learning in relational domains, in which a
global probabilistic model in form of a probabilistic graphical model is learned,
e.g., [3–6]. The state of a probabilistic node in these models corresponds to the
truth value of the corresponding atomic statement.4 Formally, let X(s,p,o) = 1
stand for the fact that the statement (s, p, o) is true and let X(s,p,o) = 0, other-
wise. The most natural quantity that could be defined as a statement probability
is

P (X(s,p,o) = 1|SW-KB),

which is the marginal probability of X(s,p,o) given the information in the SW-KB.
This can be decomposed as

P (X(s,p,o)|SW-KB) =
∑
{XU}

P (X(s,p,o), {XU}|SW-KB)

where {XU} stands for the set of all statements whose truth value are unknown.
Certainly, simplifications can be applied such that this sum can (approximately)
be calculated for relatively large networks(e.g., [4]) but it needs to be shown
that web-size scalability is feasible. A great advantage here is that this approach
has no problems with missing information, i.e., can handle arbitrary patterns of
missing information.

4 A probabilistic node is simply the graphical representation of a random variable,
representing in our case the truth value of a basic statement or triple. Not to be
confused with a node in an RDF-graph.



4.2 Conditional Models

A second family of approaches includes the traditional approaches from ILP [7,
8, 22, 9, 10] but also a number of related statistical approaches [2, 23]. Typically
a classification problem is stated. For example, the task might be to assign an
entity to an ontological class or the task might be to predict a particular property
of an entity (high income). Here we assume that the target class corresponds to
a node X(s,p,o). Learning consists of the generation of relational features that are
good predictors for the target class. For example, one might be able to predict
income from the number of rooms in a person’s house or from the income of the
person’s friends. The features are calculated from nodes in a neighborhood of
the entity of interest. The nodes, that render the target class independent of the
remaining probabilistic nodes form the Markov blanket MB(s,p,o) such that

P (X(s,p,o))|SW-KB) ≈ P (X(s,p,o)|MB(s,p,o)).

In the situations we are considering, this approach is difficult to apply due to the
large number of statements with unknown truth values. ILP solves the problem
of unknown truth values by simply making a closed-world assumption (thus there
are no missing truth values in the Markov blanket), which is not appropriate in
the context of the SW.5 Due to the closed-world assumption, data points derived
from the Markov blanket models are independent and the number of instances
in the training set is under the control of the user, thus scalability is guaranteed.

4.3 Learning with Statistical Units Node Sets

In conclusion, a global model can more easily deal with missing information but
might not scale well and conditional models scale better but have problems with
missing information. We thus propose a model that attempts to combine the
advantages of both approaches by being able to handle missing data and by
being scalable. In addition, the approach can deal well with sparse data. In the
next section we discuss suitable algorithms. Here we discuss how the appropriate
data matrix is generated.

To define an appropriate statistical setting, we require the user to define
statistical units and a population. Statistical units are the entities (e.g., persons)
that are the source of the variables or features of interest. A population is the set
of statistical units, for which statistical inference is performed. The population
might be defined in various ways. For example, it might concern all persons in a
particular country or, alternatively, all female students at a particular university.
In a statistical analysis only a subset of the population is made available for
investigation, i.e., a sample.

Based on the definition of a statistical unit and a population, the statistical
unit node set (SUNS) is defined. Let U = {u} be the set of statistical units in the
sample under consideration. In a first definition, we define a statistical node set
5 A discussion on open-world and closed-world reasoning for the SW can be found

in [24].



SUNSu for statistical unit u to include all probabilistic nodes that correspond
to all actual and potential statements, in which u is either subject or object.
We apply the restriction we have to apply is that if there are triples between
the statistical units of the form (ui, p, uj) with ui, uj ∈ U then X(ui,p,uj) is a
member of SUNSui

but not of SUNSuj
. Otherwise the same probabilistic node

would appear in two different SUNS, which would make the two SUNS highly
dependent.

1. Let U = {u} be the set of statistical units in the sample under consideration.
The data matrix contains one row per statistical unit. Let (p, o) be a pair,
such that a triple of the form triple (u, p, o) is in the SW-KB, for at least
one u ∈ U . For each distinct (p, o), we generate a column in the data matrix.
The entry in the data matrix for statistical unit u and pair (p, o) is equal to
one, if the triple (u, p, o) is in the SW-KB and is zero otherwise.

2. In addition, we generate a column for each distinct p. The entry in the data
matrix for statistical unit u and property p is equal to one if the triple (u, p, o)
exists for at least one o in the SW-KB and is zero otherwise.

3. Let (s, p) be a pair, such that a triple of the form triple (s, p, u) is in the
SW-KB, for at least one u ∈ U . For each distinct (s, p), we generate a column
in the data matrix. The entry in the data matrix for statistical unit ui and
pair (s, p) is equal to one, if the triple (s, p, u) is in the SW-KB and is zero
otherwise.

4. In addition, we generate a column for each distinct p. The entry in the data
matrix for statistical unit u and property p is equal to one if the triple (s, p, u)
exists for at least one s in the SW-KB and is zero otherwise.

As a postprocessing step we remove columns for which the number of ones
is smaller than a threshold t. If there are triples between the statistical units
of the form (ui, p, uj) with ui, uj ∈ U , we remove the columns for uj where a
statistical unit uj acts as object. Thus a particular statement only appears once
in the data matrix.6 The approach can be used to estimate statements for the
SUNS in the data matrix (transduction), but can also be applied to statistical
units and their SUNS in the population (induction). The learned probabilistic
statements can be stored in the SW-KB as weighted triples using a number of
approaches, e.g., using reification.

In many cases it is desirable to include information outside a SUNS. For
example, the wealth of a person can often be predicted by the wealth of a person’s
friends. This information can easily be added to the data matrix (in form of
additional columns). But in the learning process, this information is treated as
fixed input (covariate) information, i.e., the SW outside of a SUNS is treated as
closed world (see Figure 1). Note, that the generation of the data matrix does
not require explicit knowledge about the ontology since the matrix entries are
calculated directly based on the statements in the SW-KB.

6 This is not the only possible way to generate a data matrix, but an important feature
is that only probabilistic nodes within a SUNS are evaluated.



Fig. 1. Left: An RDF-graph fragment with two statistical units A and B. {ai} are
triples assigned to A and {bi} are triples assigned to B. Dashed lines indicate triples
that are not in the SW-KB. Right top: The probabilistic nodes in the circle form the
SUNS for statistical unit A and are modeled jointly. Information from triples not in
a SUNS (here, the states of the probabilistic nodes {Xbi}) are considered as inputs.
Right bottom: The probabilistic nodes in the circle form the SUNS for statistical unit
B and are modeled jointly. Information from triples not in a SUNS (here, the states of
the probabilistic nodes {Xai}) are considered as inputs.

4.4 Algorithms for Learning with Statistical Units Node Sets

The resulting data matrix is typically quite large, binary and sparse. A one
stands for a statement known to be true and a zero for a statement whose truth
value is unknown. Such a data situation has been studied in various context in
the past and a number of matrix completion methods have proven to be success-
ful in this context. We investigate matrix completion based on an eigenvector
analysis of the data matrix (EV), e.g., [13], matrix completion based on non-
negative matrix factorization (NNMF) [25] and matrix completion using latent
Dirichlet allocation (LDA) [26]. All three approaches estimate unknown matrix
entries via a low-rank matrix approximation. EV is based on a singular value
decomposition and NNMF is a decomposition under the constraints that all
terms in the factoring matrices are non-negative. LDA is based on a Bayesian
treatment of a generative topic model. After matrix completion, the entries are
interpreted as certainty values that the corresponding statements are true. After
training, the models can be applied to statistical units in the population outside
the sample.

5 Workflow

The anticipated workflow is that, first, the statistical units and the population
are defined via a configuration file. Then the probabilistic nodes in the SUNS are
selected automatically and the data matrix is generated (see Section 4) based on
a sample of the population of appropriate size. The sample size will be dependent



Fig. 2. Left: A SPARQL query. Right: A SPARQL query that includes probabilistic
information.

on the training time that can be tolerated in the application. In an off-line
learning process (as in materialization) the probabilities for the existence of
SUNS statements, which are not known to be true, are estimated based on a
matrix completion procedure. After training, the model is applied to all SUNS
in the population.

We now discuss how SPARQL needs to be extended to be able to incorporate
the derived probabilities. As an example, we consider a challenge that was posed
at a recent LarKC [1] consortium meeting. First consider a regular SPARQL
query that finds all actors that act in movies that are filmed in an Italian city
(Figure 2, Left). With learned probabilistic triples we can pose the question:
Find all actors that are likely to act in movies that are filmed in an Italian
city (Figure 2, Right). Note that we have added the construct WITH PROB. The
variable ?prob assumes the value 1 for explicit triples or triples derived from
ontological reasoning and assumes the estimated probabilities for the learned
triples. ORDER BY returns first the actors, for which it is known for certainty that
they have acted in movies that are filmed in an Italian city and then returns
actors sorted by the probabilistic labels ?prob. The keyword DISTINCT can be
employed to remove redundancy.

A query can also be based on several probability values. Note that we can
answer the query: select a patient who has a high probability of diabetes and has a
high probability of hepatitis, but not: select a patient with high probability of dia-
betes and hepatitis, since the latter would require joint probabilistic information,
which is not stored.

6 Experiments

6.1 Data Set and Set Up

Data Set: The experiments are based on friend-of-a-friend (FOAF) data. The
purpose of the FOAF project [27] is to create a web of machine-readable pages
describing people, their relationships, and people’s activities and interests, using
W3C’s RDF technology. The FOAF ontology is based on RDFS/OWL and is
formally specified in the FOAF Vocabulary Specification.
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Fig. 3. Relational model of the LJ-FOAF domain

The FOAF dataset was generated from user profiles of the community website
LiveJournal.com7. Figure 3 shows a summary of the triple-statements we are
using in the experiments. We selected 636 persons with a ”dense” friendship
information. On average, a given person has 18 friends. Numerical values such
as date of birth or the number of blog posts were discretized. The resulting data
matrix, after pruning columns with few ones, has 636 persons (rows) and 491
columns. 462 of the 491 columns (friendship attributes) refer to the property
knows (see Figure 3). The remaining columns (general attributes) refer to general
information about age, location, number of blog posts, attended school, etc.
Evaluation Procedure and Evaluation Measure: The task is to predict
potential friends of a person. For each person in the data set, we randomly
selected one known friendship statement and set the corresponding matrix entry
to zero, to be treated as unknown (test statement). In the test phase we then
predict all unknown friendship entries, including the entry for the test statement.
The test statement should obtain a high likelihood value, if compared to the other
unknown friendship entries.

Here we use the normalized discounted cumulative gain (NDCG) [28] to eval-
uate a predicted ranking, which is calculated by summing over all the gains along
the rank list R with a log discount factor as NDCG(R) = Z

∑
k(2r(k)−1/ log(1+

k), where r(k) denote the target label for the k-th ranked item in R, and Z is
chosen such that a perfect ranking obtains value 1. To focus more on the top-
ranked items, we also consider the NDCG@n which only counts the top n items
in the rank list. These scores are averaged over all functions for comparison. The
better an algorithm, the higher would the friendship test statement be ranked.
Benchmark methods: Baseline: Here, we create a random ranking for all
unknown triples, i. e. every unknown triple gets a random probability assigned.
SVM: We use the one-class support vector machine SVM out off the LibSVM[29]
package. In training, the one-class SVM only needs positive examples, which is
quite appropriate for an open-world assumption. We tried three different kernels:
a linear kernel, the gaussian RBF-kernel and a polynomial kernel. Two differ-
ent input feature sets were examined: one contains only general attributes of
persons (such as age, location and number of blog posts) (SVM attr.) and the
second one contains, in addition, the friendship information to all persons (SVM
attr.+knows). For each friendship attribute, a separate SVM was trained.

7 http://www.livejournal.com/bots/
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Fig. 4. NDCG comparison between different algorithms. Left: NDCG all is plotted
against the number of latent variables. Right: NDCG@n score for different thresholds.

6.2 Results

Figure 4 shows the results for our FOAF data set. Figure 4 (left) plots the
NDCG all score of all algorithms against the number of latent variables. Note
that for the SVM, the best results were obtained with an RBF kernel ( ν, γ =
0.01). The error bars show the 95% confidence intervals based on the standard
error of the mean. All three matrix completion methods clearly outperform the
benchmark algorithms, while LDA outperforms the two other matrix comple-
tion algorithms NNMF and SVD. In addition, LDA is not very sensitive to the
predefined number of latent variables as long as the number is reasonably high.
LDA reaches it maximum NDCG all score with T = 50 latent variables and the
performance does not deteriorate when the number of latent factors is increased.
In contrast, the two other matrix completion methods are sensitive with respect
to the predefined number of latent variables. They both reach the maximum
with T = 20.

Figure 4 (right) plots the NDCG@n score against thresholds n. Again, LDA
performs best at every threshold n and the two SVM settings are inferior to all
matrix completion methods.

7 Conclusions and Outlook

We have presented a generic learning approach for deriving probabilistic SW
statements and have demonstrated how these can be integrated into an extended
SPARQL query. The approach is suitable for a typical SW data situation with
sparse data and missing data. The learning process is based on the concept of
a statistical unit node set (SUNS) and is to a large degree autonomous. Only
the statistical unit and the population need to be defined by a user. Since the



size of a SUNS is rather independent of the overall size of the SW and since the
sample size can be controlled, SUNS training time is essentially independent of
the overall size of the SW. The generalization from the sample to the population
is linear in the size of the population. The approach is most suitable when all
statistical units of interest are in the training data set (transduction) or if the
number of statistical units outside of the training data set is comparable to the
size of the training data set. If the size of the population becomes very large,
some relational information cannot be explored (e.g., random people in the world
do not have friends in common). Future work will address this issue.

In our experiments based on the FOAF data set, LDA showed best perfor-
mance, which we attribute to the fact that LDA, in contrast to NNMF and EV,
uses a Bayesian approach, which has a smaller tendency to overfitting. Thus
LDA can be a default method being insensible to exact parameter tuning. As
confirmed by our experiments, support vector machines did not exhibit competi-
tive performance in learning high-dimensional relational data. We demonstrated
how probabilistic statements can be integrated into extended SPARQL queries.
As example, based on the learning results for the FOAF data, one could answer
queries such as: Who would likely want to be Jack’s friend; which female persons
in the north-east US, would likely want to be Jack’s friends.

The approach can be extended in many ways. One might want to allow the
user to specify additional parameters in the learning process, if desired, along the
line of the extensions described in [12]. Another extension concerns ontological
background knowledge. So far, ontological background knowledge was considered
by including logically inferred statements into learning. A great advantage of the
approach is that ontological knowledge is not required for the generation of the
data matrix since the latter is generated based on observed SW triples. Ongoing
work explores additional ways of exploiting ontological background information,
e.g., for structuring the learning matrix. Similarly, we did not yet address the
problem of ontology mapping and of having identical entities represented on the
SW under different identifiers.
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