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Abstract: Inspired by information systems theoryderstanding, meaning constitution, semantic space,
Semiotic  Cognitive  Information  Processinduzzy modeling, symbol grounding, dynamics, sys-
(SCIP) is grounded in (natural/artificial) systemiems theory, visualization, quantitative linguistics.
environment situations. SCIP systems’ knowledge-

based processing ahformationmakes itcognitive

their sign and symbol generation, manipulation, I
and understanding capabilities render semiotic
Based upon structures whose representational
status is not a presupposition to, but a result
from recursive processing, SCIP algorithms initiat
and modify the structures they are operatin
on to realize (rather than simulate) languag

. INTRODUCTION

In terms of information systems theory, life may
e understood as the ability to survive by adapting to
hanging requirements in the real world. Living sys-
ms do so by way of processing information they
understanding by meaning constitution Thus, receiv_e or de_rive from relevant p_ortions of th_eir sur-
the symbolic (de)composition of propositiona{l.ound'ng environments, of Igarnlng f'fom their eXpe-
structures in traditional semantics is complementx{be nce, and of changllng their behawor.accordlngly.
by SCIP, which models learning anshderstanding n cor_ltra_st to other I|V|ng systems which tr_ansmlt
xperiential results of environmental adaptation only

dynamically by visualizing what is understood in &’ . . .
y y by g glogenetlcallﬁ to their descendants, human infor-

perception-based, sub-symbolic, multi-resolution ation processing systems have additional means to
way of processing natural language discourse. AR P g sy

experimental 2-dim scenario with object Iocationgor][\./ey| :helr krllovyledgfe to tothers. In_ffaddmon to the
described relative to a mobile agent’s varyin ertical ransmission of system specifiafaneouy

positions allows to test SCIP systems’ performan éperience through (biogenetically successive) gen-

e o e B taanan frs T s S compeneri
a controlled way . 9 Sp

and foreign éxtraneouysexperience and knowledge
to (biogenetically unrelated) fellow systems within
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ments helped to improve the written version of the lecture and,2According to standard theory there is no direct genetic coding

hopefully, its readability. All errors are, as always, my own. of experiential results but rather indirect transmission of them by
1The implementation of the SCIP system-environment testbedsslectional advantages which organisms with certain genetic mu-
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A. Process and Result or space-time-dispensed system-environment situa-
This is made possible by semioticmove based tions. The forme_r may be characterized _(and mpd-
on representations that allow not only to distinguisp{ed) by some stimulus-response form of interaction
processedrom resultsof experience, but also con-Whereas the latter are tied to some intermediate stra-
vert the essentially transient status of experient#&m Of a particular format which needs actualization
results to some more stable though dynamic Cogm_order to be realized. Its representational function
tive entities ofknowledge These can be retrieved S€€MS to evolve in the very process of actualizing
activated, re-used, modified and improved by latéfhich is itself immediatein the sense that the
processes and their resultslearning system concerned has to have physical access to
Vehicle and medium of this move is a particulafhat stratum and its particular format in order to
kind of representation Based upon more or lesdet it represent something else or becomediate
complex sign systems which constitiémguageso in the above specified sense. The distinction corre-
form more or less abstract compositional structuréonds to the twofold status which semioticians like
or textures these may be realized in processe3rUSSURE [4] and PEIRCE [5] had long identified
of communicative exchange, calletttualizatior. @S being characteristic signsandsymbolsas well
Suchtexturesfunction — whether internal to a sysStextanddiscourse These can both be perceived
tem (as itsknowledgg or external to it (as language®S some physical language material (consisting of
texts or discoursg — like virtual environmentsto componenfsand also be realized as language struc-

recognize and interpret them. It is this double identity (oontology of language
' . signs and symbols which calls not only for a two-
B. Mediate and Immediate level modus of actualization but also for a multi-

In terms of information system theoryirtuality level modeling approach to realiaenderstanding
can be characterized by the fact that it dispendeyg machine. Taking up conceptions developed in
with the identity of space and time coordinate valueituation theory[1, 6], the semiotic approach to
for a system and its environment which normallynderstand languagenderstandingnay tentatively
prevails for this relation when qualified to constitutee characterized as follows:
reality [3, pp. 287]. The hypothesis is that thé-or information processing systems appropriately
dispensation of this identity (of value pairs) is noadapted tuned to their environments the process
only conditional for the possibility to distinguishof actualization consists essentially in a twofold
(mutually and relatively independergystemsrom embedding
their environments but also to establish a sys
tems theoretical perspective mpresentationsThis
opens new vistas on language understanding an
how it can be modeled apart from propositional
decomposition of language structures.

Immediateor space-time-identical system-envi-
ronment settings can be distinguished fromadiate

>to perceive the space-time-identity of pairs of
immediatesystem-environment coordinates which
ill let the system experience the material prop-
erties of texts as composed aigns (i.e. by
functions of physical presentation ananutually
homomorphi@ppearance). These properties apply
to the percepts of language structures accessible
STerm borrowed fromSituation Semantic§l, pp. 60] where 1O @ System in particulatiscourse situationsand
abstract, actualand factual signify levels of typified (ontological) [>to realize the representational relatedness of pairs

specificity in characterizingvents, state-of-affairs, courses-of-events, of mediatesystem-environment parameters which
situationsetc.

4Simon’s [2] remark "There is a certain arbitrariness in drawing the W”! let the SyStem exp_e“en_ce the semantlc prop-
boundary between inner and outer environments of artificial systemserties of texts agneanings(i.e. by functions of

... Long-term memory operates like a second environment, parallel toemergence identification organization represen-

the environment sensed through eyes and ears” (pp. 104) is not a case_,.
in point here. As will become clear in what follows, his distinction of Statlon of structures). These apply to the com-

inner (memory structure) anduter (world structure) environments ~ prehension of language structures as multi-level
of a system misses the specg&@mioticquality of natural language  gnd multi-dimensional entities (re)cognized by a

signs whose twofold environmental embedding (textual structure) cuts t to f thel ibed situati hich
across thenner/outerdistinction, resolving both, memory and world system to rorm €scribed situauong/nich can

structures in becoming representational for each other. be understood



C. Knowledge and Cognition the real world with the (symbolic) structure that

In terms of cognitive theory realizational funcépresents it. From a semiotic point-of-view, this
tions like identifying structures,interpreting signs, identification is hiding rather than revealing what
and understandingneanings translate to processeé®akes a structuresignaggregate represent or stand
which extend the segments of reality accessible i@y (sSymbolizg something else.

a living (natural and possibly artificial) informa-
tion processing system. This extension applies Jo
both theimmediateand mediaterelations which a =~ o _
system establishes by adaptiearning and emer-  In the context of disciplines focusing on as-
gent understandingbased on its own innate orPects of cognition, like language philosophy, logics,
acquiredstructurednessits processingapabilities linguistic semantics, biological neuro-science, and
and its knowledge Knowledge based informationcomputational connectionism, it has been outlined
processing therefore became the paradigm for mdél that the relationship between the real world or
eling cognition Traditional approaches to cogni@bjectivereality (2) of observable entities external
tion have tried to provide the knowledge externall{p @ cognitive system, and the perception of such
as propositionally formatted symbol representatiofgtities by observations which constitute a system’s
and consequently had to exclude the dynamics ®fPerience or subjectivectuality (A), is cognitively
change and self-organizing which are characterisfi€ Well as epistemologically highly relevant and
of adaptation and learning More recent models model-theoretically most decisive. Suggestions for
of cognitive information systems are designed fapw this mediation relation may be (re-)constructed
model attunement to (textual) environments, eRave resulted over the years in a number of types
dowed with knowledge acquisition, modification0f models. These range from simple identity as
and representation capabilities to allow for the dy! = R, to functions asA = f(R) depending on
namic processing of representational data or siff@lity () only, or asA = f(R, O, C) being based
structures to actualize relevant information. The&élditionally on features of the observing systen) (
are referred to asemiotic cognitive information@nd its cultural and/or experiential backgroudd,(
processing(SCIP) systems [7] one of which willand reach out to structurally coupled resonance phe-
be dealt with here. nomena of semantically closed cognitive systems as

Following these introductory remarks (1) will bedi+1 = f(4:, E, P) which relate perturbations?)

a short survey (Il) of what cognitive models ofnflicted on the system-environment from outside,
meaning have dealt with so far. Some essentialstpe structure of a state spacg)(determining that
SCIP systems as part of a futudynamic image System’s possible states, to cope for the dynamic
generating semantic¢DIGS) will (Ill) character- changes of the system’s actual statésalong a
ize the computational semiotics approach whichtime scale. In this formulad seemingly can do
for the purpose of modeling — allows to separafdtogether without?? [9]. This is a consequence of
the process ofinderstandingeferential expressionsself-organizing, dynamic, autopoietic systems [10]
from generatingthem in describing real world en_for which theobservabilityof entities external to a
tities. The model will be realized in three stepgognitive system hinges on their communicability to
of increasing procedura] concretion of processiﬁhers which include internal results of Comm0n|y
by formal definition asmorphismsand constraints €xperienced external perturbations. Realifythere-
(IV), their specified instantiations asttingandex- fore, should be viewed more like aituational
periment(V), and their imp|ementations ausocess condition for the pOSSlblllty of inter'SUbjective and
and measurementV1) with test results to illustrate social collections of experiential results rather than
the model's performance. Finally, summaryand an independently existing realm of entities. Thus,

outlook to future work (VII) will conclude the suggesting and finding parameters to reconstruct
paper. the background okxperiential perceptiorfor the

interpretation of what can be consider@uservable
Il. COGNITIVE MODELS OFMEANING reality in this way, underscores the importance of

It is common practice in cognitive modelingdistinguishingende from exoviews of reality to
and mathematical semantics [1, p. 57] to identifgvercome the traditional mind/matter duality. In

Reality, Perception, and Representations
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view of representations like natural languages, tiptoyed in SCIP systems so far allow for (numer-
endo-exadistinction allows for a semiotically moreical, sub-symbolic, distributed, non-propositional)
adequate approach to entities whose observable fermats whose (parallel, pattern-based, quantitative)
ality provides for an experiential perception whiclsomputation results in (the emergence of) meanings
is also the precondition for theimderstandindand as enactment of labeled processes of choice restric-
the modeling of it). tion [22]. Accordingly, meaningsare the outcome
rather than the presuppositions of processing [23],
whose modeling is a form akalizationrather than
n9imu|ation[24]. It appears that a perception-based

Theoretical and computational linguistics — mesimulation of processes (of constraint detection and
diated by (language) philosophy, (formal) logicsepresentation) may bring about results which re-
and (discrete) mathematics — have clearly dominatalize meaning constitutiorand understanding(of
research and explicative theory development. Theymbolic structures) as grounded in these very pro-
decided on how natural languages (NL), their (coneesses.
positional) structures, and their (semantic) functions One of the most severe problems though, arising
are to be understood and explicated as symhith this kind of non-linguistic models of language
manipulation and transformation systems. NL coninderstanding is how their performance and their
munication has long been conjectured to consist @fsults may be evaluated and tested in an inter-
what only recently the cognitive sciences have idegubjectively agreeable and preferably empirical way.
tified as a complex of multi-level processes. Theggenerating images of what declarative referential
were conceived as operating on (world, linguistitanguage expressions describe could be a solution,
situational) knowledge which has to be considerguovided that the semantic contents detected com-
conditional for any information processing. Howputationally are a result of and not a presupposition
ever, the knowledge bases (KB) designed to compty the detection process.
with these conditions were hypothesized as physical
symbol systems [2, 11] whose static conception of
structure proved to be unable to adapt to changing
conditions (learning). Some of the problems [12] Based on the above (as yet) fragments of a com-
that cognitive modeling along these lines encouputational theory of cognitive processing of fuzzy
tered since are due to the declarative (i.e. symbolmercepts, the contours of dynamic image gen-
compositional, propositionafprmatsemployed and erating semantic§DIGS) can be identified which
the (deterministic, rule-based, modulg@rpcedures may eventually be able to cope with variability
chosen in generating, forming, and manipulating lirend vagueness, adaptivity and learning, emergence
guistic concepts like morphemes, syllables, wordasnd plasticity ofknowledgeand understandingin
phrases, sentences, texts, and their meanings. @Asinifying and comprehensive way. As a fully-
these tend to be construed of clear-cut elements (8gédged theory it would comprise perception-based,
gregates, structures, relations, functions, processa#h)-symbolic parts side by side with rule-based,
etc.) of systems of language entities, their crigymbolic components, the former ideally grounding
and determinate definitions do not comply with thihe latter. Anticipating this combination in a weaker
way they are perceived which is variable, contesense, the setup of the modelgeimiotic cognitive
dependent, fuzzy, and possibilistic in nature. information processingSCIP) system is comple-

In order to understand the dynamics of howmented by a component which employs rule-based,
natural languages serve the communicative purposgsbolic processing for deterministic language gen-
they do, fuzzy [13,14] and procedural modeling [15ration purposes. As these techniques have long
approaches to semiotic systems [16,17] and NL ubeen developed and applied in natural language
derstanding [18, 19] have advanced some ideas [pBocessing (NLP) in general and computational lin-
21] for a computational theory of cognitive processuistics (CL) in particular, they are well understood
ing of fuzzy percepts. Conceived as a multi-layereahd ready to be used.
process of structure identification and dynamic rep-In our setup they will be employed to generate
resentation, the fuzzy modeling techniques ertiie language material (texts) describing real world

B. Semantic Theory, Meaning, and Understandi

I1l. SCIP SYsTEMS AND DIG SEMANTICS
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situations in a formally controlled, i.e. rule-basedp model functions which are considered essen-
determinate and symbolic way. This training matétal to the original or natural cognitive systems
rial will then be submitted to an equally controlledand their structure (i.e. knowledge and memory).
though simulative way of processing which i§he assumption behind most KBs, however, that
perception-based, non-determinate (stochastic), skbewledge is propositional and its only format of
symbolic (numerical) and hypothesized to model representation is truth-functional, rule-based, and
symbol groundingprocess of languagenderstand- symbolic in nature l{hguistic transparency has

ing [25, 26] . Suitable visualization of processingpeen refuted [7, pp. 350]. It was revised in so
results will allow for anad oculostest and compar- far as the process of language understanding can
ison with the real world scenario described by theeither be identified with sentence parsing nor with

texts processed. the inverted process of generating natural language
expressions applying formal syntax and semantics
A. Knowledge, Memory, and Models as provided by computational linguistics.

Most cognitive scientists agree that cognition N . _
is a form of information processing. Models of- Cognitive Information Processing
cognition therefore are inspired ligformation sys-  In order to let traditional models afognitive lan-
tems theoryand based upon (natural or artificialpuage information processin@LIP) becomesemi-
system-environment situations. Any system whoséc, their knowledge and memory functions have
processing of external, environmental data (input) be conceived as procedural and internal to the
is determined by its own internal structurednesystems changing their character from static deter-
will generally produce soménformation (output) mination to dynamic flexibility (Fig. 1: processing
relative to both, its internal and external conditiongoops). Additionally, the representational format for
As soon as the flow of input data consists not onknowledge structureand memory functionshould
of signals but also of signs or symbol aggregatdggilitate adaptation to changing environmental and
the simple system-environment relation will becomgrocessing conditiondgarning), and enable identi-
more complex, oscillating betweemmediateand fication in changing contextgfficiency for a singu-
mediateas characterized in system theoretical termar system concerned, as well as among a plurality
This is due to the double ontology of signs whicbf systems interacting by means of externalized sign
are not only perceived but have to be recognized i@presentationscOmmunicatioh
representations in order to be processed accordinglyAllowing for variable, ill-defined, underdeter-
i.e. interpreted as standing for something else thatned data to be processed, and enabling the self-
the perceivable signal is not. organized constitution (emergence) of vage and

Traditional models otognitiveinformation pro- fuzzy entities to be represented and operated on,
cessing try to account for this double ontologgemiotic cognitive information processi{8CIP) is
of signs and symbols — which are physicallgal based on well-defined procedures which can handle
like data but in addition also hawmeaning— by imprecision in a precise way. SCIP systems’ ability
providing the processing system with the necessaigmprises their performance in knowledge-based
information via arbitrarily complex representationgiformation processing and representing its results
(sets, structures, systems) of sign-meaning corf@7], organizing these representations by activat-
spondences, named knowledge-bases. KBs extémgl others from prior processing [28], constituting
the system’s data processing capabilitiescégni- meanings [29], allowing for (semantic) inferencing
tive, i.e. knowledge-based processing in generatir{0], and planning [31] by selecting from organized
manipulating, and interpreting sign and symbol agnd represented dispositions [32], and modifying
gregates of different kinds. These comprise linguithem according to changing conditions, results, and
tic knowledge in form ofgrammars(rules ofsyntax states of evolving system-environment adaptedness
and semanticy and world knowledge in form of [33]. Based on NL structures, SCIP performance is
network structureglike frames, scriptsandscenes a form of complex, multi-resolutional information

Conceived as being externally attributable to th@ocessing. As a process wieaning constitutiont
modeled system and therefore assembled and figrtied to (and may even be identified with) lan-
matted by the model designer, KBs obviously sergpiageunderstanding[34] or meaning acquisition

5



Information space

Observers’ (external) view of environment: Exo-Reality

NL-Corpus of Descriptions

Propositional %eferentiaj
Textgrammar emantics

%anguage)
erception 4

sgzognitiv_e)
rocessing

T—-0W0

So~un<wm

(Internal)
Structuring

'

Semantic Space Structure

Visualizing A%;Iomerative
Transformation lustering

System’s (internal) view of environment: Endo-Reality

Fig. 1. Schema of test layout to compare the situated SCIP system’s (enigmatic) internadviaréality resulting from its (well-defined)
processing, against the observer’s (well defined) external-véew-(eality which traditional, symbol based, cognitive modeling identifies
prematurely with the (enigmatic) processes underlying natural language understanding. Whereas the referential semantics and propositional
text grammar are employed to generate PHT corpora of NL descriptions of (real world) situations, the subsymbolic, two-level processing of
these descriptions yield the SCIP system’s semantic space structure. Its algorithmic visualization (Fig.9) allows for a comparison with the
external observers’ view of real world situations (Fig.3) which traditional models describe by grammatically correct and semantically true
proposition& encoded aseferential meaningr informational content

Whenever thaneaning of signss not a presuppo- namics these lack. Provided by procedural defi-
sition to but a result from algorithmic processingitions of quantitative, sub-symbolic and flexible
of (symbolic) data whose representational statpattern identification, representation, and manipu-
(like in NL discourse) is commonly accepted, thelation, their flexibility might become a central part
theselearning algorithms — being able to initiateof an evolvingdynamic image generating semantics
and modify the structures they are operating dDIGS). Its adaptivity would essentially depend on
— may qualify assemioticand thereby as part ofthe SCIP system’s format of non-symbolic, dis-
computational semiotics tributed numerical representations whose processing
allow new representations to emerge when needed.
They are tieing the system to those segments of
the real world which the language expressions are

The SCIP system’s approach to discourse und@rpart of and — when processed properly — con-
standing is — very much like modelingsion [35]

— essentiallyperception basedAs such it com-
plements the declarative, symbolic (de)composition
of propositional structures exercised by traditional
NL semantics in a way which allows for the dy-

C. Perception-based Discourse Understanding
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. . . . .
vey information about as their meanifgsThey C par M C I 3

- S
do so both, according to their grammaticality and v
propositional contents as determined in a formally syn eny
specified sensexternalto the system, and accord- des  den
ing to the system’s own ointernal understanding re
SC

based upon the non-propositional, syntagmatic and 1 SV 7 Xcu
paradigmatic regularities in textual structures which

can also be visualized. To achieve this, DIGS would stw ¢

have to formalize these ties in two ways: as a deter-

ministic system of grammatical rules for semantic EcCG

and syntactic constraints to generate true and corrgg;z_ Diagram of morphisms mapping vocabulary itersigr)
languagedescriptionsof real world entities, and . < 7 c v onto meaning points or intensions € M C I,
inversely — independent from grammatical rules ardpwing their designationdes C V' x M (cognitive interpretants)
their symbolic representations — as a class of restﬁpe reconstructed as compositipm- o syn. Thedenotationden C

. e . x X relating intensions to real world entities, may be reconstructed
tions that are typified by (soft) constraints, modeleg@ compositiornvosys of the attuned system’s constraints’ relation

as procedures which produce (fuzzy) relations repr@s C M x S and the environmental segment's constraints’ relation

; fotr ; v C S x X. Thus, den relates (fuzzy) intensiong € M C
sented as (word type/ numerical value) dIStrIbutIOI’]?fto real situations by classifying (fuzzy) subsefs of entities

As the former can straight forwardly be provideghpjectd) = ¢ X c U in the universe of discoursdue to types of
by computational linguistics, the latter are not jusébstracted) situational uniformitiese S common to both. Hence,

; eferencerelationref C T x X is reconstructed as composition
another instance of transformed data representaﬁpﬂo des, whereas its inverse atescriptionrelationdsc C X x T

. . n
but — as they result from non-symbolic, I“Umeﬂcasr(re)cons’[ructed as compositianz o sem of sem C X x E and

computation — a new type of structural representss C E x T, relating (eal) entities pbjecty = € X C U via
tion associating emergent entities (concepts) Wi rmal) language expressions (logidaterpretanty ¢ € £ C G of

. . . - the grammarto semanticallytrue andsyntacticallycorrect (natural)
observable entities (objects/signs) to realize Whafguage stringssigng = € T C V..

may be named themnderstanding

for further specifications which in turn may be
IV. M ORPHISMS ANDCONSTRAINTS instantiated in a variety of ways. Some of these
will permit operational application in SCIP-like

: Being grounded in system-environment sit_u%- ttings of which a few might even realiPEIRCES
tions, SCIP systems may formally be characterlz% nception ofsemiosié

by morphism& which allow to represent meanings

and functions of language entities as evolving from .

multi-level decompositions of cycles of constrairft- Decomposition |

processing (referring here and below to Fig. 2) The first level of decompositions apply to both

operating on and modifying the structured entitigbereferenceand thedescriptionmorphismgef and

concerned [7, p. 380]. Thus, morphisms designaisc (Fig. 2).

a very general type of relatedness which allowsA. 1 For the process type afescribingentities

to characterize the procedural notionsgmioticity in the universe of discoursethe morphismdsc :

formally on a rather abstract level. Morphisms cak — T is introduced (Fig. 2). In order to gener-

ate semantically trugem and syntactically correct

The meaning conveyed cannot always be represented in a lag,: natural language expressiofis C V from a

guage independent way, e.g. by observable operations/proce . .
enacted without being understood prior to their (re)presentationségfen VocabUIary’ the decomposed morphtﬁm -

semantic contents. This is also why traditional cognitive approachsér o sem C X x T will have to be instantiated.
easily accept linguistic analyses of propositional language structdf¢yis instantiation can theoretically be Specified and

as only explication l{nguistic transparency of understanding and . . . .
why linguistic semantics in turn appeals to formal logics as aﬂlgonthmlca”y determined by formal expressions

available format for the representation of declarative NL expressios’€ £ C G of grammatical adequacy as provided by
predicative functioning.

®The concept ofnorphism[36] is employed because it captures a "By semiosisl mean [...] an action, or influence, which is, or
notion of generality as a type of abstract relatedness whose possibl®lves, a céperation ofthree subjects, such asign[z € T' C V],
instantiations (as mappings, relations, partial or total functions, et@g object[z € X C U], and its [cognitive;p € M C T or logical:
due to yet unknown conditions of definiteness cannot and need mot E C G] interpretant this tri-relative influence not being in any
be decided on. way resolvable into actions between pairs.” [5, p.282]



computational linguistics. The morphismsr and languages’ ability to form discernable entities and
sem define a notion of constrained syntactior- patterns recursively by aggregationalsyntagmatic
rectnessand semantidruth of propositional struc- (syn) and selective oparadigmatic (par) restric-
tures. These ardynamically generatetb describe tions. These can be instantiated by implementable
real world entitesz € X C U in a controlled semiotic algorithms for the recursive computation
way to form NL expressions in texts € 7" C V. of the combinatorial constraintsyn and par and
Assembled into collections of increasing size, thikeir multi-layered, multi-resolutional representation
language material’ C V forms PHT-corpora (of y € C in (patterns of) distributions of (emergent and
pragmatically homogeneous textshose semantic abstract) entitiep € M C 1.

contentsimeaning are the described situations these B. 2 For the abstract entities € M C I which
texts refer to. are being realized conceptually to relate to real

A. 2 For the inverse process type aoinder- world entitesxz € X C U in the universe, the
standingnatural language expressioisC V' the denotationmorphismden = env o sys C M x X
referencingmorphismref : T — X is introduced is defined as a composition of structural constraints
(Fig. 2). Due to thedesignativeand denotative inherent to the systemys on the one hand and
constraintsdes and den hypothesized to constituteto the environmentnv on the other. They couple
referential meaning, the decompositiofyf = deno the system and its environment to each other and
des C T x X allows to instantiate theeference determine their mutual structuredness, restricting
morphism relating language entitieE C V to the range of components in typified situations S
specified real world entitieX” C U in the universe, common to both. Instantiated as a cluster analyzing
i.e. constituting these NL expressions’ meanings.algorithm, thesys constraints provide the internal

However, whereas thelescription process can or endeview a SCIP system may obtain of its en-
be based on externally defined formal grammavgonment in collecting structural informatiomui-

G whose expressions of symbol manipulation ruldsrmitieg as gathered from processing the discourse
E C @G fully determine the language generatiorthat describes it. Visualizing theaaiformities is

the meanings or concepfd C I which instantiate a transformation algorithm which instantiates the
the referencingprocess cannot be provided from theys morphism to yield an image of the real world
outside without losing the chance to see the systeraituation comparable to € X C U.

own, internal way of meaning constitution diverge
from the external observers’ view and to mode
its possible approximation to the model designer
understanding. In order to keep that possibility and In order to demonstrate the suggested SCIP sys-
let the model produce such potential divergencem’s potential and factual discoursederstand-
another level of decomposition has to be introducétg capability, it has to be made more concrete
to allow instantiation of the as yet unspecifieprocedurally. The base for such a concretion will
morphismsdesandden be languageor rather natural languagdiscourse

in its structured form. It functions astructural
coupling[10], which not only relates an information
processingsystemto its embeddingenvironment

The second level of decompositions apply aga{and vice versa), but also serves to instantiate the
to both thedesignationand thedenotationmor- hypothesizeddescriptionand referencemorphisms
phismdesandden (Fig. 2). by different processes due to trsmiotic func-

B. 1 As a relational notion of correspondencdons that characterize situated natural language
between observable language elementsT C V' discourse. Whereas the procegs: : X — T
and realized entities of an abstract conceptual natwfedescribing real world entities C U by NL
p € M C I, the designationmorphismdes = expressions’ C V can and will be controlled by
par o syn C T x M is defined as a compositionmeans of formal grammarsyntaxand semantick
of principles which restrict the combinability ofdsc = stxosem C X xT, the processef : T — X
language entities in a way universal to all natwf referencing or how NL expressioris C V' can
ral languages. These principles characterize natustdnd for or represent some real world entitlesC

. Natural Language and Symbol Grounding

B. Decomposition I
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U is still enigmatic. Its hypothesized reconstructioissue and trivializing the problem. Therefore, a
ref = denodes C T x X asunderstandingprocess simple 2-dimensionateal world scenario (Fig. 3)
composed of meaning constitutioméntal imaginy was devised as a reference plane with stationary
des = parosyn C T x M and structure visualizationobjects A, 0 € X C U (environment) and an
(symbol groundingden = envosys C M x X needs oriented mobile agentA € X C U (system)
to be specified. whose trajectories can be used to generate verbal
To ease the burden of declaring and outliningescriptions of the objects’ locations relative
the correspondences between the formal typestofthe agent's changing system positions (SPOL
processes introduced so far and their proceduralations) in simple declarative senterfcdhus, the
instantiations, the measurements of constraints gmpositional form of natural language predication
their algorithmic implementation, up to computediill be used solely to control the contents of the
results and their visualizations, we will in whanhatural language descriptions generated as training
follows confine ourselves to an experimental settimgaterial, not, however, to determine the way it is
chosen to limit the SCIP system’s testable perfoprocessed to model itsinderstanding Moreover,
mance with reference to earlier publications whethe scenario determines the overall situation and

appropriate. provides for the observer’s external view reflity,
allowing the model designer to distinguish what
V. SETTING AND EXPERIMENT the SCIP system might grasp (oinderstangl of

it in processing the NL discourse which describes
that scenario.

A SCIPsysiem = {O,B,W,F,K}
Orientation © := {N=(0,1), S=(0,—1)
6:(1,0)7W=(—170)}
Mobility B = {g(0,1), g(1,1), 9(1,0),
(pace and 9(13_1)79(07_1)79(_17_1)7
direction) 9(—1,0),9(-1,1): g =1}
Perception W := {K := {k:}, L := 23:1 le, Vi={z},
O . ot H5:C I hiii=1,..4,..,N}
N 4 i rocessing F:={a, § ¢, ... };
,_@_, K={a|z 6|y, ...}
< TN\ Semantics : none
Syntax : none
TABLE |

Fig. 3. 2-dimreality of stationary object locationsA andO with
mobile agent A, oriented North. The agent's system-positions relative DEFINITION OF SCIP-systemi®ROPERTIES
to the object-locations determine the propositional descriptions of

SPOL relations in simple, declarative senteficEsese are composed

of four core predicateq(left, right, front, behindl modified by five

hedge predicategtwo first order: near, far, three second order:

extremely, very, rathgras specified by the formarammar (syntax .

Tab. IV andsemanticsTab. V) which define and control the semantidA. System and Environment

content of the generatetkscriptions(PHT corpug, not however the .
way it is processed founderstandingby the SCIP model. To be able to test the perceptlon-b'ased non-
propositional form of languagenderstandingeal-
odeing undersandingas @ paricur form 2901 S5 /SIS L 1S o e e on s
of information processing within a system: guag T . .
own and certain in aexternallydefined sense in

environment frame (Fig. 1) is to take adVant"jldg]der to ascertaimternal divergences from it. This
of running real-time process simulation tests. F g :

the purpose of experimentally testingemiotic nowledge and certainty is formally guaranteed by

processes, however, their situational complexilg}ter'SUbjeCt'Vely agreeable correexpressionsof

has tp be reduced by aijtraCtlng e}way I.rrelevam”TriangIe is very far in front, very near to the left. Square is very
constituents, hopefully without oversimplifying theear in front, extremely near to the right..” etc.
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SCIPEn'uironment = {RE, RQ, RG7 D®7 KR}

Plane Rg :={Pym : IRnm € Ra(ng, mo, g),
Pn,m € Rn,m}
Object Ro:={0, A, O, ...}
Grid RG(no,mo,g) = {Rmm =
[(n = 1)g,ng] x [(m —1)g,mg],
1<n<ng,1<m<mg,g >0}
Direction Dgy := {N=(0,1), S=(0,—1)

0=(1,0),W=(~1,0)}

Objectlocation b : Ro — Rg

TABLE I
DEFINITION OF SCIP-environmentaPROPERTIES

true propositionsdescribing a specified segment of
reality. Controlling this situated process of descrip-

tal setting, thesystem the environment and their
structural couplingare specified by sets of condi-
tioning properties. These define the SGifstem
(Tab. 1) by way of a set of procedural entities
like orientation, mobility, perception, processing
The SCIPenvironment(Tab. Il) is defined as a
set of formal entities likeplane, objects, grid,
direction, location And the language discourse
material or SCIRzoupling (Tab. 1lI) mediating
between system and environment is organized by
a number of structural properties of embedded
part-whole relations likevord, sentence, text, cor-
pus of which sentenceand text require further
linguistic specification to ensure correctness and
true descriptions of real worldituations

tion are a formakyntaxandsemanticemployed to

generate sentences and texts in pragmatically homol(& == {8i[Si — Sip1 - BA{KDP, Ky} €5
. = {KPl,KPQ} S Si+1) /\VKPJ‘ e S;
geneous discourse corpora to form the language ma- USiaij=1,2% i=1,...1}
terial. Thus, thg non-symbolic form of perception- B:= {g(0,1),9(1,1),9(1,0),g(1, 1),
based processing of these natural language textgpace and  ¢(0,—1),g(—1,—1),g(—1,0),
(discourse) ideally realizasnderstandingassymbol | direction)  g(-1,1):g=1}
grounding which can be compared to, and tested Si— NP VP
against the real-world scenario whodescriptions NP— N
are given in the texts processed VP— Vv _PP
9 P : PP— HP KP,
N —  The( triangle| square| circle)
SCIPcoupling: Language entitiesoupling system and V— s
environmentstructurally HP—  ( extremely| very| rather) (near| far)
Word: the sign-object identified as vocabulary element| KP1—  (infront | behind)
(type) whose occurrences in (linear) sets of sign-object§ ~KP2—  (on the left| on the right)

(tokens) are countable;

Sentence: the string (non-empty, linear set) ofords
forming a (syntactically) correct expression of a (seman-
tically) true proposition which denotes a named object’s
location relative to the system’s position (SPOL-relation)

Text: the string (non-empty, linear set) eséntencesvith
identical (pairs of) core-predicates which describe SPQL-
relations resulting from the (mobile) system’s linear and
step-wise movement relative to (fixed) objects;

Corpus: the (non-empty) set afextscomprising descrip-
tions of (any/ alll samples of) factually possible SPO
relations generated by a systemically and environm
tally specified SCIP setting.

en-

TABLE 11l
DEFINITION OF STRUCTURALSCIP-CouplingENTITIES.

TABLE IV
TEXT GENERATING PHRASE STRUCTURE SYNTAX

' >that the environmental data perceived by the

SCIP system consists of a corpus of (natural
language) texts whosmrrect expressions ofrue
propositions can inter-subjectively be agreed on.
This is achieved by introducing a formal text
generatingsynta® (Tab. V) and a corresponding
referencesemantic¥ (Tab. V) on the base of
which sentences and texts may automatically be
generated. Agorrect expressions ofrue propo-
sitions they describe the environmental situation
the system finds itself exposed to, i.e. the object-

In order to_ let this pe_rception_—based ProcessingThe simplephrase structure grammadefines texts to consist of
be modeled in terms of information system theorggntences whose core predicates are the same.

some conditions have to be specified and defin
They will assure

edloThe core predicates’ denotations are given according to their
symmetric directional dependencies whereas the hedge predicates’
(crisp) interpretation is numerical which also allows for continuous

> that the three main components of the experimegszzy definitions [3, p. 311].
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locations relative to changing system-positiorB. Scenario and SPOL Relations

(SPOL-relations). Bothsyntaxandsemanticsep

resent the formally specifiedxo-view of reality

(or the described situations And finally

With the overall situation being a two dimen-
sional reference plane with some stationary objects

> that the system’s internal picture of its surroundnd @ mobile agent (Fig. 3) the SCIP system's
ings representing theendo-view (or discourse Perceptive capabilities are limited to its language
situationy is to be derived from this textualProcessing without (as yet) any other ability to act
language environment data other than by way 8f réact. It is on the grounds of the dlscou_rse the
propositional reconstruction, i.e. without syntacti®C!P system is exposed to and processes in a sub-
parsing and semantic interpretation of sentengémbolic, non-propositional, and perception-based
and text structures. Because this part is the co¥@y that the object-locations have to be identified
of the perception-based model of discourse
derstandingthe measurements and processes em-The semioticity of this processing is conditioned

ployed will be dealt with in more detail below.

Core-predicates(KP)

in SPOL relations of system-positionsy and object
locations n, m (with O-coordinates down left) for a
orientations N, S, E, W of the mobile agent

NORTH z,y | in front| behind
on the left | >m, <n|>m, >n
on the right | <m, <n|<m, >n

SOUTH z,y | in front| behind
on the left <m, >n|{<m, <n
on the right | >m, >n|>m, <n

EAST z,y | in front| behind
on the left | <m, <n|>m, <n
on the right | <m, >n|>m, >n

WEST z,y | in front| behind
on the left | >m, >n|<m, >n
on the right | >m, <n|<m, <n

Hedge-predicates(HP)

as distance measure for SPOL-relations (urmasp inter-
pretation): in numbers of grid-poinfsc—n | and| y—m |
of a 12 x 12 grid laid on the reference plane (Fig. 3)

Crispinterpret. | 1 23456 789 10 11 12
extremelynear 1100000000 0 O
very near 0011000000 0 O
rather near 0000110000 0 O
rather far 0000001100 0 O
very far 00000000211 00
extremelyfar |0000000000 1 1
TABLE V

REFERENCE SEMANTICS FOR HEDGED CORE PREDICATES

in the reference plane.

ex negativaby the fact that — whatever the system
might gather from its language environment — in
doing so it will not apply any grammatical knowl-
edge of (symbolically coded¥yntax or semantic
rules made available prior to that process. Instead,
SCIP is defined to be based solely on the system’s
own (co- and contextually restricted) susceptibility
and processing capabilities to (re-)cognize, iden-
tify, and (re-)organize environmental data structures
a nd to (re-)present the results in some dynamic
structure which determines the systerkirowledge
(organization)earning (change) andinderstanding
(representation). It is based on the assumption that
a deeper representational level or core structure
might be identified as a common base for different
notions of meaning developed so far in theories of
referentialandsituationalsemantics as well as some
structural or stereotypesemantic theories.

The natural languagedescriptions i.e. the syn-
tactically correctexpressionsof semantically true
propositions of predication® which represent in
their sum apragmatically homogeneous tef®HT)
corpus and specify the overall view or the external
observer’sexo-reality couple the SCIP system and
the SCIP environment to each other (as defined
by Tabs. | to Ill). Submitting theselescriptions
to the perception based, sub-symbolic, cognitive
processing as defined by DIGBrmalismsref =
den o des C T x X is to detect and identify
structures and patterns inherent in tl@guage
material which relate to structures and patterns that
organize theeal world these texts describe as their
referential meanings. Due to instantiated and imple-
mentable SCIPalgorithmsto processdesignation
asdes = par o syn C T x M and denotationas
den = envosys C M x X, the detected patterns and
structures will result in some mappings and vectorial
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representationsnfental images in the semantic detect and analyze @enstraintsand/or to generate
spacep € M C [ constituting itsunderstanding and represent astructures Fuzzy linguistics [37]
Structures and patterns in semantic space therefbes successfully operationalized some and applied
should reveal some of the SCIP system’s internadcursively to huge amounts of NL data in PHT
view of its environmentgndo-reality as computed corpora. These algorithms detect and analyze lan-
from processing the PHT corpus which describggiage regularities, exploit structures as produced by
that environment externallyeko-reality. the constraints concerned [38], and represent these
In order to visualize what structures may be fourak vectors in possibility spaces from which observ-
in the semantic space and visualized accordinghble syntagmataand paradigmatacan be derived.
cluster analyzing algorithms have been employeBased upon the fundamental distinction of natural
They are numerical and independent of any strikgnguage items’ agglomerative syntagmaticand
processing or symbol manipulation techniques corselective orparadigmaticrelatedness, the core of
mon in computational and linguistic semantics, arttle representational formalism can be characterized
provide for agglomerative tree structurdefdro- as a two-level process of abstraction (Fig. 4). Semi-
gram) generation as a means of visualization whiatically these formal constraintgyn = « | z, and
is formally controlled, repeatable, and may intepar = § | y, and consecutive mappinggs =
subjectively be agreed upon. Based on such dems o syn = ¢ | y o « | z model the meanings of
drograms another image generating algorithm wa&rds as a function of all differences of all usage
developed to allow for a direct comparison ancegularities (Fig. 5) detected for any vocabulary as
experimental testing of the SCIP system’s capaciéynployed in a PHT corpus.
to understandthe referential meanings of language A. 1 The first level of constraint exploration or
expressions against the externally observed sitabstraction (instantiating the/n-relation in Fig. 2)
tional reality as specified, described, and representadthe sef{ 7'} of fuzzysubsets of the vocabulaeye

in the discourse processed. T C V provides the word-types’ usage regularities
or corpus pointsy € C.
VI. PROCESS ANDMEASUREMENT The basically descriptive statistics used to grasp

Generating language structures and/or analyzititgse relations on the level ofordsin discourse
language regularities by computational procedurgge centered around a correlational measure (Eqgn.
cannot only be concerned with the application &) to specify intensities of co-occurring lexical
rules to strings of symbols in order to produce, rétems in texts, and a measure of similarity (or
write, transform, unify, etc. other strings of symbolgather, dissimilarity) (Eqn. 7) to specify these cor-
(sentences), nor is it merely about measuring varglational value distributions’ differences. Simulta-
ing degrees of combinatorial determinacy and to deeously, these measures may also be interpreted
tect different patterns of the language elements’ agémiotically as set theoretical constraints or formal
structures’ linear distributions. What is importaniappings (Eqns. 5 and 8) which instantiate the
though is to identify computationally these patternstesignationmorphismdes = par o syn € T x M
and structures’ different types and represent thefig. 2 and 5) as a function of differences of usage
as (symbolically) labeled possibility distributions ofegularities of words.

(numerical) values that distinguish and determine For any PHT corpusk’ = {k;};t = 1,...,T of

(define) these labéls texts with an overall length
T
A. Syntagmatics and Paradigmatics L= th; 1<l <L (2)
Computational processes serving that purpose t=1

may therefore be identified withrocedural defini- 2According to SAUSSURE [4] universal constraints control the

tions of those regularities which they are able t@witi-level combinability and formation of language entities based
upon the distinction of restrictions on linear aggregation of ele-
it should be noted that the computational processes dealt wittents gyntagmaticsfrom restrictions on their selective replacement
here (and below) are not introducad hog but instead were derived (paradigmatic$. It is theseconstraintswhich allow to distinguish
from and are embedded in teemioticallymotivated extension of an not only different levels of entity and structure formation, but
information systems theory inspired approach to natural language atso different functions of structure and meaning constitution which
derstanding as part afynamic image generating semant{@GS). structural linguists have learned since to better understand.
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a~abstraction d-abstraction

VxV Il CxC Il M x M
oz‘ 21 -+ Zm (5‘y1...ym C‘pl...pm
Z1 | Q11...Qam O‘L}Zi Y1 | O11-..01m 5L>yi p1 | G- -Cim
: : syn Dl T par S -
Zm | Q- - Qi Ym | Om1- - -Omm Pm | CGat- - -Cam
f i

Syntagmatic Paradigmatic

Constraints

Fig. 4. Formalization osyntagmaticand paradigmaticconstraints as two-level mapping of usage regularities of itejrs V' and their
differencesy; € C'. These mappings which are badedt on the correlation measure: V x V — &, (EQn. 4) andsecondon the Euclidian
distanced : C' x C — S5 (Egn. 7), constitute consecutiver- and d)-abstractions which result in meaning representatipne M C T
respectively.

of word-tokens per text, and a vocabulary

V=A{z}tn=1...44...,N 2 @
of word-types whose item frequencies are denoted
by

T
H; = tho < hy < H; (3
t=1
the correlation-coefficienty; ; allows to express
pairwise relatedness of word-types, z;) € V x V
in numerical valuesy, ; € 3, ranging from—1 < o
a;; < +1 by calculating co-occurring word-token

frequenmes in the foIIowmg way Fig. 5. Fuzzy mapping relations andé between the structured sets
ZT (h- e )(h e ) {T'} and {R} of vocabulary itemsz, € T C V, of corpus points
t=1\"%t AN Jt . (4) yn € R C C, and of meaning pointg; € M C I as instantiated
’ reconstruction of thelesignationmorphismsdes in Fig. 2.

Olyi o dlz ¢

Qij =

D=

<ZtT:1(hit —eit)? Yy (hj — ejt)2>

where e;; = —1[; and ej; = —1; _ i
L L a-values. The so-called-abstractionover the first

Evidently, pairs of word types whose tokens fresf the components of each ordered péait, z,)
guently either co-occur in, or are both absent fromdgtermines these usage regularities’ abstract repre-
a number of texts will positively be correlategentation
(affinity), those of which only one (and not the _ . . N
other) frequently occurs in a number of texts will yi = (i, 1),...,a(i, N)) (6)
negatively be correlateddpugnancy as a point in theV-dimensionalcorpus spacey; €

As a fuzzy binary relationg : V x V. — &, C spanned by the number of axascorresponding
can be conditioned on any, € V which yields a to the number of vocabulary items (word-types)
crisp mapping as operational definition of thgn 2, € V.
morphism (Fig. 2) A. 2 The second level of constraint exploration or
syn = a | %V —C; Ci={y | 1<i< N} (5 0-abstraction (instantiatingar in Fig. 2) on the set

' v T == {R} of fuzzysubsets of corpus pointse R C C

where C' is the set ofcorpuspoints {y,} repre- provides the correspondingieaning pointsp €
senting the numerically specifiesiyntagmatiaisage M C [ as a function (i.e. the set theoretical com-
regularities that have been observed for any worgesition par o syn) of word-types which are being
type z against all otherz, € V as measured byinstantiated by word-tokens employed in texts.
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vf f 2]

square 13

enr 14 ’8

enb 15 22 37
rnb 16 :’ 30

vnb 17 26 .

vnr 18

rnr 19 23

rfb 20 ‘

Fig. 6. Cluster dendrogram of labeled meaning poimts M C I depicting semantic space structure after processing of 500 texts.
Labels of hedge predicatextremely, very, rathefnear|far) and core predicatdstft, right, front, behindare abbreviated to their first letters
respectively.

Considering(C, ¢) as a representational structureperational definition of th@ar morphism (Fig. 2)
corpus space of abstract entities constituted b < .
(syntpagmagcre)?;ularities of word-token occurrenceéar =0 |y C— My M:={p;|1<i< N} (8)
in pragmatically homogeneoudiscourse, then thewhere M is the set ofmeaningpoints {p,} rep-
similarities and/or dissimilarities of these entitiegesenting the numerically specifiedaradigmatic
will capture what constitutes their correspondingtructure that has been derived for each abstract
word-types’ paradigmaticregularities. These maysyntagmaticusage regularityy; against all other
be calculated by a distance measureof, say, ¢, < C. The distance values can therefore be

EucLiDian metric abstracted analogous to Eqgn. 6, this time, however,
) over the other of the two components in each
N ) 2 ordered pair, thus defining an element
5<y27y) = (OK(ZZ',Zn) CM(Z 7Zn)) ) (7) . .
! nzl ’ pi = (8(i,1),..., 03, N) 9)
S5 :=0<0(yi, y5) < 2vn called meaning pointp; € M C I in a N-dimen-

sional structure calledemantic space
Thus,d may serve as aecondmapping functionto  Thus, the perception-based, non-symbolic, nu-
represent any item’s differences of usage regularitiegerical processing of the PHT corpus of natural lan-
measured against those of all other items. As a fuzgyage expressions describing real world situations
binary relationy : C' x C' — s can be conditioned yields vectorial representations of meaning points
on y; € C' which again yields a crisp mapping as semantic spacehose structuredness is obvious
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0lo0000000000|/0000000O0O0 0O Fig. 8.  Endoz(m,n)s00) Showing two (boldface) maxima of
0l00000000000/(00000000 0 0O object location likelyhood in sums of density values per grid point.
These are computed by superimposing locality pattern values from
000000O0O00OO0ODO|OOOOOOOOOODO Endos (i, )00 according to Eqn. 10,

BEHIND
Fig. 7. Endoi (i, j)500) showing numerical patterns of rel-
ative object location viewed from the system agent (ori-
ented north) by sums of grid points marked (from center:
extremely|very| rather mnear; rather|very|extremely far)
according to layers of (agglomerative) clusters which tbesply
interpreted) hedged core predicatefleft, right, in front, behingl
exhibit in semantic spacas analyzed after processing of 500 texts.

as a result of differences in word usage regularities

and well documented as connotative meaning rep-1) applying methods of average linkage cluster

resentation [31, 39, 40, 41, 42]. The question to be ~ analysis [43] allows to identify — comparable
answered here, however, is whether — and to what g results as produced bKOHONEN-maps

extent — thesemantic spacetructure corresponds [44] — semiotically similar word-typesopject

or evenrefersto any of the situational patterns in labels andhedged core predicatéabels) as

the real world which have been described in the structurally adjacent meaning points or con-

discourse processed. ceptsp € M C I in a dendrogram format
(Fig. 6),

2) superimposing the hedgesumerical (crisp)
interpretation for distance values and the core
In the course of the sub-symbolic, numerical anal-  predicates’directional interpretations for the
ysis of the PHT corpus that describes real world sit-  regions of object locations relative to a cen-
uations as SPOL relations, the two-level consecutive  trally positioned agent system, the sums of
mappings enacted by the SCIP system (Figs. 4 and cluster agglomerations from Fig. 6 produce
5) resulted in vectorial representation of meaning  an intermediate23 x 23 representation (Fig.
points or conceptp € M C [ in semantic space. 7) of the system’s owroriented view of its
Its intrinsic structure is to be analyzed to reveal environment which can be transformed to
some of the situationakystemi@andenvironmentgl 3) a mapping that images the systengsdo-
constraints which can be employed to in a four stage  view which is orientation dependent and di-
visualization process: rectionally indeterminate, as its directionally

B. Semantic Space Structure and Visualization
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determinateexoview representatiod (Fig. with the number of agglomerative steps it is part of.
8). This can subsequently be transformed into B. 3 The Endol;; data (Fig. 7) serves as base
another format to visualize for this third step which is a line- and column-
the referential plane as structured holisticallyise data compression transformation. It results in
by a profile of (numerically interpolated)a new mappinggndoz, ,, (Fig. 8) according to the
polygons which connect regions of denotasummation equation
tional likelihood by so-calledsoreferentials

their emerging overall pattern denotes possi- Endo2,,, = Z Z Endol;
ble object locations (Fig. 9). T o i ’

B. 1 Earlier investigations into the intrinsic Strucg 4 The matrix Endo2,, ,, (Fig. 8) represents the
ture of semantic spacelata had revealed [43, 45]4ata structure transformed for an exterolserver's
that topological adjacencies of meaning points Cggkyalization of the systemindo-viewas processed
well be identified, and clusters of points be dgpom texts describing SPOL-relations, i.e. fixed ob-
tected and represented in an agglomerative procgss |ocations relative to changing system positions.
with an average linkage cluster criterion. Applyingne corresponding (two-dimensional) images gen-
these techniques to the semantic space structurggsed on the base afndo2-increments of text
presently computed from processing PHT COrpOEmora of increasing size (50 to 500 texts) gives an
of increasing size (50 to 500 texts) resulted iBnpression of the dynamics of the developing pic-
dendrograms like Fig. 6. It clearly separates thgye of referential likelihood (Fig. 9). The polygons
collections of core predicate labels (Fnt-left jnterpolating theEndo2,,,, data points are called
from (35)behind-rightand identifies the latter asjsoreferentialsvhose overall pattern forms a profile
(37)square The former is — in conjunction with tha; denotes potential object locations quite clearly

4)

m+11 n+11

(10)

the copula (36)s — less distinct as (39jiangle gg regional maxima, howevéuzzy.

comprises all labels.

B. 2 As the semantic space structure may be con-
sidered the internal modeéiido-view of what the X
SCIP system gathered in processing the Ianguaéé
data it was exposed to, this structure has to bl
transformed in order to be visualized to allow for[S]
a comparison with real world situatiorexo-viewy
described according to an externally defined gram-
mar syntaxandsemantics For this transformation
the four hedged core predicateef(, right, front,
behing are employed to determine a 2-dimensional
23 x 23 grid (Fig. 7) which spans from the oriented!®!
system’s center position into four directions along
the concentric framesektremely, very, rather, very, [6]
extremely of hedgednear and far regions. The
numbers at each point j — that make the grid 171
the Endol; ; transformed data representation — are
frequencies as provided by the cluster dendrogram
which allows to identify each hedged core predicat%]

BAs the experimental setting does not (yet) allow the mobile
system’sorientation to change while traversing the reference planeg[9]
in differentdirections the predicates employed during generation of
SPOL-relation descriptions are confined to be directionally determi-
nate (n front=north, left=west etc.). To allow changing orientations
for the mobile system would necessitate a procedural modelifitd]
and algorithmic reconstruction of less restrictevironmentaland
systemicconstraintsenv o sys which (so far) have been assumed11]
part of thestructural coupling
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