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Abstract: Inspired by information systems theory,
Semiotic Cognitive Information Processing
(SCIP) is grounded in (natural/artificial) system-
environment situations. SCIP systems’ knowledge-
based processing ofinformationmakes itcognitive,
their sign and symbol generation, manipulation,
and understanding capabilities render itsemiotic.
Based upon structures whose representational
status is not a presupposition to, but a result
from recursive processing, SCIP algorithms initiate
and modify the structures they are operating
on to realize (rather than simulate) language
understanding by meaning constitution. Thus,
the symbolic (de)composition of propositional
structures in traditional semantics is complemented
by SCIP, which models learning andunderstanding
dynamically by visualizing what is understood in a
perception-based, sub-symbolic, multi-resolutional
way of processing natural language discourse. An
experimental 2-dim scenario with object locations
described relative to a mobile agent’s varying
positions allows to test SCIP systems’ performance
against human natural language understanding in
a controlled way1 .

Keywords: Computational semiotics, discourse un-

The author is indebted to two anonymous referees whose com-
ments helped to improve the written version of the lecture and,
hopefully, its readability. All errors are, as always, my own.

1The implementation of the SCIP system-environment testbed is
due to my PhD-students, Christoph Flores and Daniel John, whose
design and programming proficiencies are thankfully appreciated.

derstanding, meaning constitution, semantic space,
fuzzy modeling, symbol grounding, dynamics, sys-
tems theory, visualization, quantitative linguistics.

I. I NTRODUCTION

In terms of information systems theory, life may
be understood as the ability to survive by adapting to
changing requirements in the real world. Living sys-
tems do so by way of processing information they
receive or derive from relevant portions of their sur-
rounding environments, of learning from their expe-
rience, and of changing their behavior accordingly.
In contrast to other living systems which transmit
experiential results of environmental adaptation only
biogenetically2 to their descendants, human infor-
mation processing systems have additional means to
convey their knowledge to others. In addition to the
vertical transmission of system specific (intraneous)
experience through (biogenetically successive) gen-
erations, mankind has developed complementally
effective horizontal means of mediating specific
and foreign (extraneous) experience and knowledge
to (biogenetically unrelated) fellow systems within
their own or any later generation.

2According to standard theory there is no direct genetic coding
of experiential results but rather indirect transmission of them by
selectional advantages which organisms with certain genetic mu-
tations gain over others without them to survive under changing
environmental conditions with higher reproduction.
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A. Process and Result

This is made possible by asemioticmove based
on representations that allow not only to distinguish
processesfrom resultsof experience, but also con-
vert the essentially transient status of experiential
results to some more stable though dynamic cogni-
tive entities ofknowledge. These can be retrieved,
activated, re-used, modified and improved by later
processes and their results inlearning.

Vehicle and medium of this move is a particular
kind of representation. Based upon more or less
complex sign systems which constitutelanguagesto
form more or less abstract compositional structures
or textures, these may be realized in processes
of communicative exchange, calledactualization3.
Such texturesfunction – whether internal to a sys-
tem (as itsknowledge) or external to it (as language
texts or discourse) – like virtual environments4 to
any system properlyattuned, i.e. being able to
recognize and interpret them.

B. Mediate and Immediate

In terms of information system theory,virtuality
can be characterized by the fact that it dispenses
with the identity of space and time coordinate values
for a system and its environment which normally
prevails for this relation when qualified to constitute
reality [3, pp. 287]. The hypothesis is that the
dispensation of this identity (of value pairs) is not
only conditional for the possibility to distinguish
(mutually and relatively independent)systemsfrom
their environments, but also to establish a sys-
tems theoretical perspective onrepresentations. This
opens new vistas on language understanding and
how it can be modeled apart from propositional
decomposition of language structures.

Immediateor space-time-identical system-envi-
ronment settings can be distinguished frommediate

3Term borrowed fromSituation Semantics[1, pp. 60] where
abstract, actualand factual signify levels of typified (ontological)
specificity in characterizingevents, state-of-affairs, courses-of-events,
situationsetc.

4Simon’s [2] remark ”There is a certain arbitrariness in drawing the
boundary between inner and outer environments of artificial systems.
. . . Long-term memory operates like a second environment, parallel to
the environment sensed through eyes and ears” (pp. 104) is not a case
in point here. As will become clear in what follows, his distinction of
inner (memory structure) andouter (world structure) environments
of a system misses the specialsemioticquality of natural language
signs whose twofold environmental embedding (textual structure) cuts
across theinner/outerdistinction, resolving both, memory and world
structures in becoming representational for each other.

or space-time-dispensed system-environment situa-
tions. The former may be characterized (and mod-
eled) by some stimulus-response form of interaction
whereas the latter are tied to some intermediate stra-
tum of a particular format which needs actualization
in order to be realized. Its representational function
seems to evolve in the very process of actualizing
which is itself immediate in the sense that the
system concerned has to have physical access to
that stratum and its particular format in order to
let it represent something else or becomemediate
in the above specified sense. The distinction corre-
sponds to the twofold status which semioticians like
SAUSSURE [4] and PEIRCE [5] had long identified
as being characteristic ofsignsandsymbolsas well
as text anddiscourse. These can both be perceived
as some physical language material (consisting of
components) and also be realized as language struc-
ture (havingmeaning) which is to beunderstood.

It is this double identity (orontology) of language
signs and symbols which calls not only for a two-
level modus of actualization but also for a multi-
level modeling approach to realizeunderstanding
by machine. Taking up conceptions developed in
situation theory [1, 6], the semiotic approach to
understand languageunderstandingmay tentatively
be characterized as follows:
For information processing systems appropriately
adapted (tuned) to their environments the process
of actualization consists essentially in a twofold
embedding

¤ to perceive the space-time-identity of pairs of
immediatesystem-environment coordinates which
will let the system experience the material prop-
erties of texts as composed ofsigns (i.e. by
functions of physical presentation andmutually
homomorphicappearance). These properties apply
to the percepts of language structures accessible
to a system in particulardiscourse situations, and

¤ to realize the representational relatedness of pairs
of mediatesystem-environment parameters which
will let the system experience the semantic prop-
erties of texts asmeanings(i.e. by functions of
emergence, identification, organization, represen-
tation of structures). These apply to the com-
prehension of language structures as multi-level
and multi-dimensional entities (re)cognized by a
system to form thedescribed situationswhich can
be understood.
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C. Knowledge and Cognition

In terms of cognitive theory realizational func-
tions like identifying structures,interpreting signs,
and understandingmeanings translate to processes
which extend the segments of reality accessible to
a living (natural and possibly artificial) informa-
tion processing system. This extension applies to
both the immediateand mediaterelations which a
system establishes by adaptivelearning and emer-
gent understandingbased on its own innate or
acquiredstructuredness, its processingcapabilities,
and its knowledge. Knowledge based information
processing therefore became the paradigm for mod-
eling cognition. Traditional approaches to cogni-
tion have tried to provide the knowledge externally
as propositionally formatted symbol representations
and consequently had to exclude the dynamics of
change and self-organizing which are characteristic
of adaptation and learning. More recent models
of cognitive information systems are designed to
model attunement to (textual) environments, en-
dowed with knowledge acquisition, modification,
and representation capabilities to allow for the dy-
namic processing of representational data or sign
structures to actualize relevant information. These
are referred to assemiotic cognitive information
processing(SCIP) systems [7] one of which will
be dealt with here.

Following these introductory remarks (I) will be
a short survey (II) of what cognitive models of
meaning have dealt with so far. Some essentials of
SCIP systems as part of a futuredynamic image
generating semantics(DIGS) will (III) character-
ize the computational semiotics approach which –
for the purpose of modeling – allows to separate
the process ofunderstandingreferential expressions
from generatingthem in describing real world en-
tities. The model will be realized in three steps
of increasing procedural concretion of processing
by formal definition asmorphismsand constraints
(IV), their specified instantiations assettingandex-
periment(V), and their implementations asprocess
andmeasurement(VI) with test results to illustrate
the model’s performance. Finally, asummaryand
outlook to future work (VII) will conclude the
paper.

II. COGNITIVE MODELS OFMEANING

It is common practice in cognitive modeling
and mathematical semantics [1, p. 57] to identify

the real world with the (symbolic) structure that
represents it. From a semiotic point-of-view, this
identification is hiding rather than revealing what
makes a structuredsignaggregate represent or stand
for (symbolize) something else.

A. Reality, Perception, and Representations

In the context of disciplines focusing on as-
pects of cognition, like language philosophy, logics,
linguistic semantics, biological neuro-science, and
computational connectionism, it has been outlined
[8] that the relationship between the real world or
objectivereality (R) of observable entities external
to a cognitive system, and the perception of such
entities by observations which constitute a system’s
experience or subjectiveactuality(A), is cognitively
as well as epistemologically highly relevant and
model-theoretically most decisive. Suggestions for
how this mediation relation may be (re-)constructed
have resulted over the years in a number of types
of models. These range from simple identity as
A = R, to functions asA = f(R) depending on
reality (R) only, or asA = f(R, O, C) being based
additionally on features of the observing system (O)
and its cultural and/or experiential background (C),
and reach out to structurally coupled resonance phe-
nomena of semantically closed cognitive systems as
At+1 = f(At, E, P ) which relate perturbations (P )
inflicted on the system-environment from outside,
the structure of a state space (E) determining that
system’s possible states, to cope for the dynamic
changes of the system’s actual statesAt along a
time scale. In this formula,A seemingly can do
altogether withoutR [9]. This is a consequence of
self-organizing, dynamic, autopoietic systems [10]
for which theobservabilityof entities external to a
cognitive system hinges on their communicability to
others which include internal results of commonly
experienced external perturbations. RealityR, there-
fore, should be viewed more like asituational
condition for the possibility of inter-subjective and
social collections of experiential results rather than
an independently existing realm of entities. Thus,
suggesting and finding parameters to reconstruct
the background ofexperiential perceptionfor the
interpretation of what can be consideredobservable
reality in this way, underscores the importance of
distinguishingendo- from exo-views of reality to
overcome the traditional mind/matter duality. In
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view of representations like natural languages, the
endo-exodistinction allows for a semiotically more
adequate approach to entities whose observable re-
ality provides for an experiential perception which
is also the precondition for theirunderstanding(and
the modeling of it).

B. Semantic Theory, Meaning, and Understanding

Theoretical and computational linguistics – me-
diated by (language) philosophy, (formal) logics,
and (discrete) mathematics – have clearly dominated
research and explicative theory development. They
decided on how natural languages (NL), their (com-
positional) structures, and their (semantic) functions
are to be understood and explicated as symbol
manipulation and transformation systems. NL com-
munication has long been conjectured to consist of
what only recently the cognitive sciences have iden-
tified as a complex of multi-level processes. These
were conceived as operating on (world, linguistic,
situational) knowledge which has to be considered
conditional for any information processing. How-
ever, the knowledge bases (KB) designed to comply
with these conditions were hypothesized as physical
symbol systems [2, 11] whose static conception of
structure proved to be unable to adapt to changing
conditions (learning). Some of the problems [12]
that cognitive modeling along these lines encoun-
tered since are due to the declarative (i.e. symbolic,
compositional, propositional)formatsemployed and
the (deterministic, rule-based, modular)procedures
chosen in generating, forming, and manipulating lin-
guistic concepts like morphemes, syllables, words,
phrases, sentences, texts, and their meanings. As
these tend to be construed of clear-cut elements (ag-
gregates, structures, relations, functions, processes,
etc.) of systems of language entities, their crisp
and determinate definitions do not comply with the
way they are perceived which is variable, context
dependent, fuzzy, and possibilistic in nature.

In order to understand the dynamics of how
natural languages serve the communicative purposes
they do, fuzzy [13,14] and procedural modeling [15]
approaches to semiotic systems [16,17] and NL un-
derstanding [18, 19] have advanced some ideas [20,
21] for a computational theory of cognitive process-
ing of fuzzy percepts. Conceived as a multi-layered
process of structure identification and dynamic rep-
resentation, the fuzzy modeling techniques em-

ployed in SCIP systems so far allow for (numer-
ical, sub-symbolic, distributed, non-propositional)
formats whose (parallel, pattern-based, quantitative)
computation results in (the emergence of) meanings
as enactment of labeled processes of choice restric-
tion [22]. Accordingly, meaningsare the outcome
rather than the presuppositions of processing [23],
whose modeling is a form ofrealizationrather than
simulation [24]. It appears that a perception-based
simulation of processes (of constraint detection and
representation) may bring about results which re-
alize meaning constitutionand understanding(of
symbolic structures) as grounded in these very pro-
cesses.

One of the most severe problems though, arising
with this kind of non-linguistic models of language
understanding is how their performance and their
results may be evaluated and tested in an inter-
subjectively agreeable and preferably empirical way.
Generating images of what declarative referential
language expressions describe could be a solution,
provided that the semantic contents detected com-
putationally are a result of and not a presupposition
to the detection process.

III. SCIP SYSTEMS AND DIG SEMANTICS

Based on the above (as yet) fragments of a com-
putational theory of cognitive processing of fuzzy
percepts, the contours of adynamic image gen-
erating semantics(DIGS) can be identified which
may eventually be able to cope with variability
and vagueness, adaptivity and learning, emergence
and plasticity ofknowledgeand understandingin
a unifying and comprehensive way. As a fully-
fledged theory it would comprise perception-based,
sub-symbolic parts side by side with rule-based,
symbolic components, the former ideally grounding
the latter. Anticipating this combination in a weaker
sense, the setup of the modeledsemiotic cognitive
information processing(SCIP) system is comple-
mented by a component which employs rule-based,
symbolic processing for deterministic language gen-
eration purposes. As these techniques have long
been developed and applied in natural language
processing (NLP) in general and computational lin-
guistics (CL) in particular, they are well understood
and ready to be used.

In our setup they will be employed to generate
the language material (texts) describing real world
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situations in a formally controlled, i.e. rule-based,
determinate and symbolic way. This training mate-
rial will then be submitted to an equally controlled,
though simulative way of processing which is
perception-based, non-determinate (stochastic), sub-
symbolic (numerical) and hypothesized to model a
symbol groundingprocess of languageunderstand-
ing [25, 26] . Suitable visualization of processing
results will allow for anad oculostest and compar-
ison with the real world scenario described by the
texts processed.

A. Knowledge, Memory, and Models

Most cognitive scientists agree that cognition
is a form of information processing. Models of
cognition therefore are inspired byinformation sys-
tems theoryand based upon (natural or artificial)
system-environment situations. Any system whose
processing of external, environmental data (input)
is determined by its own internal structuredness
will generally produce someinformation (output)
relative to both, its internal and external conditions.
As soon as the flow of input data consists not only
of signals but also of signs or symbol aggregates,
the simple system-environment relation will become
more complex, oscillating betweenimmediateand
mediateas characterized in system theoretical terms.
This is due to the double ontology of signs which
are not only perceived but have to be recognized as
representations in order to be processed accordingly,
i.e. interpreted as standing for something else that
the perceivable signal is not.

Traditional models ofcognitive information pro-
cessing try to account for this double ontology
of signs and symbols – which are physicallyreal
like data but in addition also havemeaning– by
providing the processing system with the necessary
information via arbitrarily complex representations
(sets, structures, systems) of sign-meaning corre-
spondences, named knowledge-bases. KBs extend
the system’s data processing capabilities tocogni-
tive, i.e. knowledge-based processing in generating,
manipulating, and interpreting sign and symbol ag-
gregates of different kinds. These comprise linguis-
tic knowledge in form ofgrammars(rules ofsyntax
and semantics), and world knowledge in form of
network structures(like frames, scripts, andscenes).

Conceived as being externally attributable to the
modeled system and therefore assembled and for-
matted by the model designer, KBs obviously serve

to model functions which are considered essen-
tial to the original or natural cognitive systems
and their structure (i.e. knowledge and memory).
The assumption behind most KBs, however, that
knowledge is propositional and its only format of
representation is truth-functional, rule-based, and
symbolic in nature (linguistic transparency) has
been refuted [7, pp. 350]. It was revised in so
far as the process of language understanding can
neither be identified with sentence parsing nor with
the inverted process of generating natural language
expressions applying formal syntax and semantics
as provided by computational linguistics.

B. Cognitive Information Processing

In order to let traditional models ofcognitive lan-
guage information processing(CLIP) becomesemi-
otic, their knowledge and memory functions have
to be conceived as procedural and internal to the
systems changing their character from static deter-
mination to dynamic flexibility (Fig. 1: processing
loops). Additionally, the representational format for
knowledge structuresandmemory functionsshould
facilitate adaptation to changing environmental and
processing conditions (learning), and enable identi-
fication in changing contexts (efficiency) for a singu-
lar system concerned, as well as among a plurality
of systems interacting by means of externalized sign
representations (communication).

Allowing for variable, ill-defined, underdeter-
mined data to be processed, and enabling the self-
organized constitution (emergence) of vage and
fuzzy entities to be represented and operated on,
semiotic cognitive information processing(SCIP) is
based on well-defined procedures which can handle
imprecision in a precise way. SCIP systems’ ability
comprises their performance in knowledge-based
information processing and representing its results
[27], organizing these representations by activat-
ing others from prior processing [28], constituting
meanings [29], allowing for (semantic) inferencing
[30], and planning [31] by selecting from organized
and represented dispositions [32], and modifying
them according to changing conditions, results, and
states of evolving system-environment adaptedness
[33]. Based on NL structures, SCIP performance is
a form of complex, multi-resolutional information
processing. As a process ofmeaning constitutionit
is tied to (and may even be identified with) lan-
guageunderstanding[34] or meaning acquisition.
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Fig. 1. Schema of test layout to compare the situated SCIP system’s (enigmatic) internal-view (endo-reality) resulting from its (well-defined)
processing, against the observer’s (well defined) external-view (exo-reality) which traditional, symbol based, cognitive modeling identifies
prematurely with the (enigmatic) processes underlying natural language understanding. Whereas the referential semantics and propositional
text grammar are employed to generate PHT corpora of NL descriptions of (real world) situations, the subsymbolic, two-level processing of
these descriptions yield the SCIP system’s semantic space structure. Its algorithmic visualization (Fig.9) allows for a comparison with the
external observers’ view of real world situations (Fig.3) which traditional models describe by grammatically correct and semantically true
propositions8 encoded asreferential meaningor informational content.

Whenever themeaning of signsis not a presuppo-
sition to but a result from algorithmic processing
of (symbolic) data whose representational status
(like in NL discourse) is commonly accepted, then
these learning algorithms – being able to initiate
and modify the structures they are operating on
– may qualify assemioticand thereby as part of
computational semiotics.

C. Perception-based Discourse Understanding

The SCIP system’s approach to discourse under-
standing is – very much like modelingvision [35]
– essentiallyperception based. As such it com-
plements the declarative, symbolic (de)composition
of propositional structures exercised by traditional
NL semantics in a way which allows for the dy-

namics these lack. Provided by procedural defi-
nitions of quantitative, sub-symbolic and flexible
pattern identification, representation, and manipu-
lation, their flexibility might become a central part
of an evolvingdynamic image generating semantics
(DIGS). Its adaptivity would essentially depend on
the SCIP system’s format of non-symbolic, dis-
tributed numerical representations whose processing
allow new representations to emerge when needed.
They are tieing the system to those segments of
the real world which the language expressions are
a part of and – when processed properly – con-
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vey information about as their meanings5. They
do so both, according to their grammaticality and
propositional contents as determined in a formally
specified senseexternalto the system, a n d accord-
ing to the system’s own orinternal understanding
based upon the non-propositional, syntagmatic and
paradigmatic regularities in textual structures which
can also be visualized. To achieve this, DIGS would
have to formalize these ties in two ways: as a deter-
ministic system of grammatical rules for semantic
and syntactic constraints to generate true and correct
languagedescriptionsof real world entities, and
inversely – independent from grammatical rules and
their symbolic representations – as a class of restric-
tions that are typified by (soft) constraints, modeled
as procedures which produce (fuzzy) relations repre-
sented as (word type/ numerical value) distributions.
As the former can straight forwardly be provided
by computational linguistics, the latter are not just
another instance of transformed data representation
but – as they result from non-symbolic, numerical
computation – a new type of structural representa-
tion associating emergent entities (concepts) with
observable entities (objects/signs) to realize what
may be named theirunderstanding.

IV. M ORPHISMS ANDCONSTRAINTS

Being grounded in system-environment situa-
tions, SCIP systems may formally be characterized
by morphisms6 which allow to represent meanings
and functions of language entities as evolving from
multi-level decompositions of cycles of constraint
processing (referring here and below to Fig. 2)
operating on and modifying the structured entities
concerned [7, p. 380]. Thus, morphisms designate
a very general type of relatedness which allows
to characterize the procedural notion ofsemioticity
formally on a rather abstract level. Morphisms call

5The meaning conveyed cannot always be represented in a lan-
guage independent way, e.g. by observable operations/processes
enacted without being understood prior to their (re)presentation as
semantic contents. This is also why traditional cognitive approaches
easily accept linguistic analyses of propositional language structure
as only explication (linguistic transparency) of understanding, and
why linguistic semantics in turn appeals to formal logics as an
available format for the representation of declarative NL expressions’
predicative functioning.

6The concept ofmorphism[36] is employed because it captures a
notion of generality as a type of abstract relatedness whose possible
instantiations (as mappings, relations, partial or total functions, etc.)
due to yet unknown conditions of definiteness cannot and need not
be decided on.
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Fig. 2. Diagram of morphisms mapping vocabulary items (signs7)
z ∈ T ⊆ V onto meaning points or intensionsp ∈ M ⊆ I,
allowing their designationdes ⊆ V ×M (cognitive interpretants7)
to be reconstructed as compositionpar◦syn. Thedenotationden ⊆
M×X relating intensions to real world entities, may be reconstructed
as compositionenv◦sys of the attuned system’s constraints’ relation
sys ⊆ M × S and the environmental segment’s constraints’ relation
env ⊆ S × X. Thus, den relates (fuzzy) intensionsp ∈ M ⊆
I to real situations by classifying (fuzzy) subsetsX of entities
(objects7) x ∈ X ⊂ U in the universe of discoursedue to types of
(abstracted) situational uniformitiess ∈ S common to both. Hence,
the referencerelationref ⊆ T ×X is reconstructed as composition
den ◦ des, whereas its inverse ordescriptionrelationdsc ⊆ X × T
is (re)constructed as compositionstx ◦ sem of sem ⊆ X × E and
stx ⊆ E × T , relating (real) entities (objects) x ∈ X ⊂ U via
(formal) language expressions (logicalinterpretants) e ∈ E ⊂ G of
the grammar to semanticallytrue andsyntacticallycorrect (natural)
language strings (signs) z ∈ T ⊆ V .

for further specifications which in turn may be
instantiated in a variety of ways. Some of these
will permit operational application in SCIP-like
settings of which a few might even realizePEIRCE’s
conception ofsemiosis7.

A. Decomposition I

The first level of decompositions apply to both
thereferenceand thedescriptionmorphismsref and
dsc (Fig. 2).

A. 1 For the process type ofdescribingentities
in the universe of discourse, the morphismdsc :
X → T is introduced (Fig. 2). In order to gener-
ate semantically truesem and syntactically correct
stx natural language expressionsT ⊆ V from a
given vocabulary, the decomposed morphismdsc =
stx ◦ sem ⊆ X × T will have to be instantiated.
This instantiation can theoretically be specified and
algorithmically determined by formal expressions
e ∈ E ⊂ G of grammatical adequacy as provided by

7”By semiosisI mean [. . . ] an action, or influence, which is, or
involves, a cöoperation ofthreesubjects, such assign [z ∈ T ⊆ V ],
its object [x ∈ X ⊂ U ], and its [cognitive:p ∈ M ⊆ I or logical:
e ∈ E ⊂ G] interpretant, this tri-relative influence not being in any
way resolvable into actions between pairs.” [5, p.282]
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computational linguistics. The morphismsstx and
sem define a notion of constrained syntacticcor-
rectnessand semantictruth of propositional struc-
tures. These aredynamically generatedto describe
real world entitiesx ∈ X ⊂ U in a controlled
way to form NL expressions in textsz ∈ T ⊆ V .
Assembled into collections of increasing size, this
language materialT ⊆ V forms PHT-corpora (of
pragmatically homogeneous texts) whose semantic
contents (meaning) are the described situations these
texts refer to.

A. 2 For the inverse process type ofunder-
standingnatural language expressionsT ⊆ V the
referencingmorphismref : T → X is introduced
(Fig. 2). Due to thedesignativeand denotative
constraintsdes and den hypothesized to constitute
referential meaning, the decompositionref = den◦
des ⊆ T × X allows to instantiate thereference
morphism relating language entitiesT ⊆ V to
specified real world entitiesX ⊂ U in the universe,
i.e. constituting these NL expressions’ meanings.

However, whereas thedescription process can
be based on externally defined formal grammars
G whose expressions of symbol manipulation rules
E ⊆ G fully determine the language generation,
the meanings or conceptsM ⊆ I which instantiate
the referencingprocess cannot be provided from the
outside without losing the chance to see the system’s
own, internal way of meaning constitution diverge
from the external observers’ view and to model
its possible approximation to the model designers’
understanding. In order to keep that possibility and
let the model produce such potential divergence,
another level of decomposition has to be introduced
to allow instantiation of the as yet unspecified
morphismsdesandden.

B. Decomposition II

The second level of decompositions apply again
to both thedesignationand thedenotationmor-
phismdesandden (Fig. 2).

B. 1 As a relational notion of correspondence
between observable language elementsz ∈ T ⊂ V
and realized entities of an abstract conceptual nature
p ∈ M ⊆ I, the designationmorphism des =
par ◦ syn ⊆ T × M is defined as a composition
of principles which restrict the combinability of
language entities in a way universal to all natu-
ral languages. These principles characterize natural

languages’ ability to form discernable entities and
patterns recursively by aggregational orsyntagmatic
(syn) and selective orparadigmatic (par) restric-
tions. These can be instantiated by implementable
semiotic algorithms for the recursive computation
of the combinatorial constraintssyn and par and
their multi-layered, multi-resolutional representation
y ∈ C in (patterns of) distributions of (emergent and
abstract) entitiesp ∈ M ⊆ I.

B. 2 For the abstract entitiesp ∈ M ⊆ I which
are being realized conceptually to relate to real
world entities x ∈ X ⊂ U in the universe, the
denotationmorphismden = env ◦ sys ⊆ M × X
is defined as a composition of structural constraints
inherent to the systemsys on the one hand and
to the environmentenv on the other. They couple
the system and its environment to each other and
determine their mutual structuredness, restricting
the range of components in typified situationss ∈ S
common to both. Instantiated as a cluster analyzing
algorithm, thesys constraints provide the internal
or endo-view a SCIP system may obtain of its en-
vironment in collecting structural information (uni-
formities) as gathered from processing the discourse
that describes it. Visualizing theseuniformities is
a transformation algorithm which instantiates the
sys morphism to yield an image of the real world
situation comparable tox ∈ X ⊂ U .

C. Natural Language and Symbol Grounding

In order to demonstrate the suggested SCIP sys-
tem’s potential and factual discourseunderstand-
ing capability, it has to be made more concrete
procedurally. The base for such a concretion will
be languageor rather natural languagediscourse
in its structured form. It functions asstructural
coupling[10], which not only relates an information
processingsystem to its embeddingenvironment
(and vice versa), but also serves to instantiate the
hypothesizeddescriptionand referencemorphisms
by different processes due to thesemiotic func-
tions that characterize situated natural language
discourse. Whereas the processdsc : X → T
of describing real world entitiesX ⊂ U by NL
expressionsT ⊆ V can and will be controlled by
means of formal grammars (syntaxand semantics)
dsc = stx◦sem ⊆ X×T , the processref : T → X
of referencing or how NL expressionsT ⊆ V can
stand for or represent some real world entitiesX ⊂

8



U is still enigmatic. Its hypothesized reconstruction
ref = den◦des ⊆ T ×X asunderstandingprocess
composed of meaning constitution (mental imaging)
des = par◦syn ⊆ T×M and structure visualization
(symbol grounding) den = env◦sys ⊆ M×X needs
to be specified.

To ease the burden of declaring and outlining
the correspondences between the formal types of
processes introduced so far and their procedural
instantiations, the measurements of constraints and
their algorithmic implementation, up to computed
results and their visualizations, we will in what
follows confine ourselves to an experimental setting
chosen to limit the SCIP system’s testable perfor-
mance with reference to earlier publications where
appropriate.

V. SETTING AND EXPERIMENT

±°
²¯
A¾ -
6

?¡¡ª

¡¡µ

@@R

@@I

¢¢AA

Fig. 3. 2-dimreality of stationary object locations4 and2 with
mobile agent A, oriented North. The agent’s system-positions relative
to the object-locations determine the propositional descriptions of
SPOL relations in simple, declarative sentences8. These are composed
of four core predicates(left, right, front, behind) modified by five
hedge predicates(two first order: near, far; three second order:
extremely, very, rather) as specified by the formalgrammar (syntax
Tab. IV andsemanticsTab. V) which define and control the semantic
content of the generateddescriptions(PHT corpus), not however the
way it is processed forunderstandingby the SCIP model..

Modeling understandingas a particular form
of information processing within a system-
environment frame (Fig. 1) is to take advantage
of running real-time process simulation tests. For
the purpose of experimentally testingsemiotic
processes, however, their situational complexity
has to be reduced by abstracting away irrelevant
constituents, hopefully without oversimplifying the

issue and trivializing the problem. Therefore, a
simple 2-dimensionalreal world scenario (Fig. 3)
was devised as a reference plane with stationary
objects4,2 ∈ X ⊂ U (environment) and an
oriented mobile agentA ∈ X ⊂ U (system)
whose trajectories can be used to generate verbal
descriptions of the objects’ locations relative
to the agent’s changing system positions (SPOL
relations) in simple declarative sentences8. Thus, the
propositional form of natural language predication
will be used solely to control the contents of the
natural language descriptions generated as training
material, not, however, to determine the way it is
processed to model itsunderstanding. Moreover,
the scenario determines the overall situation and
provides for the observer’s external view ofreality,
allowing the model designer to distinguish what
the SCIP system might grasp (orunderstand) of
it in processing the NL discourse which describes
that scenario.

SCIPSystem = {O,B,W,F ,K}
Orientation O := { ~N=(0, 1), ~S=(0,−1)

~O=(1, 0), ~W=(−1, 0)}
Mobility B := {g(0, 1), g(1, 1), g(1, 0),

(pace and g(1,−1), g(0,−1), g(−1,−1),
direction) g(−1, 0), g(−1, 1) : g = 1}

Perception W := {K := {kt}, L :=
∑T

t=1 lt, V := {zi},
Hi :=

∑T
t=1 hit : i = 1, ..., j, ..., N}

Processing F := {α, δ, ζ, . . . };
K := {α̃ | x, δ̃ | y, . . . }

Semantics : none
Syntax : none

TABLE I

DEFINITION OF SCIP-systemicPROPERTIES.

A. System and Environment

To be able to test the perception-based non-
propositional form of languageunderstandingreal-
ized in SCIP systems, it has to be enacted on natural
language discourse whose semantic content is well
known and certain in anexternallydefined sense in
order to ascertaininternal divergences from it. This
knowledge and certainty is formally guaranteed by
inter-subjectively agreeable correctexpressionsof

8”Triangle is very far in front, very near to the left. Square is very
near in front, extremely near to the right. . . . ” etc.
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SCIPEnvironment = {RE,RO,RG,DN, `R}
Plane RE := {Pn,m : ∃Rn,m ∈ RG(n0,m0, g),

Pn,m ∈ Rn,m}
Object RO := {2, 4, ©, . . . }

Grid RG(n0,m0,g) := {Rn,m =
[(n− 1)g, ng]× [(m− 1)g, mg],
1 ≤ n ≤ n0 , 1 ≤ m ≤ m0 , g > 0}

Direction DL := { ~N=(0, 1), ~S=(0,−1)
~O=(1, 0), ~W=(−1, 0)}

Objectlocation `R : RO −→ RE

TABLE II

DEFINITION OF SCIP-environmentalPROPERTIES.

true propositionsdescribing a specified segment of
reality. Controlling this situated process of descrip-
tion are a formalsyntaxandsemanticsemployed to
generate sentences and texts in pragmatically homo-
geneous discourse corpora to form the language ma-
terial. Thus, the non-symbolic form of perception-
based processing of these natural language texts
(discourse) ideally realizesunderstandingassymbol
grounding which can be compared to, and tested
against the real-world scenario whosedescriptions
are given in the texts processed.

SCIPCoupling: Language entitiescouplingsystem and
environmentstructurally

Word: the sign-object identified as vocabulary element
(type) whose occurrences in (linear) sets of sign-objects
(tokens) are countable;

Sentence: the string (non-empty, linear set) ofwords
forming a (syntactically) correct expression of a (seman-
tically) true proposition which denotes a named object’s
location relative to the system’s position (SPOL-relation);

Text: the string (non-empty, linear set) ofsentenceswith
identical (pairs of) core-predicates which describe SPOL-
relations resulting from the (mobile) system’s linear and
step-wise movement relative to (fixed) objects;

Corpus: the (non-empty) set oftextscomprising descrip-
tions of (any/ all/ samples of) factually possible SPOL-
relations generated by a systemically and environmen-
tally specified SCIP setting.

TABLE III

DEFINITION OF STRUCTURALSCIP-CouplingENTITIES.

In order to let this perception-based processing
be modeled in terms of information system theory,
some conditions have to be specified and defined.
They will assure
¤ that the three main components of the experimen-

tal setting, thesystem, theenvironment, and their
structural couplingare specified by sets of condi-
tioning properties. These define the SCIPsystem
(Tab. I) by way of a set of procedural entities
like orientation, mobility, perception, processing.
The SCIPenvironment(Tab. II) is defined as a
set of formal entities likeplane, objects, grid,
direction, location. And the language discourse
material or SCIP-coupling (Tab. III) mediating
between system and environment is organized by
a number of structural properties of embedded
part-whole relations likeword, sentence, text, cor-
pus of which sentenceand text require further
linguistic specification to ensure correctness and
true descriptions of real worldsituations;

T(ext) : = {Si | Si −→ Si+1 : B ∧ ({KP1,KP2} ∈ Si

= {KP1,KP2} ∈ Si+1) ∧ ∀KPj ∈ Si

∪ Si+1; j = 1, 2; i = 1, . . . , I}
B : = {g(0, 1), g(1, 1), g(1, 0), g(1,−1),

(pace and g(0,−1), g(−1,−1), g(−1, 0),
direction) g(−1, 1) : g = 1}

Si−→ NP VP
NP−→ N
VP−→ V PP
PP−→ HP KPj

N−→ The 〈 triangle | square| circle 〉
V −→ is

HP−→ 〈 extremely| very | rather〉 〈near| far 〉
KP1−→ 〈in front | behind〉
KP2−→ 〈on the left| on the right〉

TABLE IV

TEXT GENERATING PHRASE STRUCTURE SYNTAX.

¤ that the environmental data perceived by the
SCIP system consists of a corpus of (natural
language) texts whosecorrect expressions oftrue
propositions can inter-subjectively be agreed on.
This is achieved by introducing a formal text
generatingsyntax9 (Tab. IV) and a corresponding
referencesemantics10 (Tab. V) on the base of
which sentences and texts may automatically be
generated. Ascorrect expressions oftrue propo-
sitions they describe the environmental situation
the system finds itself exposed to, i.e. the object-

9The simplephrase structure grammardefines texts to consist of
sentences whose core predicates are the same.

10The core predicates’ denotations are given according to their
symmetric directional dependencies whereas the hedge predicates’
(crisp) interpretation is numerical which also allows for continuous
(fuzzy) definitions [3, p. 311].
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locations relative to changing system-positions
(SPOL-relations). Both,syntaxandsemanticsrep-
resent the formally specifiedexo-view of reality
(or thedescribed situations). And finally

¤ that the system’s internal picture of its surround-
ings representing theendo-view (or discourse
situations) is to be derived from this textual
language environment data other than by way of
propositional reconstruction, i.e. without syntactic
parsing and semantic interpretation of sentence
and text structures. Because this part is the core
of the perception-based model of discourseun-
derstanding, the measurements and processes em-
ployed will be dealt with in more detail below.

Core-predicates(KP)
in SPOL relations of system-positionsx, y and object-
locations n,m (with 0-coordinates down left) for all
orientations N, S, E, W of the mobile agent

NORTH x, y in front behind
on the left >m, <n >m, >n
on the right <m, <n <m, >n

SOUTH x, y in front behind
on the left <m, >n <m, <n
on the right >m, >n >m, <n

EAST x, y in front behind
on the left <m, <n >m, <n
on the right <m, >n >m, >n

WEST x, y in front behind
on the left >m, >n <m, >n
on the right >m, <n <m, <n

Hedge-predicates(HP)
as distance measure for SPOL-relations (undercrisp inter-
pretation): in numbers of grid-points| x−n | and| y−m |
of a 12× 12 grid laid on the reference plane (Fig. 3)

Crisp interpret. 1 2 3 4 5 6 7 8 9 10 11 12
extremely near 1 1 0 0 0 0 0 0 0 0 0 0
very near 0 0 1 1 0 0 0 0 0 0 0 0
rather near 0 0 0 0 1 1 0 0 0 0 0 0
rather far 0 0 0 0 0 0 1 1 0 0 0 0
very far 0 0 0 0 0 0 0 0 1 1 0 0
extremely far 0 0 0 0 0 0 0 0 0 0 1 1

TABLE V

REFERENCE SEMANTICS FOR HEDGED CORE PREDICATES.

B. Scenario and SPOL Relations

With the overall situation being a two dimen-
sional reference plane with some stationary objects
and a mobile agent (Fig. 3) the SCIP system’s
perceptive capabilities are limited to its language
processing without (as yet) any other ability to act
or react. It is on the grounds of the discourse the
SCIP system is exposed to and processes in a sub-
symbolic, non-propositional, and perception-based
way that the object-locations have to be identified
in the reference plane.

The semioticityof this processing is conditioned
ex negativoby the fact that – whatever the system
might gather from its language environment – in
doing so it will not apply any grammatical knowl-
edge of (symbolically coded)syntax or semantic
rules made available prior to that process. Instead,
SCIP is defined to be based solely on the system’s
own (co- and contextually restricted) susceptibility
and processing capabilities to (re-)cognize, iden-
tify, and (re-)organize environmental data structures
a n d to (re-)present the results in some dynamic
structure which determines the system’sknowledge
(organization),learning(change) andunderstanding
(representation). It is based on the assumption that
a deeper representational level or core structure
might be identified as a common base for different
notions of meaning developed so far in theories of
referentialandsituationalsemantics as well as some
structural or stereotypesemantic theories.

The natural languagedescriptions, i.e. the syn-
tactically correctexpressionsof semantically true
propositions of predications8 which represent in
their sum apragmatically homogeneous text(PHT)
corpus and specify the overall view or the external
observer’sexo-realitycouple the SCIP system and
the SCIP environment to each other (as defined
by Tabs. I to III). Submitting thesedescriptions
to the perception based, sub-symbolic, cognitive
processing as defined by DIGSformalismsref =
den ◦ des ⊆ T × X is to detect and identify
structures and patterns inherent in thelanguage
material which relate to structures and patterns that
organize thereal world these texts describe as their
referential meanings. Due to instantiated and imple-
mentable SCIPalgorithms to processdesignation
as des = par ◦ syn ⊆ T × M and denotationas
den = env◦sys ⊆ M×X, the detected patterns and
structures will result in some mappings and vectorial
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representations (mental images) in the semantic
spacep ∈ M ⊆ I constituting itsunderstanding.
Structures and patterns in semantic space therefore
should reveal some of the SCIP system’s internal
view of its environment (endo-reality) as computed
from processing the PHT corpus which describes
that environment externally (exo-reality).

In order to visualize what structures may be found
in the semantic space and visualized accordingly,
cluster analyzing algorithms have been employed.
They are numerical and independent of any string
processing or symbol manipulation techniques com-
mon in computational and linguistic semantics, and
provide for agglomerative tree structure (dendro-
gram) generation as a means of visualization which
is formally controlled, repeatable, and may inter-
subjectively be agreed upon. Based on such den-
drograms another image generating algorithm was
developed to allow for a direct comparison and
experimental testing of the SCIP system’s capacity
to understandthe referential meanings of language
expressions against the externally observed situa-
tional reality as specified, described, and represented
in the discourse processed.

VI. PROCESS ANDMEASUREMENT

Generating language structures and/or analyzing
language regularities by computational procedures
cannot only be concerned with the application of
rules to strings of symbols in order to produce, re-
write, transform, unify, etc. other strings of symbols
(sentences), nor is it merely about measuring vary-
ing degrees of combinatorial determinacy and to de-
tect different patterns of the language elements’ and
structures’ linear distributions. What is important
though is to identify computationally these patterns’
and structures’ different types and represent them
as (symbolically) labeled possibility distributions of
(numerical) values that distinguish and determine
(define) these labels11.

A. Syntagmatics and Paradigmatics

Computational processes serving that purpose
may therefore be identified withprocedural defini-
tions of those regularities which they are able to

11It should be noted that the computational processes dealt with
here (and below) are not introducedad hoc, but instead were derived
from and are embedded in thesemioticallymotivated extension of an
information systems theory inspired approach to natural language un-
derstanding as part ofdynamic image generating semantics(DIGS).

detect and analyze asconstraintsand/or to generate
and represent asstructures. Fuzzy linguistics [37]
has successfully operationalized some and applied
recursively to huge amounts of NL data in PHT
corpora. These algorithms detect and analyze lan-
guage regularities, exploit structures as produced by
the constraints concerned [38], and represent these
as vectors in possibility spaces from which observ-
able syntagmataand paradigmatacan be derived.
Based upon the fundamental distinction of natural
language items’ agglomerative orsyntagmaticand
selective orparadigmaticrelatedness12, the core of
the representational formalism can be characterized
as a two-level process of abstraction (Fig. 4). Semi-
otically these formal constraintssyn ⇒ α | zn and
par ⇒ δ | yn and consecutive mappingsdes =
par ◦ syn ⇒ δ | y ◦ α | z model the meanings of
words as a function of all differences of all usage
regularities (Fig. 5) detected for any vocabulary as
employed in a PHT corpus.

A. 1 The first level of constraint exploration orα-
abstraction (instantiating thesyn-relation in Fig. 2)
on the set{T} of fuzzysubsets of the vocabularyz ∈
T ⊆ V provides the word-types’ usage regularities
or corpus pointsy ∈ C.

The basically descriptive statistics used to grasp
these relations on the level ofwords in discourse
are centered around a correlational measure (Eqn.
4) to specify intensities of co-occurring lexical
items in texts, and a measure of similarity (or
rather, dissimilarity) (Eqn. 7) to specify these cor-
relational value distributions’ differences. Simulta-
neously, these measures may also be interpreted
semiotically as set theoretical constraints or formal
mappings (Eqns. 5 and 8) which instantiate the
designationmorphismdes = par ◦ syn ⊆ T ×M
(Fig. 2 and 5) as a function of differences of usage
regularities of words.

For any PHT corpusK = {kt}; t = 1, . . . , T of
texts with an overall length

L =
T∑

t=1

lt; 1 ≤ lt ≤ L (1)

12According to SAUSSURE [4] universal constraints control the
multi-level combinability and formation of language entities based
upon the distinction of restrictions on linear aggregation of ele-
ments (syntagmatics) from restrictions on their selective replacement
(paradigmatics). It is theseconstraintswhich allow to distinguish
not only different levels of entity and structure formation, but
also different functions of structure and meaning constitution which
structural linguists have learned since to better understand.
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α-abstraction δ-abstraction
V × V C × C M ×M

α z1 . . . zm

z1 α11 . . .α1m
...

...
. ..

...
zm αm1. . .αmm





⇓

α | zi−→
syn

⇑





δ y1 . . . ym

y1 δ11 . . . δ1m
...

...
.. .

...
ym δm1. . .δmm





⇓

δ | yi−→
par

⇑





ζ p1 . . . pm

p1 ζ11 . . . ζ1m
...

...
. ..

...
pm ζm1. . .ζmm

Syntagmatic Paradigmatic
C o n s t r a i n t s

Fig. 4. Formalization ofsyntagmaticand paradigmaticconstraints as two-level mapping of usage regularities of itemszi ∈ V and their
differencesyi ∈ C. These mappings which are basedfirst on the correlation measureα : V ×V → =α (Eqn. 4) andsecondon the Euclidian
distanceδ : C × C → =δ (Eqn. 7), constitute consecutive (α- and δ)-abstractions which result in meaning representationspi ∈ M ⊆ I
respectively.

of word-tokens per text, and a vocabulary

V = {zn}; n = 1, . . . , i, j, . . . , N (2)

of word-types whose item frequencies are denoted
by

Hi =
T∑

t=1

hit; 0 ≤ hit ≤ Hi (3)

the correlation-coefficientαi,j allows to express
pairwise relatedness of word-types(zi, zj) ∈ V ×V
in numerical valuesαi,j ∈ =α ranging from−1 ≤
αi,j ≤ +1 by calculating co-occurring word-token
frequencies in the following way

αi,j =

∑T
t=1(hit − eit)(hjt − ejt)(∑T

t=1(hit − eit)2
∑T

t=1(hjt − ejt)2
) 1

2

; (4)

where eit =
Hi

L
lt and ejt =

Hj

L
lt

Evidently, pairs of word types whose tokens fre-
quently either co-occur in, or are both absent from,
a number of texts will positively be correlated
(affinity), those of which only one (and not the
other) frequently occurs in a number of texts will
negatively be correlated (repugnancy).

As a fuzzy binary relation,̃α : V × V → =α

can be conditioned on anyzi ∈ V which yields a
crisp mapping as operational definition of thesyn
morphism (Fig. 2)

syn := α̃ | zi : V → C; C := {yi | 1 ≤ i ≤ N} (5)

where C is the set ofcorpus-points {yn} repre-
senting the numerically specified,syntagmaticusage
regularities that have been observed for any word-
type z against all otherzn ∈ V as measured by

δ̃ |yi ◦ α̃ |zi

α̃ |zi
syn

δ̃ |yi
par

V
'

&%
Oα

des
M

$

&%
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Fig. 5. Fuzzy mapping relationsα andδ between the structured sets
{T} and {R} of vocabulary itemszn ∈ T ⊆ V , of corpus points
yn ∈ R ⊆ C, and of meaning pointspi ∈ M ⊂ I as instantiated
reconstruction of thedesignationmorphismsdes in Fig. 2.

α-values. The so-calledα-abstractionover the first
of the components of each ordered pair(zi, zn)
determines these usage regularities’ abstract repre-
sentation

yi := (α(i, 1), . . . , α(i, N))N (6)

as a point in theN -dimensionalcorpus spaceyi ∈
C spanned by the number of axesN corresponding
to the number of vocabulary items (word-types)
zn ∈ V .

A. 2 The second level of constraint exploration or
δ-abstraction (instantiatingpar in Fig. 2) on the set
{R} of fuzzysubsets of corpus pointsy ∈ R ⊆ C
provides the correspondingmeaning pointsp ∈
M ⊂ I as a function (i.e. the set theoretical com-
position par ◦ syn) of word-types which are being
instantiated by word-tokens employed in texts.
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Fig. 6. Cluster dendrogram of labeled meaning pointsp ∈ M ⊆ I depicting semantic space structure after processing of 500 texts.
Labels of hedge predicatesextremely, very, rather(near| far) and core predicatesleft, right, front, behindare abbreviated to their first letters
respectively.

Considering〈C, δ〉 as a representational structure
(corpus space) of abstract entities constituted by
syntagmaticregularities of word-token occurrences
in pragmatically homogeneousdiscourse, then the
similarities and/or dissimilarities of these entities
will capture what constitutes their corresponding
word-types’ paradigmaticregularities. These may
be calculated by a distance measureδ of, say,
EUCLID ian metric

δ(yi, yj) =

(
N∑

n=1

(α(zi, zn)− α(zj, zn))2

) 1
2

; (7)

=δ := 0 ≤ δ(yi, yj) ≤ 2
√

n

Thus,δ may serve as asecondmapping function to
represent any item’s differences of usage regularities
measured against those of all other items. As a fuzzy
binary relation,̃δ : C×C → =δ can be conditioned
on yi ∈ C which again yields a crisp mapping as

operational definition of thepar morphism (Fig. 2)

par := δ̃ | yi : C → M ; M := {pi | 1 ≤ i ≤ N} (8)

where M is the set ofmeaning-points {pn} rep-
resenting the numerically specifiedparadigmatic
structure that has been derived for each abstract
syntagmaticusage regularityyi against all other
yn ∈ C. The distance values can therefore be
abstracted analogous to Eqn. 6, this time, however,
over the other of the two components in each
ordered pair, thus defining an element

pi := (δ(i, 1), . . . , δ(i, N))N (9)

called meaning pointpi ∈ M ⊂ I in a N-dimen-
sional structure calledsemantic space.

Thus, the perception-based, non-symbolic, nu-
merical processing of the PHT corpus of natural lan-
guage expressions describing real world situations
yields vectorial representations of meaning points
in semantic spacewhose structuredness is obvious
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Fig. 7. Endo1(i, j)[500] showing numerical patterns of rel-
ative object location viewed from the system agent (4 ori-
ented north) by sums of grid points marked (from center:
extremely| very| rather near; rather| very| extremely far)
according to layers of (agglomerative) clusters which the (crisply
interpreted)hedged core predicates(left, right, in front, behind)
exhibit in semantic spaceas analyzed after processing of 500 texts.

as a result of differences in word usage regularities
and well documented as connotative meaning rep-
resentation [31, 39, 40, 41, 42]. The question to be
answered here, however, is whether – and to what
extent – thesemantic spacestructure corresponds
or evenrefers to any of the situational patterns in
the real world which have been described in the
discourse processed.

B. Semantic Space Structure and Visualization

In the course of the sub-symbolic, numerical anal-
ysis of the PHT corpus that describes real world sit-
uations as SPOL relations, the two-level consecutive
mappings enacted by the SCIP system (Figs. 4 and
5) resulted in vectorial representation of meaning
points or conceptsp ∈ M ⊆ I in semantic space.
Its intrinsic structure is to be analyzed to reveal
some of the situational (systemicandenvironmental)
constraints which can be employed to in a four stage
visualization process:

N O R T H

396 416 390 364 342 320 294 248 216 148 152 120

416 442 420 397 378 358 334 286 252 218 184 150

400 430 414 396 382 366 346 300 267 234 201 168

384 417 406 394 386 374 358 314 282 250 218 186

W 368 404 398 392 390 382 370 328 297 266 235 204 E

E 352 392 392 391 394 390 382 342 312 282 252 222 A

S 326 370 378 384 393 394 392 356 327 298 269 240 S

T 300 346 360 372 386 393 398 366 338 310 282 254 T

274 322 342 360 379 392 404 376 349 322 295 268

228 274 298 320 342 358 374 352 328 304 280 256

194 238 263 286 309 326 343 324 304 284 364 244

160 202 228 252 276 294 312 296 280 264 248 232

S O U T H

Fig. 8. Endo2(m, n)[500] showing two (boldface) maxima of
object location likelyhood in sums of density values per grid point.
These are computed by superimposing locality pattern values from
Endo1(i, j)[500] according to Eqn. 10.

1) applying methods of average linkage cluster
analysis [43] allows to identify – comparable
to results as produced byKOHONEN-maps
[44] – semiotically similar word-types (object
labels andhedged core predicatelabels) as
structurally adjacent meaning points or con-
ceptsp ∈ M ⊆ I in a dendrogram format
(Fig. 6),

2) superimposing the hedges’numerical (crisp)
interpretation for distance values and the core
predicates’directional interpretations for the
regions of object locations relative to a cen-
trally positioned agent system, the sums of
cluster agglomerations from Fig. 6 produce
an intermediate,23 × 23 representation (Fig.
7) of the system’s ownoriented view of its
environment which can be transformed to

3) a mapping that images the system’sendo-
view which is orientation dependent and di-
rectionally indeterminate, as its directionally
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determinateexo-view representation13 (Fig.
8). This can subsequently be transformed into
another format to visualize

4) the referential plane as structured holistically
by a profile of (numerically interpolated)
polygons which connect regions of denota-
tional likelihood by so-calledisoreferentials;
their emerging overall pattern denotes possi-
ble object locations (Fig. 9).

B. 1 Earlier investigations into the intrinsic struc-
ture of semantic spacedata had revealed [43, 45]
that topological adjacencies of meaning points can
well be identified, and clusters of points be de-
tected and represented in an agglomerative process
with an average linkage cluster criterion. Applying
these techniques to the semantic space structure as
presently computed from processing PHT corpora
of increasing size (50 to 500 texts) resulted in
dendrograms like Fig. 6. It clearly separates the
collections of core predicate labels (34):front-left
from (35):behind-right and identifies the latter as
(37):square. The former is – in conjunction with
the copula (36):is – less distinct as (39):triangle
comprises all labels.

B. 2 As the semantic space structure may be con-
sidered the internal model (endo-view) of what the
SCIP system gathered in processing the language
data it was exposed to, this structure has to be
transformed in order to be visualized to allow for
a comparison with real world situation (exo-view)
described according to an externally defined gram-
mar (syntaxandsemantics). For this transformation
the four hedged core predicates (left, right, front,
behind) are employed to determine a 2-dimensional
23× 23 grid (Fig. 7) which spans from the oriented
system’s center position into four directions along
the concentric frames (extremely, very, rather, very,
extremely) of hedgednear and far regions. The
numbers at each pointi, j – that make the grid
the Endo1i,j transformed data representation – are
frequencies as provided by the cluster dendrogram
which allows to identify each hedged core predicate

13As the experimental setting does not (yet) allow the mobile
system’sorientation to change while traversing the reference plane
in different directions, the predicates employed during generation of
SPOL-relation descriptions are confined to be directionally determi-
nate (in front=north, left=west, etc.). To allow changing orientations
for the mobile system would necessitate a procedural modeling
and algorithmic reconstruction of less restrictedenvironmentaland
systemicconstraintsenv ◦ sys which (so far) have been assumed
part of thestructural coupling.

with the number of agglomerative steps it is part of.
B. 3 The Endo1i,j data (Fig. 7) serves as base

for this third step which is a line- and column-
wise data compression transformation. It results in
a new mappingEndo2m,n (Fig. 8) according to the
summation equation

Endo2m,n =
m+11∑
i=m

n+11∑
j=n

Endo1i,j (10)

B. 4 The matrixEndo2m,n (Fig. 8) represents the
data structure transformed for an externalobserver’s
visualization of the system’sendo-viewas processed
from texts describing SPOL-relations, i.e. fixed ob-
ject locations relative to changing system positions.
The corresponding (two-dimensional) images gen-
erated on the base ofEndo2-increments of text
corpora of increasing size (50 to 500 texts) gives an
impression of the dynamics of the developing pic-
ture of referential likelihood (Fig. 9). The polygons
interpolating theEndo2m,n data points are called
isoreferentialswhose overall pattern forms a profile
that denotes potential object locations quite clearly
as regional maxima, howeverfuzzy.
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Li ège: LASLA, 1983, pp. 805–814.

[44] T. Kohonen, Self-Organization and Associative Memory,
3rd ed., Berlin/ Heidelberg/ New York/ London: Springer, 1989.

[45] B. Rieger,Unscharfe Semantik. Frankfurt/ Bern/ Paris: Peter
Lang, 1989.

[46] B. B. Rieger, “Perception-based Processing of NL Texts. Mod-
eling discourse understanding as visualized learning in SCIP
systems.” inProceedings 4th Intern. Conf. on Recent Advances
in Soft Computing (RASC-02), A. Lotfi, J. Garibaldi, and
R. John, Eds. Nottingham: Trent UP, 2002, pp. 506–511.

[47] ——, “Discourse Understanding as Image Generation. On
perception-based processing of NL texts in SCIP systems.” in
Proceedings 6th Conf. of the United Kingdom Simulation Soci-
ety (UKSIM-03), D. Al-Dabas, Ed. Nottingham: UKSimSoc,
2003, pp. 1–8.

[48] B. B. Rieger, C. Flores, and D. John, ”TheexperimentalSCIP”,
www.ldv.uni-trier.de:8080/rieger/SCIP.html ,
2003.

[49] L. Zadeh and J. Kacprzyk, Eds.,Computing with Words in
Information/Intelligent Systems. Heidelberg/ New York: Physica
Verlag, 1999.

[50] P. P. Wang, Ed.,Computing with Words. New York, NY: John
Wiley & Sons, 2001.

Burghard B. Rieger, Professor em. of Com-
putational Linguistics and former Head of
Department of Linguistic Computing at the
University of Trier, Germany, has been a re-
searcher and academic teacher for more than
three decades. His interdisciplinary work is
on topics ranging from German language and
literature to linguistics and cognitive science
with an early affinity to quantitative and com-

putational approaches. Most of his research is in computational
semantics and knowledge representation with special focus on vague-
ness and fuzzy modeling. His recent work and current interest
is in computational semiotics as the study and implementation of
dynamic systems of meaning acquisition and language understanding
by man and machine. — He received his PhD and Dr. habil. in
Linguistics from the Technical University (RWTH) Aachen and
held various university positions as lecturer, researcher, and visiting
professor (Nottingham, Aachen, Amsterdam, Essen, Trier) before
he was appointed Professorordinarius (Chair of Computational
Linguistics) at the University of Trier (1986). He wrote two books
on quantitative text analysis and on fuzzy computational semantics
and is the author of more than 80 articles. He is the editor of
several collections and conference proceedings on topics in Empirical
Semantics, Computational Linguistics, and Linguistic Computing.
He was president of the German Society for Linguistic Computing
GLDV (1989–93) and vice-president of the International Society for
Terminology and Knowledge Engineering TKE (1990–94), served
as Dean and Vice-Dean of his Faculty (1997–2001), and is now
Professoremeritusof Trier University.

18


