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This paper will report on one of the central objectives of a project in compu-
tational semantics which is supported by the Northrhine-Westphalia Ministry of
Science and Research under grant IV A 2-FA 8600.

1. Modelling system structures of word meanings and/or world knowledge is
to face the problem of their mutual and complex relatedness. Under the notion of
semantic relevance and knowledge disposition this interdependency may empirically
be reconstructable from natural language discourse although most approaches in
linguistic semantics and artificial intelligence do not address these issues. Instead,
linguists as well as experts engaged in word meaning and/or world knowledge repre-
sentation still provide the necessary semantic or external world data introspectively
by exploring their own competence and memory capacities to depict their findings
in some semantic or conceptual structures (lists, arrays, networks, etc.). They do so
with the understanding that their models may have a more or less ad hoc character
and tend to lack — beyond their limited operational performance — intersubjective
control. Other than these introspective explorations, the present approach strives
to derive directly via automatic analysis of natural language discourse some basic
data whose relational structure will not be declared but procedurally be defined by
algorithms which induce it.

2. Based upon statistical means for the empirical analysis of discourse and for
the formal representation of vague word meanings in natural language texts, pro-
cedures have been devised which allow for the systematic modelling of a fragment
of the lexical structure constituted by the vocabulary employed in the texts as part
of the concomitantly conveyed world knowledge concerned [?]. The coefficients ap-
plied will map lexical items onto fuzzy subsets of the vocabulary according to the
numerically specified regularities these items have been used with in the discourse
analysed. The resulting system of sets of fuzzy subsets is a datastructure which may
be interpreted topologically as a hyperspace with a natural metric. Its linguistically
labeled elements (representing meaning points) and their mutual distances (repre-
senting meaning differences) form discernable clouds and clusters which determine
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the labels’ associative meaning relations. Thus, the analysing algorithm takes nat-
ural language texts from a certain subject domain as input and produces as output
the distance-like datastructure (semantic space) of linguistically labeled elements
(meaning points) whose positions represent essential properties of the conceptual
prototypes according to which their labels have been employed in the texts analysed
[?]. Their varying dependencies which constitute a (latent) associative relational
structure [?] may procedurally be defined and modelled on the semantic space data
to allow not only for search and retrieval operations being executed but also for
inferencial processes being performed on that data structure under different aspects
of semantic contents and relevance.

3. Taking up ideas from the theory of semantic memory and spreading activa-
tion in cognitive psychology [?], a new algorithm is presented which operates on the
semantic space data to generate — other than the CDS-procedure [?] — associa-
tive dependency structures (ADS) in the format of general (n-ary) trees. Given one
meaning point’s position being primed, the algorithm will first start to list all neigh-
bouring points by increasing distances. Then, the algorithm’s generic procedure
will take the first on the list, determine its most adjacent point among those already
primed, and identify it as its mother-node before deleting the new daughternode’s
label from the list. Repeated successively for each of the meaning points listed and
in turn primed in accordance with this procedure, the algorithm of least distances
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will select a particular fragment of the relational structure latently inherent in the
semantic space, depending on the aspect, i.e. the primed meaning point the algo-
rithm is initially started with. Working its way through and consuming all labeled
points in the space system, the ADS-algorithm transforms prevailing similarities of
meanings as represented by adjacent points to establish a binary, non-symmetric,
and transitive relation between them. This relation allows for the hierarchical reor-
ganisation of meaning points as nodes under a primed head in an n-ary ADS-tree.

The process of detection and identification which the algorithm performs may
be illustrated in view of a two-dimensional space configuration of 11 points
〈δ{a, b, c, d, e, f, g, h, i, j, k}〉 (Fig. 1).

Submitted to the search procedure of least distances under initial priming of
the point a the algorithm will identify the distances concerned as in Fig. 2 and
produce the equivalent tree representations as shown in Fig. 3. For the effective
use in procedural meaning representation and semantic processing, the ADS-trees
may additionally be evaluated by associative criterialities, not given here. The
criteriality is a numerical expression of the degree or intensity by which any ADS-
node is dependent on its mother-node, calculated as a function of both, the involved
meaning points’ topology and its relative distances leading to the initially primed
point in the semantic space.

Examples of associative dependency trees are given below where the upper frag-
ments of the ADS’s of ARBEIT/labour (Fig. 4) and INDUSTRIE/industry (Fig. 5)
are shown as computed from the semantic space structure derived of a sample of
German newspaper texts from the 1964 daily editions of ’Die Welt’.

4. The ADS-trees’ properties permit different though related model-bound in-
terpretations which can only be indicated here:

• identifying stored meaning representations with distorted and/or modified in-
stantiations of them is no longer a problem. The procedural semantic approach
replaces the storage of fixed and ready set relational (semantic) networks by
source-oriented induction of a meaning point’s associative dependency struc-
ture which is generated only when needed. Triggered by any identifiable label,
the ADS generated may be identified with that label’s associative meaning as
instantiated according to the semantic space data, its subject domain, actual
status, and possible changes;

• for the notion of semantic relevance and dispositional knowledge the ADS-
procedure offers an empirically based approach to and a contents dependent
representation of possible semantic/factual default connotations which become
accessible under the aspect of a certain meaning point being primed;

• for models of memory and semantic structure the ADS-procedure provides a
flexible, aspect-driven means for the detection of possible paths of spreading
activation which branch across semantic space, submitting relevant portions
of it to associatively guided semantic search strategies, retrieval operations,
and processes of analogical reasoning, as opposed to logical deduction [?].
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