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Abstract

Modelling system structures of word meanings and/or world knowledge is
to face the problem of their mutual and complex relatedness. In linguistic
semantics, cognitive psychology, and knowledge representation most of the
necessary data concerning lexical, semantic and/or external world informa-
tion is still provided introspectively. In a rather sharp departure from that
form of data acquisition the present approach has been based on the empirical
analysis of discourse that real speakers/writers produce in actual situations
of performed or intended communication in prescriptive contexts or subject
domains. The approach makes essential use of statistical means to analyse
usage regularities of words to map their fuzzy meanings and connotative in-
terrelations in a format of stereotypes. Their dependencies are generated
algorithmically as multi-perspective dispositions that render only those rela-
tions accessible to automatic processing which can — under differing aspects
differently — be considered relevant. Generating such semantic dispositional
dependencies dynamically by an procedure would seem to be an operational
prerequisite to and a promising candidate for the simulation of contents-driven
(analogically-associative), instead of formal (logically-deductive) inferences in
semantic processing.

1 Introduction

Current semantic theories of word meanings and/or world knowledge representation
regard memory in human or artificial systems of cognition and/or understanding as

∗This paper (an intermediate version of which was read on ICCH/83) reports on the empirical
foundations of a project in computational semantics on the automatic analysis and representation
of natural language meanings in texts. This project was supported by the North Rhine Westphalia
Ministry of Science and Research under grant IV A2 FA 8600. Published in: Agrawal, J.C./Zunde,
P. (Eds.): Empirical Foundations of Information and Software Science. New York/London (Plenum
Press) 1985, pp. 273-291.
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a highly complex structure of interrelated concepts. The cognitive principles under-
lying these structures are poorly understood yet. As the problem of their mutual
and complex relatedness has more and more been recognized, different methods and
formats have been proposed with differing success to model these interdependen-
cies. However, the work of psychologists, AI-researchers, and linguists active in that
field still appears to be determined by their respective discipline’s general line of
approach rather than by consequences drawn from these approaches’ intersecting
results in their common field of interest.

In linguistic semantics, cognitive psychology, and knowledge representation most
of the necessary data concerning lexical, semantic and/or external world information
is still provided introspectively. Researchers are exploring (or make test-persons ex-
plore) their own linguistic/cognitive capacities and memory structures to depict their
findings (or let hypotheses about them be tested) in various representational formats
(lists, arrays, trees, nets, active networks, etc.). It is widely accepted that model
structures resulting from these analyses do have a more or less ad hoc character and
tend to be confined to their limited theoretical or operational performances within
a specified subject domain and/or implemented system. Thus, these approaches —
by definition — can only map what of the world’s fragment under investigation is
already known to the analysts, not, however, what of it might be conveyed in texts
unknown to them. Being basically interpretative and in want of operational control,
such knowledge representations will not only be restricted quite naturally to undis-
puted informational structures which consequently can be mapped in accepted and
well established (concept-hierarchical, logically deductive) formats, but they will
also lack the flexibility and dynamics of more constructive model structures which
are needed for automatic meaning analysis and representation from input texts to
allow for a component to build up and/or modify a system’s own knowledge, however
shallow and vague that may appear compared to human understanding.

Other than these more orthodox lines of introspective data acquisition in mean-
ing and knowledge representation research, the present approach has been based on
the algorithmic analysis of discourse that real speakers/writers produce in actual
situations of performed or intended communication on a certain subject domain.
The approach makes essential use of procedural means to map fuzzy word meanings
and their connotative interrelations in the format of conceptual stereotypes. Their
varying dependencies constitute dynamic dispositions1 that render only those con-
cepts accessible which may — within differing contexts differently — be considered
relevant under a specified perspective or aspect. Thus — under the notion of lexical
relevance and semantic disposition — a new meaning relation may operationally
be defined between elements in a conceptual representation system which in itself

1Instead of formally introducing any of the algorithms developed and tested so far for the
purposes at hand, an impression of their performance and application shall in the sequel be given
by way of some — hopefully illustrative — figures and examples. For more detailed introductions
the reader is referred to the bibliography at the end of this paper where additional informations on
the MESY-project in general and its procedural approach in particular may be found in a number
of the author’s recent publications.
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may empirically be reconstructed from natural language discourse. Such disposi-
tional dependency structures would seem to be an operational prerequisite to and a
promising candidate for the simulation of contents-driven (analogically-associative),
instead of formal (logically-deductive) inferences in semantic processing.

After these (1.) introductory lines and more for illustrative purposes rather
than for a detailed and qualifying discussion, some of the standard concept and/or
word-meaning representational formats in memory models and knowledge systems
(2.) will be compared in order to motivate our rather strict departure from them
in developing and using (3.) some statistical means for the analysis of texts and
the representation of the data obtained which will briefly be introduced as the
semantic space model. Starting from the notion of priming and spreading activation
in memory as a cognitive model for comprehension processes, we will (4.) deal with
our procedural method of representing semantic dispositions by way of inducing
a relation of lexical relevance among labeled concept representations in semantic
space2. Concluding (5.), two or three problem areas connected with word meaning
and concept processing will be touched which might be tackled anew and perhaps
be brought to a more adequate though still tentative solution under an empirically
founded approach in procedural semantics.

2 Representational formats in knowledge systems

Lexical structures in linguistic semantics, memory models in cognitive psychology,
and semantic networks in AI-research have in common that they use as basic format
of their models some structure of directed graphs. Probably one of the most familiar
forms of concept representation which experimental psychologists like e.g. [1] and
[2] have set up and tested in the course of their developments of memory models is
shown in Fig. 2.1

Here we have a hierarchy of labeled concept nodes with predicates and properties
linked to them which are herited by directly dependent nodes. The hypotheses
formulated and tested in experiments predict that test persons will take more time to
identify and decide given propositions with an increasing number of node- and level-
transitions to be processed in the course of interpretation. Evaluating a sentence
like ”A canary can sing” will take less time than to decide whether the sentence ”A
robin can breathe” is true or not. Thus, reaction-time serves as an indicator for the
proposed model structure either to be correct or in need of modification.

In early artificial intelligence research a different type of knowledge representa-
tion was developed for question-answering-systems. A fragment of the most common
schema of the semantic network type [3] is shown in Fig. 2.2. Here again we have
labeled concept nodes linked to one another by pointers representing labeled rela-

2The system of both, the text analysing algorithm leading to the semantic space structure and
the generative procedure operating on that structure to yield the DDS-trees, is implemented in
FORTRAN, CDC-ASSEMBLER, and SIMULA on the CDC-Cyber 175 of the Technical University
of Aachen Computing Center.
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Figure 2.1: A graph model of concept representation.
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Figure 2.2: A semantic network for knowledge representation.

tions which form a network instead of a tree structure. This enables the system to
answer questions like: ”Is Susy a cat?” correctly by identifying the SUSY-node, its
ISA-relation pointer and the CAT-node. Moreover, the pointer structure allows for
the processing of paths laid through the network, initiated by questions like: ”Susy,
cat?” which will prompt the answer ”Susy is a cat. Cat eats fish. Cat is an animal.
Fish is an animal.”

A schematic representation of concept relatedness as envisaged by cognitive the-
orists who work along more procedural lines of memory models [4] is shown in
Fig. 2.3. Their distance-relational conception lends itself readily to the notion of
stereotype representation for concepts that do not have intersubjectively identifiable
sharp boundaries [5].

Instead of binarily decidable category membership, stereotypical concepts or
prototypes are determined by way of their adjacency to other prototypes. Taken as
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Figure 2.3: A schematic representation of concept relatedness.

a memory model, stimulation of a concept will initiate spreading activation to prime
the more adjacent concepts more intensely than those farther away in the network
structure, thus determining a realm of concepts related by their primed semantic
affinity. In the given example, the stimulation of the concept-node MANAGEMENT
will activate that of BUSINESS first, then INDUSTRY and ORGANISATION with
about the same intensities, then ADMINISTRATION and so on, with the intensities
decreasing as a function of the activated nodes’ distances.

These three schemata of model structures — although obviously concerned with
the simulation of symbol understanding processes — are designed to deal primarily
with static aspects of meaning and knowledge. Thus, in interpreting input sym-
bols/strings, pre-defined/stored meaning relations and constructions can be iden-
tified and their representations be retrieved. Without respective grounding made
explicit and represented in that structure, however, possibly distorted or modified
instantiations of such relations or relevant supplementary semantic information can
hardly be recognized or be provided within such representational systems. As the
necessary data is not taken from natural language discourse in communicative envi-
ronments but elicited in experimental settings by either exploring one’s own or the
test persons’ linguistically relevant cognitive and/or semantic capacities, usage sim-
ilarities of different and/or contextual variations of identical items are difficult to be
ascertained. This is rather unsatisfactory from a linguist’s point-of-view who thinks
that his discipline is an empirical one and, hence, that descriptive semantics ought
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to be based upon linguistic data produced by real speaker/hearers in factual acts of
communicative performance in order to let new meaning representations (or frag-
ments of them) replace (or improve) older ones to change/update a static memory
structure.

3 Statistical tools for discourse analysis

It has been shown elsewhere3 sufficiently large sample of pragmatically homoge-
neous texts, called corpus, only a restricted vocabulary, i.e. a limited number of
lexical items will be used by the interlocutors however comprehensive their personal
vocabularies in general might be. Consequently, the lexical items employed to con-
vey information on a certain subject domain under consideration in the discourse
concerned will be distributed according to their conventionalized communicative
properties, constituting semantic regularities which may be detected empirically
from the texts.

The empirical analysis of discourse and the formal representation of vague word
meanings in natural language texts as a system of interrelated concepts is based
on the Wittgensteinian [8] notion of language games and their functions4. His
assumption that a great number of texts analysed for the terms’ usage regularities
will reveal essential parts of the concepts and hence the meanings conveyed.

The statistics which have been used so far for the systematic analysis not of
propositional strings but of their elements, namely words in natural language texts,
is basically descriptive. Developed from and centred around a correlational measure
to specify intensities of co-occurring lexical items used in natural language discourse,
these analysing algorithms allow for the systematic modelling of a fragment of the
lexical structure constituted by the vocabulary employed in the texts as part of the
concomitantly conveyed world knowledge.

A correlation coefficient appropriately modified for the purpose has been used as
a mapping function. It allows to compute the relational interdependence of any two
lexical items from their textual frequencies. Those items which co-occur frequently
in a number of texts will positively be correlated and hence called affined, those
of which only one (and not the other) frequently occurs in a number of texts will
negatively be correlated and hence called repugnant. Different degrees of word-

3See also [7] where the principle of semantization is introduced as a process which can be
emulated by procedural means to constitute meanings by consecutive restrictions of elementary
choices among entities on the levels of pragmatics, via semantics and syntactics down to morpho-
phonetics; whereas these elements and/or entities on each of the semiotic levels are generated by
an inversely operating procedure, which allows recurrent combinations of elements to be identified
against those combinatorial possibilities not realized on that level these combinations constitute
the new elements which on the next level may be combined, etc.

4”A meaning of a word is a kind of employment of it. For it is what we learn when the word
is incorporated into our language. That is why there exists a correspondence between the concept
rule and meaning. [...] Compare the meaning of a word with the function of an official. And
different meanings with different functions. When language games change, then there is a change
in concepts, and with the concepts the meanings of words change.” [8] No. 61–65, p. 10e

6



repugnancy and word-affinity — indicated by numerical values ranging from −1
to +1 — may thus be ascertained without recurring to an investigator’s or his
test-persons’ word and/or world knowledge (semantic competence), but can instead
solely be based upon the usage regularities of lexical items observed in a corpus
of pragmatically homogeneous texts, spoken or written by real speakers/hearers in
actual or intended acts of communication (communicative performance).

Let K be such a corpus that consists of t texts belonging to a specific language-
game, i.e. satisfying the condition of pragmatic homogeneity, and let V be the vo-
cabulary of i lexical entries x being used

K := {t | t = 1, . . . , T} and V := {xi | i = 1, . . . , n}

with U being the overall length of all texts t in K

Uk =
T∑

t=1

ut, 1t ≤ ut ≤ U

and Hi the total frequency of the lexical entry xi in K

Hi =
T∑

t=1

hit, 1it ≤ uit ≤ Hi

Then the modified correlation coefficient will read

α(xi, xj) =

T∑
t=1

(hit − hit
∗)(hjt − hjt

∗)

(
T∑

t=1

(hit − hit
∗)2

T∑
t=1

(hjt − hjt
∗)2

) 1
2

; −1 ≤ αij ≤ +1

where hit
∗ =

Hi

U
ut and hjt

∗ =
Hj

U
ut

For the sake of illustrating the analysing algorithm’s performance, we will con-
sider a simplified case where the vocabulary V employed in the texts shall be limited
to only three word-types, namely xi, xj and xk which have a certain overall token-
frequency. Then the modified correlation coefficient will measure the regularities of
usage by the affinities and repugnancies that may hold between anyone lexical item
and all the others employed in the discourse analysed. That will yield for any item
an n-tupel of correlation-values, in this case for the lexical item xi with n = 3 the
tripel of values αii, αij, αik. These correlation-values are now interpreted as being
coordinates that will define for each lexical item xi, xj, and xk one point y(αi),
y(αj), and y(αk) respectively in a three-dimensional space structure spanned by the
three axis i, j, and k as illustrated in Fig. 3.1. As the positions of these points now
obviously depend on the regularities the lexical items concerned have been used with
in the texts of the corpus, the y-points are called corpus-points of i, j and k in the
α- or corpus-space.

7



j

k

i

-.5

+.5
-1.0

0

-.5

+.5

y
i

y
k

yj-.5

-1.0

-1.0

+1.0
+1.0

+.5

+1.0

Figure 3.1: Representation of corpus-points in a corpus-space.

Two y-points in this space will consequently be the more adjacent to each other,
the less their usages differ. These differences may be calculated by a distance mea-
sure δ between any two y-points

δ(yi, yj) =

( n∑

k=1

(
α(xi, xk)− α(xj, xk)

)2
)

, 0 ≤ δij ≤ 2
√

n

as illustrated in Fig. 3.1 by dotted lines. The distance-values are real, non-negative
numbers which represent a new characteristic. For any item yi, yj, and yk an n-tupel
of δ-values, i.e. for yi the tripel δii, δij, δik is obtained which may be interpreted as
new coordinates. These will again for each item xi, xj, and xk define new points z(δi),
z(δj), and z(δk) in a new n-dimensional space, called semantic space, as illustrated
in Fig. 3.2. The positions of such points in the semantic space will clearly depend
on all the differences (δ- or distance-values) in all the regularities of usage (α- or
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Figure 3.2: Placement of points of Figure 3.1 in semantic space.

correlation-values) any lexical item shows in the texts analysed. Thus, each lexical
item is mapped onto a fuzzy subset of the vocabulary according to the numerically
specified regularities these items have been used with in the discourse analysed.
Measuring the differences of any one’s lexical item’s usage regularities against those
of all others allows for the above interpretation and consecutive mappings of items
onto theoretical constructs.

These new entities are abstract representations of what meanings may be com-
posed of, i.e. a number of operationally defined elements whose varying contributions
are to be derived directly from the differing usage regularities that the corresponding
lexical items produce in the texts analysed. As theoretical constructs, these enti-
ties constitute meaning from a more holistic approach to lexical system description.
Translating the Wittgensteinian notion of meaning into a mathematically opera-
tional form of empirical feasibility, these new meaning-components can procedurally
be characterized as a function of all the differences of all regularities any one of the
vocabulary’s items is used with compared to any other item in the same corpus of
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discourse.
The resulting system of sets of fuzzy subsets of the vocabulary represent a struc-

tured lexicon. It is a relational data structure which may be interpreted topologi-
cally as a hyperspace with a natural metric, called semantic space. Its linguistically
labelled elements represent meaning points, and their mutual distances represent
meaning differences. The position of a meaning point may be described by its
semantic environment. This is determined by those other points in the semantic
hyperspace which — within a given diameter — are most adjacent to the central
one choosen to be illustrated according to the following Eucledean metric

δ2(zi, zj) =

( n∑

k=1

(
δ(yi, yk)− δ(yj, yk)

)2
)

, 0 ≤ δ2ij ≤ 2
√

n

Figure 3.3 shows the topological environment E〈GESCHAEFT〉, i.e. those points
being situated within the hypersphere of a certain diameter of the meaning point
GESCHAEFT/business as computed from a corpus of German newspaper texts
comprising some 8000 tokens of 360 types in 175 texts from the 1964 editions of the
daily Die Welt [9].

Having seen that topological environments of that sort do in fact assemble mean-
ing points of a certain semantic affinity solely by the performance of the text
analysing algorithms and without any competent language user’s interference, a
number of questions arose whose answers should at least be mentioned:

• Are there regions of point density in the semantic space, forming clouds and
clusters which might indicate a semantic (syntagmatic and/or paradigmatic)
structuredness?

• Can such regions be detected and described automatically by statistical meth-
ods of multi-varied and cluster analysis, and how would they look like?

• Could the internal relation according to which certain meaning points clus-
ter be specified in terms of the logical-declarative vs. analogical-associative
opposition of sematic relatedness?

Having checked a great number of environments, it was ascertained that they do
in fact assemble meaning points of a certain semantic affinity. Further investigation
revealed [9] that there are regions of higher point density in the semantic space,
forming clouds and clusters. These were detected by multivariate and clusteran-
alyzing methods [10] which showed, however, that both, the paradigmatically and
syntagmatically related items formed what may be named connotative clouds rather
than what is known to be called semantic fields [11]. Although its internal relations
appeared to be unspecifiable in terms of any logically deductive or concept hierar-
chical system, their elements’ positions revealed a high degree of stable structures
which suggested a regular form of contents-dependant associative connectedness
[12] which gave rise to the idea of having the variable relevance of related meanings
and/or concepts be defined procedurally [13], [14], [15].
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GESCHAEFT/business 0.000

WERB/advertism 2.837 KENNTNIS/knowledge 3.028

BITTE/request 3.284 TECHNIK/technic 3.527

PERSON/person 3.930 BUCH/book 4.232

FAEHIG/capable 4.471 ORGANISAT/org 4.526

INFORMAT/info 4.568 ERFAHR/experience 4.708

ALLGEMEIN/general 4.816 BRITAIN/britain 4.838

KONTAKT/contak 4.902 UNTERRICHT/instruc 4.919

ANGEBOT/offer 5.047 AUSGAB/expens 5.064

RAUM/space 5.098 DIPLOM/diploma 5.155

VERBAND/assocn 5.183 COMPUTER/compute 5.212

STADT/city 5.216 ELEKTRON/electr 5.311

LEHR/teach 5.321 LEIT/lead, control 5.404

WEG/way 5.464 STELLE/position 5.498

WIRTSCHAFT/econom 5.503 MODE/fashion 5.537

JOURNAL/journal 5.621 BILDUNG/education 5.657

GEBIET/area 5.697 SUCH/search 5.733

SYSTEM/system 5.752 EINSATZ/activity 5.813

ARBEIT/labour 5.834 AUFTRAG/order 5.872

WUNSCH/wisch 5.880 PROGRAMM/program 5.880

AUSLAND/abroad 5.881 INDUSTRIE/industry 5.909

... ...

Figure 3.3: The topological environment of E〈GESCHAEFT〉.

4 Representation of semantic disposition

Following a more semiotic understanding of meaning constitution, the present se-
mantic space model may be considered the core structure of a word meaning/world
knowledge representation system which separates the format of a basic (stereo-
type) meaning representation from its latent (dependency) relational organization.
Whereas the former is a rather static, topologically structured (associative) memory
representing the data that text analysing algorithms provide, the latter can be char-
acterized as a collection of dynamic and flexible structuring processes to re-organize
these data under various principles. Other than declarative knowledge that can be
represented in pre-defined semantic network structures, meaning relations of lexical
relevance and semantic dispositions which are heavily dependent on context and do-
main of knowledge concerned will more adequately be defined procedurally, i.e. by
generative algorithms that induce them on changing data only and whenever neces-
sary. This is achieved by a recursively defined procedure that produces hierarchies
of meaning points, structured under given aspects according to and in dependence
of their meanings’ relevancy.

Taking up the heuristics provided by Spreading Activation Theory in semantic
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memory, cognitive structures, and concept representation as advanced by [16], [17],
and [18], the notion of spreading activation can be employed not only to denote
activation of related concepts in the process of priming studied in subsequent publi-
cations like [19] and [20] but — generically somewhat prior to that — may also signify
the very procedure which induces these relations beween concepts. Originally de-
veloped as a procedural model to cope with observed latencies of activated concepts
in comprehension processes, priming and spreading activation is based on network-
type models or world-knowledge structures as illustrated briefly above. Essentially
defined by nodes, representing concepts, meanings or objects, and pointers which
relate them conceptually, semantically, or logically to one another, these formats
have a considerable advantage over the semantic space structure outlined above:
one of the problems of distance-like data structures in semantic processing is that
— distance being a symmetric relation — well-known search strategies for retrieval,
matching, and inferencing purposes cannot be applied because these are based upon
some non-symmetric relations, as realized by pointer structures in well-known word
meaning and/or world knowledge representations.

In order to make such procedures operate on the semantic space data, its struc-
ture has to be transformed into some hierarchical organisation of its elements. For
this purpose, the semantic space model has to be re-interpreted as a sort of concep-
tual raw data and associative base structure. What appeared to be a disadvantage
first, now turns out to be an advantage over more traditional formats of representa-
tion. Other than these approaches which have to presuppose the structural format
of the semantic memory models that are to be tested in word recall and/or con-
cept recognition experiments, the semantic space provides some of the necessary
data for the procedural definition of dynamic, instead of static model structures
that allow variable stereotype instead of fixed categorial concept representations.
Thus, the concept nodes as abstract mappings of meanings of lexikal items are not
just linked to one another according to what cognitive scientists supposedly know
about the way conceptual information is structured in memory, but it is this very
structure that is already considered to by a dynamic format of stereotype concept
organization. Defined as procedures that operate on the semantic space data, this is
tantamount to a dynamic re-structuring of meaning points and — depending on the
controlling parameters — the generation of paths between them along which — in
case of priming — activation might spread whenever a meaning point is stimulated.

Unlike the ready-set and fixed relations among nodes, an algorithm has been
devised which operates on the semantic space data structure as its base to induce
dependencies between its elements, i.e. among subsets of the meaning points. The
recursively defined procedure detects fragments of the semantic space according to
the meaning point it is started with and according to the semantic similarities, i.e.
the distance relations it encounters during operation, constituting what we termed
semantic relevance. Stop-conditions may deliberately be formulated either qualita-
tively (naming a target point) or quantitatively (number of points to be processed).

Given one meaning point’s position as a start, the algorithm will — other than
in [10] and [11] — first list all its neighbouring points by increasing distances, second
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Figure 4.1: A distance-like configuration of eleven sample points a to k.

provide similar lists for each of these neighbours, and third prime the starting point
as dominant node to mark the tree’s root. Then, the algorithm’s generic procedure
will take the first entry from the first list, determine from the appropriate second
list its most adjacent neighbour among those points already primed, in order to
identify it as the ancestor (mother-node) to which the new descendant (daughter-
node) is linked whose label then gets deleted from the first list. Repeated succesively
for each of the meaning points listed and in turn primed in accordance with this
procedure, the algorithm will select a particular fragment of the relational structure
latently inherent in the semantic space data under a certain perspective, i.e. the
aspect or initially primed meaning point the algorithm is started with. Working
its way through and consuming all labeled points in the space structure — unless
stopped under conditions of given target points, number of points to be processed, or
threshold of maximal distance — the algorithm transforms prevailing similarities of
meanings as represented by adjacent points to establish — in the process of priming
— a binary, non-symmetric, and transitive relation between them. This relation
allows for the hierarchical re-organization of meaning points as descendant nodes
under a primed head or root in an n-ary DDS-tree [12]. Weighted numerically as
a function of a node’s distance values and level of its tree-position, this measure
either expresses a concept’s dependencies as given by the root’s descendants in that
tree, or, inversely, it evaluates their criterialities for that concept as specified and
determined by that tree’s root.

Without introducing the algorithms formally, some of their operative character-
istics can well be illustrated in the sequel by a few simplified examples. Beginning
with the schema of a distance-like data structure as shown in the two-dimensional
configuration of 11 points, labeled a to k (Fig. 4.1) the stimulation of three different
starting points a, b and c results in the dependency structures which the algorithm
of least distance selects (Fig. 4.2) as distance detection (first row), as a step-list
representation of the selecting process of points activated (second row), then as
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their n-ary tree representations (third row) and finally as their transformations to
binary-tree structures (fourth row) of points related respectively to be primed.

It is apparent that stimulation of other points within the same configuration of
basic data points will result in similar but nevertheless differing trees, depending on
the aspect under which the structure is accessed, i.e. the point initially stimulated
to start the algorithm with.

Applied to the semantic space data of 360 defined meaning points calculated from
the textcorpus of the 1964 editions of the German newspaper Die Welt, the Dis-
positional Dependency Structures (DDS) of AUFTRAG/order and GESCHAEFT/
business are given in Figs. 4.3 and 4.4 as generated by the procedure described.
Different stop conditions given for the generation of the DDS resulted in different
trees: DDS〈AUFTRAG〉 qualitative stop by target node GESCHAEFT, grade 7,
depth 13, 64 nodes; and DDS〈GESCHAEFT〉 quantitative stop by number of nodes
to be processed, grade 4, depth 10, 60 nodes. In the DDS〈AUFTRAG〉 (Fig. 4.3)
we find only one descendant (LEIT/lead) on level 1, three as connotative alternates
on level 2, one of which (ELEKTRON/electronic) has even 7 descendants on level
3, etc. In the DDS〈GESCHAEFT〉 (Fig. 4.4) there are two descendant connotative
alternates (WERB/advertism; KENNTNIS/knowledge) on level 2, each of which
has four descendants on level 3, etc. Attention is drawn to the dependencies of
the direct descendants (BITTE/request) → (PERSON/person) → (HAUS/house).
As in DDS〈AUFTRAG〉 this dependency is found in exactly the same order in the
DDS〈GESCHAEFT〉 but here it is situated farther from the root, starting on the
tree’s sixth level only, instead of its third.

To calculate such differences, a numerical measure of criteriality Cri to its
mother-node zd under a given aspect i can be defined as a function of its distance
value δ2(zd, za), the tree’s root zr , and its level g concerned.

Cri(zd)g+1 = Cri(za)g exp

(
δ2(zd, za)

δ2(zd, zr) + 1

)

For a wide range of purposes in processing DDS-trees, differing criterialities of
nodes can be used to estimate which paths are more likely being taken against others
being followed less likely under priming of certain meaning points activated.

5 Conclusion

It goes without saying that generating DDS-trees is a prerequisit to source-oriented,
contents-driven search and retrieval procedures which may thus be performed effec-
tively on the semantic space structure. Given the meaning point AUFTRAG/order
being stimulated, and GESCHAEFT/business as the target point to be searched for,
then, the DDS〈AUFTRAG〉 will be generated as illustrated above, providing with
decreasing criterialities the range of semantic dispositions inherent in the semantic
space data under the aspect of, and triggered by the priming of AUFTRAG/order.
The tree generating process being stopped after hitting and incorporating as its last
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Figure 4.3: The Dispositional Dependency Structure (DDS) of AUFTRAG
(= order).
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Figure 4.4: The Dispositional Dependency Structure (DDS) of
GESCHAEFT (= business).
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AUFTRAG/order
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ELEKTRON/electronic

FAEHIG/capable

TECHNIK/technic

BITTE/request

WERB/advertism

GESCHAEFT/business

GESCHAEFT/business

WERB/advertism

BITTE/request

TECHNIK/technic

AUFTRAG/order

LEIT/lead

ELEKTRON/electronic

COMPUTER/compute

DIPLOM/diploma

UNTERRICHT/instruct

Figure 5.1: Dependency path from AUFTRAG (= order) to GESCHAEFT
(= business) and vice versa.

node the target item, its dependency path will be activated. This is to trace those in-
termediate nodes which determine the associative transitions of any target node un-
der any specifiable aspect. Looking up GESCHAEFT/business as a target node un-
der the aspect of AUFTRAG/order its dependency path (in Fig. 4.3 above, and given
separately in Fig. 5.1 below) consists of WERBUNG/advertise, BITTE/request and
TECHNIK/technic, FAEHIG/capable, ELEKTRON/electronic, LEIT/lead which
— not surprisingly though — proves to be approximately the dependency path of
AUFTRAG/order under the aspect of GESCHAEFT/business but in inverted order
and FAEHIG/capable replaced by COMPUTER/compute, DIPLOM/diploma, and
UNTERRICHT/instruct.

Using source-oriented search and retrieval processes as described, an analogi-
cal, contents-driven form of inference — as opposed to logical deduction — may
operationally be devised by way of parallel processing of two (or more) dependency-
trees. For this purpose the algorithms are started by the two (or more) mean-
ing points considered to represent the premises, of say, AUFTRAG/order and
GESCHAEFT/business. Their DDS-trees will be generated before the inferenc-
ing procedure begins to work its way (breadth-first or depth-first) through both (or
more) trees, tagging each encountered node. When in either tree the first node is
met that has previously been tagged by activation from another priming source, the
search procedure stops to activate the dependency paths from this concluding com-
mon node — in our case FAEHIG/capable for breadth-first and DIPLOM/diploma
for depth-first searches — in the DDS-trees concerned and separately presented in
Figs. 5.2 and 5.3.

To conclude with, some extrapolating ideas of possible applications and/or new
views of older problems might be in order. It appears that the DDS-procedure pro-
vides a flexible, source-oriented, contents-driven method for the multi-perspective
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ELEKTRON/electronic

FAEHIG/capable

GESCHAEFT/business

WERB/advertism

BITTE/request

TECHNIK/technic

Figure 5.2: Inference paths from AUFTRAG and GESCHAEFT activating
FAEHIG (= capable) in breadth-first searching mode.

AUFTRAG/order

LEIT/lead

ELEKTRON/electronic

GESCHAEFT/business

WERB/advertism

BITTE/request

TECHNIK/technic

COMPUTER/comput

DIPLOM/diploma

UNTERRICHT/instruc

Figure 5.3: Inference paths from AUFTRAG and GESCHAEFT activating
DIPLOM (= diploma) in depth-first searching mode.

induction of a relevance relation among stereotypically represented concepts which
are linguistically conveyed by natural language discourse on specified subject do-
mains.

• Applied to any distance-like data structures of knowledge and/or meaning rep-
resentation systems, the DDS-procedure allows for the generation of possible
paths of spreading activation which branch across semantic space, submitting
relevant portions of it to associatively guided search strategies and retrieval
operations.

• Replacing the storage of fixed and ready-set networks by a contents-driven
induction of relevance related nodes, the problem of identifying stored mean-
ing constructions with distorted instantiations of them, can be circumvented.
Triggered by any identifiable label, the DDS will be generated according to the
database provided and the resultant tree-structure will therefore vary accord-
ing to the possibly varying status of the data in the semantic space structure.

• In view of tacid knowledge and implied information the DDS-procedure of-
fers an empirically based approach and a dynamic representation of semantic
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dispositions which — in language understanding systems — might serve as
connotative default values in identifying and/or interpreting input labels and
solving ambiguity and/or vagueness problems of input strings.

• Among other extensions, it is hoped to develop a numerical expression for
measuring the amount of meaning conveyed by any string interpreted by DDS-
processing. Other than in classical information theory where the amount of
information is a function of probabilities of signs calculated from empirical
distributions of sets of symbols that have to be finite, the amount of meaning
will have to be based upon a numerical measure similar to the criterialities
calculated as a function of structural properties of open sets and dynamically
organized systems of symbols instead.
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