
�����������	
�� ������	���

����� ��������� 	
��� �
 ��� ��
������ ��� ������������������ ��� ������ �� ��� ����������
	�
�� ��� �
���
���� ����
�������
� ������ ����� �� ���������� � ������� ����
! ��� �
���"�
��� ������#
������� �
� ��! $��� %&&�� ��!��� 	���� ��� '�������� (�%�% �)����	��
�� *�%�%
�+,-.� �/�
����

-� ��� 0	������1��� ��� ��� +!��� ��� ������!!� ��
����� 1
����!!��� ���� ���������� ��
����� '��2�3�������
�� 4�����2����� ��/
!������� 	����� 1
 ����� ��� �� �����! �
�� ����������
������!!"�������"
�� ��� 1	��
�4�����2������ �!)����������� �"�� �!!�� ���� �2
�����

,�"�� ��� 56���!"�������"
�� �7�������� ������� ����!������ ��� ���� !�� ��! �����"��/����
���!! ����� "����2������8
� ���� 56���!"�������"
�� �
� ��! $��� %&&� ����� � %%�� ��� �"������ ��� ��������� 4�������9
� ��4���� �2���� ��� 5���� � ��� ���� ��� ���� !��
���������������� #��!�����	���
�/���
�
������������1�� �	�"�� �� ��� 2������� �2����� ���� ��� ����������� :�!!����������� 1
!
 �����1 /�!!��9

� ��4���� �2���� ��� 5���� � ��� ���� ��� ���1���� 5��	���/�!�������� "�������"��9
� ���
�4�����2������
�� �� ��"��� "�;�������)))���/
!��������� ��� �
�� ��
� ����
���
��/
!������� ����������������	
�����
��������
���
�������9

� ��� ��������� !�� #����
��"��� �� ����� �������� ��� �
�/�����	���� ���1����� ������������
��� :�!!����������� ����4���1���� 	����� /��� ������� ����� �!!�� 1
�2�������
���� ���
+�<8 ���������������������	
�����
����������
����
��������

=�� ��� ��2
��
�� ��� '������ > �! $��� %&&(������� ��� �����"��/�6���! ����� ���� ����
������� ���
�1���"��?2����� ���
��� ��� =��2
2
��
�� "�� ��� '�����7�����6�� �����1� ���� :������ @
�A������
���� :������ & �-��������4� ��7� �����������
�� :������ %* ����� ����6 	��� !��
�� ���
#
������� ���� ��!�� B 	�� ��� =��2
� ������ B ����� !��� �/�
����

��� 4���� �
�/�����
!��� ��� 5��	��� ��� �"�� �!!�� ���� �
� 2
"�� ��� :�!!�����������
1
�2�������� ������1����� 	
��� ��� :��1��� ��� ��������� +!	��� 2
� 4�������� �����"����
!���
���1��)���� "�� 1
 �����! 0����
�/� ��� ��;�������� ����� ��������� C"D�/��� �!!�� ����
 �����
�����"���� 1
��������� ������ ��� D��1� 2
� ���� �����"����� ��� ���� ��������" ����� ���������
+!	��� "�;�����

 ���� 	������� ��2�E���� ��������� ������� ��� ��2
��
�� ��� '������ @�% ���� ��� ������ ����
D��� ��;������ ��������" ����� ��������� +!	��� �
� ����
 ���!�� 4��/�!!�� ���� 	
��� �
 ���
��������"
�� ��� �����"���� �
��������� $��� ��
���
�� D���� ��!��� ��� ��������" �����
��������� +!	��� �
� ���!�� ��;����� 	������

��� �/�11������ ��
���2��1������ '��2�����
���� ������� �! �������� ���� "�� ��� '��	���
�� 4��
1	�� ���� !��� �����"���� ���� ������ �� ��� #
������ !�� ��4����� ���������������"���� ��"������
/2����� ��� 1
���2������ ������� ����� !��� ������ �	�� %&&�� �� �
��� C����� �������� 	������
����"�� 	2
��� �� 1
 :��?�/��� �
�� ������!���
����� /�!!���

����� ��������� 	
��� 2
� ���� <���4���������
�� 1
� F
����������������� �����4����"���
�� �!
)�������!����� �GG(HG* �� ��� +��4�����2�� #���� ���������

#��!�� ����
!
+��4�����2�� #����

����������	���
���

� ������ ������ ��� �����	
����	� 	��� ��� ��� ���������	 �����	� �������	� �� �	 ��� ��������� ��� �����	
��

��� ����� ��� ����	����	������� �� ���	� ��������	� ��� ��� � ������	������� ��� !�"����

��������� ��	
�

��� �	���	��
�� ���
	������	�

������������� 	
�

������ �������

������������������� ���� ����������

���	� �� �	���	��
� �������������

���� ��

������� ������	
 � ����	 �����

�����������	
�� �
 ��������	�

��� ���
���	��

 ��
���� ��� �����

�����������	�
���� ��� ��
�������

	� �����

��� ���

���	��� ���������� ��� ��

��� �����	����� ����

�� �����������	�
���� ��� ��
�������� ���������� ����

������� �� �������

����� ���������� ����������

��
�������
������� �
�� !��"�������� ����������

	# $� ���%&��'��%�%

Contents

Introduction xiii
The principles of κλειω xiv

1. A source-oriented approach xiv
2. A logical environment xv
3. Functionality xvi
4. Integration xvi
5. Compatibility xvii

The Historical Workstation Project xvii
Lemmatisation xvii
StanFEP xviii
κλειω Image Analysis System (κλειω IAS) xviii

Current versions of κλειω xix
How to use this book xix

Acknowledgements xxi

PART I: GETTING STARTED

1 Basic concepts 3
1.1 Data structures 3
1.2 The command language 4
1.3 Running κλειω 6
1.4 A sample database 7

Summary 11
Further reading 12

vi A Tutorial for κλειω

2 Basic information retrieval and display 13
2.1 The query and write commands 13
2.1.2 The parameter part= 14
2.2 The element function :each[] 17
2.3 Querying with conditions 18
2.3.1 Conditions and logical operators 18
2.3.2 The element function :total[] 21
2.3.3 Conditions and comparison modifiers 22
2.4 The index command 24

Summary 26
Exercises 27

2.5 Troubleshooting 30

3 Data types 31
3.1 Introduction 31
3.2 The text data type 32
3.3 The date data type 33
3.4 The number data type 37
3.5 The category data type 38
3.6 The relation data type 39
3.7 The location data type 40
3.8 The image data type 42

PART II: κλειω BASICS

4 Creating a database 45
4.1 Introduction 45
4.2 Preliminaries 48
4.2.1 Files 48
4.2.2 Commands, directives and parameters 49
4.3 The sample database 49
4.3.1 Description 49
4.3.2 The read command 50
4.3.3 The hierarchy of a database 50
4.3.4 The document 53
4.3.5 Other groups 54
4.3.6 Elements 55
4.3.7 More on elements: aspects 58
4.3.8 An alternative format for data entry 59

Contents vii

4.3.9 Conclusion 60
4.4 Structure declarations 61
4.4.1 The database and exit commands 62
4.4.2 The part directive 63
4.4.3 The element directive 68
4.5 Logical objects 70
4.5.1 The item command and the exit directive 71
4.5.2 The usage= parameter 71
4.5.3 The category declaration 72
4.5.4 The number declaration 73
4.6 Compiling the database 73

Exercises 77
4.7 Further features 79
4.7.1 Further parameters for the database command 79
4.7.2 Further parameters for the part directive 82
4.7.3 Further parameters for the element directive 85
4.8 Dynamic fixed-field formats 87

Appendix: data signals 88
Further reading 89

5 Further retrieval and display 91
5.1 Multiple entries in elements 91
5.2 The element function :query[] 93
5.3 Output 94
5.3.1 The position= parameter 94
5.3.2 The signs= parameter 95
5.3.3 The without= parameter 96
5.3.4 The write= parameter 96
5.3.5 The form= parameter 97
5.3.6 The first= parameter 97
5.3.7 The substitution= parameter 98
5.3.8 The cumulate= parameter 100
5.3.9 The limit= parameter 101
5.4 Moving between groups in a database 102
5.4.1 The group function back[] 104

Exercises 105
5.5 Elementary counting functions 107
5.5.1 The type= parameter in an index command 107
5.5.2 The cumulate command 107
5.6 More element functions 108
5.6.1 The :day[], :month[], and :year[] functions 108
5.6.2 Tagging; the :status[] function 109
5.6.3 The :original[] and :comment[] functions 111
5.6.4 The :collect[] function 112

viii A Tutorial for κλειω

6 Logical objects and knowledge bases 115
6.1 Introduction 115
6.2 Basic information about logical objects 116
6.3 Logical objects; calendars 121
6.3.1 The date command 125

7 More complex database structures 129
7.1 Introduction to the probate database 129
7.1.1 The arbitrary= parameter 132

Exercises 133
7.2 Relationships between groups 133

Further reading 135

8 Catalogues 137
8.1 Introduction 137
8.2 Creating a catalogue 138
8.3 Using the menu system 140
8.4 Creating further catalogues 150

Exercises 152
8.5 The group function root[] 153
8.6 Creating a reference list 156
8.6.1 The group function keyword[] 158
8.7 Fine-tuning a task in the menu system 159

Conclusion 170

9 Interactive text processing 171
9.1 Introduction 171
9.2 Cataloguing words 172
9.3 Text processing 173

Exercise 179

10 Codebooks 181
10.1 Introduction 181
10.2 Creating a codebook 182
10.3 Searching the codebook 184
10.4 Adding codes to the codebook 186
10.5 The describe command 188
10.6 Codebooks and interactive methods of searching 189

out-of-date

out-of-date

out-of-date

Contents ix

10.7 More querying of codebooks 190
10.8 Adding more codes to a codebook 191
10.9 Creating labels names for codes 192
10.10 Querying a codebook using labels 192
10.11 The statistical interface 194
10.12 The translation command 196
10.12.1 The target= parameter 196
10.12.2 The first= and second= parameters 196
10.13 The case command 197

Summary 199
Appendix: Occupational and social categories 200
Further reading 204

11 Formatting results 205
11.1 Introduction 205
11.2 Print constants 205
11.3 The element function :form[] 207
11.4 Some export formats 212

PART III: SPECIALISED FEATURES

12 Nominal record linkage 217
12.1 Introduction 217
12.2 The data sets 218
12.3 An introduction to soundex 219
12.3.1 A logical object containing a soundex algorithm 220
12.3.2 A few tips on constructing a soundex algorithm 223
12.3.3 Using the soundex algorithm 223
12.4 Linking two databases 229
12.4.1 Creating a catalogue 230
12.4.2 Querying a catalogue 230
12.4.3 The soundex algorithm 232
12.4.4 Creating a catalogue using a soundex algorithm 232
12.4.5 Querying a catalogue using the soundex algorithm 233
12.4.6 Joining two databases 234
12.4.7 Joining two databases using a soundex algorithm 236
12.4.8 Block-structured tasks 253
12.4.9 Joining two databases permanently 259

Further reading 264

x A Tutorial for κλειω

13 Relational capabilities 265
13.1 Introduction 265
13.2 The bridge declaration 266
13.2.1 Another example of a bridge declaration 268
13.3 The relation data type 271
13.4 The relation data type in a single database 273
13.4.1 Displaying more information 278
13.4.2 The element function :target[] 280
13.4.3 The group function continue[] 284

Summary 286

14 Mapping 287
14.1 Introduction 287
14.1.1 The location data type 288
14.1.2 The mapping command 290
14.1.3 The delete command 290
14.1.4 Parameters used to control graphical output 291

Exercises 293
14.2 More complex mapping 294
14.2.1 Introduction to Winchester Census material 294
14.2.2 The type directive and the form= parameter 296
14.2.3 The structure of the colebr database 296
14.2.4 The sign= and total= parameters 297
14.2.5 Reference objects 298
14.2.6 How mapping commands operate 300

Exercises 301
14.3 Printing a map using a PostScript printer 302
14.3.1 The target= parameter 302
14.3.2 The write= parameter 302
14.3.3 The overwrite= parameter 303
14.3.4 The location command 303
14.4 Shading objects 304
14.5 Using variable names with the printer 304
14.6 Other features 306
14.6.1 Scale of maps 306
14.6.2 Distribution maps 306
14.6.3 Directional parameters 307

Summary 307
Further reading 308

Contents xi

15 Database design; some advanced features 309
15.1 Introduction 309
15.1.1 Using the :query[] function 309
15.1.2 Using the comparison operator null 311
15.1.3 A further note on catalogues 312
15.1.4 Using catalogues with the index command 314
15.2 Databases made up from more than one source 314
15.2.1 The cumulate= parameter 320
15.2.2 The substitution= parameter 321
15.3 The identification= parameter 323
15.4 Elements 327
15.4.1 Visibilities 327
15.4.2 Views 330

16 Data entry with menus 333

Envoi 345

Answers to exercises 347

Bibliography 367
Writings of Manfred Thaller in English 367
Other κλειω literature in English 369

Index of topics 373

Index of terms 380

out-of-date

Introduction

Recent years have witnessed a lively debate in the historical computing community as to
whether the relational database management systems that dominate the worlds of
commerce and administration are appropriate to historical research. Closely related to that
debate, and no less vigorously disputed, is the pragmatic question of whether historians
who use computers in their research should produce their own software or leave it in the
hands of commercial manufacturers. Currently it is considered sensible for historians to
describe their problems to the developers, leaving the former to do their research and the
latter to deliver a product.

One database management system has been created by an historian for historians. Since
1978 Dr Manfred Thaller of the Max-Planck-Institut für Geschichte in Göttingen has been
developing and enhancing κλειω. In its original form (known as CLIO), this system could
only be used on the UNIVAC 1100 series using a Latin command language and
documentation that was available only in German. These features did not help to make it
widely available. By 1987 a PC version was released, but with the same constraints of
command language and documentation. It is therefore unsurprising though regrettable
that while κλειω has been widely used for over a decade in the German-speaking

historical world, among non-German speakers it is known only by reputation if at all.1 The
interest in the system as described in various English-language publications has been
matched only by the frustration of those who are unable to try it out.

The English version of κλειω that is presented here is the product of an initiative to make
κλειω more widely available at last. It has been made possible by the generosity of the
Royal Historical Society, the British Academy, the Max-Planck-Institut für Geschichte at
Göttingen, the Committee for Advanced Studies of the University of Southampton and the
Faculty of Arts of Queen Mary & Westfield College, University of London. It is hoped that
it will at least now be possible for historians to assess κλειω for themselves, and to make
more informed judgements on the controversial issues raised above.

1 A French introduction was also produced in 1990; Josef Smets, Créer une base de données historiques
avec κλειω. Halbgraue Reihe zur historischen Fachinformatik, A7 (St. Katharinen, 1990).

xiv A Tutorial for κλειω

The principles of κλειω

κλειω pronounced to rhyme with Ohio is a complex and versatile system that has been
designed specifically to cater for the computing needs of historians, particularly in those
respects in which commercial software does not cater for them. As κλειω has been under
continuous development since the late 1970s, the range of features offered and areas of
historical computing covered have naturally expanded, and the implementation of new
features has to an extent altered the direction of the project, which since 1989 has been
known as ‘The Historical Workstation Project’. The underlying principles that motivated
κλειω’s development and have guided its implementation have, however, remained largely
unchanged. They can be listed as follows:

1. A source-oriented approach

κλειω allows the historian to enter historical sources into the computer in a form which is
as close as possible to that of the original material, preserving features within the data
where conflicting interpretations are possible. At the most obvious level this means that,
for example, original spelling can be retained, as can original currency. There are two
implications of this principle. First, that a source-oriented approach to data processing
should be followed, i.e. a minimal amount of coding or mark-up should be performed on
a source before analysis. Second, that the methods of analysis of a particular source need
not, indeed should not, be chosen before analysis. For example, κλειω allows the user to
make decisions after data input about possible semantic differences in the written
description of an individual’s occupation due to spatial or temporal factors. Similarly,
κλειω provides the facility to input unbroken strings of text so that information can be
"automatically" abstracted from that text, so that the method of analysis does not depend
on the method of entering the data.

In other words, κλειω allows the user to enter data in a format that underlies the source
rather than the user’s intentions with that source. This is made possible by allowing the
user to input the data in a flexible format within a structure based on that source, rather
than one designed with the principles of formal database design in mind.

In effect this means that κλειω has the ability to accept all forms of historical source
material in a format that relates to the source. Historical sources can present information
in forms that are very hard to reconcile with the conventions of a traditional database. On
the simplest level, a census return may contain an entry containing two distinct
occupations. This can be described as a multi-value variable. In κλειω these entries can be
combined in such a way that they remain in context but can be made logically equivalent
for processing. Elements can contain any number of entries, which in turn can have
different aspects (e.g. the original spelling, or the editor’s comments, can be stored

Introduction xv

alongside the main version to be processed), views (e.g. Latin and vernacular equivalents
of the same data could be stored as alternative views) and visibility (a quantitative estimate
of the value or reliability of the information). These features allow fuzzy data (for example,
a surname which might also represent an ‘occupation’ such as Fletcher) to be defined as
such, the user then having to choose at the information retrieval stage how to interpret
such data. Elements are contained in groups of information (not unlike records in relational
database design) which are related to each other in a hierarchical fashion, i.e. are logically
subordinate or superordinate to each other. However, these groups can contain elements
with the same name, so that κλειω can ‘implicitly join’ these related elements where ‘the
system suspects that the user might eventually be interested to view the two of them as
being one and the same type of reality’.2 The size of a database is limited only by the
capacity of the machine being used; the complexity of a database is virtually unlimited
(elements can contain up to 2 million characters; there can be up to 32,000 different
element names, and 32,000 different groups).

All these concepts add up to κλειω’s data model which has been described as a ‘semantic
network tempered by hierarchical considerations’.3 This model seems most suited for the
representation of complex historical data. Moving from the technical computing metaphor
to the historical, it also displays close parallels with the concept of scholarly editing. It is
no accident that recent literature on κλειω has stressed the concept of ‘The Database as
Edition’.4

2. A logical environment

κλειω provides a working environment where tools which implement solutions for history-
specific problems can be developed and used. Examples of such problems might be the
recognition of names with variant spellings or the solution of chronological problems
encountered in historical data. κλειω contains a number of basic algorithms which allow
it to handle unprocessed historical data. If we input data in a form as close to the source

2 Manfred Thaller, ‘What is "Source Oriented Data Processing"; What is a "Historical Information
Science"?’, paper given to conference on ‘New Information Technologies in Historical Research and
Teaching’, June 1992 in Uzhgorod, Ukraine, published in Russian in Istoriia i comp’iuter. Novye
informatsionnye tekhnologii v istoricheskikh issledovaniiakh i obrazovanii, eds. Leonid I. Borodkin &
Wolfgang Levermann. Halbgraue Reihe zur historischen Fachinformatik, A15 (St. Katharinen, 1993),
pp. 5–18. English typescript, p. 4.

3 Manfred Thaller, ‘The Historical Workstation Project’, Computers and the Humanities, 25 (1991),
pp. 149–62 (p. 155).

4 Ibid., pp. 156–59; see also Susanne Botzem, Ingo H. Kropač, ‘Integrated Computer Supported
Editing, Approaches and Strategies’, in Historical Social Research/Historische Sozialforschung, 16:4 (1991),
pp. 106–15, and Susanne Botzem, Ingo H. Kropač, ‘As You Like It or Archiving, Editing and Analysing
Medieval Manuscripts’, in Histoire et Informatique. Ve Congrès ‘History & Computing’, 4–7 Septembre
1990 à Montpellier, ed. J. Smets (Montpellier, 1992), pp. 267–78.

xvi A Tutorial for κλειω

as possible, it will raise certain historical problems which, while they could be untangled
or solved by the historical researcher, would more efficiently and effectively be solved by
computer. κλειω provides these tools in the form of algorithms which can be altered by the
researcher to cope with the problems inherent in their particular form of data. These tools
include a variant on the well-known Soundex algorithm along with an algorithm for the
pre-treatment (i.e. before Soundex) of phonologically or orthographically similar names,
the Guth algorithm (which quantifies the degree of similarity between two character strings
in numerical terms) (both for nominal record linkage), algorithms to assist in the
conversion of different calendar systems to a pre-defined format, coping with Roman,
Mosaic, Islamic and Byzantine calendars as well as dates in the format <Period> <Feast
Day> <Year> (e.g. ‘4 days before Maundy Thursday 1853’), and algorithms to cope with
complex numbers mainly to assist in the interpretation of different currency systems.

Some of these algorithms reside in the system; others have to be more fully defined so that
they can become an integral part of the database, affecting data only when required. This
means that assumptions about historical data can be administered within a database but
entirely independently of the data itself. These algorithms, which together amount to
κλειω’s logical environment, can be seen as a form of expert system, which can be developed
to make full use of context-sensitive historical data.5

3. Functionality

κλειω provides a full set of basic database operations, such as information retrieval and
report generation, accessing the whole structure of a database which is based on an
historical source. κλειω administers sources effectively and efficiently within databases,
allowing the user to navigate easily through highly complex structures, and producing
results to complex and unwieldy queries. Different databases can be linked (for example,
two different databases can be accessed with a single query) or joined (in such a way as
to allow data to be retrieved from either or both); queries can be framed in such a way as
to produce output in a variety of formats.

4. Integration

κλειω aims to provide, where appropriate, simple integrated versions of applications which
would usually have to be realised within different software modules. This goal has been
achieved in two main areas, full-text analysis and mapping. κλειω can perform a limited
number of operations relating to full-text material, including a system of embedded

5 Manfred Thaller, ‘Databases and Expert Systems as Complementary Tools for Historical
Research’, Tijdschrift voor Geschiedenis, 103 (1990), pp. 233–47 (pp. 240–42).

Introduction xvii

classifications within a text, as well as searching facilities which allow the user to integrate
full-text retrieval along with more structured material. Choropleth and distribution maps
can be produced, provided that digitised coordinates are prepared for κλειω to administer.

5. Compatibility

κλειω provides interfaces to other general-purpose packages. For example, it is possible to
extract material from structures of source-material into statistical cases, which can be
immediately understood by statistical processing software such as SPSS and SAS. κλειω
also transforms data within complex structures into a format that statistical applications
can understand, using flexible information retrieval and report generation facilities and its
ability to combine information from different subsets of a database.

The Historical Workstation Project

As the κλειω project broadened in scope, fanned out and developed, it took on the aspect
of a collaborative venture, inspired and led from Göttingen by its creator, Manfred Thaller,
but augmented by research contributions from elsewhere. The result is that a number of
refinements, additional algorithms or related packages have been developed. This is not
the place to trace the history of all these developments, several of which are still in
progress. (Those interested will be able to find further information in the bibliography
of English-language publications relating to κλειω at the end of this book.) Below are
described those initiatives which have led to software releases which are already available.

Lemmatisation

The full-text system of κλειω has been enhanced by the integration of a Latin
lemmatization program, developed in Rome, which is available on request.6

6 Andrea Bozzi & Giuseppe Cappelli, ‘A Latin Morphological Analyser’, in Data Base Oriented
Source Editions. Papers from two sessions at the 23rd International Congress of Medieval Studies,
Kalamazoo, 5–8 May 1988, ed. M. Thaller, pp. 47–54.

xviii A Tutorial for κλειω

StanFEP

Alongside κλειω, Manfred Thaller developed a program in the 1980s called the Standard
Format Exchange Program. The purpose of this is to enable historians (and, of course,
others) to mark up electronic documents in a way which keeps integrated the various
versions that might be deemed necessary for the various tasks that the scholar might wish
to perform (e.g. diplomatic transcription, pre-edition, coding for use in a database system,
final edition). The current version of StanFEP is included on disk with κλειω. The software
uses English commands and conventions, though unfortunately the manual and tutorial
still await translation from German.7 A second stage of development is currently in
progress (a collaborative project of the Max-Planck-Institut für Geschichte, Göttingen, and
the Historical Informatics Laboratory, Lomonossov University, Moscow).

κλειω Image Analysis System (κλειω IAS)

The most radical addition to the original scope of the software has been a program which
applies the principles of κλειω to the processing of images. In collaboration with the Max-
Planck-Institut für Geschichte, Göttingen, the Institut für Realienkunde desMittelalters und
der Frühen Neuzeit, Krems, has developed κλειω IAS. In this system the textual
description of an image can be bound to the image itself (rather like hypertext) and
displayed simultaneously together. A variety of tools for digital image analysis is also
provided for the enhancement of images, for immediate image retrieval and most recently
pattern recognition.8

7 The manual is Kathrin Homann, StanFEP. Programm zur freien Konvertierung von Daten. Halbgraue
Reihe zur historischen Fachinformatik , B6 (St. Katharinen, 1990); the tutorial is Martin Gierl, Thomas
Grotum & Thomas Werner, Der Schritt von der Quelle zur historischen Datenbank. StanFEP: Ein
Arbeitsbuch. Halbgraue Reihe zur historischen Fachinformatik , A6 (St. Katharinen, 1990). An English
introduction is Kathrin Homann, ‘StanFEP Standardization without Standards’, in Histoire et
Informatique. Ve Congrès "History & Computing", 4–7 Septembre 1990 à Montpellier, ed. J. Smets 1992),
pp. 289–99.

8 The manual is Gerhard Jaritz, Images. A Primer of Computer-Supported Analysis with κλειω IAS.
Halbgraue Reihe zur historischen Fachinformatik, A22 (St. Katharinen, 1993). See alsoManfred Thaller,
‘The Processing of Manuscripts’, in Images and Manuscripts in Historical Computing, ed. M. Thaller.
Halbgraue Reihe zur historischen Fachinformatik, A14 (St. Katharinen, 1992), pp. 41–72, and idem, ‘The
Archive on the Top of your Desk? On Self-Documenting Image Files’, in Image Processing in History:
towards Open Systems, eds. Jurij Fikfak & Gerhard Jaritz. Halbgraue Reihe zur historischen
Fachinformatik, A16 (St. Katharinen, 1993), pp. 21–44.

Introduction xix

Current versions of κλειω

The principles of image processing are not so dissimilar to those for other types of data as
to make it necessary for κλειω IAS to be a separate program; on the other hand image
processing obviously makes much heavier demands of computing resources. As a
consequence, κλειω currently runs in two versions.

• Version 5.1.1 comprises the command language and the non-graphical menu
systems and is machine independent. Because of this machine independence, if
a database should become too large for a PC, a user can move to a more
powerful one or to a mainframe to continue work.

• Version 6.1.1 (κλειω IAS) is identical to Version 5.1.1 but limited in use to a
number of UNIX platforms, and it also provides a graphical user interface
which is geared to the handling and processing of images. The manual for
κλειω IAS is however included with Version 5.1.1, because it contains a high
proportion of material relating to the present version of the system, and because
we believe that all κλειω users may find it helpful to see how κλειω handles
image data. We also include this volume as a taster of the Windows NT version
of κλειω which should be released during 1994, which will not just handle
images but also provide a graphical interface for the whole of the κλειω
software.

It should also be pointed out that in both 5.1.1 and 6.1.1 the Latin/German and the English
versions are integrated; that is, the user is offered a choice of language at installation. It
is expected that the Latin/German version will be supported for a period of three years
only.

How to use this book

It will already be apparent to anyone who has browsed through the pages of this book that
κλειω is both rich in what it offers and demanding of the user. κλειω cannot be ‘picked up’
in an afternoon of dexterous exploration of pull-down menus and help screens. Some of
the underlying concepts are complex, and there are no short cuts to learning the command
language, or at least those parts of it which are relevant to the work of the researcher.

Some of the most successful κλειω users have been those who have taken one of the many
κλειω courses that are run in various parts of Europe. The κλειω Support Team (see below,
p. 345) will gladly provide details of such courses; increasingly they are being offered om

xx A Tutorial for κλειω

English, and are using the English data sets that have been prepared in connection with
this volume and the current release of the software. This book is however intended as a
practical guide for all those wishing to learn how to use κλειω, whether by taking a course
or on their own. Each of the three parts of the book discusses separate aspects of κλειω.

• Part I, "Getting Started", introduces the basic concepts and terminology of κλειω
and the simple accessing of a κλειω database, and shows how simple queries
can be effected.

• Part II, "κλειω Basics", introduces the most frequently used features of κλειω.
All the concepts described in this part are likely to be used on a regular basis.
These include methods of creating a database, more complicated query facilities,
the integration of knowledge within databases, the processing of textual
material, the creation of ‘look-up tables’ for the coding and classification of data,
and also some features to produce more sophisticated output.

• Part III, "Specialised Features", introduces more complicated features of κλειω,
including nominal record linkage and automated cartography. It also introduces
techniques for family reconstitution. Also included in this part are more
advanced concepts of database design and an alternative method of constructing
databases.

In each section the points made and the techniques introduced are illustrated by examples
and exercises. The practice databases and exercise files are an integral part of the tutorial and
should be installed with the software. The installation notes provided with the software
will explain how to install the software and the tutorial files. Answers to the exercises can
be found at the end of the book.

Finally, it is worth stressing that this book should be used in conjunction with the
Reference Manual,9 the full formal description of κλειω, which provides the fuller
description of the many features of κλειω, including many which there was not space to
describe here. The present volume provides frequent cross-references to the Reference
Manual.

9 Manfred Thaller, κλειω. A Database System. Halbgraue Reihe zur historischen Fachinformatik, B11
(St. Katharinen, 1993).

Acknowledgements

The debts of the ‘English Version of κλειω’ Project are many. The project has been made
possible by the generosity of the Royal Historical Society, the British Academy, the Max-
Planck-Institut für Geschichte at Göttingen, the Committee for Advanced Studies of the
University of Southampton and the Faculty of Arts of Queen Mary & Westfield College,
University of London. It was steered and monitored by an Advisory Committee, which
allowed us to benefit from the expertise of Frank Colson (Chairman), John Childs, Jean
Colson, Jay Hammond, Tom James, Derek Keene, Seamus Ross and Kevin Schürer. We
benefited greatly from the hospitality of the Institute of Historical Research throughout the
project. Bill Maslen of The Word Gym performed the original translation of the Reference
Manual and the error messages of the software; he is not responsible for any errors and
inelegancies which we have managed to introduce since then.

As far as concerns this volume specifically, we would like to thank the Public Record
Office for permission to reproduce the 1881 enumerator’s return in Chapter 4, and the
Hampshire Record Office for their assistance in locating material to be used in the probate
database. The Winchester Data Project collaborated closely from the beginning with the
preparation of data sets, and we would like to thank Anne Bailey, Jean Colson and Tom
James in particular for their help in this. We must acknowledge our debt to the authors of
the German κλειω tutorial, Peter Becker and ThomasWerner, and to Gabriele Gross, author
of the introduction to the menu system. The students on the κλειω course at the Institute
of Historical Research exhibited patience in their role of guinea-pigs and provided useful
feedback. Humphrey Southall advised expertly on the cartographical side; PhillipWoollard
created the glossary for the probate database, while Wendy Hefford, Deputy Curator,
Textiles and Dress, Victoria and Albert Museum, explained some of the more technical
terms found in that glossary. Jay Hammond painstakingly read the whole manuscript and
offered constructive suggestions, while John Davies, as part of an industrial placement
fromMiddlesex University and on secondment from London Guildhall University, worked
through the entire draft and did all the exercises.

Finally two people should be thanked particularly warmly. Frank Colson’s drive and spirit
of enterprise have been critical; without him the project would never have got off the

xxii A Tutorial for κλειω

ground. Manfred Thaller taught a large part of the course and worked closely with the
project at all stages. Those who know him will not be surprised to read that his
encouragement, stimulus and expert advice were matched only by his modesty about it.

London, November 1993

PART I

GETTING STARTED

This section aims to introduce the basic concepts and terminology of
κλειω, and to give the new user some practical experience of querying
databases. Users are strongly encouraged to become completely familiar
with these chapters before proceeding to the next section.

Chapter 1

Basic concepts

1.1 Data structures

For the newcomer, the most immediate difference between κλειω and conventional data
processing software concerns data structures. In κλειω, there are three forms of
information: documents, groups and elements.

Documents

A document is the highest level of information in a database. It is so called because it often
corresponds to historical documents for example, each census list, or each parish register
might be a κλειω document. κλειω databases can contain different document types. We
will meet this later on.

Groups

Documents consist of groups, which are abstract groupings of the information in the
document. Groups are in some respects similar to records, rows or tuples in traditional
data processing. In all κλειω databases each group has a specific relationship with every
other group in this database. These relationships are defined by the user, and can be
complex, with many groups dependent on a higher group, and with the same group name

4 A Tutorial for κλειω: Part I

recurring in different parts of a database. We will meet such complexities, which illustrate
the real power of κλειω, later on.

Elements

Groups are made up of any number of elements. Elements are similar to columns, variables,
fields or attributes in traditional data processing. The length of an element is variable; they
can range from 2 million characters in length to one character. κλειω supports up to 32,000
different element types within one database.

Elements are normally made up of entries, which are the smallest unit of information that
κλειω can access. Entries have no equivalent in traditional data processing, as each element
can contain more than one entry. Effectively this means that κλειω allows elements to
contain many entries which have the same (or if specified a different) logical rank. For
instance a person mentioned in an historical source may have two occupations. These may
be represented in κλειω as schoolmaster;vicar. schoolmaster and vicar are both
entries in an element called occupation.

A further sophistication is that entries can have different aspects. As well as the basic
information, they can be accompanied by a comment or by the original text. κλειω can be
told which aspect or aspects of the entry to process at any time. We will return to aspects
in Chapter 4, Section 4.3.7.

1.2 The command language

κλειω is operated by a command language, which to an extent has to be learnt. Some
features of κλειω are operated by a menu system, but this is of no help unless the user is
fully aware of the command language. What follows is an introduction to the basic
terminology of the command language.

The simplest possible κλειω command file looks like this:

query name=burial
write
stop

Line by line, this command file can be ‘translated’ into English as follows:

1. Basic concepts 5

query name=burial
I want to know about a database called burial,

write
I would like the information selected to be displayed on the screen,

stop
When all the information has been displayed, stop.

Every κλειω command file consists of one or more tasks. A task is a sequence of
instructions required to provide the system with all the information it needs to select data
from a database and present it as a result.

Each line in a κλειω command file is an instruction. Instructions must begin with a command
word which must start in the first column of a new line. Immediately after the command
word in an instruction there may be a specification. The specification for each instruction
is composed of a series of parameters. Parameters are made up of parameter names and
parameter values. The command word and the specification must be separated by at least
one space.

In the above example, each line is an instruction.

query name = burial
| | |

command parameter parameter
word name value

\ /
specification

write and stop are also command words.

Another example of a parameter is target=. For example if we wanted κλειω to send the
results of that task to a file we could specify this at the end of the sequence of instructions.
In this task target= is the parameter name and "filename" is the parameter value:

query name=burial
write
stop target="filename"

Note that all of the commands described in what follows must be written in the form of
a command file. Any text editor or word processing program can be used to create these
command files before importing them to κλειω. These files must be in the ‘extended ASCII
character set’ as defined by IBM, unless the configuration program has already been run.
(This program allows you to use redefined character sets. Notes on the configuration
program can be found in Appendix B of the Reference Manual.) To this end it is
recommended that we use a screen editor to produce these command files. An example
of such an editor is EDIT, which comes with version 5.0 or above of MS-DOS. To use
EDIT, at the prompt type:

6 A Tutorial for κλειω: Part I

edit

This will take you into the editor. There should be a help screen, which you can read to
get some assistance. Different language versions of EDIT use different commands, but the
menu system should be easy enough to understand with some practice. To edit a file that
already exists, type edit at the prompt followed by the name of the file you wish to edit.
For example,

edit ex1.1

(This file will not be on your computer until κλειω has been installed.) You will get an
empty file which you can start to work on.

1.3 Running κλειω

Installing κλειω

Before κλειω is run, it has to be installed. As the details of how to do this can vary with
different releases, please refer to the notes accompanying the software disk, distributed
separately. The installation proceedure will also copy all the databases and exercises
described in this volume into a directory called tutorial.

Calling up κλειω

On a computer running MS-DOS, κλειω is always accessed from the prompt. At the
prompt enter:

kleio

This will bring you into κλειω’s menu-driven interface. This will not be used until later in
the tutorial, so exit from this interface by pressing the ESCape key.

In order to import a command file to κλειω one must type:

kleio <input file>

If one wanted the result of a task sent to another file one would have to type:

1. Basic concepts 7

kleio <input file> <output file>

Compiling a database

One further preparatory step is necessary. Before a database is used, it has to be compiled;
that is, the data and the rules which explain it to κλειω need to be put into the system. The
design and creation of databases will be discussed later; here it will suffice to carry out one
example of compiling a database.

Files declaring the structure of a database are conventionally given the suffix .mod (short
for ‘model’), while files containing data are conventionally given the suffix .dat. To
compile the database ‘burial’, our first sample database, the following two steps are
necessary:

At the DOS prompt, first type:

kleio burial.mod

This ‘loads’ the declaration file, burial.mod, into κλειω. Note that the program checks
the legality of the commands; if there were any ‘syntax errors’ it would fail to load and
report the errors. As this file is legal, κλειω reports that it has executed the task. Next, type

kleio burial.dat

κλειω now reads the data from the data file, burial.dat. Again, it would report any
‘illegal’ or ambiguous data at this stage, and would ignore those entries.

Once these two files have been read by κλειω the database burial is compiled and ready
for use.

1.4 A sample database

We will be working with a range of example databases during the course of this tutorial.
In this introductory part, we will be using burial and baptism records taken from the
parish register at Winchester Cathedral between 1619 and 1630. They are extremely simple
data sets in their structure, and do not illustrate particularly well why one might wish to
use κλειω as opposed to a conventional database management system. Rather they have
been chosen for their suitability for simple exercises, and should help the novice acquire
the basic skills of querying and extracting information for analysis.

8 A Tutorial for κλειω: Part I

TheWinchester Cathedral parish registers are typical of such registers throughout England.
For more information on this kind of source, see the suggestions for further reading at the
end of this chapter.

In the burial registers, each item consists of the following information:

• Name of person buried

• Date of burial

These are the only two items that are consistent throughout the data.

Some or all of the following information is also included:

• Occupation of person to be buried

• Place of abode of person

• Name of a relation and the relationship

• Occupation of relation

• Place of burial within the Cathedral

• Titles of either the individual or their relation.

A typical excerpt looks like this:

1620 Apr 2 Simon, s of Mr Harward, prebendary
May 18 Sibill, w of Mr William Cole
Sept 24 Anne, d of Mr William Trussell, clerke
Nov 16 James Sutton, belringer

If one were preparing this data for use in a conventional database system, one would
normally include all the information about each individual entry within one record,
something like this:

Date Fname Sname Occn Relship Relfname Relsname Reloccn

02.04.1620 Simon son Harward prebendary
18.05.1620 Sibill wife William Cole
24.09.1620 Anne daughter William Trussell clerk
16.11.1620 James Sutton Bellringer

In κλειω it is possible to put the information about the two separate people into different
records by making the relation dependent on the person who was buried. This is done by
creating two groups, one containing information about the people who were buried, and
another, dependent on the first, containing information about people who were related to
those buried. The structure of this database is thus very simple:

1. Basic concepts 9

doc
|
p
|
relp

where doc stands for document, p for person and relp for related person. The highest level
of this structure, ‘doc’, in this case relates to details about the source. p and relp are
groups. (As you might already have guessed from the diagram, a document is in fact a
special kind of group. This is discussed further in Chapter 4.)

The group p contains the following elements (the right-hand column gives the first of the
four dead people by way of example):

status Male, dead
title
firstname Simon
surname
subtitle
relation Son
occupation
abode
place
burialdate 2 Apr 1620

The group relp contains the following elements:

status Male
title Mr
firstname
surname Harward
subtitle
occupation prebendary

Relationships exist between groups. In this case Simon Harward is the son of Mr Harward
the prebendary. This is a hierarchical structure.

p
|
|—relp

κλειω is not limited to hierarchical structures and it does not handle the data as a
hierarchy. κλειω produces a network which links all of the data within a database.

To conclude this introduction, there follow some examples of how this data can be
presented to κλειω and how κλειω lists it when it is asked for by the simple command file
presented above.

The structure is expressed in the data file in the following way. Groups begin at the
beginning of each line; group names terminate with a $ sign, and that is followed by the

10 A Tutorial for κλειω: Part I

elements. These are separated by the delimiter /. The excerpt given above might be
entered like this:

p$status=dm/firstname=Simon/surname=Harward/relation=son
/burialdate=2 Apr 1620

relp$status=m/title=Mr/surname=Harward/occupation=prebendary
p$status=fd/firstname=Sibill/surname=Cole/relation=wife

/burialdate=18 May 1620
relp$status=m/title=Mr/firstname=William/surname=Cole
p$status=fd/firstname=Anne/surname=Trussell/relation=daughter

/burialdate=24 Sept 1620
relp$status=m/title=Mr/firstname=William/surname=Trussell

/occupation=clerke
p$status=md/firstname=James/surname=Sutton/occupation=belringer

/burialdate=16 Nov 1620

Alternatively, since the information appears in the original in very structured form, if
κλειω is told in what order to expect the elements to appear, it could be entered like this:

p$dm//Simon/Harward//son///2 Apr 1620
relp$m/Mr//Harward//prebendary
p$fd//Sibill/Cole//wife///18 May 1620
relp$m/Mr/William/Cole
p$fd//Anne/Trussell//daughter///24 Sept 1620
relp$m/Mr/William/Trussell//clerke
p$md//James/Sutton///belringer//16 Nov 1620

Design and entry will be discussed in Chapter 4.

We can now return to the simple command file encountered above:

Example 1.1

query name=burial
write
stop

To run this program, type kleio at the DOS prompt followed by the name of the
command file, in this case ex1.1 (which stands for ‘example 1’):

kleio ex1.1

The listing of the full database is now displayed on the screen. As this is quite long, it
scrolls down quite rapidly. To freeze the screen temporarily, press the Pause key. To
continue scrolling, press any other key.

Note the form in which the data is displayed. Typical output looks like this:

1. Basic concepts 11

p (7 = "p-7")
burialdate 2.4.1620
status male, dead
firstname Simon
surname Harward
relation son

relp (1 = "rel-1")
status male
title Mr
surname Harward
occupation prebendary

Each block represents a group; within the group the element names are given on the left
and the entries are given on the right. The relative indentation of the groups indicates the
hierarchical relationship between them. Each group is headed by a line which indicates the
position of the group in the database. We will examine these lines more closely later on.

Summary

This chapter has introduced

• Data structures; documents, groups and elements. Elements can have multiple
entries, and different ‘aspects’.

• The command language; command files consist of tasks, which in turn consist
of instructions, which consist of command words, which may have
specifications attached to them in the form of parameter names and values.

• How to invoke κλειω.

• How to compile a database.

• The sample database ‘burial’.

The following chapter discusses ways of querying this database.

12 A Tutorial for κλειω: Part I

Further reading

The following titles may be of interest for students of parish registers:

M. Drake (ed.), Population Studies from Parish Registers. A Selection of Readings from Local
Population Studies (Local Population Studies, Matlock, 1982).

K. Schürer, ‘Historical Demography, Social Structure and the Computer’, in History and
Computing, eds. P. Denley & D. Hopkin (Manchester University Press, Manchester,
1987), pp. 33–45.

K. Schürer, J. Oeppen & R. Schofield, ‘Theory and Methodology: an Example from
Historical Demography’, in History and Computing II, eds. P. Denley, S. Fogelvik &
C. Harvey (Manchester University Press, Manchester, 1989), pp. 130–42.

E. A. Wrigley & R. S. Schofield, The Population of England 1541–1871: a Reconstruction
(Edward Arnold, London, 1981, and revised version Cambridge University Press,
Cambridge, 1989).

Chapter 2

Basic information retrieval
and display

2.1 The queryquery and writewrite commands

In the simple command file encountered in the last chapter (ex1.1) the query command
was introduced. This is the most basic way of extracting information from a database, and
is the building-block for quite complex retrieval. This chapter explores it in detail.

The example given

query name=burial

is the most simple form of a query command that is acceptable to κλειω. It is necessary
to specify the name of the database being queried. The result of Example 1.1 is that all the
information in the database is retrieved and displayed. As a rule of thumb, the less that
is specified in the task, the more information is obtained.

The name= parameter usually follows the query command. It takes as a parameter value
the name of the database that you want to process.

14 A Tutorial for κλειω: Part I

2.1.2 The parameter part=part=

It is much more usual to wish to interrogate only parts of the database. To do this, a
number of tools are available. The simplest of these is the parameter part=. In the
following task we will be modifying the first task to look only at those people within the
database who appear as relations to the deceased (who are mostly children in such cases).
In this case we are asking κλειω to look at a database and then only interrogate those
groups called relp. This is known as a path. It really means go to the highest level (by
default) and then follow a path to the group relp.

Example 2.1

query name=burial;part=relp
I want to know about a database called burial and I am only interested in those
people who appear as relations of the deceased (i.e. who feature in the group
relp).

write
I want all the information that refers to these people displayed on the screen.

stop
When this is done, stop.

Note a vital new rule introduced in this task:

When a second parameter is used in an instruction it must be separated from the first
parameter by a semi-colon.

Run this task by typing kleio ex2.1. Note that the full information is given for all those,
and only those, who appear as relations in the data.

p (3 = "p-3" : relp (1 = "rel-1")
status male
title Dr
surname Hilton

p (4 = "p-4" : relp (1 = "rel-1")
status male
title Dr
surname Alexander

2. Basic information retrieval and display 15

The following task displays all of the information about people who have an occupation:

Example 2.2

query name=burial;part=:occupation
I want to know about a database called burial and I am only interested in those
people whose occupation is given (i.e. who have an element occupation).

write
I want all the information that refers to these people displayed on the screen.

stop
When this is done, stop.

Run this task by typing kleio ex2.2. Full details are listed for all those people whose
occupation is given.

This time we have asked κλειω to select records which have an element. This task
introduces another essential concept:

For κλειω to understand that ‘occupation’ is a name for an element, it must be
preceded by a colon. The colon denotes that the parameter value is an element.

There is one problem with the last example. The search yielded all people with
occupations, whether they have died or whether they are relatives. The following task
shows how we might display only the occupations of those people who died:

Example 2.3

query name=burial;part=p
I want to know about a database called burial and I am only interested in those
people who died.

write part=:occupation
I only want the information about those people’s jobs to be displayed on the
screen.

stop
When this is done, stop.

Run this task by typing kleio ex2.3.

The part= parameter can thus be used to restrict queries or displays to a specific part of
the database, and it can be used with the write command as well as with the query
command (indeed it can be used with a number of commands).

If one wanted the occupations of those people who were related to the dead people the
following task would find them:

16 A Tutorial for κλειω: Part I

Example 2.4

query name=burial;part=relp
I want to know about a database called burial and I am only interested in those
people who appear as relations of the deceased (i.e. who feature in the group
relp).

write part=:occupation
I only want the information about those people’s jobs to be displayed on the
screen.

stop
When this is done, stop.

Run this task by typing kleio ex2.4.

The following task asks for other information about dead people to be displayed.

Example 2.5

query name=burial;part=p
I want to know about a database called burial and I am only interested in those
people who died.

write part=:firstname,:surname,:occupation
I want those people’s first names, surnames and occupations to be displayed on
the screen.

stop
When this is done, stop.

A new syntactical feature is introduced here:

When using the part= parameter with the write command, any combination of
applicable elements may be displayed. In the command line they must be separated by
a comma.

Run this task by typing kleio ex2.5.

There are a number of other parameters which work with the write command. These
control the scope of the output on the screen or on paper. Some of these will be discussed
in Chapter 5; details of others can be found in the Reference Manual in Section 8.3.1.

2. Basic information retrieval and display 17

2.2 The element function :each[]:each[]

If you wanted to display all the elements directly related to a group you could set the
following task:

Example 2.6

query name=burial;part=:occupation
I want to know about a database called burial and I am only interested in the
parts which have the element occupation.

write part=:each[]
When all those items have been extracted from the database display all the
information in all the groups where there is an occupation.

stop

:each[] is an example of an element function. It is defined as the set of all the elements
in the last group to be found. It is defined like this because in the first line of this task
κλειω doesn’t look for all the elements called occupation, but rather selects all the groups
which contain the element occupation. Run this task now.

Element functions are built-in functions which can appear at a position where an
element identifier (e.g. occupation) might also appear.

Note carefully that :each[] is preceded by a colon. This is because it represents an
element.

This is the simplest example of an element function. In fact, its effect is identical to that of
the task below (ex1.3), as it selects exactly the same information, and displays the result
in the same way.

query name=burial;part=:occupation
write
stop

On its own, the :each[] function used with the write command coincides with the
‘default’ setting of the write command. Nonetheless an important principle is being
introduced here. The element function :each[] is a way of specifying something in this
context, display all the information which in these examples is identical to the ‘default’
setting of the write command. But there are instances in more complex structures where
it is necessary to call the function, and of course by ‘filling’ the square brackets, functions
can be made more sophisticated. We will meet examples of these later.

18 A Tutorial for κλειω: Part I

From here on we shall not be giving instructions about running tasks. We suggest you read
each section before running the appropriate task. Only those tasks headed with the title
‘Example’ are included on the tutorial disk. All others you will have to type in yourself.
However, we recommend that you type in all the examples yourself, to get practice using
the commands.

2.3 Querying with conditions

Rather than ask κλειω to produce all the information about all the people who are
mentioned in the database as having a job, one can ask κλειω just to produce the
information about a specific element. For instance, if one wanted to produce all the
information about all the people who were prebendaries, one would use the following task.

Example 2.7

query name=burial;part=:occupation="prebendary"
I am interested in a database called burial. I am only interested in that part of the
database where there is an occupation and where that occupation is prebendary.

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group where a prebendary occurs.

stop

The phrase ="prebendary" is a condition.

Conditions can be added to the end of any path definition.

2.3.1 Conditions and logical operators

Logical operators (also known as Boolean connectors) are used to modify conditions. κλειω
understands the three usual Boolean arguments: and, not and or.

Any combination of these three keywords can be used to modify a condition, and they can
be used in conjunction with brackets to create complex conditions.

2. Basic information retrieval and display 19

If the logical operator and connects two subconditions they must both be true for the
condition to be satisfied.

If the logical operator or connects two subconditions one must be true for the condition
to be satisfied.

If the logical operator not appears in front of a subcondition, it must be false in order for
the condition to be satisfied.

Brackets modify conditions using multiple operators. In κλειω the logical operator or takes
precedence over the others. For example, "x or y and z" is the same as "x or (y and z)". See
the Reference Manual, Section 8.1.2.1.3.

Here are some simple examples of the use of logical operators:

Example 2.8

query name=burial;part=:occupation="prebendary" or "belringer"
I am interested in the database burial and I am only interested in those people
whose occupation is either "prebendary" or "belringer".

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group where either a prebendary or a bellringer occurs.

stop

Example 2.9

query name=burial;part=:occupation="prebendary" and
:surname="Darrell"
I am interested in the database burial and I am only interested in those people
whose occupation is "prebendary" and whose surname is "Darrell".

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

Note the new feature in this example: the second line of the task is indented. This is
because κλειω only recognises commands as starting at the beginning of a new line. This
second line could start any number of characters out from the left margin. Normally, to
make it clearer to the reader it is indented four or five characters. In this case, this
command line is in fact short enough to fit on one line on-screen in a text editor, but it is
too long to fit on a single line in the format we are using in this volume.

20 A Tutorial for κλειω: Part I

Example 2.10

query name=burial;part=:occupation=not "alderman"
I am interested in the database burial and I am only interested in those people
whose occupation is not given as "alderman".

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

The following example also demonstrates the use of the logical operator and as well as the
keyword not. This task will display all those people who are prebendaries but whose
surname is not "Darrell".

Example 2.11

query name=burial;part=:occupation="prebendary" and :surname=
not "Darrell"
I am interested in the database burial and I am only interested in those people
whose occupation is given as "prebendary" but whose surname is not "Darrell".

write part=:firstname,:surname,:occupation
When those groups have been extracted display the first names, surnames and
occupations of those people.

stop

The nullnull keyword

The following three examples all demonstrate the use of the keyword null. This keyword
can be used to specify ‘empty’ elements. In this first example, κλειω is asked to display all
the information from a group where people do not have an occupation:

Example 2.12

query name=burial;part=p:occupation=null
I am interested in the database burial and I am interested in all those dead
people who, according to the database, do not have an occupation.

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

(We have described null as a keyword. The term keyword is a non-technical word used
to describe a subset of κλειω’s command language.)

2. Basic information retrieval and display 21

The following task produces a strange answer:

Example 2.13

query name=burial;part=:occupation=null
I am interested in the database burial and I am interested in all groups where the
element occupation is empty.

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

The reason why κλειω has produced no result in this case is that the system demands that
a group is specified when the keyword null is used.

The example below demonstrates how the keyword null can be negated using the
keyword not. This condition is thus treated as true if there are people with occupations
that are ‘not null’, i.e. they exist.

Example 2.14

query name=burial;part=p:occupation=not null
I am interested in the database burial and I am only interested in those dead
people who have an occupation. (i.e. the same as p:occupation)

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

2.3.2 The element function :total[]:total[]

Run the following task:

Example 2.15

query name=burial;part=:status="f" and :surname="Love"
I am interested in the database burial and I am interested in all those people who
are female and have the surname "Love".

write part=:each[]
When all those groups have been extracted from the database display all the
information in each group.

stop

22 A Tutorial for κλειω: Part I

Now run the task below, which demonstrates the use of the element function :total[].

Example 2.16

query name=burial;part=:status="f" and :surname="Love"
I am interested in the database burial and I am interested in all those people who
are female and have the surname "Love".

write part=:total[]
When those groups have been extracted from the database display all the
information in each group and for all groups subordinate to the first group accessed.

stop

The function :total[] can be defined as the set of all elements contained in the last
group to be activated and in all the groups logically subordinated to the latter.

2.3.3 Conditions and comparison modifiers

As we have seen in ex2.7, if we ask for all the information about the people who have
the occupation prebendary with the specification part=:occupation="prebendary",
all those whose occupation is "prebendary" is displayed. There is a slight problem here for
within the source the given occupation of one prebendary is "prebend". This entry within
the database is not retrieved as it does not correspond exactly to the character string
"prebendary". If one were to run the following task we would be able to bring up the
occupations of all those people who, in this list, are prebendaries, including the one listed
as prebend.

Please note that from here onwards the ‘translations’ of the κλειω queries will become scarcer (to
save trees) and only relate to new items of information.

Example 2.17

query name=burial;part=:occupation="prebend"
I am interested in the database burial and I am only interested in those people
whose occupation contains the character string "prebend".

write part=:occupation
stop

If on the other hand one only wanted the information about those people in the database
who were actually described in the source as "prebend", and not those whose occupation
in the source contained the character string "prebend" (for example, people described as
"prebendary"), we could phrase the task as follows:

2. Basic information retrieval and display 23

Example 2.18

query name=burial;part=:occupation="prebend" equal
I am interested in the database burial and I am only interested in those people
whose occupation contains the character string "prebend" and nothing else.

write part=:occupation
stop

By default κλειω when confronted by a condition assumes that the user wants the string
to appear anywhere within an entry. As we have seen, one can ask for the string to be the
entire entry, using the comparison modifier equal. If one wanted all those entries which
began with the string "prebend", rather than those in which the letters "prebend" appeared
anywhere within the entry, one could replace equalwith the comparison modifier start;
conversely, if one wanted all those occupations that ended with the string "prebend", one
could replace equal with the comparison modifier limit.

The following two examples illustrate the usage of these terms.

Example 2.19

query name=burial;part=:occupation="prebend" start
I am interested in a database called burial and I am only interested in those
people whose occupation begins with the character string "prebend".

write part=:occupation
stop

Example 2.20

query name=burial;part=:occupation="ary" limit
I am interested in a database called burial and I am only interested in those
people whose occupation ends with the character string "ary".

write part=:occupation
stop

The last example did not produce a very helpful result. To broaden the search one might
look for occupations which ended in the character string "er".

Exercise 2.21

query name=burial;part=:occupation="er" limit
I am interested in the database burial and I am only interested in those people
whose occupation ends with the character string "er".

write part=:occupation
stop

24 A Tutorial for κλειω: Part I

The following task shows another instance where one might use an abbreviation. If we
wanted information about people in the choir we might ask κλειω to run this task:

Exercise 2.22

query name=burial;part=:occupation="cho"
write part=:occupation
stop

Note that this too is of limited usefulness. This task has displayed "choir", "chorister" and
"of the choir"; but it has also picked up "master of the choristers" (which we might have
wanted) and even "schoolmaster" (which we most certainly did not want), while failing to
pick up "chanter". If on the other hand we had specified that the string "cho" was to appear
at the start of the string:

query name=burial;part=:occupation="cho" start

we would have eliminated "schoolmaster" and "master of the choristers", but we would
also have eliminated "of the choir", and we would of course still not pick up "chanter". All
this demonstrates that, while pattern-matching is useful where data is of considerable
regularity, or where one is searching for elements which have been carefully specified, for
something as complex as occupational data the historian needs more sophisticated tools.
These κλειω provides. The first step towards these is introduced through a new command,
index.

2.4 The indexindex command

The following task produces a list of all the surnames of all the people who were
aldermen.

Example 2.23

query name=burial;part=:occupation="alderman"
write part=:surname
stop

2. Basic information retrieval and display 25

If we wanted to produce the same information but have it sorted into alphabetical order
we can use the index command in place of the write command. This command sorts
previously selected information into alphabetical order.

Example 2.24

query name=burial;part=:occupation="alderman"
index part=:surname

When the first command has been performed produce an alphabetical list of all
of the contents of the surname element.

stop

The next example hints at the potential value of this command. It demonstrates how one
can produce a list of all the surnames and first names of those people who were aldermen.

Example 2.25

query name=burial;part=:occupation="alderman"
index part=:surname;

part=:firstname
When the first command has been performed produce an alphabetical list of all
of the contents of the surname element. Also display the contents of the element
firstname, after the surname and sort them into alphabetical order too.

stop

There are three things to note from this example:

• As there are so few people retrieved by this task it is impossible to see if the
first names are also in alphabetical order or not. If there were more first names
they would be sorted in alphabetical order.

• The index command must have a part= parameter for each logical column of
retrieved material. Each part= parameter should be separated by a semi-colon.

• We have (again) used a continuation line in the second line of the task, even
though the line is short. This practice is strongly recommended; it makes for
clarity and ease of diagnosis when the task does not work as intended.

There is one other thing to note about the index command. Running a task like this:

Example 2.26

query name=burial;part=relp
index part=:occupation;

part=:surname
stop

26 A Tutorial for κλειω: Part I

would not produce an index of all the people who are defined as related people. The task
asks κλειω to produce an index of all people described as related people who have an
occupation. Because κλειω has specifically been asked to sort by occupation and to put the
occupation in the first column, it will ignore all people who do not have an occupation.

In order to circumvent this problem, we can use a built-in function :form[], which will,
in effect, add an ‘empty’ column to the index. For this function to work in the manner we
want it should contain an ‘empty’ character string.

Example 2.27

query name=burial;part=relp
index part=:form[""];

part=:occupation;
part=:surname

stop

Adding an empty string to the :form[] function, produces an extra column of no spaces,
in front of the index. However, one space will be added, as κλειω always adds a space
after each logical column it displays in an index.

Summary

This chapter introduced

• The specification command query and the analysis commands write and
index

• Some of the ways in which a query may be modified using conditions by means
of logical operators like and, or and not, by comparison modifiers like equal,
start and limit and by the keyword null

• The functions :each[] and :total[] which both specify which particular
elements related to a group should be displayed after an analysis command.

• The function :form[]

2. Basic information retrieval and display 27

Exercises

The answers to these exercises and all subsequent ones will be found at the back of this
volume.

Produce tasks which display the following information:

Exercise 2.1

Retrieve all information about the people who died having previously held the post of
alderman.

Exercise 2.2

Retrieve all the information about the related people who held the post of alderman.

Exercise 2.3

Produce an alphabetical list which includes, in this order, the surname, first name and
occupation of all the people who died.

Exercise 2.4

Modify this task to include all the people in the database who had a surname.

Exercise 2.5

Produce a similar list of all the women in the database who died (use the specification
part=p:status="f").

28 A Tutorial for κλειω: Part I

Further exercises

Rather than using the database burial for these further exercises, we shall use a database
called baptism. This has already been constructed and will be found in the directory called
tutorial. The two files baptism.mod and baptism.dat will have to be compiled before the
database can be used. The database contains a list of baptisms from the Winchester
Cathedral register of baptisms and contains all the entries from 1599 to 1630.

The database contains the groups: doc, person, and relp, with the following hierarchy:

doc
|
p
|

relp

You should note that the hierarchy is identical to the database of burials.

The group p contains the following elements about those people who were baptised. The
element bapdat contains the date of baptism.

id
status
firstname
surname
relation
bapdat
abode

The group relp contains the following elements about the people who were related to those
people who were baptised:

status
title
firstname
surname
subtitle
occupation

Each of these elements has the same meaning as for the database burial (see Chapter 1).

Using this database, perform the following tasks:

2. Basic information retrieval and display 29

Exercise 2.6

Produce an alphabetically sorted list of all the related people where each line of the list
starts with the element surname and is followed by the first name and then the occupation.

Exercise 2.7

Produce an alphabetically sorted list of all the related people who had an occupation.
Include the surname and the first name of all such people.

Exercise 2.8

Using the burial database produce an alphabetical list of all the occupations containing the
character string "clerke". It is possible that you will get more information than you asked
for. Try to work out why you have more information and guess how the correct
information might be displayed.

2.5 Troubleshooting

κλειω’s user-friendliness, as you may have spotted, leaves a little to be desired, but built
into the system are a large number of particularly useful help messages. The method of
accessing these messages is rather inconvenient as you have to issue a command which
contains an error before you can receive a message.

For example, if you run this task (which does contain an error):

query name=burial;part=:occupation
index part=:surname;

part=occupation
stop

you would get the following result:

query name=burial;part=:occupation
index part=:surname;

part=occupation

***** Error: The following group identifier is unknown
***** Error: An analysis command requires an element specification

stop

30 A Tutorial for κλειω: Part I

This should be enough for you to solve the problem, but if you were still stuck you could
add a command line to the task which would tell κλειω to issue a more comprehensive
message. This command line is options explain=yes and the new task would look like
this:

options explain=yes
query name=burial;part=:occupation
index part=:surname;

part=:occupation
stop

If you run this task you will see that a further message for each of the error messages
previously displayed will be shown on the screen which should make it much easier for
you to correct the error in the task.

The notenote command

A further hint: it is possible to include comment in your tasks, by prefacing them with the
note command. This tells κλειω to ignore everything that follows until the next command
is encountered. For example:

note practice.1
note my first attempt to retrieve dentists
query name=burial;part=:occupation="dentist"
write part=:surname
stop

Although you may see little point in using this feature at the moment, once you start to
work with complex databases it will save you a lot of rummaging and backtracking.

Chapter 3

Data Types

3.1 Introduction

The aim of this chapter is to describe the different types of data that κλειω is able to
process. However, the chapter will not describe how to implement these data types. Basic
implementation of two of them will be discussed in the following chapter while other
implementations will be discussed later in this volume.

Every entry that is contained within a κλειω database must belong to one of the seven
different data types that κλειω supports. If an entry is not defined as belonging to a
particular data type, κλειω may not be able to process that entry in the manner in which
the user would like it to be processed. This is not as cumbersome a task as it might seem,
since by default κλειω processes all data as type text; so all data is understood to be of
type text unless it is defined otherwise.

In conventional data processing, whenever one designs a database one defines the types
of data that one is going to use. Conventionally these are alphanumeric, numeric, date and
decimal (for currencies). Historical data is more complicated than the data normally used
with modern commercial software, so the preparation of data for processing requires more
care than usual. However, as κλειω has been designed specifically to allow the user to keep
the source intact, the user must carefully define what sort of data is being used, thus
creating rules applicable to processing.

κλειω supports seven different data types. These are:

32 A Tutorial for κλειω: Part I

text
date
number
category
relation
location
image

In this chapter we shall describe some of the salient points about each of these data types.
Included with the description of each data type is a pointer to the relevant section of the
Reference Manual. We do not expect you to follow these cross-references up when using
the tutorial for the first time. They are included so that when you start using your own
data you should be able to refer easily to the reference manual.

3.2 The texttext data type

text is the default data type. Examples of text are:

Richard

Smythe

Prebendary

I Thomas Stubbington, loader being sicke of bodie but of
perfect memorie I prayse the Lord my god for it, do constitute
make and ordayne this my last will and testament in manner and
forme folloinge. First I give and bequeath my soule into the
hands of Allmightie god my maker & Redemer hopinge onlye to be
saved by the precious Death and blodsheading of my Lord and
Saviour of my Lord & Saviour Jesus Christ onlye, and my bodie
to the earth from whence first toke essence or being & to
be buried in the Churche yerde of the holie Trinitie.

(Hampshire Record Office A88/1 will of Thomas Stubbington)

Data of the data type text must be made up of non-reserved characters. That limitation
aside, data of this type can include any character that you are able to produce using EDIT.
In addition, the configuration program can be used to get κλειω to accept other non-
standard character sets like Cyrillic or Greek. The reserved characters can be redefined by
this means as well. (Refer to the notes on the configuration program in Appendix B of the
Reference Manual.) In some circumstances there is a limit to the number of characters one
can have in any particular entry, but usually one can say that there is no limit to the

3. Data types 33

number of characters that can exist in an element of data type text. For further
information, see Section 7.3.1.2 of the Reference Manual.

3.3 The datedate data type

κλειω is exceptionally well equipped to deal with what can be one of the trickiest problems
of historical material. All κλειω demands is that anything of the data type date should be
able to be converted into a calendar date.

By default κλειω assumes four things about dates, but each of these things can be changed
depending on the choice of the user. These four default assumptions are:

• date information must be in the format: "Day.Month.Year"

• each of the three parts of a date must be numerical

• the year starts on 1 January

• every date used must be between 1.1.1500 and 1.1.1994.

The last of these assumptions should be clarified first. This does not mean that κλειω can
not cope with dates before 1 January 1500, but means that κλειω will not accept dates
before that date unless it is specifically told to do to. This helps the program to spot
problems when entering data.

Though κλειω assumes that all dates must be in the form "Day.Month.Year", it is perfectly
possible to change this order for all the different types of calendar understood by κλειω
(except the Roman calendar).

It is also perfectly possible for κλειω to understand months as a textual string. With some
calendars abbreviations like "Nov" would be acceptable, and the month "Maie" could also
be accepted if it had been defined as an alternative spelling for "May".

κλειω also allows one to change the date of the beginning of the year. Certain commands
allow the user to define 1 March, 25 March, Easter Sunday, 25 September or 25 December
as the beginning of a particular Christian calendar.

κλειω is also not restricted to Christian calendars. The full range of calendars supported
by κλειω is listed below.

34 A Tutorial for κλειω: Part I

numbers
western
islam
revolution
byzantine
moses
latin
saints

The default calendar, described above, is numbers. If you do not specify an alternative
calendar, dates are accepted in the following format, which is interpreted as a date in the
Christian calendar after the birth of Christ.

16.5.1630

If one defines the calendar as western, one is allowed to enter the date in the following
format:

16 September 1630

(where months are understood to be correctly spelled months in English).

It is also permissible to abbreviate months in the western style of dates as long as they
represent at least the first three letters of the month:

16 Sep 1630

κλειω also supports dates from the Hijra or Hegira calendar. Using the definition islam
dates can be entered in the following format.

12 Ramadan 956

6 Safar 1156

These months can not be abbreviated.

If one defines the calendar as revolution, dates from the French Revolutionary calendar
(also known as the Republican calendar) can be processed. The following examples are
valid.

5 Frimaire 3

10 Nivose 14

These months can be abbreviated to the first four characters.

3. Data types 35

If one defines the calendar as byzantine, dates can be expressed in the same format as
the western calendar but they are interpreted as a date in the Byzantine era, with the year
beginning on 1 September until 1 January 1700 when the year begins on 1 January.

If one defines the calendar as moses, dates from the Jewish calendar can be processed, as
long as the date is in the following format:

5 Nisan 5301

13 Tam 5127

Months in the Jewish calendar can also be abbreviated to their first three characters.

If one defines the calendar as latin, dates from the Roman calendar can be processed by
κλειω. These must be in the following format:

prid non Dec 1227

4 KAL JUN 1125

For how κλειω deals with special chronological problems concerning Latin dates refer to
the Reference Manual, Sections 7.3.1.3.1.1.1. Note that this calendar interprets a date as a
date in the Christian calendar after the birth of Christ. It is not designed to deal with dates
which are B.C.

κλειω also allows the user to define dates using saints’ days or church feast days.

As there are generally two types of church feast day, specific saints’ days which fall on a
particular day of a year and religious festivals which fall a number of days, weeks or
months after Easter, κλειω allows the user to define these days in a separate file, which
interacts with the database and converts all such dates to a date after the birth of Christ.
As κλειω does not ‘understand’ these dates, one would not be restricted to using saints’
days, but could use secular dates like Elizabeth I’s birthday.

Users are able to define a feast day as either a particular day in a year, a date related to
Easter Sunday (e.g. Pentecost is the seventh Sunday after Easter) or an expression related
to another date (e.g. Advent is the fourth Sunday before Christmas).

More details about producing a file containing information about saints’ days which κλειω
interprets in association with a database can be found in Chapter 6.

Whichever calendar the user considers to be most appropriate to his/her use, there are a
number of ancillary rules which apply to most dates.

First, the number zero can be used to describe an unknown part of a date. If one knows
that an event happened on an unspecified day in May 1630 one can represent this as:

36 A Tutorial for κλειω: Part I

0.5.1630

Similarly if one knows that an event occurred on the first of an unspecified month in 1630
one can represent it like this:

1.0.1630

This refers only to the numbers form of date, but if any other form of dating system is
being used (except latin) an unknown month can be defined as "unknown". For example:

12 unknown 1423

Two dates can also be joined together by a hyphen. If one knew that a person died
between two dates, for instance 8 May 1630 and 12 May 1630, one could represent it as
follows:

8.5.1630-12.5.1630

(The first of these dates is known as a terminus post quem and the latter a terminus ante
quem).

Similarly if one knew that an event happened before a certain date, it could be represented
as follows:

-12.5.1630

This feature can also be applied the other way round;

8.5.1630-

Within κλειω Christian calendars conforms to the usual rules (e.g. "Thirty days hath
September..."). The abbreviations OS and NS can also be added to the end of a date to
denote Old or New Style, i.e. Julian or Gregorian calendars.

8.5.1630 OS
15.10.1752 NS

κλειω is thus able to cope with a remarkable variety of styles of dates and is able to cope
with a variety of them within the same database.

For further information, see Section 7.3.1.3 of the Reference Manual.

3. Data types 37

3.4 The numbernumber data type

By default κλειω only accepts numbers between zero and one million. However users can
specify that they want to use numbers greater than one million and less than zero. There
are some cases in historical data where it may be necessary to use negative numbers. For
example, in an inventory of an individual’s goods and chattels, debts owed by the
individual may also be included which might be described as a negative sum owed to the
deceased.

κλειω will only accept information of data type number if it is possible to convert it into
a number.

Numbers can be represented not only by individual numbers but as expressions using the
standard arithmetical operators ‘+’, ‘-’, ‘*’ and ‘:’ to represent the operations of addition,
subtraction, multiplication and division. These expressions can also be nested within
brackets. κλειω is untypical as it uses arithmetical operators in the order in which they
occur rather than in the usual mathematical order; i.e. 2 + 3 * 4 = 20, not 14.

Within historical data there are many occasions on which numerical information is
imprecise. κλειω allows individual numbers to be prefixed by one of the following
uncertainty operators: equal, circa, greater or less. For example:

query name=dummy;part=:age="17" greater

These can be combined to make compounds such as equal circa, equal greater,
equal less. Other combinations are even more complex, and will not be treated here;
for an explanation, see Section 8.1.2.3.3 of the Reference Manual.

Numbers can also be defined as doubles or triples. It is very rare for information relating
to currencies in historical data to be in decimal format, and the same is true of weights and
measures. The examples below are from Carlo M. Cipolla, Cristofano and the Plague (Collins,
London, 1973), Appendix 2, pp. 140–143.

The currency in early seventeenth-century Tuscany was based on both an accounting
system and monetary units. For accounts the following system was used:

1 ducato (or scudo) = 7 lire
1 lira = 20 soldi
1 soldo = 12 denari

Thus the value 13 soldi 4 denari would be equal to a total of 160 denari.

Coinage at the time was more complicated. The coins that were most commonly used
were:

38 A Tutorial for κλειω: Part I

l s d total d total l

doppia = 20 0 0 4800 20
mezza doppia = 10 0 0 2400 10
piastra = 7 0 0 1680 7
testone = 2 0 0 480 2
lira = 1 0 0 240 1
giulio = 0 13 4 160 0.666
mezzo giulio = 0 6 8 80 0.333
crazia = 0 1 8 20 0.1
quattrino = 0 0 4 4 0.02

With κλειω, the user is able to define any form of currency as long it refers back to a series
of singles, doubles or triplets and as long as there is a base. In the above table it can be
seen how either the denaro or the lira could be used as a base.

Other measures which are often more complicated than currency such as weights can
be adapted in the same way.

Numbers can be written in the following ways.

1

12li 14s 2d (denoting 12 pounds 14 shillings and 2 pence or 12 lire 14 soldi and
2 denari).

12.14 (denoting 12 pounds 14 shillings or 12 pounds and 14 ounces)

12.75 (denoting 12¾ of something)

For further information, see Section 7.3.1.4 of the Reference Manual.

3.5 The categorycategory data type

Data of the category data type are often used in κλειω as ‘value-added’ data. In the
Winchester Cathedral burial and baptism databases the element status is of data type
category. Inherent within the source is that some people are dead, some are male and
some are female. This information can be added to the database in order to make it more
comprehensible. For instance the following example may represent a dead man:

dm

3. Data types 39

If a female witness to a will was to leave a mark rather than sign her name one might be
led to the conclusion that that woman was illiterate. The following example may represent
that woman:

fiw

where f stands for female, i for illiterate and w for witness.

Information of this data type is always made up of individual characters, each of which
is analysed separately. The order in which these characters occur is unimportant. One
could have specified the previous example as wif or ifw etc. The only qualification that
must be made is that each letter or number can only refer to one category or value. The
following example would be impossible:

wiw

(where w stands for woman, i for illiterate and w for witness).

For further information, see Section 7.3.1.5 of the Reference Manual.

3.6 The relationrelation data type

Data of relation data type will be fully discussed in Chapter 13. This data type is always
user-defined. They are similar to unique identifiers found in relational data processing. In
κλειω they can be used to link entries relating to one person.

Consider the following family tree:

John Aubrey = (1) Rachael Danvers (2) = John Whitson
b.c.1578, d.1616 | d.1656

|
|
| Isaac Lyte = Israel Browne
| d.1660 | b.1578 d.1662
| __________|
| |

Richard Aubrey = Deborah Lyte
b.1603 d.1652 | b.1610 d.1686

|
John Aubrey
b.1626 d.1697

(Adapted from Anthony Powell, John Aubrey and his Friends, 2nd ed. (Mercury Books, London, 1963))

40 A Tutorial for κλειω: Part I

Theoretically all the information in this family tree could have been taken from parish
registers. If we were to assume that they were all taken from the same parish register the
information could look something like this:

Births Deaths

1578 John Aubrey 1616 John Aubrey
1578 Israel Browne 1652 Richard Aubrey
1603 Richard Aubrey 1656 Rachael Whitson
1610 Deborah Lyte 1660 Isaac Lyte
1626 John Aubrey 1662 Israel Lyte

1687 Deborah Aubrey
1697 John Aubrey

In this case we know that Israel Brown married Isaac Lyte and took his name. Likewise
we know that Rachael Whitson was born Rachael Danvers, married John Aubrey and gave
birth to Richard Aubrey. Later, after the death of John Aubrey, she presumably using the
name Rachael Aubrey married John Whitson, and took his name in the process. Thus
unless one compared all three parish registers (if one was only using that source) it would
be impossible to connect Rachael Whitson who died in 1656 with Rachael Aubrey the
mother of Richard Aubrey.

κλειω is able to understand relationships like these by letting the user define relationships
between individuals. The user must give an identical item of relation type data to the
entry for each entry which related to the same person, in this case Rachael Danvers/
Aubrey/Whitson.

κλειω is able to cope with this by using a relational network. When a κλειω database is
created, all of the parts of the relation data type which are known as network identifiers
are found, and at the point where each one is found κλειω makes a note of where in the
database another occurrence of the identical network identifier can be found. The result
is a subnetwork.

For further information, see Section 7.3.1.6 of the Reference Manual.

3.7 The locationlocation data type

Data of location data type will be covered in detail in Chapter 14. It is only necessary
to mention here that κλειω is able to produce maps. These maps are made using
topographical data provided by the user.

3. Data types 41

κλειω is able to produce maps based on topographical data provided by the user. These
maps can be produced based on other data within a database as well. In Chapter 14 we
will be demonstrating how to construct a map with κλειω using material from the English
1881 Census.

This profile of Göttingen’s tax declarations in 1749 was produced by κλειω.

Figure 3.1

42 A Tutorial for κλειω: Part I

3.8 The imageimage data type

When run on a suitably powerful machine, κλειω is able to process images. This feature
will not be considered further in the book as it is a separate part of the software. For
further details on image processing see:

J. Fikfak & G. Jaritz (eds.), Image Processing in History: towards Open Systems. Halbgraue
Reihe zur historischen Fachinformatik, A16 (St. Katharinen, 1993).

G. Jaritz, Images. A Primer of Computer-Supported Analysis with κλειω IAS. Halbgraue Reihe
zur historischen Fachinformatik, A22 (St. Katharinen, 1993).

M. Thaller (ed.), Images and Manuscripts in Historical Computing. Halbgraue Reihe zur
historischen Fachinformatik, A14 (St. Katharinen, 1992).

Figure 3.2. A screen from the image analysis system

PART II

κλειω BASICS

This section introduces the most frequently used features of κλειω. All
the concepts described in this part are likely to be used on a regular
basis. These include methods of creating a database, more complicated
query facilities, the integration of knowledge within databases, the
processing of textual material, the creation of ‘look-up tables’ for the
coding and classification of data, and also some features to produce more
sophisticated output.

Chapter 4

Creating a database

4.1 Introduction

κλειω is a database management system in the broadest sense of the term. It stores an
historical source which has been structured according to certain rules, while the source is
kept as close to the original as possible. This makes it accessible for both hermeneutical
interpretation and formal investigation. We should reiterate here that historical computing
is not just about formal quantitative analysis but also about interpretative and qualitative
analysis. κλειω allows one to do both. One can query a source in a state that resembles the
original in order to give quantitative results, or one can use κλειω to sift through data in
the same way that historians do when consulting archives in a record office. Obviously the
problem here is getting the source material into a format that κλειω can understand so that
it can be processed.

We have stated that κλειω manages databases, but we have not yet explained exactly how
it does so. This not the place to describe the process formally; this chapter will be
concerned with constructing a database and getting source material into a κλειω database.
You will already be aware, perhaps without knowing it, of a couple of vitally important
principles of κλειω database design. These have been touched on in the previous chapters,
but have not yet explicitly been described.

To complicate matters further, κλειω is only able to process databases that have been
specifically designed for use with κλειω. (At least one history specific software package,
CensSys, does convert data into a format that κλειω can understand, but at the moment
it can only convert it into a format that the German version of κλειω can understand. This

46 A Tutorial for κλειω: Part II

should change shortly.) However, as κλειω understands slash-delimited data in ASCII files,
it is possible to export data from most proprietary database management systems, and of
course κλειω is able, with a minimal amount of effort, to export data for use with other
packages.

The usual method of creating a database for use with κλειω is to produce an ASCII file of
the data, composed according to rules formulated by the user, and a file containing a
definition of these rules so that κλειω can process the data. As we have seen in Chapter
1, these two parts of the database are usually (on DOS machines) given the file extensions
.mod and .dat. (These are not rules but a fairly long-standing convention.) Both of these
files need to be created and executed (in the correct order) in order for κλειω to produce
a working database.

The first stage in constructing a database containing historical material, whether for a
conventional system or for κλειω, is to have some understanding of the source. For
potentially very large databases it may be impractical to have an intimate knowledge of
all the material, but it is necessary to have some notion of the source. When constructing
almost any historical database with an application other than κλειω, one needs to have a
clear idea of some of the questions that the database will be asked. This is necessary
because the format in which data is entered into a database may affect the questions that
can possibly be asked of it. With κλειω this is not the case. In fact it may positively hinder
the proper design of a κλειω database, as one would be making the method fit the question
rather than the other way round. κλειω has been specifically designed to allow the user
to put the data into the database in such a way that it should not have to be changed
significantly from the original material. Who knows what one may discover if one spends
some time with the source?

There are two different approaches to constructing a database with κλειω. The first is to
begin with the source and to elaborate the input structure, proceeding to the definition of
that structure. The second is to define the structure first and then to enter the data. The
two approaches achieve the same result. The decision as to which approach to adopt will
depend at least partly on one’s knowledge of the sources that are are going to be used to
construct the database. In practice most people use a combination of the two.

Within a κλειω database the data is ‘transcribed’ from the original source into a format that
κλειω will be able to understand, i.e. in accordance with a collection of κλειω conventions.
This process is very different from a traditional ‘fixed-field’ database. The rules used in the
manipulation of the data into a format that κλειω can understand must also be described
for the benefit of the system in a fashion similar to a traditional data dictionary.

To recapitulate, κλειω needs two things to make a database:

• data, collected according to rules composed by the user for that source, based
on existing κλειω conventions

• a description of those rules for κλειω to understand the data.

4. Creating a database 47

The only difference in the two methods of creating a database for κλειω is the order in
which these two files are constructed. Either is acceptable, and databases created for use
with κλειω are usually made by a compromise of these two techniques.

The first of these processes ensures that the structure of a database is considered with the
source in mind. Practically, this means that if one has a basic knowledge of any source, one
can sit down and start entering the data into a data file (as long as one has a basic
knowledge of the rules of κλειω); once a number of records have been entered, the rules
pertaining to that data can be written into another file. These rules normally consist of two
parts, first the structure of the database (known as the structure declaration), and then any
additional rules pertaining to the data itself (known as logical objects). Once both the data
and the rules for the database have been completed, the file containing the rules must be
put into the system to create the κλειω equivalent of an empty table. The data can then
also be put into the system. If any errors are discovered here either the data file or the
rules file can be corrected and re-compiled to create a working database. This process is
usually hit-and-miss and lacks the intellectual rigour of the other method, but it will
always eventually end up with a database ready for querying.

The second process can be compared with the more advanced techniques of Entity
Relationship Modelling or Relational Data Analysis, though the theory involved in creating
a structure for a κλειω database is not so involved. However, like ERM or RDA it involves
a complete understanding of the source(s) being processed. This route of creating a
database is therefore only recommended if one does have such complete understanding
of the source, or if the source is simple and heavily structured, like a census record or a
parish register.

As we said earlier, the process normally used to make a database in κλειω is essentially
a compromise between these two techniques. The typical κλειω user starts by typing a
sample of the data into a database and making decisions about the structure on the hoof,
and then creates the structure file, including information contained in the source but not
yet encountered. We recommend that you follow the example below, which gives a
detailed description of the creation of a database using the first method.

We should mention here that this is a long chapter, which needs to be fully understood.
We strongly suggest that you work all the way through to the end of Section 4.6, following
all of the instructions.

Before moving directly on to the creation of database, there are a few essentials to discuss.

48 A Tutorial for κλειω: Part II

4.2 Preliminaries

Many of these points reiterate and enlarge on what has already been said in Chapter 1.
Nonetheless they should be repeated here.

4.2.1 Files

As stated above, a κλειω database is made up of at least two parts, the data and the rules.
These two parts are commonly held in two different files. The data file usually has the
extension .dat and the structure and rules file the extension .mod. It is not necessary for
these two parts to be kept in separate files but this is usually done for convenience.

Both of these files must be in an ASCII format, which must be composed of characters in
the extended ASCII set as defined by IBM. However, modified national character sets can
also be used if the configuration program is used. Refer to Appendix B of the Reference
Manual.

Rendering a database usable is similar in process to querying a database. To get κλειω to
interpret either a .mod or a .dat file, one must type:

kleio <input file>

and if one wanted to put the result of that into another file one could type:

kleio <input file> <output file>

When creating a database, one must first compile the .mod file and then the .dat file. It is
essential to compile them in that order; otherwise, data would be fired either into a non-
existent database, causing an error, or into an existing database (if one already exists)
which would subsequently be destroyed by the compilation of the .mod file on top of it.

This last process is performed by typing (at the DOS prompt):

kleio filename.mod

and when that has been done

kleio filename.dat

If there are no mistakes the database will be able to answer queries.

4. Creating a database 49

It is wise to send the output from these two commands into an output file in order to
check that they have been performed correctly. This can be achieved by adding the name
of a result file to the end of the command, as the following example shows.

kleio filename.dat result

4.2.2 Commands, directives and parameters

As shown in Chapter 2, certain rules apply to all the ‘commands’ used in κλειω. These can
be summed up as follows:

• Commands must start in the first column of a line. If a command line is longer
than the width of a screen it is perfectly acceptable to continue the command
over as many lines as is necessary as long as the second and subsequent lines
do not start in the first column. (If they do, κλειω will attempt to understand
that line as another command, and will probably fail and produce an error
message.)

• Directives must be followed by at least one space.

• Parameters must be followed by a parameter value.

• Where two parameters appear in sequence the first must be followed by a semi-
colon.

At a guess, around 70% of all error messages encountered while using κλειω relate to one
of those few rules.

4.3 The sample database

4.3.1 Description

The sample database uses material from the 1881 Census of England and Wales. This
source has been chosen primarily because the source is heavily structured, but also because
of the similarity of census material from different countries. The material used is not even
‘real’ historical data; it was made up by the General Registry Office to aid and assist the
enumerators in completing their enumeration books. Thus there should be relatively few

50 A Tutorial for κλειω: Part II

problems inherent within the data. There will also be some mention of ‘real’ English
Census data and the problems that might crop up while converting the source into a form
that κλειω can understand.

Figure 1 is a copy of the source from which a database is to be constructed. Figure 2 is a
transcription of that original.

4.3.2 The readread command

Open a new file called censsamp.dat, and go into it, using the editor. The first line to be
typed involves a new command, read. The read command is placed above all of the data
in the data file, and must be followed by a name= parameter. The name= parameter is
given a user-defined name as a parameter value to define the name of the database. This
is an essential part of the data file; without it κλειω would not know into which database
to read the data that follows it. Let us call this database censsamp. Names of databases can
be of any length, and must be made up of alphanumerical characters only. Internally,
however, only the first twelve characters are used and under DOS only the first eight.

read name=censsamp

We shall now start to create the database.

4.3.3 The hierarchy of a database

As we said above, this is a description of how to construct a database using the first
method, i.e. taking the source as the starting-point. However, it is still necessary to keep
in mind certain rules that will pertain to the structure of the database.

The hierarchy of the database is probably the most important issue to keep in mind when
beginning the construction of a database. The term hierarchy as used with database design
implies that something, usually a record or series of records, must be associated with the
highest level of a hierarchy. In κλειω the first step in creating a database is to decide, for
any source or collection of sources, what is going to be the highest level of the hierarchy.
This level of a κλειω database is known as the document level.

It is perfectly possible for a κλειω database to have only a document and no further levels
of hierarchy.

4. Creating a database 51

Figure 4.1

Thomas
Platziertes Bild

52 A Tutorial for κλειω: Part II

Figure 4. 2

Thomas
Platziertes Bild

4. Creating a database 53

4.3.4 The document

The document in a κλειω database is considered to be the highest level in a hierarchy.
Every database must have a document and it must be defined as such in the structure
declaration (see Section 4.4). This is because κλειω assumes that it is going to process data
with a similar structure (even if the structure consists of just a reference and its related
text). Thus the document must be a group which holds a piece of data upon which all
relevant data in the source depends. In this example the highest level could be the Civil
Parish, the Municipal Borough, the page number, the folio number (upper right), or even
the Public Record Office reference found at the bottom of the page. In this case we have
chosen to make the PRO reference number the highest level. This has a number of
advantages, not least being that individual documents are easy to access.

The document name

There are a number of rules which pertain to a document name. Firstly it can be as long
as one likes, though κλειω only uses the first twelve characters for processing. The name
must not contain any of the reserved data signals (see the Appendix to this chapter). There
can, however, be any number of spaces between the name of the document (or group) and
the $ sign. It must begin with a character and only contain letters and numbers. Like all
groups used in a data file it must be followed immediately by data signal 1 ("$"). If the
document for this database were to be called reference the first line of the database
could be written:

reference$RG11-5490

Notice that the name of the group is separated from the entry in the (as yet unnamed)
element by a dollar sign, and that there are no spaces on either side of the dollar sign.
(Notice a slight change from the original source in this line. As κλειω treats the forward
slash ("/") as an element delimiter, it would not be appropriate to keep it here. There are
rules which would allow us to keep the forward slash from the original but it would be
unhelpful to describe them here.) Refer to the Reference Manual Section 4.1.1. for further
information.

You should now type this in below the read command line. Please note that the read
command must be followed on the very next line by a line containing the name of a
document; otherwise κλειω will go through all the data until it finds one, and only then
start adding data from the data file to the database.

54 A Tutorial for κλειω: Part II

4.3.5 Other groups

Once we have decided on the first group, the next step is to consider what other groups
are to be used and to determine how they should fit into the hierarchy. Groups are usually
entities or concepts that are immediately recognisable in a source. In this census data each
individual could be a separate group, containing all the geographical information in the
heading of this source. This would be poor style and necessitate a great deal of redundant
data. The next type of information within this source which could be considered for
definition as a group is the full address as given on the top of the page. None of the items
that relate to the address can be considered to be dependent on one another (they look as
though they might but careful examination of a considerable number of census records will
suggest otherwise).

Thus the address could be added in a line like this:

address$St Mary/Shrewsbury/Welsh/Shrewsbury/Shrewsbury
/St Michael

where St Mary refers to the parish, Shrewsbury is the town, Welsh is the ward,
Shrewsbury is also the parliamentary borough and the sanitary district, and St Michael is
the ecclesiastical parish. Notice that each element is separated by a forward slash ("/").

This line could be added to your file now. Note that for the purposes of display here we
have used a second, ‘continuation’ line. There is no need for you to do this in the data file
you are creating, but now at least you know how to! For longer items it is recommended
that this is done for readability.

As each schedule number refers to a separate household, the information contained in the
schedule field of the example could be one of the elements included in a household group.
In this case, however, as different schedule numbers sometimes refer to the same address
(see schedule numbers 5 & 6) it would seem wise for identification purposes to include it
in a separate subordinate group. Even so, this will cause a problem later.

After the group house comes the group schedule which refers to the column headed
‘road, street &c’. The following two lines could now be added below the last.

house$7 Charlotte Street/Queen’s Arms
schedule$4

The remaining information relates to the head of households and their ‘family’. It would
be useful to make the heads of household a separate group, leaving the remainder to be
in groups subordinate to them. Knowledge of this source tells us that lodgers, who live in
the same house as another family, are not described as heads of household; their relation
to the head of household is given as ‘lodger’. Lodgers are given a separate schedule
number, but not defined as a separate household. For this database a decision has been

4. Creating a database 55

made to make lodgers heads of their own household so that they can more conveniently
be analysed separately, while retaining the information that they are lodgers so that
analysis can be performed on how many lodgers lived in each house.

At this stage, we recommend that you open a new file called censsamp.dat and type in the
material already discussed. This is not a pointless task in data entry. It will give you a feel
for entering data into a κλειω data file and should allow us to demonstrate some of the
problems you may encounter when creating a κλειω database.

4.3.6 Elements

When we have decided on all the groups, the next stage is to decide on the different
elements that each group should contain. The simplest way to do this is to start entering
some of the data with the groups already decided upon. The next few lines of the database
could look something like this (do not type this):

head$Michael/Morrison/Head/Mar/31/Licensed Victualler
/Islington/Middlesex

relp$Mary/J/Morrison/Wife/married/29/Cendover/Salop
relp$Ellen/Morrison/Daur/7months/Shrewsbury/Salop
relp$Elizabeth/Morrison/Mother/W/58/Annuitant/Shrewsbury/Salop

/Lunatic
relp$Ann/Fox/Serv/Unm/28/General Serv/Andover/Hants
relp$Catherine/Doyle/Serv/Unm/24/Barmaid/Ireland

Before considering the problems within this example, it would be worth mentioning that
during this process almost all of the elements that will be used have been decided upon.
These elements also need to have names defined for them. The rules that apply to element
names are similar to those that apply to names of groups. It makes sense to keep them
short and memorable, as element names are used frequently when querying a database.
This list shows the names of the groups along with the name of the elements they contain.

reference
refnum

address
parish/town/ward/parlb/sandis/ecclp

house
address/name

schedule
schednum

head
firstname/surname/relation/cond/age/occupation/birthto/

birthco

56 A Tutorial for κλειω: Part II

Now there are problems. If the data referring to related people were to be columnized it
would look something like this:

Mary J Morrison Wife Married 29 Cendover Salop

Ellen Morrison Daur 7months Shrewsbury Salop

Elizabeth Morrison Mother W 58 Annuitant Shrewsbury Salop Lunatic

Ann Fox Serv Unm 24 General Serv Andover Hants

Catherine Doyle Serv Unm 24 Barmaid Ireland

Only the first, eighth and ninth columns actually give the right data. So in order for this
material to be understood it must be written in the following format. Notice that empty
‘columns’ must be inserted.

relp$Mary/J/Morrison/Wife/married/29//Cendover/Salop
relp$Ellen//Morrison/Daur//7months//Shrewsbury/Salop
relp$Elizabeth//Morrison/Mother/W/58/Annuitant/Shrewsbury

/Salop/Lunatic
relp$Ann//Fox/Serv/Unm/28/General Serv/Andover/Hants
relp$Catherine//Doyle/Serv/Unm/24/Barmaid////Ireland

where the names of the elements are:

firstname/fname2/surname/relation/age/birthco/birthto/
affliction/country

Even though the place of birth, Ireland, in the original data is in the same column as the
county and town of birth, it has been given a separate logical column.

There are further refinements that one can make to this data before considering whether
this data file is in a format that κλειω will interpret correctly. This can be done without
changing the nature of the data, but there would be some change in the order in which it
appears.

In the enumerator’s book there are two columns entitled ‘houses’, which the enumerator
has filled in with an "I" or a "U" to denote whether the house is inhabited or not. This piece
of information could be added to the house group as a item of data of category data type
(see Section 3.5). One could abbreviate the items inhabited and uninhabited to i and u
respectively. So the revised data might look like this:

house$i/7 Charlotte St/Queen’s Arms

We will call this extra element status, and will use it for a number of abbreviated items of
information.

In order to save time during data entry, and without taking anything away from the
source, it would be possible to do something similar for the ‘condition’ column in the

4. Creating a database 57

original source. People are either married, unmarried or widowed. These could be
represented by the letters m, u and w). However, the abbreviation u for uninhabited has
already been used, so arbitrarily the letter s has been chosen to represent unmarried
people. (For reasons that will become obvious in a moment the letter m has not been
chosen to represent those people that are married; instead we have used the letter z.)

A further set of abbreviations can be defined which relate to information about ‘afflictions’.
We shall define d as representing ‘deaf and dumb’, b as ‘blind’, e as ‘imbecile’ (since we
have already used i for ‘inhabited’) and l for ‘lunatic’. One other abbreviation that we will
make is o for ‘lodger’ (again, because l has just been used).

The remaining piece of information that has been left out of the database is only just
visible. The sex of an individual is denoted in the original by the two different columns
representing age; one for men, the other for women. These entries will be replaced by the
abbreviations m and f.

The first household now looks like this:

head$mz/Michael//Morrison/31/Licensed Victualler
/Islington/Middlesex

relp$fz/Mary/J/Morrison/Wife/29//Cendover/Salop
relp$f/Ellen//Morrison/Daur/7m//Shrewsbury/Salop
relp$fwl/Elizabeth//Morrison/Mother/58/Annuitant/Shrewsbury

/Salop
relp$fs/Ann//Fox/Serv/28/General Serv/Andover/Hants
relp$fs/Catherine//Doyle/Serv/24/Barmaid///Ireland

Notice two things:

• The information regarding the relation to the head of household has been
omitted from the group head as it can always be inferred from the name of the
group.

• It would have been perfectly possible to remove the relation to head of
household completely from the group relp and include it as category type
data; but as there are so many possible different relations, in the interests of
clarity it was thought wise not to include them. There are already enough
‘abbreviations’ whose meaning is not immediately apparent by their letter. The
following list of potential relations make it clear why this information has not
been turned into a category date type: aunt; brother; brother-in-law; daughter-
in-law; daughter; father; father-in-law; granddaughter; grandfather;
grandmother; grandson; housekeeper; lodger; mother; mother-in-law; nephew;
niece; servant; sister; sister-in-law; shopman; uncle; visitor. (There are doubtless
others.)

Now all the groups and all the elements have been defined. You should now enter the first
household into your data file.

58 A Tutorial for κλειω: Part II

4.3.7 More on elements: aspects

Before we look at the two components of the ‘model’ file, a few further points need to be
made about elements.

Entries

Elements can contain more than one entry. Each entry must be separated by a semi-colon
(data signal 8). The sample data does not contain any such cases, but an example might
be:

farmer;innkeeper

which represents an individual who is both a farmer and an innkeeper.

Comments and original material

There may also be data within the source that you do not intend to process analytically but
which you want to retain for future reference; and there may be data that is not in the
source but which you as creator of the database would like to add. κλειω provides a
facility for such additional material in the form of the concept of aspects. An entry can have

Thomas
Platziertes Bild

Thomas Grotum
Notiz
Accepted festgelegt von Thomas Grotum

4. Creating a database 59

up to two aspects other than the basic one, designated ‘comment’, and ‘original’. They are
indicated in the data file by data signals, as follows:

Data signal 4, the hash or number sign ("#") can appear anywhere in an element to denote
that what follows it is a comment to the main text. The following examples are correct uses
of the data signal 4:

Coachman#Domestic servant added by checker
Barrister#rest of entry illegible
#illegible

Data signal 5, the percent sign ("%"), can also appear anywhere within an element. It
normally denotes the original wording of the source, if the user has decided not to use the
original wording or even if there is additional wording that will not be processed
analytically. From the sample census page there are certain items that might be managed
in this way.

Grocer%master, employing 2 men
Corset Maker%apprentice

The particular symbols ("%") and ("#") do not have to be used to denote original material
and comments but the system is set up to use them. They can be changed using the
configuration program.

Fuller details about aspects can be found in Section 4.2.4.1 of the Reference Manual.

4.3.8 An alternative format for data entry

At this stage it is necessary to suggest an alternative format for data entry. The following
example shows another way of presenting a data file in a κλειω format. However this
format is only recommended where there are likely to be more than, say, seven ‘empty’
elements in sequence. More than seven slashes in sequence are likely to cause confusion
and make it harder to sort out mistakes. On the other hand it would take considerably
longer to produce a data file in this format. The following example would be an acceptable
way of describing data for κλειω to understand:

head$status=mz/firstname=Michael/surname=Morrison/age=31/
occupation=Licensed Victualler/birthto=Islington/
birthco=Middlesex

relp$status=fz/firstname=Mary/fname2=J/surname=Morrison/
relation=Wife/age=29/birthto=Cendover/
birthco=Salop

relp$status=f/firstname=Ellen/surname=Morrison/relation=Daur/
age=7m/birthto=Shrewsbury/birthco=Salop

60 A Tutorial for κλειω: Part II

WARNING. If you use this system of denoting elements, it must be done regularly. The
line:

relp$status=fs/firstname=Catherine/surname=Doyle/servant/24/
Barmaid/country=Ireland

will result in an error message. Once a name of an element has been used to describe an
element in a group all the rest of the names of elements must also be described. Thus,

relp$fs/Catherine/Doyle/servant/24/occupation=Barmaid/
country=Ireland

would not result in an error message.

numbernumber data types

Chapter 6 gives more details on how κλειω manages different types of numbers and the
number data type. In the example above, there is one entry under ‘age’ which would not
fit into the usual pattern. Ellen, the daughter of Michael Morrison, is 7 months old. This
could be represented as a decimal, but it is also possible to represent it as a number of
months. In the final representation of the data this entry is shown as 7m. This will be
explained later.

4.3.9 Conclusion

At this stage it might normally be useful to add some more data to the data file. However,
although it was said that the whole of the data file could be constructed before proceeding
to the .mod file, it was also said that the construction of a κλειω database was essentially
a compromise between two different techniques. Though one might well normally add
more data at this stage, we shall instead proceed with the structure declaration and some
of the logical environment of the database, as a way of checking whether the data has been
entered correctly.

The final list of groups and elements is as follows:

reference
refnum

address
parish/town/ward/parlb/sandis/ecclp

house
status/address/name

4. Creating a database 61

schedule
schednum

head
status/firstname/fname2/surname/age/occupation/birthto
/birthco/country

relp

status/firstname/fname2/surname/relation/age/occupation
/birthto/birthco/country

The structure for the database could also be written down, as follows:

reference
|

address
|

house
|

schedule
|

head
|
relp

4.4 Structure declarations

Once all the groups and elements relating to a particular database have been chosen it is
possible to start to define the commands to allow κλειω to create a database. The usual
way to decide what the groups and elements are to be is to construct a sample of the
database. Conventionally structure declarations are held in a file with a .mod extension,
but there is no reason why they should not be placed immediately above the data in the
file that holds the data. This is because the structure declaration, when compiled, creates
an empty database, to which data is later added. κλειω will not allow you to put data into
a database that does not already exist. We suggest that you open a file called
censsamp.mod.

All structure declarations must consist of:

• a database command

• at least one part directive

• an exit command.

62 A Tutorial for κλειω: Part II

If a number of elements contain data that is not of the default type (text) then a number
of element directives are also necessary. In our example we have two elements, status
and age, which are not of text type data; these are respectively of category and number
type.

4.4.1 The databasedatabase and exitexit commands

Both database and exit commands must occur in every structure declaration. They are
to be found on the first and last lines of every structure declaration. Without them κλειω
would not recognise that a database is about to be created.

The database command indicates to κλειω that a new structure declaration is about to
follow.

The exit command indicates that a structure declaration has been completely defined.

Commands in structure declarations must be formatted in the same way as all other κλειω
commands, inasmuch as they must start in the first column of a new line and can continue
over as many lines as is necessary as long as the first column of any subsequent line is
blank.

The name=name= parameter

The next task to be performed when creating a structure declaration is to choose the name
of the database. This forms the parameter value for the name= parameter for both the
database and the exit commands. The name= parameter must be specified and must
contain a user-defined name for the database which can also be found in the data file. (This
parameter must contain the same value as the name= parameter in a read command.) In
this case we have already decided that this database is to be called censsamp, so we must
define this structure declaration as belonging to that database.

database name=censsamp
...
exit name=censsamp

You should type these lines into a file called censsamp.mod.

4. Creating a database 63

The first=first= parameter

The first= parameter immediately follows a name= parameter. It must be specified and
have as its parameter value the name of the top level of the hierarchy being defined, i.e.
the document level.

database name=censsamp;first=reference
...
exit name=censsamp

The overwrite=overwrite= parameter

Another parameter used in the database directive is overwrite=. When followed by the
keyword yes, this parameter allows the user to overwrite a previously created database,
with the same name. If this parameter is used when there is no database with the same
name in existence it will be ignored. However, if this parameter is not specified, and there
is already a database with the same name in existence, κλειω will not allow it to be
overwritten. This is a particularly useful parameter to use when creating a database, as it
allows the user to make corrections to the data file without having to destroy all the
structure files (found in the directory with an .s** extension) each time the database is
recompiled.

This parameter is usually placed at the end of a database directive, so that it can be
removed once the database is correctly compiled.

database name=censsamp;first=reference;overwrite=yes
...
exit name=censsamp

Note that the order of the parameters in the database command, as with every other
command, is unimportant (unless one parameter affects the operation of another). This line
could have been written like this:

database overwrite=yes;name=censsamp;first=reference

4.4.2 The partpart directive

The part directive defines the properties of a group. There are two essential properties
of any group:

• Its name

• Its connection with any other group within the database.

64 A Tutorial for κλειω: Part II

Every group contained within a database must be defined in a part directive; often this
means that each group has its own part directive, but it is possible for two or more
groups to share exactly the same characteristics, so one part directive could define more
than one group. For instance, if one were creating a database using birth certificates as
source material, where each individual has (normally) two specified parents, it would be
possible to have one group for each parent, which would have the same elements and be
related to the same group in the same way:

person

/ \

mother father

The name=name= parameter

Every part directive must be followed by a name= parameter. The parameter value must
be the name of at least one group. Every group within a database must be specified in a
name= parameter, and every group in a database specified by a name= parameter must
also be specified in a part= parameter (see below) EXCEPT the group defined in the
first= parameter of a database directive. In the case of the censsamp database, the first
two lines and the last line of the structure declaration would look like this:

database name=censsamp;first=reference;overwrite=yes
part name=reference;
...
exit name=censsamp

The part=part= parameter

The part= parameter takes as a value the name of a group, which must also be defined
in a name= parameter of another part directive. This parameter tells κλειω which groups
are dependent on another. This should clarify the matter of why the group in the first=
parameter does not have to be in a part= parameter; it is because the highest level in a
hierarchy cannot be dependent on any other group. So the structure of the imaginary
database of birth certificates might look like this:

database name=birth;first=person;overwrite=yes
part name=person;

part=mother,father
...
exit name=birth

4. Creating a database 65

Compare this with the structure diagram on the previous page. That shows that the groups
mother and father are both dependent on the group person.

In the case of the censsamp database the beginning of the structure file would now look
like this:

database name=censsamp;first=reference;overwrite=yes
part name=reference;

part=address
...
exit name=censsamp

Note that in both of these cases the part= parameter has been shown on the line following
the part directive. This is for clarity though of course all parameters relating to a single
directive can be contained on the same line.

With the census database all the part directives needed for the whole database could be
added, as follows:

database name=censsamp;first=reference;overwrite=yes
part name=reference;

part=address
part name=address

part=house;
part name=house;

part=schedule
part name=schedule;

part=head
part name=head;

part=relp
part name=relp
...
exit name=censsamp

From the bottom upwards this signifies that the group relp is dependent on the group
head, the group head is dependent on house; house on schedule; schedule on
address; address on reference. In this case each group is only dependent on one
other. It is perfectly possible to have many groups dependent on another, as in our
fictitious database of birth certificates where both mother and father are dependent on the
person. Notice that in that example part=mother,father the two names of the
groups would be separated by a comma.

The always=always= parameter

It is not mandatory to specify an always= parameter in a structure declaration. This
parameter is used to specify that a group in a name= parameter must appear a number of
times in the database. For instance in this database we might want to specify that every

66 A Tutorial for κλειω: Part II

schedule must be followed by at least one head of household. (In reality we don’t want to
do this because there are sometimes cases of uninhabited houses which obviously would
not have to have a head of household.)

part name=schedule;
part=head;
always=head

If it were necessary to specify that at least two heads of household should appear, the line
would be written as follows:

always=head:2

The only=only= parameter

This parameter is similar to the always= parameter. It is used to specify that a certain
group should not have too many instances of a particular group dependent on it. If we
wanted to specify that each schedule should have one and only one head of household
dependent on it, we could introduce the following line into the structure file:

part name=schedule;
part=head;
always=head;
only=head

It would be possible to introduce this parameter in this particular database because, even
though there are sometimes more than one head of household in a house, each family unit
should always be given a schedule number.

The position=position= parameter

The position= parameter is used to define the order in which elements may appear in
a group. It is followed by a list of user-defined element names. This parameter does not
have to be specified in a structure definition; however, to facilitate data entry it is often
wise to use it, especially when one is using structured data, such as this census material.

In the case of the censsamp database the effect of adding this parameter to the structure
definition would be as follows:

database name=cennsamp;first=reference;overwrite=yes
part name=reference;

part=address;
position=refnum

4. Creating a database 67

part name=address;
part=house;
position=parish,town,ward,parlb,sandis,ecclp

part name=house;
part=schedule;
position=address,name

part name=schedule;
part=head;
position=schednum;
only=head

part name=head;
part=relp;
position=status,firstname,fname2,surname,age,occupation,

birthto,birthco
part name=relp;

position=status,firstname,fname2,surname,relation,age,
occupation,birthto,birthco

exit name=censsamp

Note that the element country has been omitted on purpose. The explanation follows
below.

Specifying the element in a position= parameter ensures that the data can be input
without using the element name. For example, if there were no position= parameter for
the group relp, a census entry would have to be represented thus:

relp$status=fz/firstname=Mary/fname2=J/surname=Morrison/
relation=wife/age=29/birthto=Cendover/birthco=Salop

With the position= parameter we can specify the position of the logical columns in the
database; for example, the data can be represented as follows:

relp$fz/Mary/J/Morrison/wife/2//Cendover/Salop

and if necessary we can add extra columns that have not been defined in the position=
parameter:

relp$fs/Catherine//Doyle/serv/24/Barmaid/country=Ireland

This would be acceptable even though the element country was not defined in the
position= parameter. In this case it would be possible to search a database for all the
occurrences of the country in which an individual was born, in the same way as any
element defined in the position= parameter.

The implication of what we have just said is a feature that is highly unusual in data
processing. In κλειω, elements can be created and used within a database without formally
being defined in a structure declaration.

68 A Tutorial for κλειω: Part II

The alias=alias= parameter

The alias= parameter, when used within a part directive, allows the user to define a
number of groups to share similar elements to be accessed in a single command. In the
following case we have asked κλειω to assume (for some purposes) that we would like it
to understand that both the groups p and relp can be accessed using the group name
person.

part name=head;
part=relp;
position=status,firstname,fname2,surname,age,occupation

birthto,birthco;
alias=person

part name=relp;
position=status,firstname,fname2,surname,relation,age,

occupation,birthto,birthco;
alias=person

Thus a task like the following would be considered legitimate:

query name=censsamp;part=person:surname="Morrison"
write part=:each[]
stop

This task would access both groups p and relp and look for all the surnames that contain
the character string "Morrison". This would be the same as asking the following task:

query name=censsamp;part=:surname="Morrison"
write part=:each[]
stop

but there will be times when you want to access both groups and be unable to do so
without using this parameter.

4.4.3 The elementelement directive

The element directive, like the part directive outlined in Section 4.4.2, is used in
conjunction with the database command. The element directive is used to specify the
properties of elements so that they are different from the default properties. The previous
chapter has explained in some detail the different data types that κλειω supports, and as
not all of the data in this database is of the default type (text) we must demonstrate how
κλειω can be told that it is to process data in a way different to that in which it processes
textual data. In this database there are two types of data that are not of type text. These
elements are status, which holds abbreviations like f for female and l for lunatic and is of
data type category, and age, which is of data type number. The properties of these two

4. Creating a database 69

elements must be defined so that κλειω will not interpret them as text. This is achieved
with the use of a number of element directives.

The name=name= parameter

With the element directive the name= parameter takes the name of an element, that is
usually not of the default type (text). Default data may also sometimes have to be
defined.

First, the elements must be listed.

element name=status
element name=age

Though it is not applicable in this database, it would be valid to describe two different
elements in the same name= parameter. These elements would have to separated from each
other with a comma. Any number of elements may share the same name= parameter
within an element directive.

The type=type= parameter

With the element directive the type= parameter accepts a keyword which defines the
data type that relates to the properties of the element defined in the name= parameter of
an element directive. In this case the two data types necessary are number and
category.

element name=status;type=category
element name=age;type=number

Parameters referring to particular data types

Although the elements status and age have been defined as having the properties of
elements with category and number type data respectively, it may also be necessary to
define a logical object which gives information to κλειω on how to interpret the data found
in these elements. This will become apparent in the next section.

For the censsamp database there are problems with both of these elements. First, though
the element status has been defined as of data type category, we have not yet explained
to the system what those abbreviations mean. Similarly for the element age the
abbreviation m (for months) has not been defined. κλειω has not been told how to interpret
this information.

70 A Tutorial for κλειω: Part II

If a logical object is to be used to define the parts of an element, κλειω must be told what
this logical object is called.

This is done as follows:

element name=status;type=category;category=abbreviations
element name=age;type=number;number=ages

The names of all data types can be used as parameters within an element directive. In
this case the category data type has become the category= parameter and the number
data type has become the number= parameter. These are followed by user-defined names
for the logical objects that will be described.

These element directives must appear somewhere within the structure declaration and
it is usual to place them in the first line following the database command.

4.5 Logical objects

Logical objects are part of the logical environment of κλειω. Each logical object gives κλειω
instructions on how to understand a particular piece of data. (See Section 7.3 of the
Reference Manual for more details.) Logical objects will be described fully in Chapter 6.

Logical objects come in two forms. This section describes briefly only one of these, the
form of logical object declared in an item command.

Declarations of logical objects do not have to be kept in the same file as the structure
declaration for a database. Some are, as they are immediately needed to interpret the data
in the database. Others are created and used on an ad hoc basis, and kept in separate files.

Logical objects are made up of three parts:

• an item command

• any number of directives

• an exit directive.

We suggest that you should place the logical object above the structure declaration, though
it could be placed below.

4. Creating a database 71

4.5.1 The itemitem command and the exitexit directive

Both the item command and the exit directive must have a name= parameter, which for
one logical object must be identical and which must also appear in an element directive
in the structure declaration of a database. In other words, for

item name=abbreviations
...
exit name=abbreviations

there must be a corresponding element directive in the structure declaration.

4.5.2 The usage=usage= parameter

The usage= parameter of an item command must also be specified. It accepts a certain
keyword which specifies what sort of logical object is about to be defined. In the case of
the two logical objects that are being defined here, the keywords are category and
number, which relate to the types of data that are being defined.

item name=abbreviations;usage=category
...
exit name=abbreviations

item name=ages;usage=number
...
exit name=ages

Note that, although it is not coincidence that the names of these keywords are identical to
the names of data types, they are not the same thing as data types. A number of other
keywords can be used to describe the type of logical object. Many of them will eventually
be explained in this book; the remainder can be found in the Reference Manual (see
Chapter 6 for references).

Each different type of logical object has a variety of rules which specify exactly how that
data in the database should be interpreted. For the time being only those that concern this
data will be described here.

72 A Tutorial for κλειω: Part II

4.5.3 The categorycategory declaration

The category declaration defines how κλειω should interpret data of type category.
(See Section 7.3.1.5 of the Reference Manual for more details.)

For this database there are a number of sign directives and a number of part directives.

The sign directives followed by a signs= parameter and a write= parameter tell κλειω
to interpret category type data as user-defined character strings. For instance:

sign signs=m;write="male"
sign signs=f;write="female"

tells κλειω that when it encounters a piece of category type data with the entry m, it
should interpret it as being the same as the word male.

The whole of the logical object for this particular type of category data is as follows:

item usage=category;name=abbreviations
sign signs=d;write="deaf and dumb"
sign signs=b;write="blind"
sign signs=e;write="imbecile"
sign signs=l;write="lunatic"
sign signs=o;write="lodger"
part
sign signs=z;write="married"
sign signs=w;write="widowed"
sign signs=s;write="unmarried"
part
sign signs=i;write="inhabited"
sign signs=u;write="uninhabited"
sign signs=a;write="building"
part
sign signs=m;write="male"
sign signs=f;write="female"
exit name=abbreviations

The part directive in a category declaration is a rather useful method of verifying data.
sign directives that follow a part directive are mutually exclusive. Thus while in the case
of the first batch of sign directives any of the abbreviations can be used together (for
instance a person can be blind, a lodger and deaf and dumb), the remaining three batches,
each of which is preceded by a part directive, can only be represented by one
abbreviation from each. This means that it would not be possible to define an individual
as both male and female, or a building as both inhabited and uninhabited.

Note also that in this context the part directive appears on its own, without any
specification.

4. Creating a database 73

4.5.4 The numbernumber declaration

The number declaration defines how κλειω should interpret data of type number. (See
Section 7.3.1.4 of the Reference Manual for more details.)

In the case of the censsamp database there is only one item to define and that is the use
of the abbreviation for month. For κλειω to interpret the letter m in the element age as one
twelfth of a year, the following logical object must be defined:

item name=ages:usage=number
text name="m";number=0.08333333
exit name=ages

This means that κλειω will multiply every number with the abbreviation of m in an age
element by 0.0833333 (which is incidentally one twelfth).

4.6 Compiling the database

The logical object called ages should complete the .mod file for this data. Earlier we
decided that the database should be called censsamp and that the file containing the data
to be called censsamp.dat. We would also recommend that you type in the .mod file using
the information given in this chapter. It would be usual to call this file censsamp.mod and
the data file censsamp.dat. This will make life considerably easier for you when you have
a number of databases all running on the same machine. None of this is compulsory. The
data file could be called hello and the .mod file goodbye. But for consistency and ease of
use you might consider giving obviously related names to these separate files.

When you have two files, one containing the logical environment and structure of the
database (which should be called censsamp.mod) and the other containing the data
(censsamp.dat), you will be ready to compile the database. This is achieved, as we have
seen earlier in this chapter and in Chapter 1, as follows:

First, compile the file censsamp.mod by typing kleio censsamp.mod at the DOS
prompt. If κλειω produces any error messages, ignore them for the time being and compile
the file testing.mod which can be found on the demonstration disk. This is a ‘correct’
version of the .mod file for this database. It will also produce a structure for a database
called censsamp.

When either (but not both) of these tasks has been achieved, κλειω will allow you to
compile the data file. This is done by typing kleio censsamp.dat at the DOS prompt.
In case there are any errors in your database, we would recommend that you send the

74 A Tutorial for κλειω: Part II

results of this operation to a file. This is achieved by typing the name of the result file after
censsamp.dat, e.g. kleio censsamp.dat result.

When κλειω has completed this task, use your screen editor to examine this result file. If
there are no error messages and the end of the file looks exactly like this:

Number of element names defined: 21
Number of group names defined: 7
Number of generic names for elements: 0
Number of generic names for groups: 0
Number of documents contained: 1
Number of groups contained: 36
Number of elements contained: 186

you will have successfully created a database, in which all the data you have entered will
have been successfully stored. If you have managed to get everything right at your first
attempt, see if you can discover an easy way of finding out whether or not every single
element that you have input has gone into the correct logical column. You may find for
instance that you have a place of birth in the occupation element. It should not be too
difficult to fix this type of problem.

Trouble-shooting

If your result file does not look like this, and there are error messages, there must be errors
that κλειω has objected to. There are two possibilities here, which we cannot foresee
because we do not have your data file or your result file in front of us. First, you may have
made a mistake in your .mod file. The quick way to ascertain whether this is the case is
to use our .mod file, called testing.mod. Run this file (which will overwrite your database)
and then run your data again. If this solves the problem, that suggests that you have made
some small but important error in copy-typing the .mod file.

If after running testing.mod you still have a number of error messages, these will be errors
in the data file. Do not despair, even if it looks as though there are hundreds of them. It
often turns out that, if you can identify the first error, you may have solved all of them.

If your error messages look something like this, it should not be too difficult to trace the
problem in the original data file:

4. Creating a database 75

***** Error: You are using an unknown qualifier: Morrison

Part of the input has been ignored due to an error in the data type.
reference (1 = "RG11-5490"),address (1 = "add-1"),house (1 = "hou-1"),schedule (1 = "sch-1"),
head (1 = "* (Unknown)"),age

***** Error: Surplus POSITION field. Contents ignored.
reference (1 = "RG11-5490"),address (1 = "add-1"),house (1 = "hou-1"),schedule (1 = "sch-1"),
head (1 = "* (Unknown)"),

These two errors relate to the same problem. Errors of this sort should be corrected one
at a time, as only one change needs to be made to correct these errors. κλειω does not say
what needs to be changed but tells us almost exactly where in the data file this error can
be found. In this case the error can be found in the first document (reference (1="RG11-
5490"), in the first address, the first house, the first schedule and the first head of
household in the element age. κλειω also tells us what it is having problems with. In this
case we are using an unknown qualifier in the age group of that individual. This unknown
qualifier is the word Morrison. As we have seen above, we have told κλειω that ages must
be numbers and that the only textual information we can use within the group age is the
letter m. If we refer back to the data file to see what is wrong here we may find that this
line has been incorrectly typed, for example like this:

head$mz/Michael///Morrison/31/Licensed Victualler/Islington
/Middlesex

In this case we have added an extra element delimiter, which has moved the text
"Morrison" into the age element. κλειω has reacted to this by displaying an error message.

The second error message displayed above also relates to this problem. As each of the
elements in this group have moved along one place, κλειω has been unable to allocate the
text Middlesex to a group. In the error message κλειω describes this as having a surplus
position field. If we had corrected (by removing one slash) the first error, the second would
not have occurred either.

Another example of a common error message is shown below:

***** Error: An incorrectly used group was ignored: head
reference (1 = "5490"),address (1 = "add-1"),house (2 = "hou-2"),

***** Error: Following data ignored due to an invalid group identifier:
reference (1 = "5490"),address (1 = "add-1"),house (2 = "hou-2"),

head$mz/Lambert//Newton/39/Grocer%master,employing 2 men/Wigton/Cumberland

(If this message was received there would also be a further thirty lines or so of error
messages but we have removed the end ones in this example.)

76 A Tutorial for κλειω: Part II

Here κλειω is telling us that we have used a group in the wrong place, and that that group
is head. This head can be found in the second house listed in the data file.

We have created this error by removing the line

schedule$5

from the data file, and as κλειω expects a group called schedule after a group called house,
it is complaining that we are not using a group in a correct position.

The second part of this error message then tells us that the data within that group has been
ignored as κλειω has attempted to fit it into a schedule group. Thus it ignores that data.

A final example of an ordinary error message:

***** Error: The following Category expression contains illegal character(s): qfu

Part of the input has been ignored due to an error in the data type.
reference (1 = "RG11-5490"),address (1 = "add-1"),house (6 = "hou-6"), schedule (1 = "sch-1"),
head (1 = "hea-1"),relp (2 = "* (Unknown)"),status

Having seen the above examples, you should not find it too difficult to discover what this
means. Here κλειω has told us that a category expression contains illegal characters. The
particular entry that contains the error is made up of the characters q, f and u. In this case,
even though κλειω gives us a precise location for this error, it also gives us the whole of
the element in which the error occurs. If we were to return to the data file and search for
the string qfu we should find it. And as we have not defined the category code q we
should either delete it from the data file or include it within the logical object defining the
element status in the .mod file.

The only real way of learning about interpreting κλειω error messages is to try and work
out what they mean. If your particular error messages are not similar to these it would be
useful to attempt to sort them out. If you are unsuccessful it may be better to try and use
the original material in conjunction with the .mod file to see where you have gone wrong.

There is a further facility which helps you to identify the exact position of an error. If you
added the parameter repeat=yes to the read command in the data file, κλειω would
print out all the data in the datafile as it is ‘put’ into the database. Any error messages will
appear immediately after the input data with an error message in it.

There is at least one other message which you may manage to produce. It might look like
this:

An ambiguous group identity has been disambiguated. RG11-5490
reference (2 = "RG11-5490"),refnum
---> RG11-5490a

4. Creating a database 77

κλειω is telling you that you have compiled the database only once but you have added
the same data to that database twice. In this case, if you look down your result file you
will see lines similar to these:

Number of groups contained: 72
Number of elements contained: 372

which would convince you that you have exactly twice the number that you would expect
of groups and elements in your database.

This error message has occurred because κλειω will not allow you (unless you define
otherwise) to have two documents with the same identifier in the same database. The
solution to this problem (as you might encounter it here) is to recompile the .mod file and
then recompile the .dat file.

This might be the place to explain where how "identifications" are derived. As long as you
do not override the default, κλειω will identify each document by the contents of the first
element which is encountered in every document (more precisely, by the first twelve
characters encountered in that element or the characters up to the first space character,
whichever occurs first).

A tip. Correct error messages one at a time, then recompile both the .mod and .dat files.
This may be time-consuming, but, as we have said, making one change to the data file
might correct a thousand error messages. We hope that you have no problems in
successfully compiling this database. When you have done so, try querying it to see if you
have managed to input the data correctly. For instance, you may have missed a slash out,
thus combining two elements and making a following piece of information occur in the
wrong place.

Exercises

Using the censsamp database:

Exercise 4.1

Produce a list of all the related people who have occupations, listing their occupation,
surname and first name in that order.

78 A Tutorial for κλειω: Part II

Exercise 4.2

Display all the information about all the women in the database aged 29.

Exercise 4.3

Modify the last task to produce all the information about all the women in the database
whose age is greater than 29 (you will find some help in Chapter 3).

Exercise 4.4

Produce an alphabetical list (by surname) of all the married women aged less than 30, with
their first names and their ages.

Exercise 4.5

Write a task to find out how many houses were uninhabited. Produce a list of all of the
addresses.

Exercise 4.6

Write a task to produce an alphabetically sorted list of all those people whose town of
birth is not given as Shrewsbury.

Exercise 4.7

Produce an alphabetically ordered list of all the surnames, first names and occupations of
all the unmarried (i.e. widowed or single) men whose occupation does not include the
character string "grocer".

Exercise 4.8

Produce an alphabetically ordered list of all the children under 16 who are not scholars.
Use the keyword not.

4. Creating a database 79

4.7 Further features

The structure declaration that we demonstrated with the censsamp data was relatively
simple. This is because census material is relatively structured material. However κλειω
allows the user to define much more complicated structure declarations, which might
contain material from more than one source, contain more than one group with the same
name, and have many branches in a complex hierarchy. In order to explain κλειω we have
necessarily kept the structures of the databases used in this tutorial rather simple. In
Chapters 6 to 10 we will be using a database with a slightly more complicated structure,
which will put into practice some of the concepts that we will be discussing here.

Earlier in this chapter we described the steps necessary for the construction of a database.
We only included parameters and commands which are essential or most useful in
database creation. There are a number of other parameters which can be used to help
define a database. In the following few pages we shall describe these parameters.

4.7.1 Further parameters for the databasedatabase command

We have said that the database command tells κλειω that the definition of a database is
about to begin. The parameters that follow this command define some of the characteristics
of that database. We have already described the name=, first=, and overwrite=
parameters as used with this command. There are four other parameters which can also
be used. None of them have to be used; they are all optional. Only one will be described
here. Two others will be described elsewhere as they refer to the identification and
addressability of identifiers.

The write=write= parameter

If we add a write= parameter to the censsamp structure declaration, thus:

database name=censsamp;first=reference;overwrite=yes;
write=structure

when we compile the database we will get more information about its structure. If this
parameter is added to the database, the following information will be included at the end
of the result:

80 A Tutorial for κλειω: Part II

Schema of data structure for documents named: reference

* reference
*
* - refnum
*
* * address
* *
* * - parish
* * - town
* * - ward
* * - parlb
* * - sandis
* * - ecclp
* *
* * * house
* * *
* * * - status
* * * - address
* * * - name
* * * - site
* * *
* * * * schedule
* * * *
* * * * - schednum
* * * *
* * * * * head
* * * * *
* * * * * - status
* * * * * - firstname
* * * * * - fname2
* * * * * - surname
* * * * * - age
* * * * * - occupation
* * * * * - birthto
* * * * * - birthco
* * * * *
* * * * * * relp
* * * * * *
* * * * * * - status
* * * * * * - firstname
* * * * * * - fname2
* * * * * * - surname
* * * * * * - relation
* * * * * * - age
* * * * * * - occupation
* * * * * * - birthto
* * * * * * - birthco

4. Creating a database 81

This is a representation of the database as it has been defined to κλειω. There are six levels
of the hierarchy, starting with reference and ending with relp, and a certain number of
elements (denoted by a -) within those elements.

Currently the write= parameter takes four different values, all of which provide different
information about the database that you have constructed. Three of these values are
names, parts, and structure. (The fourth value, generic, need not concern us here;
refer to the Reference Manual, Section 5.2.3.1.)

• names. Tells κλειω to describe all the elements in the database. Below is some
sample output from the censsamp database:

Properties of elements named: age
Preferred data type for basic information: Number
Preferred data type for "comment" field: Text
Preferred data type for "original" field: Text
Text data is processed according to the following declaration: text
Number data is processed according to the following declaration: ages
Multiple entries are logically subordinated to aspects.

• parts. Tells κλειω to describe all the groups in the database. Sample output:

Properties of groups named: head
The identifying prefix is: hea
Elements appear in order specified in data model.
Groups appear in the order specified in the data model.
In the input, this identifier represents an alias for: person

List of elements (number, {length}, properties):
status (0, Position)
firstname (0, Position)
fname2 (0, Position)
surname (0, Position)
age (0, Position)
occupation (0, Position)
birthto (0, Position)
birthco (0, Position)

List of groups (number, properties):

relp (0)

• structure. Tells κλειω to describe the structure of the database. See above.

The write= parameter can be specified more than once in a database command. It
would be valid to add the following parameters to the database command:

82 A Tutorial for κλειω: Part II

database name=censsamp;first=reference;overwrite=yes;
write=names;write=parts;write=structure

This command will produce information describing the elements in the database (from the
names keyword), the groups in the database (from the parts keyword) and the structure
of the database (from the structure keyword).

4.7.2 Further parameters for the partpart directive

There are currently twenty-three different parameters that can follow a part directive in
a structure declaration. Only one of these must be specified (the name= parameter), and
we have discussed a number of other useful parameters in the earlier part of this chapter.
There are a number of others that may be of (immediate!) use to you.

The write=write= parameter

This parameter can be added to the structure definition, thus:

part name=head;write="head of household"
part=relp;
position=status,firstname,fname2,surname,age,occupation,

birthto,birthco;

This parameter must be followed by a constant, and thus enclosed in inverted commas.
This means that when a task is run, κλειω will print the name of the constant in the
write= parameter rather than the name of the group as specified in the name= parameter.
For instance if we ran a simple task without this parameter part of the result would look
like this:

head (1 = "hea-1")
age 31.000000
occupation Licensed Victualler
status married, male
firstname Michael
surname Morrison
birthto Islington
birthco Middlesex

If we were to change the .mod file by adding the write= parameter as above, the same
task would provide this result:

4. Creating a database 83

head of household (1 = "hea-1")
age 31.000000
occupation Licensed Victualler
status married, male
firstname Michael
surname Morrison
birthto Islington
birthco Middlesex

However, this parameter only changes the way in which κλειω displays the information
on the screen. It would not allow us to perform a task like this:

query name=censsamp;part=head of household
write
stop

If you specify the name of a group in a part= parameter following a command in a task,
it must be defined in a name= parameter of a part directive in the structure declaration.

The source=source= parameter

The part directive also allows one to use a parameter, source=, to tell κλειω that the
properties of one group are to be identical to those of another. This parameter cannot be
demonstrated effectively using the censsamp database. The source= parameter takes as
a value the name of a group already defined in a database. In an imaginary database the
following part of a definition,

part name=mother;
part=child;
position=firstname,surname

part name=father;
source=mother

would mean that the group mother contained two elements, firstname and surname, and
had one group, child, that was dependent on it. It would also mean that the group father
had two elements, firstname and surname, and had a group, child, dependent on it. As
structure definitions of databases do not have to be entered in the same order as the
hierarchy of the database, this parameter can be used in what might look a rather odd
position. For instance:

part name=mother;
position=firstname,surname

part name=father;
part=mother;
source=mother

84 A Tutorial for κλειω: Part II

However, the source= parameter cannot be used in a group which is going to take
another group’s properties before the group that holds the properties has been defined.

The guaranteed=guaranteed= parameter

The guaranteed= parameter is a useful parameter which takes as a value a list of
elements. Each of the elements included in this list must be contained in this group. For
instance, in the database censsamp all people in the database must have a surname. Thus
it would be possible to change the censsamp .mod file to look like this:

part name=head;
guaranteed=surname;
part=relp;
position=status,firstname,fname2,surname,age,occupation,

birthto,birthco
part name=relp;

guaranteed=surname;
position=status,firstname,fname2,surname,relation,age,

occupation,birthto,birthco

Any number of elements can be referred to in a guaranteed= parameter. The correct
format for this involves the use of commas between the elements:

guaranteed=firstname,surname,relation

The guaranteed= parameter is particularly useful for data validation.

The order=order= parameter

When using a write command in a task, you may sometimes wonder why κλειω doesn’t
preserve the order of the elements as you entered them into the data file. The following
result of a task:

reference (1 = "RG11-5490") : relp (5 = "rel-5")
age 24.000000
status unmarried, female
firstname Catherine
surname Doyle
occupation Barmaid
relation servant
country Ireland

lists the data in a different order to its input state. This is because κλειω lists data in the
order the names of the elements appear in the .mod file. In this case the age and status
elements both have logical objects associated with them (i.e are mentioned in an element

4. Creating a database 85

directive before the other elements) so they are listed before the other data. If you wanted
to preserve the order of the input data, κλειω allows you to use the order= parameter
following a part directive relating to a group. In the case of the censsamp database, this
could be done as follows:

part name=relp;order=yes;
position=status,firstname,fname2,surname,relation,age,

occupation,birthto,birthco

The result of the same task would be:

reference (1 = "RG11-5490") : relp (5 = "rel-5")
status unmarried, female
firstname Catherine
surname Doyle
relation servant
age 24.000000
occupation Barmaid
country Ireland

In this case the value for the parameter is yes. This tells κλειω to keep the elements in the
output in the order in which they were input.

The sequence= parameter

The sequence= parameter performs a similar task to the order= parameter but deals
with the order of groups entered in a database. When κλειω produces a result to a task,
the groups may not be in the same order as they were in the original data. This parameter
allows the user to change κλειω’s default actions in circumstances where this may arise.
It is unlikely, however, that this problem will affect you until you start using very
complicated hierarchies for their data.

4.7.3 Further parameters for the elementelement directive

Currently κλειω knows of twenty different parameters that can be used with the element
directive. Many of these are only used for specialist applications; these will be discussed
when they are needed during the course of this volume. There are other parameters which
work in a similar way to those which work with the part directive, but whereas those
deal with groups, parameters used with the element directive deal with elements.

86 A Tutorial for κλειω: Part II

The write=write= parameter

The write= parameter works for the element directive in exactly the same way as for
the part directive. It allows the user to define a different name for an element for output
than the one named in the name= parameter of a element directive or in a position=
parameter. If we wanted to tell κλειω to use the textual string "Town of birth" to replace
the element name birthto in output, we would need to add the following element
directive to the structure declaration. This parameter would usually be used to speed up
data entry. An element would be given a single character name for the purposes of data
entry, but have a longer constant associated with it.

element name=birthto;write="Town of birth"

The database as originally created would produce a result which looked like this:

reference (1 = "RG11-5490") : head (1 = "hea-1")
age 31.000000
status married, male
firstname Michael
surname Morrison
occupation Licensed Victualler
birthto Islington
birthco Middlesex

If the write= parameter described above was added the result would look like this:
reference (1 = "RG11-5490") : head (1 = "hea-1")

age 31.000000
status married, male
firstname Michael
surname Morrison
occupation Licensed Victualler
Town of birth Islington
birthco Middlesex

The source=source= parameter

Another parameter which works in a similar way for the element directive as for the
part directive, is source=. (See above, p. 83.)

4. Creating a database 87

The first=first= and second=second= parameters

κλειω has two other parameters, first= and second=, which allow the user to define
what type of data is to be used in the comment and original aspects of an element. See the
Reference Manual, Sections 5.4.3.2 and 5.4.3.3.

At the beginning of this section we said that many of the parameters that can be used with
the part directive can also be used with the element directive. In fact there are
parameters which have the same names for both directives but have different functions.
None of these parameters are discussed in this volume. However, there is one that you
may find it worthwhile to know about. The order= parameter, when used with the
element directive, allows you to define the way in which κλειω considers aspects as parts
of elements. (Consult the Reference Manual, Section 5.4.4.1.)

4.8 Dynamic fixed-field formats

There are times when it is necessary to input statistical data. κλειω was specifically
designed to make it as easy as possible to input ‘difficult’ data rather than the rather ‘easy’
statistical data. This means that κλειω (until recently) only allowed the user to input
statistical data in the same cumbersome fashion as all other data. We shall only mention
that κλειω now has the ability to input more ‘regular’ data in an ‘easier’ fashion and direct
anyone with an interest in using this type of data to Section 4.5 of the Reference Manual
which describes in simple terms how to input this form of data.

88 A Tutorial for κλειω: Part II

Appendix: data signals

Each entry in a κλειω database must be composed of a character string made up of
characters which are acceptable to the system with ten exceptions.

These ten exceptions are known as the data signals which perform a task that κλειω
understands in a different way to the normal characters.

Data signal 1 $ Dollar sign
Data signal 2 / Slash
Data signal 3 = Equals sign
Data signal 4 # Hash sign
Data signal 5 % Percent sign
Data signal 6 < Open angled bracket
Data signal 7 > Close angled bracket
Data signal 8 ; Semi-colon
Data signal 9 : Colon
Data signal 10 \ Backslash

These characters are always defined in the Reference Manual by their data signal number
rather than the symbol they represent because κλειω allows the user to redefine these
symbols, if they feel it necessary. In this volume we will almost always refer to these
symbols by their English name to prevent initial confusion. To find out how to allocate
different symbols to these data signals refer to the Reference Manual, Appendix B. We
strongly, indeed emphatically, recommend that you do not redefine these symbols until
you are an experienced κλειω user, as much of the information in this volume would then
become inaccurate or confusing.

4. Creating a database 89

Further reading

For further reading on conventional database design techniques for historians, see:

C. Harvey & J. Press, ‘The Business Elite of Bristol: a Case Study in Database Design’,
History and Computing, 3:1 (1991), pp. 1–11.

C. Harvey & J. Press, ‘Relational Data Analysis: Value, Concepts and Methods’, History and
Computing, 4:2 (1992), pp. 98–109.

C. Harvey & J. Press, Database Systems and Historical Research (Macmillan, London,
forthcoming).

On census material:

M. Anderson, C. Stott and B. Collins, ‘The National Sample from the 1851 Census of Great
Britain. An Interim Report on Methods and Progress’, Historical Methods Newsletter,
10:3 (1977), pp. 117–121.

(see K. Schürer, S. J. Anderson & J. A. Duncan, A Guide to Historical Datafiles held in
Machine-Readable Form (Association for History and Computing, London, 1992) pp.
220–225 for further details on this project and a fuller bibliography).

D. V. Glass, Numbering the People: the Eighteenth Century Population Controversy and the
Development of Census and Vital Statistics in Britain (Saxon House, Farnborough,
1978).

E. Higgs, Making Sense of the Census (Public Record Office, London, 1989).

R. Lawton (ed.), The Census and Social Structure: an Interpretative Guide to Nineteenth Century
Censuses for England & Wales (Frank Cass, London, 1978) (especially the chapters by
Armstrong and Lawton).

E. A. Wrigley (ed.), Nineteenth-Century Society. Essays in the Use of Quantitative Methods for
the Study of Social Data (Cambridge University Press, Cambridge, 1972) (especially
the chapters by Armstrong, Drake, Anderson & Tillot).

90 A Tutorial for κλειω: Part II

Chapter 5

Further retrieval and display

5.1 Multiple entries in elements

The last exercise in Chapter 2 asked you to select all the occupations in the burial database
which contained the character string "clerke". We suggested that the solution that you
would be most likely to use would not bring up the correct answer. The following task
would be the natural answer for you to give based on what you have already learned.

query name=burial;part=:occupation="clerke"
index part=:occupation
stop

However this will bring up a result like this:

clerke p-6

clerke p-9

petty cannon p-6

Though this retrieves both of the individuals who were clerks, it also brings up a petty
canon. This is because one of the two clerks listed in the database has two occupations.

92 A Tutorial for κλειω: Part II

κλειω retrieves both occupations separately, as we have asked for all the occupations of
all the people who have the character string "clerke" within the element occupation.

The following task demonstrates both the task above and the ‘correct’ way of answering
the question. This introduces a new command, continue. This command indicates that
the task previously defined should be executed and that further commands are expected.
If there are no further commands after the continue command, κλειω treats it as though
it were the command stop. It is generally used as a connector between tasks that are to
be run independently but sequentially, as in this example:

Example 5.1

query name=burial;part=:occupation="clerke"
index part=:occupation
continue
query name=burial;part=:occupation
index part=:occupation="clerke"
stop

The second part of this task gives this as a result:

clerke p-6

clerke p-9

Why do these two queries bring up different answers? The first could be ‘translated’ as:

I am interested in groups in the database burial where the element
occupation contains the character string "clerke". When these groups have
been found, display the contents of all the elements called occupation.

As there is one person with two entries in the element occupation both of these entries are
displayed. The second task ‘translates’ as follows:

I am interested in groups in the database burial which have an element
occupation. When all those groups have been found display the contents of
the element occupation if it contains the character string "clerke".

There is an additional problem here. Why, you may ask, do we not ask κλειω to perform
this task?

query name=burial
index part=:occupation="clerke"
stop

5. Further retrieval and display 93

Try running it and see the result. You will notice that only one occupation is retrieved.
Why? Use the text editor to examine the data file and see what the difference is between
the two people who are described as "clerke".

Whenever κλειω performs a task, it looks for groups. In this case, as we have not specified
a group in the part= parameter in the query command, κλειω assumes that we mean the
document level of the database. In this case the document level of the database is the
group p, therefore κλειω interprets this line as query name=burial;part=p. So, in order
to get all the people who have occupations, the name of the element must be specified in
the query command.

Just to show that the two tasks are different, run the following task, putting the result into
an output file rather than displaying the results on the screen.

Example 5.2

query name=burial;part=:occupation="clerke"
index part=:occupation;

part=:surname;
part=:firstname

continue
query name=burial;part=:occupation
index part=:occupation="clerke";

part=:surname;
part=:firstname

stop

However there is one reason why one should not use the second task in ex5.1 to get the
result of the question posed at the end of Chapter 2. The reason will be made clear in the
following section.

5.2 The element function :query[]:query[]

When tasks become longer and more involved, as they soon will, it will rapidly become
clear that it is better practice to specify exactly what you want to be found in the
parameter following the query command as well as in either the index or write
commands. Thus the following task would produce the desired result.

query name=burial;part=:occupation="clerke"
index part=:occupation="clerke"
stop

94 A Tutorial for κλειω: Part II

However this is a rather messy way to specify the same condition twice. Instead of
repeating a condition one can use the element function :query[].

The element function :query[]means the entry in an element which fulfils the condition
specified in the previous query command. So the following task is a more precise (and
stylish) way of posing the previous task.

Example 5.3

query name=burial;part=:occupation="clerke"
index part=:query[]
stop

5.3 Output

In the following section we will be considering ways of formatting the output from tasks,
both to make them more attractive and to sort the output. The commands described below
only work with the command index and not with the command write. Some of these
commands refer to all the columns of the output, some only refer to one at a time and yet
others only refer to those columns immediately after the parameter has been reached.

Earlier we said that elements were similar to columns in traditional data processing. In a
κλειω database there are no columns but there are logical columns. The term logical
column is used in κλειω because there are no ‘real’ columns inherent within the database.
The user defines columns as and when they are needed.

5.3.1. The position=position= parameter

In the following task κλειω displays the index in a tabular form. Using the parameter
position= with the keyword yes, κλειω transfers each logical column into a printed
column of the same width beginning at the same place on each line.

Example 5.4

query name=burial;part=:surname
index position=yes;

part=:surname;
part=:firstname;
part=:title;
part=:occupation

stop

5. Further retrieval and display 95

Part of the result of this task is shown here:

Alderley Robert singing man p-30
Alexander Dr p-4
Alexander Lucee p-4
Appleford Frances Mrs widow p-64
Atkins Luce widow p-32
Badger William Mr p-51

If the keyword yes which follows the parameter position= is changed to no, the task
will be displayed as usual. This parameter obviously affects all the columns of the output.
(N.B.: When you run this task send the results to a file and scroll across the screen to see
the whole result. If you send the result directly to the screen it will look awful, because the
table of columns is wider than the screen!)

5.3.2 The signs=signs= parameter

By using the parameter signs= with a number as a parameter value, one can arrange the
output for that particular logical column to fit into a printed column of a fixed length of
that number.

Example 5.5

query name=baptism;part=relp
index part=:surname;signs=12;

part=:firstname;signs=20;
part=:occupation;signs=12

stop

Here is some sample output:

Kercher p-59
Kercher Dr of Divini p-20
Kercher prebendary p-20
Kercher Robert p-18
Love p-48
Love p-54
.
.
.
Love prebendary p-42
Love Nicholas p-28
Mason Robert councellour p-74
More John p-1
Oglander William p-16
Pawlet William p-19
Perin prebendary p-21

96 A Tutorial for κλειω: Part II

In the example above we have decided that the width of the printed column for the
element surname is to be 12 characters long, for firstname 20 characters and for occupation
12. These are arbitrary figures, and any number could be used. If an entry is larger than
the user defined length of the printed column the surplus characters are cut off.

5.3.3 The without=without= parameter

κλειω also allows the user to choose which of the logical columns defined are to be sorted.
If, in this particular case, one wanted to sort by occupation, but keep the personal
information displayed before it, one could set the following task:

Example 5.6

query name=baptism;part=relp
index part=:surname;signs=12;without=yes;

part=:firstname;signs=20;without=yes;
part=:occupation;signs=12

stop

The without= parameter expects either of the keywords yes or no to follow it. It allows
the user to specify to κλειω that it should disregard logical columns for sorting purposes.
If it is followed by yes, it means that the column is output by κλειω but not sorted. In this
particular case the element occupation is the only one to be sorted. So the result of the task
and the secondary search is to be sorted by occupation. A problem may arise here as κλειω
sorts the empty logical columns first (in the order entered in the database).

5.3.4 The write=write= parameter

The parameter write= allows the user to sort an index without displaying the
information. Try running the following example:

Example 5.7

query name=burial;part=relp
index part=:surname;write=no;

part=:firstname;
part=:occupation

stop

This task sorts the selected data by surname but does not display the contents of the
element surname. (As a consequence it looks rather a mess.)

5. Further retrieval and display 97

5.3.5 The form=form= parameter

The parameter form= is a simple parameter to sort entries and justify the output to the left
or right.

The parameter form= accepts the keywords left and right. left is the default.

The following task demonstrates the usage of the parameter form=:

Example 5.8

query name=burial;part=relp
index part=:surname;form=right;

part=:firstname;form=right;
part=:occupation;form=right

stop

Here is some sample output:

Love prebendary p-25
Love prebendary p-59
Beely fellow of ye Coll p-50
Cowse Richard p-31
Friar Tho p-23
Frost John one of the choire p-45

Note that this has sorted in a rather curious way. It has right-hand justified the contents
of each column, but sorted with the number of spaces before each word. You might ask
why this has not sorted by surname. The answer to this is that it has; κλειω has put the
surnames in order "most spaces first". This parameter is most effectively used to display
numeric data.

5.3.6 The first=first= parameter

By default, when using the index command, κλειω sorts in ascending alphabetical order.
If one wanted to sort a logical column in descending alphabetical order one could use the
first= parameter followed by the keyword limit. By default κλειω acts as though the
keyword start follows the first= parameter.

98 A Tutorial for κλειω: Part II

Example 5.9

query name=burial;part=:surname
index first=limit;position=yes;

part=:surname;
part=:firstname;
part=:title;
part=:occupation

stop

The parameters first= and position= both relate to the whole of the index. As such
they have only been defined once and they are usually placed before the first column-
defining parameter, as in the above example. But they can be positioned anywhere within
the index command, as the following example demonstrates:

query name=burial;part=:surname
index part=:surname;

part=:firstname;
part=:title;
part=:occupation;
first=limit;
position=yes

stop

5.3.7 The substitution=substitution= parameter

The parameter substitution= acts rather like a ditto mark. If two entries in successive
lines in an index are the same, a user-defined string can be substituted to give emphasis
to the index.

Running the following task demonstrates how this parameter may be used:

Exercise 5.10

query name=burial;part=:surname
index part=:surname;substitution="---//---";

part=:firstname;
part=:title;
part=:occupation

stop

We had some puzzled looks when we first demonstrated this to our class of guinea-pigs,
so here follows a digression on the parameter substitution=.

5. Further retrieval and display 99

Some output from the following task is shown below it.

query name=burial;part=:surname
index part=:surname;

part=:firstname;
part=:title;
part=:occupation

stop

Budd Alice 1_bur
Budd William Mr alderman 1_bur
Budd William Mr alderman 1_bur

With a substitution= parameter added to the end of the first line of the index
command the following output is given:

query name=burial;part=:surname
index part=:surname;substitution="--||--";

part=:firstname;
part=:title;
part=:occupation

stop

Part of the output from the previous task is shown below:

Budd Alice 1_bur
--||-- William Mr alderman 1_bur
--||-- William Mr alderman 1_bur

Notice that because the name Budd is repeated in the index it is replaced by the string
--||-- which is the string defined in the substitution= parameter. If a further
substitution= parameter was added after the next part= parameter, as in the following
task:

query name=burial;part=:surname
index part=:surname;substitution="--||--";

part=:firstname;substitution="==//==";
part=:title;
part=:occupation

stop

the result would be as follows:

Budd Alice 1_bur
--||-- William Mr alderman 1_bur
--||-- ==//== Mr alderman 1_bur

This is because we have asked κλειω to substitute the string "==//==" where any first
names are the same as the previous entry. This works even if the first item in an index is
not subject to a substitution= parameter.

100 A Tutorial for κλειω: Part II

query name=burial;part=:surname
index part=:surname;

part=:firstname;substitution="==//==";
part=:title;
part=:occupation

stop

Budd Alice 1_bur
Budd William Mr alderman 1_bur
Budd ==//== Mr alderman 1_bur

Here we have only asked κλειω to replace the first names with the character string
"==//==", so only where these match does κλειω reproduce that character string. If
however we were to change the data so that Elizabeth Bunckley and her father, the
following two people in the index, were both to have the first name William, the following
output would be the result of the task. Notice how, even though the last four people in this
list all have the first name of William, the string "==//==" is repeated. This is because the
substitution= parameter only operates if all the previous elements in the index are the
same.

Budd Alice 1_bur
Budd William Mr alderman 1_bur
Budd ==//== Mr alderman 1_bur
Bunckley William 1_bur
Bunckley ==//== Mr 1_bur

Obviously you will not get the same result as this unless you alter the data in the data file
and recompile the database.

5.3.8 The cumulate=cumulate= parameter

This parameter only works in conjunction with the substitution= parameter (or
following another cumulate= parameter, which must in turn follow a substitution=
parameter). Its purpose is to repeat the effect of the substitution= parameter. If the
following example is run, the entries for surname and firstname, if they are the same, will
be replaced by the character string previously specified in the substitution= parameter.

Example 5.11

query name=burial;part=:surname
index part=:surname;substitution="---//---";cumulate=yes;

part=:firstname;
part=:title;
part=:occupation

stop

5. Further retrieval and display 101

Part of the result of this task should look like this:

Budd Alice 1_bur
---//--- William Mr alderman 1_bur
---//--- Mr alderman 1_bur

In this case the last two items displayed both include the surname Budd and the first name
William. If we were to add further cumulate= parameter, as below:

query name=burial;part=:surname
index part=:surname;substitution="---//---";cumulate=yes;

part=:firstname;cumulate=yes;
part=:title;
part=:occupation

stop

part of the result would look like this.

Budd Alice 1_bur
---//--- William Mr alderman 1_bur
---//--- alderman 1_bur

Notice that in this case the single user-defined string would replace all items that were
identical. One further addition of the cumulate= parameter should make this absolutely
clear.

query name=burial;part=:surname
index part=:surname;substitution="---//---";cumulate=yes;

part=:firstname;cumulate=yes;
part=:title;cumulate=yes;
part=:occupation

stop

The following result would appear.

Budd Alice 1_bur
---//--- William Mr alderman 1_bur
---//--- 1_bur

5.3.9 The limit=limit= parameter

limit= is another useful parameter to help redefine output. If you want to display output
in a contextual form, this parameter can be used. The value given with it is then printed
at the point where it occurs. The parameter must be followed by a character string, i.e. as
usual, it must be enclosed within inverted commas.

102 A Tutorial for κλειω: Part II

To print information from the baptismal database in the following form:

<surname>, <firstname> the <relation> of <title> <surname>

the parameter limit= is used as follows:

Exercise 5.12

query name=baptism;part=p
index part=:surname;limit=", ";

part=:firstname;limit=" the ";
part=:relation;limit=" of ";
part=relp:title;
part=:surname

stop

Run this exercise.

There is a vital new piece of syntax introduced into this task, showing how one can
manœuvre between two different groups in the database. This will be explained in the
following section.

5.4 Moving between groups in a database

The last example demonstrated the simplest way of moving between two different groups
in a database. When one specifies a particular group in a part= parameter following a
query command, κλειω operates as though it can only access data from that particular
group. In order to produce an index of all those people who were baptised and the name
of the person related to them, one has to move from one group to another in this case
from p to relp. To move down one level in the hierarchy all one needs to do is to specify
the name of the group in a subsequent part= parameter.

However, if one wanted κλειω to produce a result in the following format:

<surname>, <firstname> the <relation> of <title> <firstname> <surname> was baptised on <bapdat>

one would encounter a problem, as the date of baptism of the individual is not part of the
group relp.

If one added a limit= parameter after the part= parameter in the last example, thus:

part=:surname;limit=" was baptised on";

5. Further retrieval and display 103

and then added the following line:

part=p:bapdat

κλειω would not understand the task because the group p is not subordinate to the last
group that was encountered. These changes have been made to the following exercise. Run
it to see that it will not work.

Example 5.13 (This will not work)

query name=baptism;part=p
index part=:surname;limit=", ";

part=:firstname; limit=" the ";
part=:relation;limit=" of ";
part=relp:title;
part=:surname;limit=" was baptised on ";
part=:firstname;
part=p:bapdat

stop

In order to understand why this will not work we must consider the structure of the
database. In the first line of the task we asked for only those people who were in the group
p; in the fourth part= parameter within the index command we moved down one level
of the hierarchy to the group relp.

The structure of the database looks like this:

doc
|
p
|
relp

If we move down the hierarchy of the database from p to relp we can not simply move
back up to p again. This is vitally important to remember, because it is perfectly
permissible to have two groups with the same name in a hierarchy; for example:

x
|
y
|
x

Obviously κλειω would not know which of the two groups called x to look at in order to
access the information. In order to tell κλειω that we wish to move up the hierarchy we
could use one of two different group functions. The one we will be using in this example
is back[].

104 A Tutorial for κλειω: Part II

5.4.1 The group function back[]back[]

In the following example the number 1 is enclosed in the square brackets after back[].
This denotes to κλειω that we want to move back one level in the hierarchy from the group
is is currently processing. If we wanted to move back two levels in the hierarchy we would
enclose the number 2 within the square brackets, etc.

Example 5.14

query name=baptism;part=p
index part=:surname;limit=", ";

part=:firstname; limit=" the ";
part=:relation;limit=" of ";
part=relp:title;
part=:firstname;
part=:surname;limit=" was baptised on ";
part=back[1]:bapdat

stop

As an alternative to using figures to denote which level of the hierarchy to which one
wants to move back, one could enclose in the square brackets in back[] the name of the
group that one wished to access. In this case the following alternative example would be
acceptable:

Example 5.15

query name=baptism;part=p
index part=:surname;limit=", ";

part=:firstname; limit=" the ";
part=:relation;limit=" of ";
part=relp:title;
part=:firstname;signs=1;
part=:surname;limit=" was baptised on ";
part=back[p]:bapdat

stop

Generally, though, it is recommended to use the first solution as there may be two groups
above the group κλειω is currently accessing with the same name which κλειω would
not understand. Moreover, if one had a data structure like the following:

5. Further retrieval and display 105

person
|

person
|

relatedperson

if κλειω was accessing the group relatedperson and back[person] was asked for, κλειω
would only move back to the first group called person it encountered. (We would suggest
that you do not try using structures like this until you know more about κλειω.)

Exercises

Exercise 5.1

Using the database burial, select in alphabetical order the surname, first names and
occupations of all those people whose occupations contain the string "organist". Ensure that
this brings up only two entries. (Remember that the function :query[] refers to whole
of the previous command, not the previous segment of a command.)

Exercise 5.2

Produce a task which retrieves all occurrences of people whose surname is Love and who
are recorded as being baptised. Link to this task a second task which retrieves all
occurrences of people whose surname is Love and who are recorded as being buried.

Exercise 5.3

The baptism database includes the element bapdat which gives the date of baptism of the
children. In this source there are two possible pairs of twins. Use κλειω to find out their
names. When you have found them, create an index which includes their surnames, first
names, and date of baptism (in that order), and which is sorted by date of birth. Note that
this database has been set up in such a way that κλειω only understands dates in the
format:

14 Dec 1614

Note also that within a condition dates must be enclosed within inverted commas.

106 A Tutorial for κλειω: Part II

Exercise 5.4

Amend the previous task to produce an index which has the first names sorted in reverse
alphabetical order. Note that this task will need two of the parameters introduced in this
chapter.

Your result should look like this.

Ridley Thomas 1600.09.24 1
Alexander Robert 1624.03.03 1
Alexander Frances 1624.03.03 1
Ridley Elizabeth 1600.09.24 1

Exercise 5.5

Using the database burial, produce an index of all the women who died who are listed as
"wife". The output should be sorted by their surname and the format should be as follows:

<firstname> <surname> the wife of <title> <firstname> <surname>

Exercise 5.6

Using the database baptism produce an index in the following format:

<relp:firstname> <relp:surname>’s <p:relation> <p:firstname> was baptised on <p:bapdat>

This should be sorted first by surname and then by date of baptism.

Exercise 5.7

Using the database censsamp, produce an alphabetical index (by surname) of all the related
people in the following format:

<relp:firstname> <relp:surname> the <relp:relation> of <p:firstname> <p:firstname> lived
in <house:address> in <address:town>

5. Further retrieval and display 107

5.5 Elementary counting functions

κλειω has two elementary counting functions. One allows you to count the items that you
have specified in a specification command, the other provides basic statistical information
about the data in the database.

5.5.1 The type=type= parameter in an index command

When the parameter type= is followed by the keyword count after a part= parameter
in an index command, it means that the data will be output in numerical form. Essentially
it means that the number of occurrences of any specified parameter will be counted.

In the case of the following example, κλειω will count the number of occurrences of each
surname:

Example 5.16

query name=baptism;part=:surname
index part=:surname;type=count
stop

Part of the result of this task is shown below:

Alexander appears 24 times.
Barlow appears 12 times.
Brown appears 2 times.
Browne appears 6 times.
Butler appears 2 times.
Colson appears 2 times.
Cradock appears 2 times.
Darrell appears 10 times.
Foell appears 4 times.

5.5.2 The cumulatecumulate command

The cumulate command provides simple statistics. It only works on data of the type
number. It provides the value of the minimum value of a specified entry, the maximum
value of that entry, the median value of all the chosen entries, the standard deviation of
all the chosen entries and the sum of all the chosen entries.

108 A Tutorial for κλειω: Part II

The following task would give these simple statistics for the age of women under 21 in the
censsamp database created in the last chapter:

Example 5.17

query name=censsamp;part=:status="f" and :age="21" less
cumulate part=:age
stop

The results of this task are shown below:

Minimum value: 0.583333
Maximum value: 18.000000
Mean value : 10.895833
Standard deviation: 7.883814
Number of values: 4.000000
Total: 43.583332

For the actions of this command when encountering interval numbers, see the Reference
Manual, Section 8.3.5.3.

Before we quiz you on these parameters we will explain some further built-in functions.

5.6 More element functions

5.6.1 The :day[]:day[], :month[]:month[], and :year[]:year[] functions

These three functions all take the following format:

:year[element specification]

where "element specification" refers to either an element or a path to an element. The three
functions all let you use part of a date in an element defined as of data type date. For
example if we wanted to know the names of all the people in the baptism database who
were born in the month of May we might set the following task:

Example 5.18

query name=baptism;part=:month[:bapdat]="5"
index part=:surname;

part=:firstname;
part=:bapdat

stop

5. Further retrieval and display 109

Notice that the square brackets of the function contains the name of the element in the
database baptism that contains data of type date.

Similarly we could ask for information about all people born in or before 1620.

Example 5.19

query name=baptism;part=:year[:bapdat]="1620" less equal
index part=:surname;

part=:firstname
part=:bapdat

stop

5.6.2 Tagging; the :status[]:status[] function

κλειω allows the user to change the status of an entry. Either or both of the tagging
characters ("!") and ("?") can be used to denote whether the entry to which the character
is added is deemed ‘peculiar’ or ‘uncertain’ in some way. Within historical computing this
may be very important as there are frequently times when historians are unable to decide
on the validity of a piece of information in the source they are using.

The use of these characters within an entry affects the way in which κλειω produces
output. For instance, if during the transcription of this census data we had been unable to
read the piece of information about the occupation of Catherine Doyle, we might have
recorded this difficulty in the database as follows:

relp$fs/Catherine//Doyle/servant/24/Barmaid#illegible
/country=Ireland

This uses the ‘comment’ data signal which we met in Section 4.3.7. We could also have
transcribed it thus:

relp$fs/Catherine//Doyle/servant/24/Barmaid?/country=Ireland

If we were to query the database with an entry of this kind, for example:

query name=censsamp;part=:occupation="Barmaid"
write
stop

a result like this would be produced:

110 A Tutorial for κλειω: Part II

reference (1 = "RG11-5490"): relp (5 = "rel-5")
age 24.000000
status unmarried,female
firstname Catherine
surname Doyle
occupation Barmaid? (?)
relation servant
country Ireland

By default, κλειω includes the tag ("?") with the entry. This causes the entry to be put into
the database as Barmaid?. The second question mark, enclosed in brackets, denotes that
the status of this entry is a question mark. κλειω allows the user to tell it not to include the
tag in the core information of the entry by adding a logical object to the .mod file (and
adding a new element command). If it were added to the censsamp database, this logical
object might look as follows:

item name=dummy;usage=text
signs signs=no
exit name=dummy

The new element command might look like this:

element name=occupation;type=text;text=dummy

If the logical object of the element command were added, the task shown earlier in this
section would produce this result:

reference (1 = "RG11-5490"): relp (5 = "rel-5")
age 24.000000
status unmarried,female
firstname Catherine
surname Doyle
occupation Barmaid?
relation servant
country Ireland

These two tagging characters are important not only because you can add a sort of
comment, but because using tools described in Chapter 15 you can search databases
ignoring data marked by these characters.

If you wanted to search through a database for all those occupational entries which
contained a tagging character, you could use the :status[] function. The following task:

query name=censsamp;part=:status[:occupation]="(?)"
index part=:occupation;

part=:status[:occupation]
stop

5. Further retrieval and display 111

would produce the following result (if the database had been altered as on the previous
page):

Barmaid (?) RG11-5490

Obviously if the logical object element command had not been added, the result would
be:

Barmaid ? (?) RG11-5490

5.6.3 The :original[]:original[] and :comment[]:comment[] functions

There are two different element functions, :original[] and :comment[], which allow
the user to search on information in either the original or comment aspects of an element
(described in Section 4.3.7).

In the censsamp database there are no comments, only material which was in the original
source. We would not usually want to process this material. This task:

Example 5.20

query name=censsamp;part=:occupation
write part=:original[:occupation]
stop

produces a result like this:

master, employing 2 men
apprentice
out of employ

The element function :comment[] works in exactly the same way. We have already come
across one element function :each[] in Chapter 2, but the six element functions we have
seen in the second part of this chapter all work in a different way to :each[]. :each[]
only ever appears in exactly that form, and is defined in the manual as the set of all
elements contained in the last group to be activated. The square brackets at the end of
:each[] are never filled. However, in the case of many element functions (and there are
currently forty-nine different element functions) the brackets at the end of the function are
filled with the name of an element (or an element function), to which the element function
is to refer. More precisely, the contents of the brackets of most element functions contain
what is known as an element specification, which may be the name of an element, but may
also be another element function.

112 A Tutorial for κλειω: Part II

To demonstrate the last point, let us alter the original data that went into the censsamp
database, thus:

head$mz/Lambert//Newton/39
/Grocer%master,employing 2 men?/Wigton/Cumberland

Here the tagging character ("?") has been added to the original aspect of the occupation
element. This is perfectly legitimate, as the original aspect of an element is treated as an
entry.

The following task asks κλειω to display information relating to the original material
relating to the occupation of an individual. This task asks κλειω to produce the status of
the original aspect of the element occupation and the contents of that original aspect, for
all parts of the database where there is an occupation:

query name=censsamp;part=:occupation
write part=:status[:original[:occupation]],

:original[:occupation]
stop

This produces the following result:

(?)
master, employing 2 men(?)

apprentice

out of employ

where the first line and the second are related to the same element. Many of the other
element functions will be referred to later in this tutorial.

5.6.4 The :collect[]:collect[] function

The element function :collect[] is useful as it allows one to ‘collect’ together all the
entries of an element. If the following task is run:

Example 5.21

query name=burial;part=:surname="Colson"
index part=:surname;

part=:firstname;
part=:occupation

stop

5. Further retrieval and display 113

it will produce a result like this:

Colson Richard clerke p-6

Colson Richard petty cannon p-6

because the original data in the database looks like this:

p$p-6/dm/Mr/Richard/Colson///clerke;petty cannon//20 Jan 1619

In order to ‘collect’ together these two separate entries within the occupation element, the
:collect[] function can be used. An element specification must occur within the square
brackets following collect, as in the following task:

Example 5.22

query name=burial;part=:surname="Colson"
index part=:surname;

part=:firstname;
part=:collect[:occupation]

stop

The result of this task is shown below:

Colson Richard clerke;petty cannon p-6

Exercise 5.8

Using these new commands, find out in which month boys were more likely to be born
and in which month girls were more likely to be born. Your answer could take a number
of different forms. The answer in the appendix is only one that might help to solve this
type of problem.

114 A Tutorial for κλειω: Part II

Chapter 6

Logical objects and
knowledge bases

6.1 Introduction

Logical objects are the third component of any κλειω database, the data and the structure
definitions being the other two. Logical objects tell κλειω how to interpret a particular type
or piece of data. It is usual for each logical object defined by the user to refer to just one
element within a database, but it is perfectly possible for one to refer to a number of
different elements. A number of independent logical objects exist whenever κλειω is
activated. This creates a logical environment. When one makes a new database this logical
environment is stored permanently in one’s database. κλειω also allows one to create one’s
own logical objects, which can, but need not, be integrated into the permanently stored
knowledge of a database. Every logical object in either part of the logical environment can
be redefined, modified, or deleted.

Logical objects can be defined in a number of ways. The most usual is with an item
command, but they can also be defined using other commands. We will be discussing the
creation of a codebook, a particular kind of logical object, using the create command in
Chapter 10. Logical objects can be deleted using a delete command and described using
the describe command.

116 A Tutorial for κλειω: Part II

6.2 Basic information about logical objects

In order to explain the logical environment we shall demonstrate the use of the describe
command. In Chapter 3 we said that κλειω allows the user to define how κλειω interprets
dates in a historical source. We said that by default κλειω accepts dates in the format
"Day.Month.Year", only allowing numerical information, and that all years are supposed
to start on 1 January. κλειω will let us know at any time while we are using it what logical
object(s) are in force at the moment. We can achieve this using the describe command,
thus:

Example 6.1

describe name=date;usage=date
stop

This is a task and as such should be placed in a file and run in the usual fashion. It means
that we would like κλειω to describe a logical object called date which has been defined
as of type date. This task produces the following result:

Represents a currently local declaration.
Name of logical unit: date
Class of logical unit: Date

Style Order Beginning of year Names of months

Default Day Month Year Circumcision Ordinal numbers

Note that the feast of Circumcision falls on 1 January.

This description of a logical object does not refer to any particular database; it is part of
the permanent logical environment. This is how κλειω treats dates unless it has been
specifically asked to treat them differently.

To make things slightly more complicated κλειω also has a logical object called date which
is of data type number. To see the description of it, run the following task:

Example 6.2

describe name=date;usage=number
stop

This produces a longer result, so we have not reproduced it here. To summarize the result,
however: it says that this is a local declaration, referring to a logical object called date,
which is of data type number. With this type of data we are allowed to use the following
operators: "+", "-", "*", ":" (representing the four basic arithmetical operators). We can use

6. Logical objects and knowledge bases 117

"(" and ")" as logical brackets. Both decimal numbers and triplets (Days, Months and Years)
are separated by a ".". κλειω permits spaces between numbers and qualifiers while spaces
between fractional values are interpreted as addition operators ("+"). All of the operators
have the same status. Words as qualifiers are interpreted as 1 and uncertainty indicators
are allowed. By default we are allowed to use the qualifiers "year", "y", "month", "m"
"week", "w", "day" and "d". These are given specified weights.

Most of this is rather technical and need not really concern us here. But it should
demonstrate why κλειω expects certain data types to be in a certain format.

If a user defines his or her own logical object to be used with a certain element, it over-
rides κλειω, by telling it to use this logical object rather than the default logical object for
that type of data. We have seen this in practice in Chapter 4, while designing the database.
In that database we used an element directive within the structure declaration of the
database to tell κλειω that we wanted the element age to be operated on by rules contained
in a logical object called ages. This logical object is reproduced here:

item name=ages;usage=number
text name="m";number=0.0833333
exit name=ages

The task below must be run in the same directory as the compiled censsamp database.

Example 6.3

describe name=ages;usage=number;source=censsamp;type=permanent
stop

If that task is run, we will get a result that looks rather like the result we obtained earlier,
but there would be a slight difference at the end, as follows:

List of primary qualifiers

Weighting Maximum Minimum Qualifier

0.083333 m

The first point to mention here is that the task we have run is slightly different, as it refers
to the name of a user-defined logical object which is related to the database censsamp. The
result shows that we have defined the letter "m" to mean 0.083333 relating to the other
numbers in that element. (Thus one month is 0.083333 of a year, even though we have not
explicitly defined a year.)

Here we have shown how κλειω lets the user change some of the rules relating to data of
number type. Notice that as we have only changed one part of the default rules we retain
all the other rules as originally stated. (Here however we have only changed the way in
which κλειω interprets a single element in a database.)

118 A Tutorial for κλειω: Part II

κλειω also allows the user to replace any of the default logical objects with their own
logical object, but at the moment we do not recommend that you do this. The rules and
regulations of this process can be found in the Reference Manual, Section 7.3.4.

So far we have seen three ways in which logical objects control the way in which κλειω
interprets source material:

• default logical objects relating to defined data types within a database

• modified logical objects which keep some of the rules from the default logical
objects but with added user-defined rules

• user-defined logical objects which completely override κλειω’s default logical
objects.

There is a fourth type of logical object. These relate to other types of information within
one’s database. This type of logical object works in the same way as those which define
how κλειω should interpret different data types, but κλειω does not contain default
definitions for these rules. The logical objects we have discussed take a keyword in the
usage= parameter which is the same as the name of a data type. These other logical
objects take other names because they define something different. A list of all the different
types of logical object follow. Some of these will be demonstrated more fully in this
chapter, some will be demonstrated in other chapters of this book, while a few will not be
demonstrated at all. Full details of how to use all logical objects can be found in Chapter
7 of the Reference Manual.

• text: logical objects of this class define how κλειω behaves when it is dealing
with continuous text, i.e. how it converts such texts into text type data in the
database (for instance, as we have seen in Chapter 5, how κλειω interprets the
flags "?" and "!" in the database). This logical object is also used to define to
κλειω the symbol(s) to be used to separate entries within elements.

• date: logical objects of this class define how κλειω should behave when it is
dealing with dates, i.e. how it should convert calendar texts into date type data
and process constants (like years) for comparisons with such elements. For
example, κλειω allows us to tell it what abbreviations we consider necessary for
the months of the year. This class of logical object will be discussed briefly later
in this chapter.

• number: logical objects of this class define how κλειω behaves when it is
dealing with numerical data, i.e. how it should convert numerical expressions
into number type data and process constants intended for comparisons with
such elements. For an example, see Section 4.5.4 above.

6. Logical objects and knowledge bases 119

• category: logical objects of this class define how κλειω behaves when it is
dealing with categorical abbreviations. This has also been demonstrated in
Chapter 4.

• relation: logical objects of this class define how κλειω behaves when it is
dealing with non-hierarchical relationships. This logical object is used to make
κλειω work in a similar fashion to a relational database. This will be fully
demonstrated in Chapter 13.

• conversion: logical objects of this class define systematic changes which κλειω
should make to a character string before processing the latter any further. (This
kind of logical object is almost always used in conjunction with another.) This
will be discussed briefly in Chapter 12.

• soundex: logical objects of this class define how κλειω should convert any
character strings into a ‘phonetic’ coded value. A logical object of this class
should contain an explicitly specified coding scheme. This logical object will also
be discussed in Chapter 12.

• skeleton: logical objects of this class define how κλειω should reduce words
to a ‘framework of essential characters’ with a skeletonising algorithm. This
logical object will not be discussed in this volume. Consult the Reference
Manual, Section 7.3.1.9.

• guth: logical objects of this class define how κλειω should use a Guth algorithm
to quantify the similarity between two character strings in numerical terms. This
class of logical object will not be discussed in this volume. Consult the
Reference Manual, Section 7.3.1.10. For information on the Guth algorithm see
G. J. A. Guth, ‘Surname Spellings and Computerized Record Linkage’, Historical
Methods Newsletter, 10 (1976), pp. 10–19, and D. De Bron & M. Olsen, ‘The Guth
Algorithm and the Nominal Record Linkage of Multi-Ethnic Populations’,
Historical Methods, 19 (1986), pp. 20–24.

• substitution: logical objects of this class tell κλειω how to understand
substitution paths (i.e. access paths which κλειω uses if it cannot find an
element or group specified by the user in the required location while it is
processing a database). This class of logical object will not be discussed in this
volume. Consult the Reference Manual, Section 7.3.1.11.

• codebook: logical objects of this class are used to set up a ‘translation table’
which translates sets of character strings into numerical variables. This class of
logical object will be more fully discussed in Chapter 10 of this volume.

120 A Tutorial for κλειω: Part II

• location: logical objects of this class are used to set up and modify directories
of topographical coordinates or allocate graphical attributes to topographical
objects used in geographical representation of maps. This class of logical object
will be discussed more fully in Chapter 14 of this volume.

• order: logical objects of this class are used to tell κλειω about sorting sequences
(for example, allowing the user to sort alphabetically telling κλειω that the
letters V and U are to be considered identical). This class of logical object will
not be discussed in this volume. Consult the Reference Manual, Section 7.3.1.14.
There is a default logical object of class order. To see the order in which κλειω
sorts by default run the following task.

describe name=order;usage=order
stop

• catalogue: logical objects of this class are used to process catalogues that have
already been created. This class of logical object will be discussed more fully in
Chapter 8 of this volume.

• connection: logical objects of this type are used to define conversion rules for
input data where a name encountered in the data is to be transformed into
another name before it is to be processed. This class of logical object will not be
discussed in this volume. Consult the Reference Manual, Section 7.3.1.16.

• image: logical objects of this type are used to tell κλειω how to set up a linkage
with a database of digitally stored images. For further information consult the
Reference Manual, Section 7.3.1.17, and G. Jaritz, Images. A Primer of Computer-
Supported Analysis with κλειω IAS, Halbgraue Reihe zur historischen Fach-
informatik, A22 (St. Katharinen, 1993).

• classification: logical objects of this type are used to provide embedded
classifications within a text administered within a κλειω database. If you
consider using full-text and want either to add linguistic knowledge to this text
or to apply a hierarchical structure to your text you should consult the
ReferenceManual, Section 7.3.1.19. The classification definitionwas added
to the system too late for us to integrate it more fully into this volume.

• chronology: logical objects of this class are used, for example, to define a
calendar of saints’ days, i.e. to define the rules to deal with references to a
locally prevailing calendar. Logical objects of this class will be discussed later
in this chapter.

Even though you may feel that you may never want to use the chronology class of logical
object we suggest very strongly that you work through that section of this chapter as it
gives valuable information about using logical objects generally.

6. Logical objects and knowledge bases 121

6.3 Logical objects; calendars

To create a logical object which defines how κλειω interprets ‘non-standard’ dates in the
database is relatively easy. There are however a number of interpretational problems which
we hope to make clear in this section.

We consider that the best way in which to explain how κλειω understands calendar dates
is to create a dummy database which contains all the ingredients necessary for κλειω to
process saints’ days and religious festivals. The database that we will be using here is
provided on the sample disk (dummy.mod), but we would suggest that you create files
which you will be able to use with this chapter. These should be based on the files shown
below.

The database we shall use is very simple. Its two basic elements are shown below:

database name=dummy;first=festival;overwrite=yes
part name=festival;position=id,date
exit name=dummy

read name=dummy
festival$1/Lady Day 1613
festival$2/Quadragesima 1613
festival$3/Maundy Thursday 1613
festival$4/Advent Sunday 1613
festival$5/3 days before Easter 1613
festival$6/Week after Pentecost 1994

We have included six dates which could occur in a historical source. We shall construct
a logical object of type chronology to let κλειω interpret these dates. The first stage in
this process is to tell κλειω that the element date in this database should be of type date.
This line would usually be added after the database command and before the first part
directive, thus:

database name=dummy;first=festival;overwrite=yes
element name=date;type=date;date=tutorial
part name=festival;position=id,date
exit name=dummy

This element directive explains to κλειω that there is an element in this database called
date, which is of data type date, which refers to a logical object called tutorial (which is
a user-defined name).

This logical object needs to be constructed according to the rules laid down for date data
type rather than religious festival or saints’ days.

122 A Tutorial for κλειω: Part II

A logical object is normally placed above the structure declaration of a database. The
following logical object would be appropriate for this database:

item name=tutorial;usage=date
type ...
exit name=tutorial

Logical objects that refer to dates must contain a type directive, which gives κλειω
information about the type of date that it is to process. As we want κλειω to be able to
process dates that refer to feast days, we must define that requirement to κλειω. The
parameter necessary to achieve this is name= followed by the keyword saints. Whenever
the saints parameter is used, there must also be a date= parameter in this type
directive. The date= parameter should contain the name of a chronology definition as a
value. This tells κλειω which definition to use to process the contents of this element. We
have given this (as yet undefined logical object) the name english.

type name=saints;date=english

We are now ready to construct this logical object.

If you are creating these files as you go you will need at this point to save the .mod file
and open a new file which for simplicity we shall call dummy.cal (as it contains the
calendar definition). Do not compile this file yet as you will receive error messages telling
you that κλειω is unable to access the logical object english which is reasonable as we
have not created it yet!

We can start to define this logical object by giving it the following heading and exit
commands:

item name=english;usage=chronology;source=dummy;overwrite=yes
...
exit name=english

This tells κλειω that we are about to construct a logical object called english which is of
class chronology, and that we would like it to be overwritten whenever we make any
changes.

Remember, all definitions of logical objects must begin with an item command and end
with an exit command.

The name directive is the only important directive for use with a chronology definition.
It introduces a number of parameters, the first of which must be name=. This takes as a
parameter value a character string that we want κλειω to interpret as a component of a
date. Another parameter used with the name= parameter is date=. This takes the value
of the date in days and months. For instance, if we wanted to define a fixed feast day,
Lady Day, as 25 March, we would define it as follows:

6. Logical objects and knowledge bases 123

name name="Lady Day";date=25.3

Dates can also be defined as having a relationship with Easter. This is valuable as κλειω
knows about the Paschal calendar and automatically calculates the date of Easter in any
year. To relate a date to Easter, the name= parameter is needed together with a parameter
easter= which takes as a value a number of days before or after Easter Sunday. For
example:

name name="Quadragesima";easter=-42
name name="Easter";easter=0
name name="Pentecost";easter=49

For this particular database we will need to add all three of these lines as to understand
the entry "the week after Pentecost" we should need to define when Pentecost is. We must
also define "Easter" in a name= parameter of a name directive, as above, since the date of
Maundy Thursday is dependent on the date of Easter.

Notice that feast days which are related to Easter Sunday, but which occur before it, need
to be allocated a negative number of days (i.e. a number of days before Easter Sunday).

Any number of dates which are related to Easter Day can be defined in this way.

Moveable feast days are slightly more difficult to define, and are defined as follows.

In the next example we shall demonstrate how to define Maundy Thursday. This day is
usually defined as the first Thursday before Easter Day; it could also be defined as the day
before Good Friday. In order to put this into a form that κλειω will understand, let us start
by defining Good Friday:

name name="Good Friday";form="Friday before Easter"

and then define Maundy Thursday:

name name="Maundy Thursday";form="day before Good Friday"

The form= parameter must contain terms that are also defined in the logical object.
Whenever κλειω comes across terms in the name= parameter it converts them into the
value of the form= parameter and then interprets this with other definitions in the logical
object. In this case we have introduced three terms that we must define elsewhere. The
following three name directives are incomplete, but it should be clear that they represent
the missing terms from this logical object:

name name="Friday";
name name="day"
name name="before";

124 A Tutorial for κλειω: Part II

If we take the last directive, we can see that κλειω allows one to define a date by its
proximity to another date. κλειω uses one of two parameters to define a date that occurs
either before or after another date. These parameters are before= and after=. They
almost always take the value exclusive. (The other possible parameter value is
inclusive which should be used when defining periods of time: see below.)

name name="before";before=exclusive
name name="after";after=exclusive

κλειω also assumes that you have defined days of the week. Days of the week must be
followed by a weekday= parameter which should contain a value representing one of the
days of the week. (This parameter also accepts the values absolute, octave and
previous. The first tells κλειω that this date refers to a day, the second to a day 7 days
after a feast, and the third to the day before a feast.) In this case we have to define Sunday
as a weekday which is a sunday and say that a day can be any day of the week:

name name="Friday";weekday=friday
name name="day";weekday=absolute

It should be clear that as long as all the terms that are contained in the original data can
be defined for κλειω to understand them, κλειω is able to process them. For instance, if the
term "Sunday after All Saints’ Day" occurred in some original data, all that would be
necessary for κλειω to understand it would be the following lines in a chronology logical
object:

name name="Sunday";weekday=sunday
name name="after";after=exclusive
name name="All Saints’ Day";date=1.11

κλειω also copes with periods of time. According to the rules of κλειω every date in a
database may potentially be a terminus ante quem or a terminus post quem. κλειω does not
yet support period dates between two dates that need to be interpreted, such as "from All
Saints’ Day 1623 to Christmas Day 1623". It can, however, cope with dates in the format
"Week after Pentecost 1567". This is achieved by using first= and second= parameters
after a name command. In this case κλειω would need to know the following information:

name name="week after";first="1 day after *";
second="7 days after *"

name name="Pentecost";easter=49
name name="day";weekday=absolute
name name="days";weekday=absolute
name name="after";after=inclusive

6. Logical objects and knowledge bases 125

There are three points to mention here.

• First, we should describe the first= and second= parameters. These two
parameters take for any date a terminus ante quem and a terminus post quem.
They use a similar format to the form= parameter but also take an asterisk ("*")
to denote the date. In the above example, then, the phrase "week after" means
from one day after any date to seven days after that same date.

• Second, we should also alter the dates allowed by κλειω; by default κλειω only
accepts dates between 1.1.1500 and 1.1.1994. In order to change this we are
allowed to use the date command. This date command should be placed
above the structure declaration of the database, i.e. before the database
command.

• Third, the after= parameter has been given the keyword inclusive, which
in this case tells κλειω that "the seventh day after" a feast day should also be
displayed in the output.

6.3.1 The datedate command

If you wanted to use data that pertained to the time scale 1200 to 1994, you would use the
date parameter with the following parameters.

date minimum="1.1.1200";maximum="1.1.1995"

κλειω also allows for the use of both the Julian and Gregorian calendars. By default κλειω
understands the date for the introduction of the Gregorian calendar as 15 October 1582.
However as not all countries followed the lead of the Papal States, Spain and Portugal,
κλειω allows the user to set their own date for the introduction of the Gregorian calendar.
For Great Britain and Ireland this would be shown:

date first="14.9.1752"
database name=<name of database>

For France it would be as follows:

date first="20.12.1582"
database name=<name of database>

For Great Britain and Ireland all dates in a database with such a command before 14
September 1752 would be assumed to be in Julian style, and all dates following this date
would be considered to be in the Gregorian style (including 14 September 1752).

126 A Tutorial for κλειω: Part II

The abbreviations OS and NS can be used in the data to override this function. The
contraction NS can be used to tell κλειω that a date before the introduction of the local
Gregorian calendar is in fact in the New Style, while the contraction OS can be used to tell
κλειω that a date after the introduction of the local Gregorian calendar should in fact be
interpreted as a date in the Old Style.

The files you have created should look like this:

note dummy.mod
item name=tutorial;usage=date;overwrite=yes
type name=saints;date=english
exit name=tutorial

date maximum="1.1.1995"

database name=dummy;first=festival;overwrite=yes
element name=date;type=date;date=tutorial
part name=festival;position=id,date
exit name=dummy

item name=english;usage=chronology;source=dummy;type=permanent;
overwrite=yes

name name="Sunday";weekday=sunday
name name="Sundays";weekday=sunday
name name="Friday";weekday=friday
name name="day";weekday=absolute
name name="days";weekday=absolute
name name="before";before=exclusive
name name="after";after=inclusive
name name="Lady Day";date=25.3
name name="Christmas";date=25.12
name name="Quadragesima";easter=-42
name name="Easter";easter=0
name name="Pentecost";easter=49
name name="Adventstart";form="5 sundays before Christmas"
name name="Advent Sunday";form="Sunday after Adventstart"
name name="Good Friday";form="Friday before Easter"
name name="Maundy Thursday";form="day before Good Friday"
name name="week after";first="1 day after *";

second="7 days after *"
exit name=english

read name=dummy
festival$1/Lady Day 1613
festival$2/Quadragesima 1613
festival$3/Maundy Thursday 1613
festival$4/Advent Sunday 1613
festival$5/3 days before Easter 1613
festival$6/The week after Pentecost 1994

6. Logical objects and knowledge bases 127

Once each of these files have been compiled in the correct order, i.e. dummy.mod,
dummy.cal and dummy.dat, a task like the one below can be run to see how κλειω
interprets these dates.

query name=dummy;part=:id
write
stop

Part of the result of this task would be as follows:

festival (1 = "1")
date 25.3.1613
id 1

festival (2 = "2")
date 12.5.1613
id 2

128 A Tutorial for κλειω: Part II

Chapter 7

More complex database
structures

7.1 Introduction to the probate database

For most of the remainder of this book, a different database will be used to demonstrate
some of the more interesting and specifically historical functions of κλειω. This database
is called probate and can be found on the tutorial disk. We recommend that you compile
this database now, while you read this introduction, as the compilation of this database
takes rather a long time.

The database is made up of a number of probate inventories and wills from the city of
Winchester in the early seventeenth century. They are dated between 1620 and 1626. This
is not the place to enlarge upon the importance of probate material for historical research;
there is a burgeoning literature on the subject, some of which is given at the end of this
chapter.

The importance of probate material is one reason for our choice of database. Another is
that it illustrates particularly well why one might want to use κλειω for a complex and rich
historical source which needs to be kept intact if one is to be able to do anything useful
with it. You will need to acquire a good understanding of the database in order to follow
the features of κλειω that are demonstrated later.

130 A Tutorial for κλειω: Part II

The structure of the database

The structure of the database is relatively straightforward:

Figure 7.1

The group datasource is made up of one element, refnum, which is an artificial identifier.
The groups inventory and will are subordinate to it.

The group inventory is made up of two elements, invref and invnum, which refer to the
Hampshire Record Office reference number for the inventory and the date on which the
inventory was made. The groups p, relp, total and loc are subordinate to it.

Thomas
Platziertes Bild

7. More complex database structures 131

The information group p (subordinate to inventory) contains data about the person who
owned the goods in the inventory. The elements within this group are status, firstname,
surname, occupation, house (name of), street, parish and town. The group prel is
subordinate to it.

The group prel contains data about the ‘relations’ of those people who owned the goods
listed in the inventory. Its elements are similar to those for the group p. No groups are
subordinate to this group.

The group relp contains data about other people mentioned in the inventory. This only
contains the names of the appraisers of the inventory. No groups are subordinate to this
group.

The group total contains data given in the inventory as the total worth of the goods and
chattels listed in the inventory. Beware of this as it is not always an accurate sum of all the
items listed in the inventory. No groups are subordinate to this group.

The group loc contains the physical location of the items given in the inventory. The
groups piece, list and subtotal are subordinate to this group.

The group piece refers to the individual items listed in the inventory. The elements
contained within this group are item, material, quality, form, colour, quantity and value.
item is the name of the property, material refers to what it is made of, quality to the size
or age (small, old, little etc.) of the item, form to the mode of production (turned chair,
joyned stool) and colour refers to the colour of the object. value contains data about the
value of the item. No groups are subordinate to this group.

The group list refers to a group of items with only one value. Often goods are listed in an
inventory as a list of items with a single value. The elements contained within this group
are the same as those for the group piece except that the element value has been
subordinated to a different group. The group plist is subordinate to this group.

The group subtotal contains information about the total given in the original inventory
which relates to the total value of the goods and chattels in that particular location.

The group plist contains a single element value, which refers to the value of the goods
in the previous list. No groups are subordinate to this group.

The group will contains the full text of the will of the same person who left an inventory.
The groups p and relp subordinate to this group contain similar elements to the groups
with the same name subordinate to the group inventory.

Before we start to look at this database there is one parameter within the .mod file of this
database that warrants our attention now.

132 A Tutorial for κλειω: Part II

7.1.1 The arbitrary=arbitrary= parameter

In the .mod file there is one parameter that has not yet been encountered:

part name=inventory;
arbitrary=p,relp,loc,total;
position=invref,invdat

This parameter appears in the same position as a part= parameter in a part directive.
It performs a similar function to the part= parameter but it releases the assumption that
all the groups listed in that parameter must occur in the same order. In the original
inventories these items do not always occur in the same order. In order to prevent κλειω
from misinterpreting the data the part= parameter must be replaced by the arbitary=
parameter.

An example from the database should demonstrate the effects of this parameter. Notice the
sequence in which the group names occur and compare this with an extract from the .mod
file shown below.

inventory$HRO1623A26\/2/20 Jan 1623
relp$ma/William/Marrilyent%Marryland////St Maurice/Winchester
relp$ai/Francis/Smith////St Maurice/Winchester
p$md/Thomas/Hayward////St Maurice/Winchester
loc$chamber over the Hale
list$standine bedsted///Joine worke//1
list$matts
list$cords
plist$13s 4d

part name=inventory;
arbitrary=p,relp,loc,total;
position=invref,invdat

7. More complex database structures 133

Exercises

Using the probate database do the following exercises:

Exercise 7.1

Count the contents of the element material.

Exercise 7.2

Select all objects in the database made out of wood and display all the elements which
describe them.

Exercise 7.3

What is the mean value of objects made out of wood?

Exercise 7.4

Count the number of occurrences of the word "old" (or variants)

7.2 Relationships between groups

We have demonstrated two ways of moving between groups, the back[] function (to
move back a determined number of groups) and the use of a subordinate group name (to
move forward one level). E.g.:

Example 7.1

query name=probate;part=p:surname
write part=prel:surname
stop

134 A Tutorial for κλειω: Part II

However, if one wanted to move forward more than one level of the hierarchy , for
example from datasource to p, we need to use a forward slash to indicate to κλειω which
path to follow through the database. E.g.:

Example 7.2

query name=probate;part=datasource
index part=:refnum;

part=inventory/p:surname
stop

The / indicates to κλειω which path to follow.

Similarly we could use it in conjunction with the back[] function, thus:

Example 7.3

query name=probate;part=relp
index part=:surname;

part=back[1]/p:surname
stop

Using the diagram of the hierarchy (page 130), discover what this does. κλειω is asked first
to go to all the groups called relp, then to print out in alphabetical order all the surnames
in that group, then to go back one group (to both will and inventory), to go forward one
group to p, and to display those surnames too.

We could specify that we only wanted to do this for the group will by asking:

Example 7.4

query name=probate;part=relp
index part=:surname;

part=back[will]/p:surname
stop

However, this result produces all the surnames of all the people in both of the groups
called relp. If we only wanted a list of all those people who were mentioned in the group
relp dependent on the group will we might ask:

Example 7.5

query name=probate;part=will/relp
index part=:surname;

part=back[1]/p:surname
stop

Exercises on moving between groups can be found in the next chapter.

7. More complex database structures 135

Further reading

There is a very large literature on probate records. The following literature represents only
a small fraction, but includes much written on computing and the analysis of inventories.

Collections of inventories and wills

It may be worth reading the introduction to any one of the following collections.

J. M. Beastall & D. V. Fowkes, ‘Chesterfield Wills and Inventories, 1521–1603’, Derbyshire
Record Society (1977).

P. C. D. Brears, ‘Yorkshire Probate Inventories, 1542–1689’, Yorkshire Archaeological Society
Record Series, 134 (1972).

J. S. W. Gibson (ed.), ‘Banbury Wills and Inventories, 1591–1620’, part 1, Banbury Historical
Society, 13 (1985).

J. A. Johnston, ‘Probate Inventories of Lincoln Citizens, 1661–1714’, Lincoln Record Society,
80 (1991).

M. A. Havinden, ‘Household and Farm Inventories in Oxfordshire, 1550–1590’, Oxford
Record Society, 44, and Historical Manuscripts Commission Joint Publication, 10
(1965).

H. C. F. Lansberry, ‘Sevenoaks Wills and Inventories in the Reign of Charles II’, Kent
Records, 25 (Maidstone, 1988).

J. S. Moore, The Goods and Chattels of our Forefathers: Frampton Cotterell and District Probate
Inventories, 1539–1804 (Phillimore, Chichester, 1976).

L. Munby, Life and Death in King’s Langley: Wills and Inventories, 1498–1659 (King’s Langley
Library, King’s Langley, 1981).

E. Roberts & K. Parker, ‘Southampton Probate Inventories, 1447–1575’, Southampton Records
Series, xxxiv and xxxv (1992).

F. W. Steer, ‘Farm and Cottage Inventories of Mid-Essex, 1635–1749’, Essex Record Office
Publications, 8 (Chelmsford, 1950 and revised edition, Phillimore, Chichester, 1965).

D. G. Vaisey, ‘Probate Inventories of Litchfield and District, 1568–1680’, Collections for a
History of Staffordshire, fourth series, 5 (1969).

136 A Tutorial for κλειω: Part II

General works on Probate Records

A. van der Woude & A. Schuurman (eds.), ‘Probate Inventories. A New Source for the
Historical Study of Wealth, Material Culture and Agricultural Development’, AAG
Bijdragen, 23 (1980).

P. Riden (ed.), Probate Records and the Local Community (Alan Sutton, Gloucester, 1985).

Computers and probate records

L. G. Carr & L. S. Walsh, ‘Inventories and the Analysis of Wealth and Consumption
Patterns in St. Mary’s County, Maryland, 1658–1777’, Historical Methods, 13 (1980),
pp. 81–104.

T. Grotum & T. Werner, Sämtlich Hab und Gut ... Die Analyse von Besitzstandslisten.
Halbgraue Reihe zur historischen Fachinformatik, A2 (St. Katharinen, 1989).

A. Hanson Jones, ‘Estimating the Wealth of the Living from a Probate Sample’, Journal of
Interdisciplinary History, 13 (1982), pp. 273–300.

T. J. King, ‘The Use of Computers for Storing Records in Historical Research’, Historical
Methods, 14 (1981), pp. 59–64.

M. Overton, ‘Computer Analysis of an Inconsistent Data Source: the Case of Probate
Inventories’, Journal of Historical Geography, 3 (1977), pp. 317–326.

M. Overton, ‘Estimating Crop Yields from Probate Inventories: an Example from East
Anglia, 1585-1735’, Journal of Economic History, 39 (1979), pp. 363–378.

M. Overton, ‘English Probate Inventories and the Measurement of Agricultural Change’,
AAG Bijdragen, 23 (1980).

M. Overton, ‘Computer Analysis of Probate Inventories: from Portable Micro to
Mainframe’, in History and Computing, eds. P. Denley and D. Hopkin (Manchester
University Press, Manchester, 1987).

M. Overton, ‘Computer Standardization of Probate Inventories’, in Standardisation et échange
des bases de données historiques, ed. J.-P. Genet (CNRS, Paris, 1988).

B. Pöttler, ‘Modelling Historical Data. Probate Inventories as a Source for the History of
Everyday Life’, in Storia & Multimedia, eds. F. Bocchi and P. Denley (Grafis Edizioni,
Bologna, forthcoming, 1994).

Chapter 8

Catalogues

8.1 Introduction

A catalogue as used by κλειω can be described as an index of locations, rather like an
index to a book. An index to a book contains a number of entries with a reference to the
page where those entries can be found. To use a book the reader will use the index to
speed up the process of finding out information. One does not read through a whole book
in order to find a small piece of information. A catalogue in κλειω performs a similar task.
The contents of each (or any) element can be sent to a catalogue, and κλειω will then add
to these terms a ‘pointer’ which directs it to that place in the database. This means that all
databases can be accessed much more quickly than sorting through the whole of the data
as the location of this information in the database can be found almost instantly.

As an example, consider asking κλειω to search for all the occurrences of a word in all of
the wills in the probate database. In order to complete this task, κλειω would have to go
through every word in the database to find the particular word. If this database was much
larger it would take a considerable amount of time to find that particular word. If on the
other hand a catalogue of all the words in all the wills was made first, κλειω would only
have to search through the catalogue to find the specified word, and, using the information
referring to the location of that word, go immediately to all the places in the database
where that word occurs. Thus the use of a catalogue considerably speeds up the querying
of a database especially for larger databases.

138 A Tutorial for κλειω: Part II

There is another important aspect to catalogues. The use of catalogues introduces us to the
menu-driven part of κλειω. Almost all your use of the menu system will depend on the
fact of your having previously created a catalogue or catalogues. This part of κλειω will
be touched on in this chapter, and will be consolidated in the following chapter. However,
the complete range of tasks that can be performed by the menu-driven system are not all
within the scope of this tutorial.

8.2 Creating a catalogue

The creation of a catalogue is an easy process. Consider the following task:

Exercise 8.1

query name=probate;part=:surname
index part=:surname
stop

This task produces a index of all the surnames found in the probate database for the user
to use. We have said that a catalogue is rather like an index, but for κλειω’s use. To create
a catalogue we need to use a task like this:

Exercise 8.2

query name=probate;part=:surname
I am interested in the database called probate and I am only interested in those
groups which contain the element surname.

catalogue part=:surname;name=people
With the contents of those elements called surname create a catalogue. This
catalogue should be called people.

stop

The result of this task may be disappointing. κλειω simply tells you that it has created a
catalogue without showing it to you. If you wanted to see what κλειω has made you could
run a task using the describe command:

Exercise 8.3

describe name=people;source=probate;usage=catalogue;
type=permanent

stop

8. Catalogues 139

Once you have created a catalogue it is a straightforward task to query it. Consider the
usual method of querying a database. Say we wanted to know all the details about those
people in the database probate with the surname Crosse. If we ran the following task κλειω
would search through the database sequentially to find all that information and then
display it on the screen.

Example 8.4

query name=probate;part=:surname="Crosse"
write part=:each[]
stop

If you run this task try timing it.

The next task should produce exactly the same results but use the catalogue to speed up
the enquiry process. Try timing this task too.

Example 8.5

query name=probate;part=catalogue[people,complete,"Crosse"]
write part=:each[]
stop

The three parts of the built-in function catalogue[] refer to the following information:

part=catalogue[people,complete,"Crosse"]
/ | \

name of catalogue to use how to look it up what to look up

The keyword complete here tells κλειω that the constant that follows it should be the
whole of the entry within the catalogue. If we had said:

part=catalogue[people,start,"Crosse"]

κλειω would have produced any entry within the catalogue with the string "Crosse" at the
beginning of an entry. Similarly the keyword limit can also be used in this position to
call all the entries which contain the following string at the end of a word.

One can also formulate a task which searches for more than one name at a time. Try
running the following task:

Example 8.6

query name=probate;
part=catalogue[people,complete,"’cowlson’ or ’crosse’"]

write part=:each[]
stop

140 A Tutorial for κλειω: Part II

Using the command language is not the only way to access a catalogue. Now that we have
a catalogue in place, it would be worth considering some of the basic features of the menu
driven system of κλειω. As we have said, not all of the features of this system will be
described in this tutorial.

8.3 Using the menu system

To enter the menu system, you need to type kleio at the DOS prompt.

Once you have done this, a menu similar to this should appear on the screen. We say
similar for two reasons; first, we cannot reproduce the colour of your screen in this book,
and second, we cannot effectively reproduce the highlighted areas on the screen. However,
we feel that you should have no difficulty in following what we demonstrate.

Kleio Version 5.1.1

Systematic processing of a database

Interactive processing of a database

Creating a new database

Using the ↑ and ↓ keys, move the highlighted bar down so that the line Interactive
Processing of a database is highlighted. Once you have done that activate that field
by pressing F1. This will bring up another menu, looking similar to this:

Interactive processing of databases

Processing a catalogue interactively

The field Processing a catalogue interactively will be highlighted. You should
activate this field by pressing F1. This will bring up another menu, which looks like this:

out-of-date

8. Catalogues 141

Direct search

Database:

Select the database

The field Database will be highlighted. The line at the bottom of this menu is a sort of
help message; it prompts you to do something. There will always be a line in the bottom
of a menu when it is necessary for you to do something other than activate the current
field. However, this message will remain on the screen even if you have already made a
decision. In this menu, you are prompted to choose a database. In this case, we have made
a catalogue with the database called probate. So type the word probate in that field. Then
press F1.

κλειω will then produce another menu, looking rather like this:

Direct search

Database: probate

Directory: people

Select the database

The highlighted bar will still be in the first field, but there will be an additional field, called
Directory. If you use the ↓ key the message in the help field will change to Choose the
directory for storing locations. Here κλειω is asking for the name of the
catalogue that you wish to use. As there is only one catalogue in existence for that
database, the entry peoplewill automatically appear there. Press F1 to activate that menu,
and κλειω will produce the following menu:

142 A Tutorial for κλειω: Part II

Search menu

Database : probate /Catalogue :people

Search term : "abraham"

Reference : No 1 of a total of: 1

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Activate the search term menu

This menu is usually used for searching full text material, but it is perfectly possible to use
it to search through other material within a database. As you enter this menu, the Search
term field should be highlighted. There should also be a term within that field. Look
through this menu. As you can see, it is saying that we are using the probate database and
the catalogue called people. Within that catalogue there is a term abraham, which occurs
once. Ignore the rest of this menu for the time being.

Keeping the highlighted bar on the Search Term, press either of the ← or → keys and
you will be moved to a list of terms contained in the catalogue.

Note that if you press F10 while you are in the menu-driven system you will frequently
get some assistance in the role of the function keys at that particular point in your session.

8. Catalogues 143

Search for words and terms

abraham (1)

aisley (2)

alderlie (1)

alin (1)

allen (2)

ashton (2)

baker (1)

barber (2)

barnard (1)

barnerd (2)

barnerds (1)

bawerstocke (1)

...

Select the terms you want to look at

This is not the complete menu. To save space a few lines have been left out. This menu,
however, contains a list of all the words or terms within the whole of the catalogue, with
their frequency on the right hand side. You can move up and down this menu using the
↑ and ↓ keys. You can also move up and down using the PgUp and PgDn keys. A third
way of looking through this list is to press the first letter of the word you want, followed
by the second. κλειω will move through the list to find the word you are looking for. Move
down this list to get to the term Crosse. Then press the Enter key. This should result in an
asterisk being placed next to that term. This signifies that that particular term has been
‘marked’. If you accidently mark something, position the highlighted bar on it again and
press Enter a further time. This will ‘unmark’ the term.

144 A Tutorial for κλειω: Part II

Search for words and terms

colsonn (1)

complin (2)

coward (2)

cowlson (1)

cropp (1)

cross (1)

* crosse (4)

curtes (1)

davis (3)

denham (2)

earle (3)

earlle (1)

...

Select the terms you want to look at

Once you have ‘marked’ the term Crosse with the use of the Enter key, press F1 which
should return you to the search menu. This will have changed to look as follows, and the
first reference field will be highlighted:

8. Catalogues 145

Search menu

Database : probate /Catalogue :people

Search term : "crosse"

Reference : No 1 of a total of: 4

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Choose the next textual reference

Now that κλειω has some results for you to see, press F1 which will take you to an output
screen. This should look something like this:

datasource (15 = "15") :
Crosse

Depending on the way in which the system that you are using has been configured, the
term Crosse will in some way be highlighted. If you have not changed the configuration
(refer to the notes distributed with the software) it will flash.

The information displayed here is not particularly exciting. This is because κλειω is only
displaying contents of the element surname where the surname is Crosse. However this
does tell us that there is a person called Crosse in the fifteenth document in the database.

To see the result of this task with some context, press F3. This will display slightly more
information, namely the whole of the group in which Crosse is the surname:

datasource (15 = "15") : relp (1 = "rel-1")
status appraiser, male
firstname James
surname Crosse

146 A Tutorial for κλειω: Part II

This is slightly more informative. You can press F3 to return to the original format of this
result, or press F5 to get a result which looks like this:

datasource (15 = "15") :
Crosse
**
datasource (15 = "15") : relp (1 = "rel-1")

status appraiser, male
firstname James
surname Crosse

Pressing F5 asks κλειω to display both formats of the result. The ‘other’ format of the result
is defined in the bottom section of the Search menu. In this case the other format is the
result of the same task with the element function :each[].

You can also ask κλειω to display information about the other people who have the
surname "Crosse" by pressing the PgDn key. This will move you along to the second
person in the database with that surname. A further press will move you to the third and
so on. If you press it a total of four times, you will be returned to the Search termmenu,
as there are only four people in the database with that surname.

The menu that you will see should look like this:

Search menu

Database : probate /Catalogue :people

Search term : "crosse"

Reference : No 4 of a total of: 4

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : both

Path : :each[];

Activate the search term menu

8. Catalogues 147

There is a slight change from the previous version of this menu. The reference field now
refers to the fourth occurrence of the term. If you move the highlighted bar to that field
and change that 4 to 2 and then press F1 you will get the details of the second person
called Crosse in the database. When there are a large number of entries in a catalogue, this
is often a quick way of navigating through the database. To return to the Search menu
press Esc.

Imagine that you wanted to see the records of all the people in the database who have a
surname like Colson. You should now be at the Search menu, in the Search term field.
Press either the → or ← key, to move you to the Search for words and terms menu,
and move down the menu to find the names that are like Colson. In this list there are three
names which look like Colson. In this menu notice that the name Crosse is no longer
highlighted. We will discuss this later. Move down to the three names similar to Colson
(Colson, Colsonn and Cowlson) and mark each of them by pressing the Enter key. When
you have done this, press the F1 key to return you to the Search term menu. It should
look like this:

Search menu

Database : probate /Catalogue :people

Search term : "colson" or "colsonn" or "cowlson"

Reference : No 1 of a total of: 3

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : both

Path : :each[];

Activate the search term menu

You can now look at the details of these people by pressing F1. There seem to be three
different Colsons John, Martin and William.

148 A Tutorial for κλειω: Part II

Earlier we remarked that when we returned to the Search for words and terms
menu, the surname Cross was no longer highlighted. This was because of the
Combination field in the Search menu. The default for this field is New list
replaces existing list. This means that once we return to the Search for words
and terms menu and instigate a new search, the old search terms have been lost. To
demonstrate the other possible ‘combinations’ available, return to the Search words and
terms list, select a name, say Colson again, return to the Search menu by pressing F1,
move the highlighted bar down to the combination field and press the → key. This should
result in the following:

Search menu

Database : probate /Catalogue :people

Search term : "colson"

Reference : No 1 of a total of: 1

Combination : Both old list and new list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : both

Path : :each[];

Activate the search term menu

Then move the highlighted bar back up to the Search form field, press → to go back to
the Search for words and terms menu and mark a different variation of the spelling
of Colson. Press F1 and return to the Search menu which should look like this:

8. Catalogues 149

Search menu

Database : probate /Catalogue :people

Search term : "colson" or "colsonn"

Reference : No 1 of a total of: 2

Combination : Both old list and new

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : both

Path : :each[];

Activate the search term menu

Notice that by changing the combination you can ask κλειω to produce conditions. In this
case using the Both old list and new list option causes κλειω to operate as though
each list of terms is linked by an ‘or’ operator. If you move down to the combination field
again and use the → key, you will see that there are a total of four different operations that
can be performed. We have seen two. The other two, Textual references common to
both lists and textual references in old list but not in new list, are
used to represent the conditions ‘and’ and ‘not’ respectively.

With the catalogue that we have at the moment, however, the ‘and’ operator is useless as
none of the entries in the elements contain more than a single word.

We suggest that before you move on you should play with what we have already
demonstrated.

Before returning to the command driven part of κλειω we shall demonstrate a couple of
the other features of the menu-driven system.

Pressing the Esc key a few times should return you to the DOS prompt. Re-enter the menu
system, interactively process the catalogue people again and return to the Search menu.
Then move to the Search for words and terms menu (by pressing → on the Search
term field in the Search menu). Choose three or four different names and mark them by
pressing Enter. Press F1 to return to the Search menu and F1 again to see the results of

150 A Tutorial for κλειω: Part II

your task. If you wanted to send these results to another file so that you could look at
them together rather than singly on the screen, press F2 when you have some result on the
screen. (We suggest that you press F5 before pressing F2.) Once you have pressed F2 you
should get a menu which looks rather like this:

Data Output

Output file : result.lis

Number : 1

Replace : Save

Print file : No

Please enter the name of your output file

If you were to press F1 now (please don’t!), κλειω would produce an output file called
result.lis which contained one reference without adding page breaks. Each of these fields
can be changed. For instance if you have more than one reference in the database that you
wish to save you should move to the number field and alter the number. You can ask
κλειω to output more entries than you have, so if you are unable to remember the total
number of entries that you have it is perfectly possible to ask for a much larger number.
The replace field has two other possible answers, overwrite and extend. Overwrite
tells κλειω to overwrite a file that already has the same name as the file you intend to save
your list to, and extend will add your list to the end of a file which you have already
created. The print file field allows the keywords yes and no. yes inserts a special form
feed character which will cause almost all printers to start a new page.

When you are ready to create the output file, press F1 and it will be made. Leave κλειω
and edit the file you have created.

Now that we have covered some of the easier points of using the menu-driven system, we
shall create another catalogue containing different material from the same database.

8.4 Creating further catalogues

The probate database contains almost 1700 entries found in the element item. To keep an
overview of all these terms would be very hard if it had to be done ‘manually’. This
section introduces new ways to organise these terms using a catalogue.

A catalogue of all the items in the database can be created like this:

8. Catalogues 151

query name=probate;part=:item
catalogue name=objects;part=:item
stop

That task makes a catalogue of all the words in the element item of the database, not all
the entries. By default κλειω assumes that catalogues are used for full-text analysis, so a
further parameter must be used to ensure that terms found in the database are catalogued
rather than just the words. This parameter is type= and should have the keyword terms
as a value. For example:

brewing vates type=words (default)

brewing vates type=terms

If have already created a catalogue using the task above, the following task will not work.

Example 8.7

query name=probate;part=:item
catalogue name=objects;part=:item;type=terms
stop

This is because a catalogue called objects already exists. There are two solutions to this
problem; either to change the name of the new catalogue or to add an overwrite=yes
parameter to the end of the catalogue directive, as follows:

query name=probate;part=:item
catalogue name=objects;part=:item;type=terms;overwrite=yes
stop

The parameter overwrite= is a general parameter which can be used in a variety of
places. This parameter will be used increasingly in different places. Remember the basic
principle that κλειω will not overwrite anything unless it is specifically told to.

The catalogue[] group function can now be used to query this catalogue.

152 A Tutorial for κλειω: Part II

Exercises

Exercise 8.1

Formulate a command which looks in the catalogue objects for the term "beere" and
displays each element belonging to the same group.

If you were interested in the terms in the database that refered to brewing equipment, you
would find that there are many more terms than just those which contain the string
"beere". (Forget for a moment that you have read about the menu-driven system.)

The following command might start to help but as there would be no perfect match on the
word "brewing" the keyword complete would have to be changed to starts, which
gives all the terms beginning with "brewing".

query name=probate;part=catalogue[objects,starts,"brewing"]
write part=:each[]
stop

Exercise 8.2

Which people left brewing equipment when they died? (Do not display information
relating to the equipment for the time being.) Look at the diagram displaying the hierarchy
of the database.

Exercise 8.3

Modify the above task to make an index of the brewing equipment, followed by the names
of the people who owned them. E.g.

brewing fate Guy Thomas 22

8. Catalogues 153

8.5 The group function root[]root[]

With this database, the task in exercise 8.3 works because the groups piece and list, which
both contain the element item are both one group lower in the hierarchy than the group
p. If the bottom of the database were changed to this (with everything else the same as
before):

Figure 8.1

and the group qlist also contained the element item, κλειω would not be able to produce
information about the entries in p relating to those items in qlist using the same task given
above. Why not? Because to move back two levels in the hierarchy from list would be the
equivalent of moving back to the group inventory, and the forward slash would move us
down one level from there to the group p (as specified). In the case of qlist, to go back two
levels would take us to the group loc, but there is no group called p down the hierarchy
from loc. This means that a command which moves us to an absolute level rather than a
relative level is needed. It would be possible (if qlist existed in the database) to represent
the task shown in Exercise 8.2 as follows:

Example 8.8

query name=probate;part=catalogue[objects,starts,"brewing"]
write part=back[2]/p:each[],back[3]/p:each[]
stop

Thomas
Platziertes Bild

154 A Tutorial for κλειω: Part II

But this would be a rather inelegant way of solving this problem. It would be much better
to use the group function root[] to refer to absolute levels in the database rather than
relative levels as shown above.

Look at the diagram showing the hierarchy of the whole database. On the left hand side
is a list of levels. Every single database in κλειω has these levels built in. In this database
the groups list and piece are both found on level 3 of the database and p is found on level
2. To get from list to p in the database it would be possible to go back (using back[]) and
then down one level. One could also go directly to level 1 of the database and then down
one level to p using root[].

Thus in the probate database these selected groups the following uses of back[] and
root[] relate to other groups.

group corresponds to

list back[3] datasource
list back[2] inventory
list root[2] loc
list back[1] loc
list root[1] inventory
list root[0] datasource

loc back[3] not defined
loc back[2] datasource
loc root[2] loc
loc back[1] inventory
loc root[1] inventory
loc root[0] datasource

Thus the following task might replace the task shown in Exercise 8.2:

Example 8.9

query name=probate;part=catalogue[objects,starts,"brewing"]
write part=root[1]/p:each[]
stop

Exercise 8.4

Create a register of people owning brewing equipment, displaying the surname in the first
column and the first name in the second. Do not include any information about the
equipment itself. Use the group function root[].

156 A Tutorial for κλειω: Part II

The correct solution to the problem is:

query name=probate;part=catalogue[objects,starts,"brewing"]
index part=root[1]/p:surname;

part=:firstname
stop

A common misunderstanding with the root[] function might have led you to use the
following line in your task:

index part=root[2]/p:surname;

This line is wrong because it is necessary to move all the way to the first level of the
database and then down one level to p. That command would ask κλειω to go to the
second level of the database and then down one level to the group p. As there are no
groups called p in the third level of the database, κλειω would create a list with no items
in it.

Secondly, the second line of the task should not read:

index part=root[1]/p:surname,:firstname

as it would not produce the first given name of any individual. It would work if the
index command was replaced by the write command, but this would not sort the
individuals alphabetically.

Thirdly, it would be unnecessary to write the whole of the index command thus:

index part=root[1]/p:surname;
part=root[1]/p:firstname

because root[1]/p:firstname only reinvokes the previous part=root[1]/p: part of
the parameter. κλειω assumes that the user wishes to stay in the same group that is
currently being accessed. Thus once in the group p (on the second level of the database),
κλειω assumes that the next part= parameter refers to the same group unless instructed
otherwise.

8. Catalogues 157

8.6 Creating a reference list

We will now return briefly to the menu-driven system. Enter the system and interactively
process the catalogue called objects, which should appear first on the menu. (If you wanted
to use the people catalogue again with the menu-driven system, you should toggle on the
directory field (using the → key) until the people catalogue appears.) Then get to the
search menu and on to the list of terms and words. Select all the terms relating to brewing
(e.g. "malte", "barlie", "beare", "beere", and terms beginning with "brewing(e)", "bruing(e)"
and "brueing(e)". When you have selected all these return to the search menu. Move to the
field below the line Settings for searching for stored reference lists. This
field, entitled ref. list, tells κλειω that you want to save a reference list (i.e. a list of search
terms). Once the highlighted bar is on the Save message, press F1. The following menu
should appear:

Name list of references

Ref list:

Please enter a name for your list of references

The field in the middle should be highlighted. Enter a name for your list of references. You
might try brewingequip. (As this is not a DOS-limited name, it can be more than eight
characters long.) Then press F1 to save these search terms.

A message will appear on the screen telling you that κλειω has performed this task. You
will need to press ESC to acknowledge this.

Now exit the menu-driven system by pressing ESC as many times as is necessary to take
you back to the DOS prompt, and then return to the menu-driven system and proceed as
before until you get to the Search menu.

Then move down to the Ref. list field and toggle on the entry (using the → key) until the
word Load appears in this field. The menu should now look like this:

158 A Tutorial for κλειω: Part II

Search menu

Database : probate /Catalogue :people

Search term : "3 leaved sheet"

Reference : No 1 of a total of: 1

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Load

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Activate the search term menu

Press F1 to activate this menu, and a new menu will appear:

Select reference list

Ref list:

Select a reference list

The field entitled Ref. list should have the name of the reference list that you saved. If you
then press F1 to activate this menu, you will be returned to the search menu with your old
search term in place.

This function is particularly important to users doing analysis on full text where it might
take a great deal of experimentation to get all the search terms wanted. This function
allows one to fine-tune any task and build up complex search patterns.

8. Catalogues 159

8.6.1 The group function keyword[]keyword[]

A reference list created with the menu-driven system can also be used in the command-
driven version of κλειω using the keyword[] built-in function. This is useful when one
is interrogating a section of a catalogue, though when one is interrogating the whole
corpus of a text it is more effective to use the menu-driven system.

The built-in function keyword[] must contain two keywords within its square brackets.
The first must refer to the name of a catalogue relating to the database named in the
name= parameter of a query command; the second must refer to a list of references
created in the menu-driven system.

Example 8.10

query name=probate;part=keyword[objects,brewingequip]
write part=:each[],root[1]/p:each[]
stop

This produces a result like this:

datasource (2 = "2") : list (2 = "lis-2")
item beere

datasource (2 = "2") : p (1 = "p-1")
status dead, male
firstname Thomas
surname Stobbington
parish St Johns in the Socke

This reference list is part of the logical object called objects. It is possible to design a new
reference list without using the menu-driven system, but this process can be rather
cumbersome as it is necessary to type out all of the names of the entries that you want to
make part of that new reference list. The format for creating a reference list is shown in
the task below:

Example 8.11

item name=objects;usage=catalogue;source=probate;
type=permanent

keyword name=spices;form="anneseed" or "anneseede"
or "bollarmericke" or "carawaye seede" or "case
nuttmegges" or "case peper" or "cenimon seede"
or "licorishe" or "mace" or "muster seede" or "salt"
or "salte" or "sinimon"

exit name=objects

160 A Tutorial for κλειω: Part II

This is not an exhaustive list of all the spices in the probate database, but the problems
involved in making this type of list should demonstrate the benefits of using the menu
system for this sort of problem.

Example 8.12

query name=probate;part=keyword[objects,spices]
write part=:each,root[1]/p:surname
stop

8.7 Fine-tuning a task in the menu system

To give a little more idea of what the menu-driven system can do, let us try and repeat the
task performed in Exercise 8.4, adding some further information.

The task in Exercise 8.4 asked for the surnames and first names of all those people who
owned brewing equipment. In the following task we shall attempt to get the same
information together with information about the goods that they possessed.

Leave the menu system and return to it. If you have saved a list of all the search terms
which contain information about brewing equipment, load it again. (There should be
around 28 terms.)

Your Search term menu should look like this:

out-of-date

8. Catalogues 161

Search menu

Database : probate /Catalogue :people

Search term : ’"beare" or "beare vessells" or "beere" or "b....

Reference : No 1 of a total of: 28

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Load

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Activate the search term menu

Press F1 to see the information, then press F5 to see both the information and the
structured output. Return back to the Search menu (by pressing Esc).

Your Search menu should now look like this:

162 A Tutorial for κλειω: Part II

Search menu

Database : probate /Catalogue :people

Search term : ’"beare" or "beare vessells" or "beere" or "b....

Reference : No 1 of a total of: 28

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Load

Search context and conditions

Settings for structured output

Display : both

Path : :each[];

Activate the search term menu

Notice that the contents of the display field has changed to both. If you move the
highlighted bar down to that field and toggle (using the → key) you will see that you are
allowed to choose the following terms:

• text default output (the contents in the catalogue)

• structure ‘structured output’ (based on the rules shown below)

• both both textual and structured output

Return to the output screen, so that you have both displayed.

Move down to the path field. Activate it by pressing the → key. Your menu should look
like this:

8. Catalogues 163

Activate the path definition menu

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 1

Describe an access operation

You can fill in this menu to allow you to access parts of the database other than the
catalogue with which you have been working. This particular menu allows you to define
a path in exactly the same way as you would after a write command. At first, however,
you will find this method of specifying paths much more complicated than using the
command system, but after time and with a fuller knowledge of κλειω some of the benefits
of using the menu-driven system will become apparent.

Let us use this menu to add the first path. Let us start by adding the path :each[], which
you should remember as an element function which stipulates all the elements within the
last group that we specified. As κλειω is using the catalogue as the last group that we
specified, we would use the :each[] element function to find out about all the other
characteristics about that item. To add this element function to this menu, start by pressing
F5 (which is the key to select element functions). This will produce a menu like this:

164 A Tutorial for κλειω: Part II

Select an element function

Selecting entries

Selecting aspects

Selecting elements

Selecting parts of entries

Defining constants

Converting on the basis of declarations/rules for computing

Converting on the basis of codebooks

Selecting/converting data types

Properties of the elements

Properties of the group

This menu may seem rather daunting at first. Do not be put off by it. Think about what
the :each[] function represents. It represents the set of all elements within a previously
specified group. Therefore, move the bar down to selecting elements and activate it
by pressing F1.

This produces another menu:

Select an element function

All elements in a group

All elements in and dependent on a group

Elements with the same name, regardless of structure

Selection of elements in a group, regardless of name

As we want to have all the elements within the group in which the catalogue entry is
found, we must keep the highlighted bar on the first field and press F1. A further menu
will appear:

Function definition

All elements in a group

(Empty) :

This function has no parameters

8. Catalogues 165

This tells us that the :each[] function has no parameters, therefore we need add nothing,
and F1 can be pressed again. This should return us to the path definition menu which now
looks like this:

Activate the path definition menu

Step : :each[]

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 1

Describe an access operation

We have now made the first of our path definitions. Press F7 to move to a second path
definition menu. This should look like this:

166 A Tutorial for κλειω: Part II

Activate the path definition menu

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 2

Describe an access operation

In this path we want to tell κλειω to go back to the top of the hierarchy of the database,
then move down to the group p and produce the surnames of that group. In the command
language this would be expressed like this:

/root[1]/p:surname

Start by pressing F4. This brings up a menu which allows us to invoke a group function:

Select an group function

General group accesses

Access via catalogues

Equal ranking/groups with the same name

Dependent groups

Higher-ranking groups

As the group p is a higher-ranking group than the groups which contain the element item,
we need to activate the higher-ranking groups field. Move the cursor to the appropriate
field and press F1. A further menu appears:

8. Catalogues 167

Select a group function

The next highest-ranking group

A higher-ranking group: counting from the document level

A higher-ranking group: counting from level of current group

As the element item is in two different groups we can only use the root[] function.
Therefore activate the field containing the text A higher-ranking group: counting
from document level. A further menu appears:

Function definition

A higher-ranking group: counting from document level

Number : 0

Enter the required number

Here, as in the command system, we need to specify at which level of the hierarchy of the
database we want κλειω to leave us. In this case it is the first level. So enter 1, in the
Number field and activate this menu by pressing F1.

Look at the path definition menu. It has changed. There are two other parts to this path.
First, press F2 to select a group. This will produce a menu of all the available groups in
the database. However, κλειω does not know which groups would be acceptable from the
position in the database that you will be left in after the root[1] function has been
performed, so ensure that you know the structure of the database you are using when you
attempt this. An error can leave κλειω very confused and mess up the task on which you
are working.

Move down this menu until you reach the group p. Select it by pressing F1. You will be
returned to the path definition menu. Notice how it has changed.

Now press F3. This will allow you to select an element. A menu will appear containing all
the elements in the database probate. Choose the element surname, and then press F1.
Your path definition menu should now look like this:

168 A Tutorial for κλειω: Part II

Activate the path definition menu

Step : /root[1]

Step : /p

Step : :surname

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 2

Describe an access operation

To get the first name of this person as well, we need to specify the element firstname.
Press F7 to define a third path. A new path definition menu should appear. Press F3 to
produce a list of all the elements in the database again. This time choose firstname. Press
F1 to select this element. Remember we do not need to specify the root[] function or the
group p a second time as κλειω is already working at that group level.

This should produce a third path menu which looks like this:

8. Catalogues 169

Activate the path definition menu

Step : :firstname

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 3

Describe an access operation

Now press F1 a further time to activate these three paths that you have defined. This will
produce a search menu that looks like this:

170 A Tutorial for κλειω: Part II

Search menu

Database : probate /Catalogue :people

Search form : ’"beare" or "beare vessells" or "beere" or "b....

Reference : No 1 of a total of: 28

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Load

Search context and conditions

Settings for structured output

Display : both

Path : :each[],/root[1]/p:surname,:firstname

Activate the search term menu

If you press F1 again you should see some results.

datasource (31 = "31") :
mollt

**

datasource (31 = "31") : piece (3 = "pie-3")
quantity
original vi Boshells
value 144.000000
item mollt

datasource (31 = "31") : surname Earlle
datasource (31 = "31") : firstname Edman

This is just one example of the items retrieved from the database. The top half is the part
generated directly from the catalogue, the second half is the information taken from the
whole of the database (as we defined with the path definitions). If you do not see all this
output, press F5 to see the material produce from the paths you have defined.

As you will have noticed, a large number of features have been touched on but not
described. Once you are fairly familiar with the command system of κλειω most of the
functions of the menu-driven system will be moderately clear. We suggest trial and error

8. Catalogues 171

as the best way to find your way through it, but once you have the confidence gained by
using a database containing your own material, performing simple queries should make
using the menu system a much more pleasant task.

Conclusion

There are three main uses of catalogues in κλειω:

• to speed up the querying process

• to facilitate full-text queries

• to categorise information (also known as ‘keywording’).

When you are using the material from the probate database, catalogues could be very
important looking up categories of household items. If one were studying clothes or dyeing
or cheese manufacture, a catalogue relating to each of those areas could easily be made to
facilitate analysis. However, if one wanted to relate all of the items within a household to
an area, catalogues might be an unwieldy way of managing this. The solution to this is to
create a codebook which allows the user to designate a code to every item found in the
database in order to amalgamate them. A codebook is rather like a look-up table in
traditional data processing. The codebook allows one to categorise all the materials in the
database rather than just a selection of terms created interactively.

Exercise 8.5

Create an index from the probate database with four columns:

<relp:surname> <p:surname> <relp:firstname> <p:firstname>

Many people occur more than once. Why? How can this be solved? The solution can be
found but it contains one item that has not yet been explicitly discussed! See the answers
at the end of this book.

Chapter 9

Interactive text processing

9.1 Introduction

This chapter follows up the work done in the previous chapter. It adds to the
understanding gained there of interactive processing of a catalogue. However, in this
chapter we will be dealing with the interactive processing of full text rather than the
processing of simpler material. In the probate database there are a number of wills or
testaments which relate to the same people who had inventories made of their goods and
chattels after death. It is this material that we shall be considering in this chapter.

We should also mention that there is very little more to say about the processing of full
text with κλειω, as κλειω processes most data in a similar fashion. Therefore whatever we
have already said about processing structured textual information with a catalogue also
holds for fuller text.

out-of-date

172 A Tutorial for κλειω: Part II

9.2 Cataloguing words

In order to process full text effectively, it is necessary to create a catalogue of all the terms
in the database in order to use the menu-driven system to achieve some results.

As we saw in the last chapter, the method of creating a catalogue is easy. In this case we
want to make a catalogue of all the words in the wills in the probate database. The
following task will do this:

Example 9.1

query name=probate;part=:contents
catalogue name=text;part=:contents;type=words
stop

However, what you have not seen yet is the part of the .mod file which refers to the
structure of the probate database. Within that file is a logical object which refers to the way
in which κλειω is asked to handle data of text type:

item name=willmaterial;usage=text
signs part=".?!";without=no
exit name=willmaterial

There is of course also an element directive which links this with the element called
contents:

element name=contents;type=text;text=willmaterial

This logical object is necessary as it tells κλειω to understand the text in the database as
text type data. The signs directive is the only directive used within a text definition.
This directive is used to tell κλειω how to treat different characters which might be found
within the text. The main parameter used within this directive is the part= parameter, the
contents of which define to κλειω which character(s) which are used to define entry
separators. By default κλειω only accepts the semi-colon (";") as an entry separator, but
when using large blocks of text it is wise to define other characters as potential entry
separators. Within the part= parameter above the characters "?", "!" and "." have been
defined as entry separators as these are the usual end of sentence characters. The
parameter without=no has been added to tell κλειω to include these characters within the
core information of the database. By default, κλειω does not include entry separators into
the core information of the database. In this case, as these symbols are vital pieces of
punctuation we ask κλειω to include them in the database. (There are other parameters
which can be added to a text definition: see the Reference Manual, Section 7.3.1.2.)

9. Interactive text processing 173

9.3 Text processing

If you have run the task at the beginning of this chapter, you should have a catalogue
called text in operation and ready for processing using the interactive processing of a
catalogue feature of the menu system.

Enter the menu system, as usual by typing kleio at the DOS prompt. This should bring
you to a menu. Select interactive processing of a database and press F1.

Kleio Version 5.1.1

Systematic processing of a database

Interactive processing of a database

Creating a new database

This will bring up a further menu:

Interactive processing of databases

Processing a catalogue interactively

As in the last chapter, press F1 a further time to bring up this menu:

Direct search

Database:

Select the database

and type probate in the highlighted box. Then F1 to activate this menu. κλειω will
produce a further menu with the names of all the possible catalogues available for this
database. Using the cursor keys (← and →), toggle until you reach the catalogue you have
just created. This should be called text. Activate this choice by pressing F1 a further time.
A search menu should appear:

174 A Tutorial for κλειω: Part II

Search menu

Database : probate /Catalogue :text

Search form : &

Reference : No 1 of a total of: 289

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Activate the search term menu

If you have just worked through the last chapter this should be rather familiar.

9. Interactive text processing 175

Search for words and terms

& (289)

&c (4)

&legacies (1)

- (2)

0 (15)

10 (4)

11 (1)

12 (2)

14 (2)

16 (3)

1615 (1)

1616 (1)

...

Select the terms you want to look at

This is not the most fascinating display, but if you scroll down this menu, using the ↓ key
or the PgDn key, you should find material that looks more interesting. You can select
material from this menu in exactly the same way as you selected material in the last
chapter. For example if you wanted to see how the word "trinity" was used in these wills
you could select the terms "trinity", "trenitie", "trinite", "trinitie", by pressing the enter key
when on those particular terms (thus marking them all with an asterisk), and pressing F1
twice, the first time to return you to the Search menu and the second time so you can see
the result of the task.

The result should look something like this:

datasource (4 = "4") :

First I give and bequeath my soule to Allmightie god my maker, & to Jesus christ my redeemer And
to god ye holy goste my Sanctifier, & my bodie to be buried in the Trinitie Litten by my first wife.

If you look through the results of this task you would find that "trinity" is used in two
ways in these documents, first as the Church of the Holy Trinity and secondly as the name
given to the Father, the Son and the Holy Ghost.

The potential for searching full text as made by a catalogue is similar to the method
described in the previous chapter. For further details we would refer you there.

176 A Tutorial for κλειω: Part II

A final example. Let us assume that we are interested in the amount of money left by a
person in their will to a church and the total value of goods they left (as given in their
inventory). We could formulate a task which would give us this information.

First, using the Search menu, search for all the occurrences of the word "church" and
"churche". Your menu should look like this:

Search menu

Database : probate /Catalogue :text

Search form : ’"church" or "churche"’

Reference : No 1 of a total of: 27

Combination : New list replaces existing list

Access path : By form

Settings for searching for stored reference lists

Ref. list : Save

Search context and conditions

Settings for structured output

Display : text

Path : :each[];

Activate the search term menu

Move down this menu until the highlighted bar is positioned over the path menu. Then
press either the right or left arrow keys to activate this menu. This will produce a menu
like this:

9. Interactive text processing 177

Activate the path definition menu

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 1

Describe an access operation

This will allow us to access other material from the database probate. In this case we need
to describe a path which tells κλειω to go to the highest level of the database, then down
two groups to the group total, and then to display the contents of the element value. We
can also ask for the first name and surname of the individual involved. In κλειω’s
command language this query would look like this:

write part=root[0]/inventory/total:value,
back[1]/p:surname,:fname

In order to reproduce this in terms that the menu system can understand, first press F4 to
select a group function. This will produce a menu asking you to select a group function.
Move down this menu until the highlighted bar is on higher-ranking groups, press
F1; another menu will appear. This time move to A higher ranking group:
counting from document level. Press F1 again. The resulting menu will ask you to
which level you wish to move down. Here you can press F1 as 0 is the correct value for
this example. This should return you to the path definition menu. Then press F2 to select
a group. Select inventory from this menu by pressing F1. Then press F2 again and select
total. Then press F3 (to select an element) and select value. Press F1 to activate this. This
should return you to the path menu. It should now look like this:

178 A Tutorial for κλειω: Part II

Activate the path definition menu

Step : /root[0]

Step : /inventory

Step : /total

Step : :value

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Step :

Subpath 1

Describe an access operation

This should complete the definition of the first path that we want to have output. There
are two others.

Press F7 to define a second path. There are three stages to the second path:

• Press F4 to select a group function. Then select a higher ranking group from the
current level. Going back one level will be sufficient (so you can just press F1
to accept this).

• Press F2 to insert a group. Select p.

• Press F3 to insert an element. Select :surname.

The third path is even easier to define. Press F7 to add a path, then press F3 to insert an
element to this path. Select :firstname.

You should now have successfully defined three paths. Press F1 to return to the search
menu. The path field should now contain the following entry.

/root[0]/inventory/total:value,/back[1]/p:sur...

Now move the cursor to the display field and toggle (with the right and left arrow keys)
until this field contains the term both. Then press F1.

9. Interactive text processing 179

This should bring you to the results of your task. The first one is not particularly revealing
as it looks as though Thomas Stubbington left no money to the church. However, if you
press PgDn to move you to the next result, you should get the following output:

datasource (2 = "2") :
Inp[r]imis first I geve to the p[ar]ishe Churche of St Johns xiid. lykwise to the poore of the same
p[ar]ishe xiid.

**

datasource (2 = "2") : value 13234.000000
datasource (2 = "2") : surname Stobbington
datasource (2 = "2") : firstname Thomas

This tells us that Stubbington left twelve pence to the parish church of St John and left a
total of over thirteen thousand pence (i.e. a total of over 55 pounds).

You may find it interesting to look through the result to see if there is any correlation
between the value of goods left and the amount left to individual churches.

Exercise 9.1

Try to find out if there are any discrepancies between gifts of made out of silver in wills
and items made of silver mentioned in the inventories of individuals. For example, in her
will Mary Fielder leaves a "silver Cupp" to her nephew William Blunt. See if you can find
out whether this item is in the inventory of her goods and chattels.

As this exercise is open-ended, no answer is given! However, it is best solved using both
the menu driven system and the command system.

180 A Tutorial for κλειω: Part II

Chapter 10

Codebooks

10.1 Introduction

A codebook in κλειω is a ‘translation’ table which makes it possible to translate any
number of alphanumeric identifiers, e.g. bricklayer, female or plough, into any number of
numeric values. The term codebook in κλειω might be defined as a look-up table or a
coding table. This form of construction is vitally important in historical computing, and this
is just as true when one is using κλειω. Frequent mention has been made in this volume
of κλειω as a source-oriented data processor, which we have said implies that the source
material is to be input in a form which is as close as possible to the original. The debate
in historical computing about the pre- and post- coding of historical material has run for
as long as historical computing has been a discipline. The main argument in favour of
post-coding is that an individual’s interpretation of a category (say, occupation) might
change over time, and if material had been coded before data had been entered it would
be very difficult to uncode it. (This is not the place to describe this debate; suffice it to say
that there is a large range of literature on the subject, for which we refer you to the further
reading at the end of this chapter.) However, all historians would probably agree that some
form of categorisation of material is necessary to perform effective subsequent analysis. For
instance, consider the probate database we have been using. If we wanted to compare the
contents of one person’s house with that of another, the results would not be satisfactory
if we kept strictly to the original terms.

In the case of the probate database there are a large number of different items. If we
wanted to learn something about the total value of a class of object owned by each of the
individuals in the database, say for example agricultural equipment, we would have to

182 A Tutorial for κλειω: Part II

search through the database, probably using the menu-driven system to find all
occurrences of agricultural equipment in the inventories and calculate by hand the total
value of the items we considered to fall into our category of agricultural equipment for
each person. Using a codebook would relieve us of having to do that.

This chapter falls into two parts. The first will describe some of the simpler principles of
creating codebooks, while the second will demonstrate the possibilities of outputting
material from codebooks into a format that a statistical package can understand. As we
have seen, κλειω has not been designed to handle complex statistical material itself, but
it does provide an easy way of producing statistical material and outputting it in a format
that can be understood by the two most popular social science statistical packages.

10.2 Creating a codebook

There are two methods to create a codebook. The first and simplest is to create one
implicitly using the create command. This method will be described first. The other
method is to create a codebook explicitly by defining a logical object which describes the
contents of a codebook. The second method is the more usual method especially where
there are a large number of items or codes to be entered into the codebook.

Creating a codebook is very similar to creating a catalogue. As they are both logical objects
(and are handled separately), it is possible for both a codebook and a catalogue relating
to the same database to have the same name. In this case we will create a codebook using
the same items from the probate database that we used to make a catalogue. This
codebook will be called objects.

When you run this ensure that you send the results to a file as it will be over 6700 lines
long. When this task has run successfully, a codebook called objects will have been created.

Example 10.1

query name=probate;part=:item
create name=objects;part=:item;repeat=yes;write=yes
stop

The create command is used to generate codebooks. It must be followed by a name=
parameter which takes as a value a user-defined name for the codebook. In this example
the name of the codebook is objects. The create command must also be followed by a
part= parameter which expects a list of paths as a value. Usually this is just a single
element, and in this case it takes the element item from the probate database.

10. Codebooks 183

For the time being the other two parameters in this command can be ignored; they will
both be explained shortly. Neither is needed to create a codebook; they are inserted here
to modify the result of this task to make it easier to understand some of the principles of
codebooks.

The first part of the result produces information in a similar format to this:

andirons 1 16 (3 times) 18 19 (2 times)
22 26 (5 times) 27 33 (3 times) 5 6

(19 times)

This means that the term andirons occurs once in document 1, three times in document
number 16, once in document number 18 (and in numbers 22, 27, 5 and 6), twice in
document number 19, five times in document number 26 and again three times in
document number 33. The word andirons occurs a total of 19 times in the database as an
item. The layout of this result is caused by the write=yes parameter which asks the
system to produce a report of what is in the codebook. Scroll down the result file (or use
the search facility on the word kleio in your screen editor) to see the result of the
repeat=yes parameter, which asks κλειω to produce a description of the codebook’s
contents with the codes allocated by κλειω. The result should look like this:

kleio system

a parrell 10.00 *
a white horse of wood 20.00 *
alblades 30.00 *
all the lumber 40.00 *
alle halfes 50.00 *

This demonstrates graphically exactly what a codebook is. It is a table with one column
containing a term from the source and a number of columns containing coding variables.
This means that in each column there is an independent coding system. In this example
there is only one coding system in operation that defined by κλειω, which relates to the
column headed kleio. The other possible coding variable is called system (which
currently contains no values). κλειω allows the user to define as many different coding
systems as necessary for any selection of data. This could be particularly useful when using
a coding system to define occupations. When dealing with occupations it might be useful
to code both the occupational classification and social class (two different dimensions).

There are further parameters available to use with the create command. The most
important is overwrite=, which allows you to tell κλειω to overwrite an existing
codebook.

184 A Tutorial for κλειω: Part II

10.3 Searching the codebook

Try running the following task which will produce all the information about items starting
with the word brewing (i.e. items with a numerical code between 2210 and 2270 inclusive).

Example 10.2

query name=probate;part=:codebook[:item,kleio,objects]=
"2210" greater equal and "2270" less equal

write part=:item,:codebook[:item,kleio,objects],
:form["next item"],:lines[2]

stop

This task introduces the element function :codebook[], which is essentially a function
to convert numerical information into textual information. It allows one to access textual
information in a database using the numerical codes defined in the codebook.

The function is usually defined as follows:

part=:codebook[:item,kleio,objects]
/ | \

element name of name of
specification coding codebook

system

If this parameter were used in a task it would produce all the items from the database that
are in the codebook. Particular items can be specified by adding a condition to this
function.

part=:codebook[:item,kleio,objects]="340"

would return all the items from the database that have the numerical code of 340 in the
coding variable called kleio.

Returning to the task above this may be translated as follows:

query name=probate;
I am interested in a database called probate.

part=:codebook[:item,kleio,objects]="2210" greater equal
and "2270" less equal
I am only interested in that part of the database where elements called item
within a codebook called objects have a numerical code of between 2210 and 2270
in the coding variable called kleio.

10. Codebooks 185

write part=:item,:codebook[:item,kleio,objects],
:form["next item"],:lines[2]
I like would the information found in the previous command to be displayed on
the screen in the following order. Firstly, the contents of the element, secondly
the code that relates to that entry (from the kleio coding system) and then the
text "next item", which should be followed by two blank lines.

stop

There is an important piece of syntax in this task, which if used incorrectly will cause
many errors. Notice that the numerical codes used in the conditions following the
:codebook[] function are enclosed within quotation marks. This is because κλειω accepts
the use of alphabetical characters to form a number; for example, a coding value of 123b
would be acceptable. Without quotation marks κλειω would not have known where the
number ended.

However, in cases like the task in Example 10.2, using the group function keyword[]with
a catalogue is much quicker than using the element function :codebook[]. It is advisable
only to use :codebook[] when analysing the whole database (or at least large parts of
it) and the keyword[] function on just a few different items. However, the use of a
catalogue and the function keyword[] with the index command is no quicker.

Using the create command is the first and simplest method of creating a codebook.
However, using this command we are unable to allocate our own codes to different groups
of items. This will be achieved in the following section. It is possible, however, to create
a codebook using this subsequent material rather than using the create command.

For the rest of this chapter, we will be using a new database, ‘colebro’, which is almost
identical to the censsamp database used in earlier chapters. This database contains ‘real’
data, from a street in Winchester. The source of the data is the 1881 Census. Before you
will be able to complete these exercises you will have to compile the database. It can be
found on the tutorial disk. This files needed are colebro.mod, colebro.loc and colebro.dat.
These three files must be compiled in this order or you will find that there will be errors.
(The purpose of colebro.loc will be explained in Chapter 14.)

Exercise 10.1

Using the colebro database and any occupational classification scheme you like create a
codebook which uses the element occupation. The answers given at the end of this volume
are based on a scheme created by Tillott which can be found in the appendix to this
chapter. K. Schürer and H. Diederiks (eds.), The Use of Occupations in Historical Analysis.
Halbgraue Reihe zur historischen Fachinformatik, A19 (St. Katharinen, 1993) contains a
useful table of occupational codes for the 1851 Census (and successive censuses to 1911).

186 A Tutorial for κλειω: Part II

10.4 Adding codes to the codebook

Adding codes to a codebook is an easy task. κλειω allows the user to create most of a
logical object to create a codebook while the user only needs to add specific coding. The
following task ‘makes’ much of the codebook. All that you have to do afterwards is assign
the codes to each of the items in the codebook and add this logical object to the specific
environment. This task saves a considerable amount of time in preparing a logical object
to define a codebook.

The following task is laid out as below in order to help clarify explanation. Ensure that you
send the result of this task to a file for later use.

Example 10.3

options lines=0
query name=probate;part=:item
index part=:form[’form text="’];

limit="";
part=:item;
limit=’";number=999’;
maximum=1;
signs=39;
identification=order[];
write=no

stop

The commands in this task can be identified as producing the following results:

options lines=0
Tells κλειω not to put any spaces between each line of output.

query name=probate;part=:item
I am interested in the database probate and in particular to the element item.

index part=:form[’form text="’]
Create an index which starts with the text form text="

limit="";
followed by no spaces (otherwise κλειω would produce a space before writing
the entry found in the item element),

part=:item;
followed by the name of the item found,

limit=’";number=999’;
followed by the text "number=999

maximum=1;
ensuring that each element item is only put into the index once,

signs=39;
finally ensuring that there are only 39 characters in the text surrounded by
quotation marks. (This is because κλειω allows a maximum of 39 characters for
the name of a term in a codebook.)

10. Codebooks 187

identification=order[];
Give the ordinal number of the standard identification given by κλειω,

write=no
but do not display it in the result. (The combination of this and the previous
parameter is a quick way of telling κλειω not to display the identification number
for any particular entry chosen in the part= parameter.)

stop

Part of the result of this task should look like this:

form text="a parrell ";number=999
form text="a white horse of wood ";number=999
form text="Alblades ";number=999

All this has done is to produce an index of all the items specified from the database. This
has not created a codebook yet!

If one removes all the description given by κλειω at the beginning and end of this result
file, and adds the following lines at the top:

item name=objects;usage=codebook;source=probate;type=permanent
part name=system;type=insert

and the following line at the bottom:

exit name=objects

a logical object to define the codebook would be virtually complete. Unfortunately, for this
example a great deal of work would be necessary to code all these 6700-odd items into
categories to exploit the potential of the codebook fully. Before we add a selection of codes
to this codebook to demonstrate how to query it, it is worth describing what the lines
above and below the index of items mean.

item name=objects;
Using the logical object called objects,

usage=codebook;
which is a codebook,

source=probate;
related to the database probate.

type=permanent
Make this (modified) logical object part of the permanent environment of the
database specified in the source= parameter.

part name=system;
For the part of the coding variable called ‘system’,

type=insert
prepare to insert new codes into this part of the codebook.

188 A Tutorial for κλειω: Part II

Once you understand what this is going to do, it will be clear that some further changes
will be necessary to make this codebook work properly.

Go through the file searching manually for all the terms that relate to brewing. E.g. "beare",
"beere", "barlie", "malte" and all terms starting "brewing(e)", "brueing", "bruing(e)" and for
each of these terms change the number from 999 to 1000.

As these lines form part of the description of the logical object, we can see that all the
items that refer to brewing have been given the code (in the coding variable system) 1000.
κλειω interprets the lines as follows:

form text="beere";
where the name of the item is "beere"

number=1000
add the code 1000 (to that part of the codebook called system: see above).

Once you have made all the changes necessary to this file, save it and run it. If your
version does not work, attempt to correct it; if that fails, there is a correctly set up file on
the tutorial disk called ex10.4.

In fact it is perfectly possible to create a codebook using just a logical object, i.e. without
using the create command. However if you were to do this, the kleio variable would
be absent from it (unless of course you were to define it yourself). (You would also need
to formulate your logical object slightly differently, for example using type=create rather
than type=insert, as there are no items in the codebook into which you could insert
codes.)

10.5 The describedescribe command

The result of the previous command was rather unspectacular, so it may be worth checking
whether κλειω has performed this task as you specified. κλειω provides a useful command
to help you see what lies within the environment. Run the following task:

describe name=objects;usage=codebook;source=probate;
type=permanent

stop

Here κλειω is asked by the describe command to describe a logical object which relates
to a particular database. (We have met this before: see pp. 115-17, 138 above.) The rules
pertaining to what is described can be found in the Reference Manual, Section 7.3.3; for the
time being just this command will be discussed. In English the command could be

10. Codebooks 189

translated as ‘Describe the logical object known as objects. This logical object is a codebook,
and it is part of the permanent logical environment of the database called probate’.

In this case what is displayed is the codebook, with all the current codebook variables for
the terms in the list displayed in an independent column. Some of the result should look
like this:

kleio system

bedsteede 1150.00 999.00
bedsteeds 1160.00 999.00
beefe picker 1170.00 999.00
beefe pricker 1180.00 999.00
beere 1190.00 1000.00
bell salt 1200.00 999.00
bell skellets 1210.00 999.00

Notice that the system code for "beere" has changed from 999 to 1000. As mentioned above,
it would however be usual to define codes for all the items within the codebook. This is
just a demonstration of how κλειω adds codes to a codebook.

10.6 Codebooks and interactive methods
of searching

When using a codebook one would not just make codes for one set of items; one would
create a coding system that applied to all the terms within the database in order to process
it fully. In this case the items could be coded to reflect the function of the object, e.g.
bedding, kitchenware and cooking apparatus, agricultural equipment, clothing, books,
debts, shop goods and so on. All the items in the codebook would be coded and thus
prepared for subsequent analysis. If one were only interested in the brewing equipment
it would be easier (and more flexible) to interactively process a catalogue made up of all
the items in a database using the menu-driven system, in which experimentation might
take place.

This interactive processing with the menu-driven system may also be a pre-coding stage
in which checks are made to see whether the words mean the same thing.

However, if you know exactly what you want to find out from a database, it may be
worthwhile to use a codebook. Creating a codebook would also be the appropriate route
to follow if data needs to be prepared for statistical analysis.

190 A Tutorial for κλειω: Part II

The following table shows the main differences between the codebooks and catalogues:

Codebook Interactive system

Rigid Allows experimentation
Relatively slow Quick for small analysis
Use with all data in a database Use with samples of data
Presumes clear-cut knowledge Allows for considerable experimentation
of type of task

Not useful for full-text Good with full-text
Allows for output for subsequent Allows some output (but not processed)
quantitative analysis

10.7 More querying of codebooks

A further example of querying a codebook is shown below. It is rather similar to the task
displayed above, but we hope it will clarify matters. The following task would be used to
produce the element item from the catalogue objects using the code rather than the textual
name.

Example 10.5

query name=probate;part=:codebook[:item,system,objects]="1000"
write part=:item,:codebook[:item,system,objects],

:form["next item"],:lines[1]
stop

This task does in fact give slightly more information that one would usually want, but
asking for the information in this way shows what κλειω is doing in order to retrieve the
results. The results of the task look rather like this:

datasource (2 = "2") : item barlie
1000.000000
next item

datasource (2 = "2") : item beere
1000.000000
next item

10. Codebooks 191

As the task used to produce this result is a little complicated, it is worth describing what
each line means:

query name=probate;
I am interested in a database called probate.

part=:codebook[:item,system,objects]="1000"
I am only interested in that part of the database where the elements called item
within a codebook called objects have a code of 1000 in the coding variable called
system.

write part=:item,:codebook[:item,system,objects],
:form["next item"],:lines[1]
I would like the following information, once retrieved, to be displayed on the
screen in the following order. First, the name of the item selected by the previous
task, secondly the code that relates to that entry in the database, thirdly the text
"next item" and finally please leave one blank line between each item displayed.

stop

Codebooks can be very useful as the following queries show, but as will have been seen
from the previous task they are very slow even when used in conjunction with a catalogue.

10.8 Adding more codes to a codebook

It would be possible to add codes to other items in the codebook separately. For instance,
if we had missed the term "mollt" as a variant spelling of malt, it would be possible to add
this code in a similar way:

Example 10.6

item name=objects;usage=codebook;source=probate;type=permanent
part name=system;type=substitute
form text="mollt";number=1000
exit name=objects

Notice that the parameter value for the type= parameter has changed from insert to
substitute. This is because there is already a value for the term "mollt" within the
codebook.

Now run example 10.5 again.

192 A Tutorial for κλειω: Part II

10.9 Creating labels for codes

Once a coding scheme has been decided upon it is possible to give labels to the groups of
codes. If in this case we wanted all items with the code 1000 in the coding variable called
‘system’ to be related to the group "brewing equipment", this would be achieved through
the use of the following logical object:

Example 10.7

item name=objects;usage=codebook;source=probate;type=permanent
part name=system;type=insert
write number=1000;text="brewing equipment"
exit name=objects

This command assigns the text "brewing equipment" to all those items which have the code
1000. It would of course be possible to make other values relate to the term brewing as
well by adding further write directives. This is generally used to make codes more
understandable and easier to use.

Exercise 10.2

Using the codebook created from the colebro database, add labels for the occupational
categories that you have defined.

10.10 Querying a codebook using labels

The following task demonstrates the method of obtaining information from the codebook
with a textual code:

Example 10.8

query name=probate;part=:codebook[:item,system/text,objects]=
"brewing equipment"

write part=:item,:codebook[:item,system,objects],
:form["next item"],:lines[3]

stop

Rather than specifying that the code for the items of brewing equipment is 1000, it is
possible to search for the name of that code. The only differences between the task in this
section and the task in Section 10.5 are, first, that the part of the codebook specified in the

10. Codebooks 193

part= parameter is equal to the text string "brewing equipment" rather than the code 1000,
and, secondly, that the second parameter value for the :codebook[] function,
system/text, now defines the system code as text (rather than the default which is a
number). This is because coding was traditionally done, and is still normally done, with
figures rather than text.

Also available on the tutorial disk is a glossary of words found in the element :item. This
has been constructed using the following three files. (These three files are respectively
called ex10.9, ex10.10 and ex10.11.) The fourth example reproduced here demonstrates how
one can obtain a formatted result of the contents of the glossary.

Example 10.9

item name=objects;source=probate;type=permanent;usage=codebook
part name=glossary;type=create
form text="a parrell";number=1
form text="Alblades";number=2
form text="Alle halfes";number=0
.
.
.
exit name=objects

The task above creates a further variable in the codebook objects. This new variable is
called glossary. All the items have been allocated a code number; those items with different
spellings have been allocated the same code.

Example 10.10

item name=objects;source=probate;type=permanent;usage=codebook
part name=glossary;type=insert
write number=1;text="Apparel. Clothes."
write number=2;text="Awl blades. The pointed ends of awls(?)."
write number=3;text="Awl. A small instrument for piercing

holes. Probably used for book-binding."
.
.
.
exit name=objects

The task above contains all the definitions of all the codes in the task ex10.9. This task tells
κλειω to insert into specific variables a label. This label is used in a way different from the
one demonstrated above. Here it contains the definitions the items found in the database.

194 A Tutorial for κλειω: Part II

Example 10.11

query name=probate;part=:item="aquacomposita"
index part=:item;

maximum=1;
limit="\n";
part=:codebook[:item,glossary/text,objects]

stop

The task above demonstrates one way of getting the information out of the codebook.
κλειω is asked to find an item in the database which contains the string "aquacomposita";
when it has found it, it is asked to display it (once), and indent the following output. (For
an explanation of ‘\n’ see the next chapter.) Then display the contents of the label from
the codebook which relates to the code for the string aquacomposita. The result should
look something like this.

aquacomposita
Aqua Composita. A drink made with a ‘composite’ or variety of ingredients. E.g.’Take twelve
drops of Oyl of Cloves, eight Oyl of Nutmegs, & five of Oyl of Cinamon. Put them into a large
strong drinking glass, & mingle well with them two ounces of the purest double refined sugar
in powder’ (Eleanor Sinclair Rhode i, p.219 from ‘The Closet of Sir Kenneth Digby Opened’,
1699). 8

10.11 The statistical interface

κλειω’s statistical capabilities are, we have said, rather limited. The built-in statistical
command cumulate only provides the bare minimum of information about data, while
the parameter type=count with the index command provides even less. However, the
combination of these two actions provide most of the statistical information that an
ordinary historian might want to use. On the other hand κλειω provides the capability to
convert material from a κλειω database into a format that can be understood by a number
of different statistical packages. The decision not to create many commands in κλειω for
statistical analysis of historical data was made because of the widespread availability of
statistical packages. Currently κλειω can easily interface with three main programs: SPSS-X,
SPSS-PC and SAS. There is also a useful interface between κλειω and the database
management system, CensSys. CensSys was developed at the University of Bergen in
Norway and designed to analyse census material but is equally well suited for analysis of
other material. At the time of writing CensSys is being translated into English but will only
accept material created with the ‘original’ version of κλειω (i.e. with Latin commands).
(This should change shortly.)

10. Codebooks 195

For the three main statistical programs κλειω produces two components of a file; a file
containing the basic data and a file containing the system files, which tell the particular
statistics program how to interpret that data.

κλειω uses two commands to produce these two components. These two commands are
case and translation. As with most of the other commands that κλειω uses, there are
a number of relatively simple parameters which change default rules about the conversion
of data. In this volume we shall not be demonstrating all of these parameters but giving
an overview of the ways in which κλειω performs this task and suggesting where to look
in the Reference Manual for further information.

The two commands which we mentioned above concern two aspects of the conversion
procedure. One tells κλειω what do with the material once the other has converted it.

The translation command tells κλειω where to send the information once κλειω has
converted it into a format that can be understood by statistical software, and how any of
the default rules that govern this conversion may be changed.

The case command tells κλειω which information to include in the conversion process,
how that material is to be converted, and what variables are to be created.

Before considering how κλειω converts data to a format that statistical software can
understand, we should point out again that whenever κλειω is asked to process a task
concerning the contents of a database, the query command is used. This selects part of a
database for processing. This is the only command that selects part of a database for
processing (except confirm and negate). All other commands process the information
that the query command has selected. Just as we use the write command to print out
selected information, or the index command to create sorted lists of selected information,
we use the case command to tell κλειω how to convert selected information into statistical
data records and the translation command to tell κλειω where to direct the results of
the case command. Thus tasks which are designed to create statistical data records follow
the structure of all other basic commands.

In this part of this chapter we are going to demonstrate how to convert some simple
material from the probate database into statistical data records. To do this we will be using
a similar codebook to the one we created in the first half of this chapter. In this case each
of the items has been coded. The file needed to create this codebook is called ex10.12. Look
at this file. It will make a codebook called objects2. If you scroll down the file you will see
that the coding of these items has not been performed imaginatively; in other words, it will
not produce ‘real’ historical results.

196 A Tutorial for κλειω: Part II

10.12 The translationtranslation command

Before we discuss the case command, which actually makes the statistical cases that SPSS
or SAS need to run our data, we should first look at the translation command, which
tells κλειω what to do with that data. By default you do not need a translation
command, as all parameters have a default setting. As the translation command can
also define the default settings for the case command, it is worth looking at a few of these
parameters.

First, we should define the task that we hope to solve. We are going to use the probate
database to see if there is any correlation between the class of object and its value.
(Remember that this is only hypothetical, as the classes of objects have not been coded with
accuracy in mind, but only for demonstration purposes.) Thus:

query name=probate;part=:item
translation target=pcspss;first="objects2.dat";

second="objects2.sps"

If you omitted the parameters following this translation command, κλειω would
convert the data we will subsequently define into SPSS-X format (which is slightly different
to pcspss format), and send the data to a file called probate.num and the definition
language to a file called probate.dic, which you may not want.

10.12.1 The target=target= parameter

This parameter accepts the keywords spss, pcspss, sas, censsys and null. This
keyword takes the name of the statistical program that will eventually be used to analyse
the data. By default κλειω assumes that the package to be used is SPSS-X. The keyword
null suppresses the creation of a command file.

10.12.2 The first=first= and second=second= parameters

These two parameters take as values the names of files into which the information
generated by the case command is put. The first= parameter takes the name of the file
where the raw data goes and the second= parameter takes the name of the file where the
definition language goes. By default κλειω gives the first= parameter the name of the
database followed by the suffix .num, and the second= parameter takes the name of the
database followed by the suffix .sps.

10. Codebooks 197

Since we are going to run this command more than once in this example it would be wise
to add a further parameter, overwrite=, to this command, thus:

query name=probate;part=:item
translation target=pcspss;first="objects2.dat";

second="objects2.sps";overwrite=yes

There are three further parameters which may be useful. One allows to you ask κλειω not
to produce a report on what it is doing (write=no), while two others allow you to
override certain errors that may occur in the data.

Six further possible parameters modify the default settings of the case command and need
not detain us here. Details of these parameters can be found in the Reference Manual,
Section 8.3.6.2.

10.13 The casecase command

Each case command creates one type of case and each part= parameter creates a number
of statistical variables. In the example below the task produces one case and two variables;
the ‘category of object’ code for each item, and the value of that item.

query name=probate;part=:item
translation target=pcspss;first="objects2.dat";

second="objects2.sps";overwrite=yes
case part=:codebook[:item,system,objects2];

part=:value
stop

If this task is run part of the result will look like this extract (taken from the file
objects.num):

868 6.000 16.000
869 1.000 156.000
870 2.000 80.000
871 9.000 28.000
872 1.000 16.000
873 1.000 36.000
874 9.000 60.000

The first figure here is the case number (which is automatically generated), the second is
the code in the coding variable called system, and the third is the value of that particular
item.

198 A Tutorial for κλειω: Part II

By default κλειω gives the name in the part= parameter to the name of the variable. In
this example the first variable would be given the name :codebook[.........]. This
might be rather cumbersome to work with so we use two parameters to change this default
action. We can use the parameter name= to define what we would like to call the variable,
and we can also use the parameter write= to change the description of the variable.

Example 10.13

query name=probate;part=:item
translation target=pcspss;first="objects2.dat";

second="objects2.sps";overwrite=yes
case part=:codebook[:item,system,objects2];name=item;

write="code";
part=:value;name=value;write="value"

stop

This should make it easier to see what is going on here (especially when using SPSS).

What we have not said here is that when κλειω comes across the first part= parameter
after a case command, it checks to see whether there is valid information for this
particular record. (Incidentally the same thing happens with the index command.) If the
entry in the database is empty, κλειω will not make a statistical case for the rest of the
entry. For this example there are no elements which do not contain an item. However in
the colebro database there are people without occupations. They thus do not have jobs that
can be converted into a coding variable; so κλειω is unable to create a statistical case for
that individual.

Exercise 10.3

Using the occupational codebook from the colebro database, create two files called
jobs.num and jobs.sps which contain the code for the job in the first column and the age
of the individual in the second column.

Once you have successfully created these files, look at the file jobs.num. Notice that the
number of cases is considerably less than the number of individuals mentioned in the
database. This is because a number of people in this database do not have an occupation,
and therefore κλειω ignores them. There are two ways around this problem. First, a
:form[] function could be added, as follows:

case part=:form["0.0",number];
part=:codebook[:item,system,objects2];

.

.

.

10. Codebooks 199

which just adds an empty value, and would result in a third variable in the .num file. A
possible result might look like this:

1 0.0 12.000 345.0000

The other solution would be to choose an element which occurs more frequently, as the
element in the first part= parameter following a case command. In this database every
person has an age, while some people do not have an occupation. In this case, therefore,
we could reverse the two part= parameters to solve the problem. When you have
succeeded, look at the job.num file and see how many cases have been made.

There are a number of problems inherent in creating statistical material. These do not just
occur when one is using a κλειω database, but there are problems which are specifically
brought up by the way in which κλειω allows you to input data. In the case of the
occupations in the colebro database, some people have more than one. You might assume
that κλειω would take both occupations into account when creating stastical cases.
However, it does not. You could specify how many entries in an element to select using
the maximum= parameter with the case command. (N.B. the :collect[] function (see
Section 5.6.4 of this book) might also provide useful results.)

Summary

The last two chapters of this volume have carefully considered two particularly valuable
tools which deal with a number of problems inherent within historical data. Both of the
tools are particularly able to help in the interpretation of spelling variation.

Catalogues have been used to access and display full-text material and to assign keywords
to groups of textual information. Codebooks have been used to demonstrate κλειω’s
potential in systematically coding items of data and to prepare that data for statistical
analysis.

There is a third important tool which deals with spelling variations in historical data and
in particular with the names of individuals. Within κλειω there are a number of algorithms
that can be used to solve certain problems connected with the identification of people in
the past. This is part of a process known as nominal record linkage. Chapter 12 will be
devoted to the use of this process for historical data.

200 A Tutorial for κλειω: Part II

Appendix:
Occupational and social categories

Based on a mimeographed sheet attached to ‘The Censuses of Tickhill in 1851 and 1861’
by Peter Tilliott, University of Sheffield, Department of Extramural Studies, 1969.

Occupational groupings

1. AGRICULTURAL SELF-EMPLOYED OR MANAGERS

Farmer, farmer’s son, farm bailiff, market gardener, seedsman (with land).

2a. SKILLED AGRICULTURAL WORKERS

Drill machine labourer, foreman agricultural labourer, horse breaker, stable man,
gardner (self-employed).

2b. AGRICULTURAL LABOURERS

Farm labourer, farm servant, cottager, field worker.

3. SHOPKEEPERS, TRADERS, PETTY ENTREPRENEURS (not employing more
than five people)

Foodstuffs, retail: baker, butcher, confectioner, fishmonger, flour seller, fruit
dealer, grocer, milk dealer or cow keeper.

Foodstuffs, wholesale: cattle dealer/jobber, corn dealer, cattle drover,
miller/maltster, fell-monger, pig jobber, potatoe merchant.

Clothing: draper, hatter, lace and cap dealer, linen draper, woolen draper,
worsted dealer.

Victuallers, wines, tobacco: licensed victualler, lodging house keeper, innkeeper,
wine and spirit merchant, brewer, tobacconist, beer house keeper, publican.

Carriers: boat proprietor, boatman, waterman (but all in group 11 if not carrying
for trade), carrier and general dealer, coal carrier/merchant.

Miscellaneous: hawker, higgler, huckster, ironmonger, tallow chandler, glass and
china dealer.

10. Codebooks 201

4. SKILLED CRAFTS, NON-INDUSTRIAL (where such craftsmen seem to be
operating in a factory, however small, they should be in group 6)

Metal working and machinery: agricultural implements/machine maker, brazier,
nail maker, blacksmith, general smith, whitesmith, tinner.

Building: bricklayer/maker, carpenter/cabinet maker, mason, painter, plasterer,
sawyer, stone mason, paviour, plumber.

Clothing: cap maker, clogger, corset maker, framework knitter, hand loom
weaver, milliner/dressmaker, tailor, shoemaker.

Leather: currier, harness maker, saddler, tanner, cordwainer.

Miscellaneous: basket maker, blacking maker, boat builder, clock/watchmaker,
compositor, printer, cooper, jeweller, roper, sackmaker, upholsterer.

5. MANUFACTURERS, INDUSTRIALISTS, WHOLESALERS OR MANAGERS OF
LARGE ENTERPRISES (usually employers of labour on a large scale but varying
according to the nature of the industry)

Cotton manufacturer, steel manufacturer, timber merchant, worsted spinner.

6. SKILLED INDUSTRIAL CRAFTSMEN

Cotton: carder, bobbin weaver, overlooker, picker, twister and drawer, piecer,
minder, ruler, winder, weaver, rover, stripper, slubber, warp sizer, tatler.

Wool: comber, comb maker, spinner, steam loom weaver, siser.

Iron: moulder, founder, puddler

Miscellaneous: mill hand, operative, engine tender, mechanic.

7a. UPPER PROFESSIONAL

Accountant, banker, architect, lawyer, attorney, clergyman, minister of religion,
curate, Methodist minister, doctor, surgeon, physician, judge, land agent,
solicitor, surveyor.

7b. PROFESSIONAL

Governess, auctioneer, Inland Revenue officer, musician, artist, Primitive
Methodist preacher, school master/mistress, teacher, tutoress, veterinary surgeon.

202 A Tutorial for κλειω: Part II

8. CLERICAL (not supervisory)

Solicitor’s clerk, auctioneer’s clerk, rail clerk, parish clerk, assistant secretary to
savings bank.

9a. UPPER SERVANTS

Butler, companion, cook, gamekeeper, gentleman’s servant, gardener,
housekeeper, lady’s maid, nurse.

9b. GENERAL DOMESTIC SERVANTS

Coachman, footman, gardener’s assistant, general servant, groom, housemaid,
kitchen maid, nurse girl, nursery maid.

9c. LOWER SERVANTS

Charwoman, laundress, manglewoman, washerwoman, servant boy.

10a. PRIVATE INCOME RECIPIENT

Fund holder, interest of money, gentleman, railway proprietor.

10b. RENTIERS

Proprietor of land/houses.

10c. ANNUITANTS

11. SEMI-SKILLED AND SERVICE WORKERS

Bellman, cab driver, boatman (unless trading see group 3), sexton, mariner,
sailor, ferryman, letter carrier, postman, post messenger, toll keeper, canal lock
keeper, ostler, hotel waiter, midwife, horse doctor, castrator, farrier, chimney
sweep, soldiers and armed force (non-commissioned)

12. UNSKILLED WORKERS AND LABOURERS

Labourer in iron works/railway/brickyard/at factory, porter on railway/for
liquor merchant, working on highway, errand boy, factory boy.

13. SUPERVISORY WORKERS

Workhouse master/mistress, postmistress, rail inspector, superintendant
constable, canal agent.

10. Codebooks 203

14. CHILDREN (of 14 years and under AND scholars of all ages)

15. HOUSEWIVES

16. NO OCCUPATION

17. PAUPERS

Tramp, poor man, beggar, parish relief/pay, unemployed, almspeople.

18. RETIRED PEOPLE (including superannuated and pensioners)

19. VISITORS.

Social groupings: consolidated classes

I Independent means; upper professional; managerial; manufacturers; large
enterprise: GROUPS 5, 7a, 10a, 10b.

II Lower Professional; annuitants; supervisory; large shopkeepers: GROUPS 7b, 10c,
13.

III Agricultural self-employed; farmers; market gardeners; agricultural managers:
GROUP 1.

IV Shopkeepers; craftsmen; clerks; skilled agricultural workers; higher servants:
GROUPS 2a, 3, 4, 6, 8, 9a.

V Agricultural labourers; semi-skilled and service workers: GROUPS 2b, 11.

VI Domestic servants: GROUP 9b.

VII Labourers and unskilled workers: GROUPS 9c, 12.

VIII Others: GROUPS 14, 15, 16, 17, 18, 19.

204 A Tutorial for κλειω: Part II

Further reading

W. A. Armstrong, ‘The Use of Information about Occupation’, inNineteenth-Century Society.
Essays in the Use of Quantitative Methods for the Study of Social Data, ed. E. A. Wrigley
(Cambridge University Press, Cambridge, 1972), pp. 191–310.

G. Bouchard, ‘The Saguenay Population Register and the Processing of Occupational Data:
an Overview of the Methodology’, Historical Social Research, 32 (1984), pp. 37–58.

J. H. Goldthorpe et al., Social Mobility and Class Structure in Modern Britain (London, 1980).

D. I. Greenstein, ‘Standard, Meta-Standard: a Framework for Coding Occupational Data’,
Historical Social Research, 16:1 (1991), pp. 3–22.

W. Hubbard and K. Jarausch, ‘Occupation and Social Structure in Modern Central Europe:
Some Reflections on Coding Professions’, Quantum Information, 11 (July 1979), pp.
10–19.

M. B. Katz, ‘Occupational Classification in History’, Journal of Interdisciplinary History, 3
(1973), pp. 63–99.

R. J. Morris, ‘Occupational Coding: Principles and Examples’, Historical Social Research, 15:1
(1990), pp. 3–29.

K. Schürer, ‘The Historical Researcher and Codes: Master and Slave or Slave and Master?’,
in History and Computing III, ed. E. Mawdsley et al., (Manchester University Press,
Manchester, 1990), pp. 74–82.

K. Schürer and H. Diederiks (eds.), The Use of Occupations in Historical Analysis. Halbgraue
Reihe zur historischen Fachinformatik, A19 (St. Katharinen, 1993).

Chapter 11

Formatting results

11.1 Introduction

In Chapter 5 we demonstrated a number of functions which could be used to make results
look slightly nicer. This chapter aims to demonstrate briefly a number of other methods
of formatting the results of a query in a more interesting manner.

In the previous chapter we touched (p. 194) on one of the three available print constants
("\n"). We also demonstrated the use of the :form[] function. In this chapter, we shall
demonstrate the use of all these functions together.

11.2 Print constants

Currently there are three print constants, \n, \t and \f. These three constants tell κλειω
how to output your results. These constants are used with the limit= parameter. In
ex10.11, we demonstrated the use of the \n constant. This constant tells κλειω to advance
to the beginning of the next line.

206 A Tutorial for κλειω: Part II

query name=probate;part=:item="aquacomposita"
index part=:item;

maximum=1;
limit="\n";
part=:codebook[:item,glossary/text,objects]

stop

produces a result like this (if sent to a result file):

aquacomposita
Aqua Composita. A drink made with a ‘composite’ or variety of ingredients. e.g. ‘Take
twelve drops of Oyl of Cloves, eight Oyl of Nutmegs, & five of Oyl of Cinamon. Put them
into a large strong drinking glass, & mingle well with them two ounces of the purest double
refined sugar in powder’ (Eleanor Sinclair Rhode i, p.219 from ‘The Closet of Sir Kenneth
Digby Opened’, 1699). 8

Notice that at the end of this result is the number 8. This refers to the ordinal number of
the document in which the item was found as a result of the first part= parameter of the
index command. This could be left out if we were to add two parameters to the end of
the task:

Example 11.1

query name=probate;part=:item="aquacomposita"
index part=:item;

maximum=1;
limit="\n";
part=:codebook[:item,glossary/text,objects];
identification=order[];write=no

stop

More than one print constant can be strung together within quotation marks. The following
example, tells κλειω to first produce the element :item and then move down one line and
move three tab positions for the first line of the result.

Example 11.2

query name=probate;part=:item="aquacomposita"
index part=:item;

maximum=1;
limit="\n \t \t \t";
part=:codebook[:item,glossary/text,objects];
identification=order[];write=no

stop

The result of this task would look like this if sent to a file:

11. Formatting results 207

aquacomposita
Aqua Composita. A drink made with a ‘composite’ or variety of
ingredients. e.g.’Take twelve drops of Oyl of Cloves, eight Oyl of
Nutmegs, & five of Oyl of Cinamon. Put them into a large strong
drinking glass, & mingle well with them two ounces of the purest
double refined sugar in powder’ (Eleanor Sinclair Rhode i, p.219
from ‘The Closet of Sir Kenneth Digby Opened’, 1699).

The third print constant, \f, tells κλειω to advance to the next page. (These three print
constants may be remembered with the mnemonic \t = tab, \n = newline and \f =
formfeed.)

11.3 The element function :form[]:form[]

The :form[] function has also already been referred to but is more fully described here.
This function allows the user to display information in a clearer fashion.

Example 11.3

query name=probate;part=piece:value="144" greater and
:item=("bed" or "Bed")

write second=no;position=no;start=no;self=no;
part=:form[""],
:form["***"],
:form["The individual called:"],
root[0]/inventory/p:firstname,:surname,
:form[""],
:form["owned a(n)"],:query[],
:form[""],
:form["worth"],:value,
:form["pence"],
:form[""],
:form["This item could be found in the "],back[1]:place,
:form["***"]

stop

Part of the results of the task above are shown below:

The individual called:
Margarett
Denham

owned a(n)
bed

208 A Tutorial for κλειω: Part II

worth
160.000000
pence

This item could be found in the
one of the uper garretts

The individual called:
Launcelot
Vibart

owned a(n)
Bedd Cordes

worth
150.000000
pence

This item could be found in the
ware howse

It should be fairly clear what this task is doing. Below is an annotated explanation:

query name=probate;part=piece:value="144" greater and
:item=("bed" or "Bed")
I am interested in the database probate and I am only interested in those items
in the group called piece which contain the character string "bed" or "Bed" and
have a value of greater than 12 shillings (144 old pence)

write second=no;position=no;start=no;self=no;
Display that information to the screen following these rules. Do not display either
any comments or any original material which might be found in the groups
found above (second=no); do not display the ordinal number of the group and
the group identifier for each of the groups output (position=no); do not
display any of the information about the group (e.g. its name) (start=no); and
do not display the name of the element found in the group (self=no).

part=:form[""],
Display the constant found within the square brackets following the element
function :form[] (in this case an blank line), followed on the next line by

:form["***"],
the constant found within the square brackets following the element function
:form[], (in this case a line of asterisks), followed on the next line by

:form["The individual called:"],
the constant found within the square brackets following the element function
:form[], followed in the next line by

11. Formatting results 209

root[0]/inventory/p:firstname,:surname,
the first name and the surname of the individual concerned (on separate lines),
followed by

:form[""],
the constant found within the square brackets following the element function
:form[] (in this case a blank line), followed in the next line by

:form["owned a(n) "],:query[],
the constant found within the square brackets following the element function
:form[] (in this case the text owned a(n)), followed in the next line by the
element found in the last group found within the query command, followed by

:form[""],
the constant found within the square brackets following the element function
:form[] (in this case a blank line), followed in the next line by

:form["worth"],:value,
the constant found within the square brackets following the element function
:form[] (in this the text worth), followed in the next line by the value of the
item taken from the database, followed in the next line by

:form["pence"],
the constant found within the square brackets following the element function
:form[] (in this case the text pence), followed in the next line by

:form[""],
the constant found within the square brackets following the element function
:form[] (in this case a blank line), followed in the next line by

:form["This item could be found in the "],back[1]:place,
the constant found within the square brackets following the element function
:form[] (in this case some text), followed in the next line by place where the
inventory showed that item to be kept

:form["***"]
the constant found within the square brackets following the element function
:form[], (in this case a line of asterisks).

stop

This particular task, however, does not produce quite the nicest results possible. Using a
number of expression operators and link operators, it is possible to produce something
slightly more pleasing to the eye. For instance:

Example 11.4

query name=probate;part=piece:value="144" greater and
:item=("bed" or "Bed")

write second=no;position=no;start=no;self=no;
part=:form[""],
:form["***"],
:form["The individual called "]&+
root[0]/inventory/p:firstname&+
:form[" "]&+root[0]/inventory/p:surname&+
:form[" owned a(n) "]&+:query[],
:form[""],
:form["worth"],:value,

210 A Tutorial for κλειω: Part II

:form["pence"],
:form[""],
:form["This item could be found in the "]&+back[1]:place,
:form["***"]

stop

which produces results like this:

The individual called Margarett Denham owned a(n) bed

worth
160.000000
pence

This item could be found in the one of the uper garretts

The individual called Launcelot Vibart owned a(n) Bedd Cordes

worth
150.000000
pence

This item could be found in the ware howse

Comparison of the task with the results should demonstrate what the new syntax in the
task means. The expression operator & is followed by a link operator (either +, -, *, or :),
which allows the user to join two or more entries togther. The Reference Manual, Sections
8.1.1.5 ff., describes all the possible uses of this function, but we should point out one
current failing of this function. At the moment κλειω only permits certain types of data to
be joined to each other. The current possibilities are:

text - text
date - date
number - number
date - number
number - date

This means that we cannot join the contents of the element value to the constants defined
in the :form[] functions.

The :form[] function can also be used with the index command. This is demonstrated
in the following task, which may look like a rather daunting. (Note that this example has
purposely been omitted from the sample disk, so that you will be able to follow through the task
while you type it out.)

11. Formatting results 211

Example 11.5

options signs=62
query name=probate;part=piece:quantity="3" greater and

:item="sheets"
index part=:form["***************************************"];

limit="\n";
part=back[2]/p:surname&+:form[", "]&+:firstname&+

:form[" owned"];
without=yes;
part=query[]:quantity;without=yes;
part=:item;without=yes;
part=:form["(which was given in the original as"];
without=yes;
part=query[]:original[quantity]&+:form[")."];without=yes;
limit="\n \n";
part=:form["The total value of these items was"];without=yes;
part=query[]:value;without=yes;
part=:form["pence"];without=yes;
part=:form["which means that each one was valued at"];
without=yes;
part=:value&::quantity;
part=:form["pence."];
limit="\n \n";
part=:form["The call mark of the original document is: "]&+

root[0]/inventory:invref;
identification=order[];
write=no

stop

The indentation in this example makes it look even worse than it would normally.
However, this is by no means the most complicated task that κλειω could perform.

Some of the results of this task look like this:

Hayward, Thomas owned 13.000000 sheets (which was given
in the original as

The total value of these items was 160.000000 pence
which means that each one was valued at 12.307693 pence.

The call mark of the original document is: HRO1623A26/2

Maynard, Thomas owned 8.000000 sheets (which was given
in the original as 4 payre).

The total value of these items was 120.000000 pence
which means that each one was valued at 15.000000 pence.

The call mark of the original document is: HRO1620B26/2

212 A Tutorial for κλειω: Part II

Denham, Margarett owned 56.000000 sheets (which was
given in the original as 28 paire).

The total value of these items was 2400.000000 pence
which means that each one was valued at 42.857143 pence.

The call mark of the original document is: HRO1621A20/2

Given the nature of your preferred historical source(s), producing output in this type of
format could be execptionally useful.

The only possibly perplexing piece of syntax in the above example may be
part=:value&::quantity. This parameter asks κλειω to produce the result of the
operation of dividing the contents of the element value by the contents of the element
quantity. Both of these elements hold data of the type number so the expression operator
followed by the link operator ":" can be used to produce a numerical result.

11.4 Some export formats

The techniques outlined above can of course be used for a variety of purposes. Here are
two further examples:

Generic markup

Insertion of markup for typesetting or other purposes is a simple matter. The following
task:

query name=probate;part=will:contents
write part=:form["<reference>"]&+:willref&+
:form["<\reference><text>"]&+:contents&+:form["<\text>"]
stop

produces results like the following:

<reference>HRO1620A76/1<\reference><text>Jesus be w[i]th me nowe and ever more Amen In the
name of God Amen the xvith day of June 1615 I George Robins Apparitor dwellinge in the p[ar]ishe
..........................
..........................
..........................
my decesse if they come or send for it.; George Robins apparitor, his seale Thomas Stampe Willia[m]
Budd [Probate 6 October 1620]<\text>

11. Formatting results 213

Exporting to databases

Exporting data in a format suitable for other database management systems is a matter of
finding the appropriate format. Here is just one example:

query name=probate;part=total:value
index part=:form[" "];part=:form[’value="’];limit="";

part=:value;limit=’"\n’;
part=:form[’fname="’];limit="";part=back[1]/p:firstname;

limit=’"\n’;part=:form[’surna="’];limit="";part=:surname;
limit=’"\n’;part=:form[’occup="’];limit="";part=:occupation;
limit=’"\n’;identification=order[];write=no

stop

produces the following:

value="10460.000000"
fname="Samuell"
surna="Coleman"
occup=" "

value="106412.000000"
fname="Richard"
surna="Parker"
occup=" "

value="10893.000000"
fname="Mary"
surna="Fielder"
occup="Widdow"

If you are contemplating work involving complex output (e.g. for an edition), these tools
may be cumbersome. κλειω’s sister program StanFEP (Standard Format Exchange Program)
was designed for such purposes. It is included with your release of κλειω, and is written
in English (although unfortunately the manual has not yet been translated). For further
information on StanFEP, see the introduction to this volume, p. xviii and n. 7.

Exercise

Produce in beautiful output (or as near to that as possible) the following information from
the probate database, the amount in pounds of the goods that each person left at their
death. You should include their name, their occupation (if they have one) and the amount
in pound that their goods were valued at. You will need to consult the reference manual
to find out how the element function :form[] allows you to do this. (By the way there
were 240 old pence in a pound).

214 A Tutorial for κλειω: Part II

PART III

SPECIALISED FEATURES

This section introduces more complicated features of κλειω, including
nominal record linkage and automated cartography. It also introduces
techniques for family reconstitution. Also included in this part are more
advanced concepts of database design and an alternative method of
constructing databases.

Chapter 12

Nominal record linkage

12.1 Introduction

The linkage of nominal records is one of the underlying procedures of all historical
research. All historians try to bring together different source material relating to the same
person in order to understand more about that individual. When historians deal with a
single person it is usually easy to identify that particular individual within the source. One
assumes that there would be only one Wilkie Collins mentioned in the letters of Charles
Dickens, but if one looked at the Census of England and Wales for 1871 more than one
Wilkie Collins may be found. An historian may use other knowledge to distinguish
between the many different Wilkie Collinses in that census. However, when an historian
is interested in the dynamics of a group of people, rather than between individuals, it may
not always be enough to rely on the historian’s ability to discern between different
individuals when they have similar names. This chapter demonstrates how, when using
large bodies of source material, the computer can assist the researcher in deciding which
may refer to the same people. The chapter also contains a reading list on some material
which may be of interest.

κλειω performs the operation of nominal record linkage in a relatively simple way;
however the method presented here is based on a step-by-step process which makes the
procedure look rather cumbersome. This is not really the case, as will be demonstrated at
the end of the chapter. We suggest that you work through this chapter completely in one
session, in order to understand the process fully.

218 A Tutorial for κλειω: Part III

Nominal record linkage, when performed on the computer, is usually performed between
two (or more) very large files of data. In this chapter we will be discussing two very small
data sets which have been designed to show most of the problems encountered when
performing real nominal record linkage. The chapter also contains details of other
important areas of κλειω which should not be ignored even if you feel you will never use
the record linkage facilities.

12.2 The data sets

The data part of the file births.mod is shown below:

a$p1-1/Francis/Owens/m/13 Apr 1622
a$p1-2/Francis/Owen/f/24 Aug 1643
a$p1-3/William/Owens/m/15 June 1625
a$p1-4/Ann/Nicholls/f/1 Mar 1672
a$p1-5/Anne/Nichols/f/23 Jun 1641
a$p1-6/An./Nichalls/m/5 Aug 1632
a$p1-7/Stephen/Riddingdon/m/10 Mar 1637
a$p1-8/Steven/Ridlington/m/23 Jan 1657
a$p1-9/George/ap Gryffith/m/27 Jan 1609

This is an imaginary source made up of first name, surname, sex and date of birth of seven
individuals found in an imaginary parish register. It should help to demonstrate some of
the orthographic problems encountered in historical sources.

Though none of these people are supposed to be the same as any of the others, it should
be clear that only different surnames are supposed to be represented here. Obviously it
would be possible to use a codebook, giving those people who looked as if they had the
same surname the same code. Even though we normally feel happy about allocating codes
to items of furniture or occupations, it has not typically been considered sensible to ‘code’
surnames by hand (though in some circumstances it is the only method), as a number of
other considerations need to be taken into account when dealing with the names of
individuals. The codebook deals with the human truth. Decisions can be made arbitrarily
to put categories of items together, but with names it has been shown to be desirable to
apply an algorithm to the original form deciding on whether people had the same name.

b$p2-1/Frances/Owen/f/31y/link=p1-2
b$p2-2/George/Griffiths/m/65y/link=p1-9
b$p2-3/Ann/Nichols/f/2y/link=p1-4
b$p2-4/Stephen/Riddington/m/37y/link=p1-7
b$p2-5/Frank/Owen/m/52y/link=p1-1
b$p2-6/Stephen/Ridington/m/17y/link=p1-8

12. Nominal record linkage 219

This data is taken from a database called deaths.mod. This is also fictitious data which is
supposed to represent a list of people buried during a single week in January 1674. The
only oddity in this data is the element link. The contents of this element represent the
unique identifier of the matching pair in the births database. Obviously this information
would not be found in an original source, but is provided here to help show whether links
have been correctly made or not.

Inspect the two files by looking at births.mod and deaths.mod.

12.3 An introduction to soundex

The most common algorithm used in coding names in preparation for record linkage is
known as Soundex. Within κλειω the term Soundex is used broadly. The ‘real’ Soundex
is a pre-defined coding system which changes the letters of a surname into a code based
on the similarity of sounds of letters within a name (by default this code is entirely
numerical but κλειω provides a parameter to use traditional Soundex codes with the initial
letter of the string being soundexed remaining a letter). κλειω however uses the term
soundex just to describe a Soundex-type algorithm. This has a particular advantage over
some data processing systems which come with a built-in but rigid soundex system that
can not be altered to suit the needs of the user. κλειω allows users to define different
soundex algorithms to deal with the particular type (or language) of name that they are
using.

Ensure that the files births.mod and ex12.2 have both been compiled, then run the
following task:

Example 12.1

query name=births;part=:soundex[:surname,code]=
:soundex[:form["Nichols"],code]

index part=:soundex[:surname,code];part=:surname
stop

Before considering the syntax of the task, look at the result.

6353 Nichalls p1-6

6353 Nicholls p1-4

6353 Nichols p1-5

The result gives the soundex code for the surname, followed by the surname. The soundex
algorithm has assigned a numerical code to each surname in the database. As such the

220 A Tutorial for κλειω: Part III

three different surnames are considered to be the same, even though they are spelled
differently.

Now to consider the task shown above:

query name=births;
I am interested in a database called births.

part=:soundex[:surname,code]=:soundex[:form["Nichols"],code]
I am interested in that part of the database where the numerical code for a
surname which has had a soundex algorithm (called code) applied to it is exactly
the same as the numerical code for the character string "Nichols". (The element
function :soundex[] is described below.)

index part=:soundex[:surname,code];
Produce a sorted list of all the soundex codes that have been found after the
above task.

part=:surname
Display the surname from which the immediately preceding part of this task has
been derived, in the last column of this index.

stop

12.3.1 A logical object for a soundex algorithm

What exactly is a κλειω soundex algorithm and what does it do?

Soundex is a phonetic coding system usually used to bring together variant spellings of
what are essentially the same name. There are many different coding systems which
normally suppress any information relating to vowels in a name and replace groups of
consonants by a single character representing their phoneme. The ‘real’ soundex is less
used today as it has been found to lack sufficient discrimination on the position of the
vowels within a name. However, it (or a slight variant of it) is still the phonetic coding
system most commonly used by historians who use data in English.

Even though soundex is basically a phonetic coding system, its uses are not confined to
phonetic processing. There may occasionally be letters in a language that have orthographic
similarities other than phonetic ones. If sets of these characters are treated in the same way
as groups of characters easily mistaken for each other for phonetic reasons, κλειω’s
soundex code could not be called ‘phonetic’.

The following task contains some of the information found in the file ex12.2. The whole
of that file will be considered later, but for the time being let us just consider this part of
it. It contains the standard English soundex code converted into a format that κλειω can
understand. The file represents a logical object called code which defines the soundex
algorithm. Translated into English, the first line says create a logical object called code,
which is of type soundex, and is related to the database called births. (It is permanently

12. Nominal record linkage 221

associated with this database and it can be overwritten.) The first line tells κλειω to ignore
the letters a e i o u and y unless they are the first letter of a name, in which case the letter
is to be given the code 1. The letters b p f and v should all be given the code 2, the letters
c g j k q s x and z should all be given the code 3, the letters d and t should be given the
code 4, the letter l should be given the code 5, the letters m and n should be given the code
6, the letter r should be represented by the code 7. The code number is determined by the
command conversion; those characters found on the same line as this command are
coded as 1; the characters occuring in the first part directive are given the code 2; those
in the second part directive the code 3; those on the third part directive the code 4, and
so on.

Example 12.2

item name=code;usage=soundex;type=permanent;source=births;
overwrite=yes

conversion without="aeiouyhw"
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code

A number of other rules are taken into account when applying the κλειω soundex
algorithm.

• Characters not defined in the algorithm are ignored. For example the names
O’Connor and Oconnor would be considered as the same unless the apostrophe
has been defined as a character for coding in the algorithm. Thus all significant
characters used in the database must be defined in the algorithm.

• Any group of characters following a character that is coded with the same
numerical value as the code of the characters of this group is ignored. A
separator, that is, one of the characters found in the conversion directive,
does not contribute to the code being generated if it occurs within a group. As
described above, it would ‘separate’ it so that the same code is used twice in
succession.

• By default, when the first four characters of the code have been generated the
remainder of the name is ignored.

• In contrast to the original Soundex code, in κλειω the initial character of a name
is treated in the same way as the rest of it (i.e. it has a numeric code.) This can
be changed by the user.

222 A Tutorial for κλειω: Part III

Thus by applying a soundex algorithm κλειω reduces the name from an alphabetical string
to a numerical code based mainly on phonetic similarities.

Consider the four names below, with their codes.

N I C A L L S

6 x 3 x 5 x 3

With the soundex code as above, the name Nicalls is given the code 6353. The initial letter
N is coded 6, the letter I is a separator and thus ignored, the letter C is coded 3, the letter
A is also a separator and not coded. The first letter L receives a code of 5, while the second
does not, because the second of two consecutive letters receiving the same code not
separated by a separator is also ignored. The letter S receives the code 3. The x’s represent
characters which are not given a code.

N I C H O L L S

6 x 3 x x 5 x 3

Likewise the name Nicholls is given the code 6353. N is coded 6, I is ignored, C is coded
5, H would also be coded 5 but is ignored because it is preceded by a letter receiving the
same code, O is ignored, L is coded 5, the second L is ignored and S is coded 3.

N I C H O L S

6 x 3 x x 5 3

The name Nichols is also given the code 6353 for almost the same reasons as the name
Nicholls.

However, if we were faced with the (for this source) rather implausible name Nikekeles,
we would hope that it had a different code.

N I K E K E L E S

6 x 3 x 3 x 5 x|3

The name Nikekeles receives the code 6335. The N is coded 6, the I is ignored, the first K
is given the code 3, the E is ignored, the second K receives the code 3 even though the last
coded letter also had a code of 3 because they are separated from each other by a
separator. The next E is also ignored and L is coded 5. The next E is ignored and the final
S would be given a code of 3. However, as we have seen, soundex codes are normally only
four characters long and thus the last numerical code in this case would also be ignored.

12. Nominal record linkage 223

Exercise 12.1

Without using κλειω, but using the soundex code described above, find out the codes for
the following names:

Anderson, Andersen
Bergman, Brigham
Fischer, Fisher, Fisshire
Oldroyd, Holroyd

12.3.2 A few tips on constructing a soundex algorithm

• First, it is important to get a good sense of the data. Examine the source for
easily mistaken characters, remembering that κλειω’s soundex code can take
into account orthographic differences as well as phonetic ones.

• Write down the alphabet. Cross off each letter as you put it into groups in the
algorithm. Remember that all significant letters within the database should be
included in the algorithm. (In the ‘real’ English soundex algorithm, the letters
w and h are ignored; it may be worth considering similar possibilities for other
algorithms).

• Usually odd letters like q, z and x are put into a group by themselves.

• Consider the possibility of pairing letters with no obvious phonetic similarities.
Some letters have no phonetical similarities but nonetheless may have
orthographic similarities (eg d and l). These letters would not normally be put
in the same group, but for certain data it may be useful to do so.

• Letters which are only in the alphabet because they are found in names or
words that are ‘foreign’ relative to the remainder of your source might form a
group.

12.3.3 Using the soundex algorithm

Run the following task:

Example 12.3

query name=births;part=:surname
write part=:surname,:soundex[:surname,code]
stop

224 A Tutorial for κλειω: Part III

This will produce a list of all the people in the database called births with their surnames
and the soundex codes for those surnames.

The :soundex[]:soundex[] element function

This has been seen above, but some further explanation is necessary here.

There are two parts to a :soundex[] element function. The first is the element
specification, the second is the name of the algorithm used to process the element specified
in the first parameter. The whole produces the soundex form of an element after being
converted by a particular soundex definition.

:soundex[:surname,code]
/ \

element name of
specification algorithm

Using two element functions together

In the following example the element function :form[] is invoked to describe the element
specification for the :soundex[] function. Here κλειω produces all the information about
those people whose surnames, once coded with the soundex algorithm, have the same code
as the name Nikols once it too has been coded with the soundex algorithm.

Example 12.4

query name=births;
part=:soundex[:surname,code]=

:soundex[:form["Nikols"],code]
write
stop

The :soundex[] function takes the following form:

:soundex[:form["Nikols"],code]
/ \

element name of
specification algorithm

This task will be important when completing the following exercise:

12. Nominal record linkage 225

Exercise 12.2

Below is an exercise which should check that you have understood what has already been
said about record linkage. It is important to solve this problem to the best of your ability
before continuing with this chapter.

Using the following piece of text, perform the operations which are listed below it.

The reader is also to consider that the names of persons very often vary; and although every one thinks
he spells and pronounces his own name right, yet it is not in the power of a clerk at the time of polling,
to spell ever man’s name exactly as he would do it himself: He must therefore be ruled more by the
sound than the letters, in looking for the person’s name wanted. For what writer could tell the
difference in our northern manner of pronouncing Cay and Kay; Carr and Kerr; Leighton, Leaton and
Layton; Turnbull and Trumball; Hindmarsh and Hynmers; Atkinson and Atchison; Kirsop and Crisop;
Hawdon, Haydon, Aydon and Haddon; Irwin and Urwin; Eccles and Heccles, &c, &c yet these names
are often corruptions of, or confounded and understood one for another.

(From the introduction to The Poll, &c., [Newcastle-upon-Tyne poll book, 1774], nd)

• Using the names in the above quotation, create a database with a structure
which consists of one group and one element and a data file of 23 elements.

• Using a separate file, create a soundex algorithm which groups characters for
this. (The original soundex algorithm will not solve this problem, though it was
devised for English names. This should demonstrate why it might be useful to
devise one’s own soundex codes.)

• Create a list of ten query commands which link these names.

The solutions to these tasks will be found at the end of the book, but there are comments
over the page.

226 A Tutorial for κλειω: Part III

Comments on exercise 12.2

(which should be read after completing the exercises)

Here is the ‘standard’ English Soundex code made into a logical object for use with κλειω.

item name=code10;usage=soundex;type=permanent;source=newcast
conversion without="aeiouywh"
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code10

If this algorithm is used in conjunction with the following task on the names in the
database constructed with the names from the Newcastle Poll Book, some names that are
supposed to refer to the same person are given different soundex codes.

query name=newcast
index part=:soundex[:name,code10];part=:name
stop

The results of this task are shown below.

1353 Eccles 22
1353 Heccles 23

1433 Atchison 13
1436 Atkinson 12

1460 Aydon 18
1460 Haddon 19
1460 Hawdon 16
1460 Haydon 17

1646 Hindmarsh 10
1673 Hynmers 11

1760 Irwin 20
1760 Urwin 21

3000 Cay 1
3000 Kay 2

3700 Carr 3
3700 Kerr 4

12. Nominal record linkage 227

3732 Crisop 15
3732 Kirsop 14

4762 Trumball 9
4762 Turnbull 8

5346 Leighton 5
5460 Layton 7
5460 Leaton 6

It will immediately be noticeable that there are three problems here. First, the names
Atchison and Atkinson are respectively given the codes 1433 and 1436; second, the names
Hindmarsh and Hynmers are respectively given the codes 1646 and 1673; third, the name
Leighton is given a different code (5346) to the names Layton and Leaton (5460).

It would be possible to make this algorithm work (for these names) by leaving out the
letters g and h, and moving d and s into the group with m and n. However, though this
would work, it would not be the most effective way of getting κλειω to consider that the
groups of names were in fact groups. This suggests that a more systematic way of coping
with phonetic or orthographic differences between names is needed. The soundex
algorithm works with single characters, but the problems encountered in the names above
refer to groups of characters; for instance in the name Leighton the string "gh" is not
sounded. Therefore it may be useful to remove the string "gh" from the middle of that
name. This is achieved by means of a different logical object. The first part of the following
file contains the standard English soundex algorithm, exactly the same logical object as
described immediately above except that it asks for a logical object called simplify to be
used preparatory to applying the soundex algorithm. The parameter preparation= has
as a parameter value a user-defined name for a logical object which must also be
described.

item name=code11;usage=soundex;type=permanent;source=newcast
conversion without="aeiouywh";preparation=simplify
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code11

item name=simplify;usage=conversion;type=permanent;
source=newcast

substitution current="ght";result="t"
substitution current="ndm";result="nm"
substitution current="nson";result="son"
exit name=simplify

The second part of this file contains another logical object which is used to convert groups
of letters within a name. The first line should be reasonably clear. It defines a logical object

228 A Tutorial for κλειω: Part III

called simplify, which makes systematic changes to a character string before it is
processed further. The second, third and fourth lines should also be reasonably self-
explanatory. They say that whenever a character string is found in a word which is the
same as the character string in the current= parameter value, substitute for it the
character string in the result= parameter value.

In this case the three substitution directives prepare the names in the database of
Newcastle names, so that when the soundex algorithm is applied to them, each group of
names is given the same soundex code and is thus considered to be the same.

It is important to recognise certain features of this logical object. For the third problem
described above the string "gh" needed to be removed. However, in order to make these
names correspond, the string "gh" only needs to be removed when it occurs in front of the
letter t. So the substitution directive tells κλειω only to remove the string "gh" when
it occurs in front of the letter t. According to the same reasoning the letter n only needs
to be removed when it occurs before the letters son.

It is important to remember that this database, which is made up from a mere paragraph
in the Newcastle Poll Book, is very small compared with a normal working database. In
this example the substitution directive is only used three times. In a normal database
on which record linkage was being performed this directive might be invoked between 80
or 90 times. However this number would of course depend on the source(s) being used.
As with all applications to compensate for phonetic and orthographic problems these
should be devised in conjunction with reference to the source, rather than just taking any
published code system. This directive has played a prominent part in a research database
linking one source in German to another in Czech.

Experience with κλειω and other record linkage projects has suggested that for Germanic
languages vowels should always be separators, and there should be between six and eight
part signs= groups. On the other hand, Romance languages use vowels differently, so
it would be wise to remove a couple of vowels from the list of separators (depending on
the language and the source), and past experience has also suggested that these languages
need around ten to twelve part signs= groups. There has not been a great deal of
experience with Slavic names but it is suspected that they act in a not dissimilar way to
the Germanic languages. We would suggest you to refer to items in the further reading for
more information about using soundex-type codes with languages other than English.

For certain projects using κλειω the soundex algorithm has proved exceptionally effective
in linking records that potentially relate to the same people, but as with all record linkage
projects the greater difficulty is not that of combining two groups of people but that of not
linking unmatching records. With refinements of the algorithm, which will be
demonstrated below, it is possible to recreate human linkage and perform the same task
on a much larger scale. However, if one has two lists of people, both of which contain two
or more people with exactly the same name and other similar attributes, it becomes much
harder for the computer to decide the correct links between the files. The problems

12. Nominal record linkage 229

surrounding list uniqueness should be referred to in the standard record linkage texts
referred to in the further reading (below, p. 264).

12.4 Linking two databases

For the rest of this chapter we will return to the examples of the births and deaths
databases. In the next couple of sections we will be discussing the use of a catalogue to
help link records from two databases.

In this example the problems in these two sources will be tackled one at a time. Surnames
will be considered first, as they are usually the most reliable part of a name to link.
(Newcome has stated that for twentieth-century Canadian names, the most common
surname, Smith, has a frequency of 0.720%, while the most common first name from the
same sample (John) has a frequency of 5.304%.) Thus it is usually much more reliable to
find potentially matching surnames before finding potentially matching first names.

The two sample databases that we are attempting to link are both very small; as a result
of this the advantages of creating a catalogue of names is not immediately apparent.
However, if one were attempting to link two lists of 10,000 names each, speed would
undoubtedly become an issue. As κλειω would attempt to link every name in the first list
with every name in the second list there would be 100 million potential links. Most of these
100 million comparisons would be completely unnecessary for a human being to perform.
One would not bother to try and link a ‘Smith’ with a ‘Thompson’. It is clear that they are
not the same person. In order for us to try to get the computer to emulate a human being
(i.e. not try and link those surnames that are quite obviously different), we tell it to try to
compare all those people with the same surname (e.g. Smith) in one database only to those
who appear in a catalogue made from the second database. So the 120 Smiths in database
1 would just be compared with the 100 Smiths in database 2, instead of the 10,000 people
mentioned there, which reduces the 1.2 million comparisons to 12,000. This result would
be even more spectacular with less common names. The average frequency of surnames
in Northern Europe tends to be about 0.1%; together with the other characteristics of the
distribution of names, the above process would usually reduce the number of necessary
comparisons to, at the most, 1%, of the ones that would otherwise be needed. (As there are
fairly few names like Smith, the effect is, in reality, more spectacular.)

While this procedure is attractive, it would of course prevent any chance of the computer
recognising that ‘Smith’ and ‘Smythe’ are identical, which it would do if these names had
had a soundex algorithm applied to them. This problem is solved by applying the process
described above after applying the soundex algorithm to those surnames. This would mean
that the catalogue from database 1 would contain soundex codes for the surnames from

230 A Tutorial for κλειω: Part III

that database. In order to qualify for a comparison, a person mentioned in database 2
would have to have the same soundex code for their surname as an entry in that catalogue.

When linking two databases, it is usual to create the catalogue out of the file with the
greater number of entries. In record linkage for the purpose of family reconstitution (from
baptismal and burial records), the larger file is usually that of the baptisms. For this
example we have followed the assumption that this is the case, and will create a catalogue
out of the surnames in the births database.

12.4.1 Creating a catalogue

First, we need to construct a catalogue of surnames from the births database. Do this as
before:

Example 12.5

query name=births
catalogue name=bircat1;part=:surname;type=terms
stop

This will create a catalogue of all the surnames in the births database.

12.4.2 Querying a catalogue

Once this catalogue has been created, it would be possible run a task similar to this to
display all the names like Nichols (N.B. this does not use the soundex algorithm):

Example 12.6

query name=births;
part=catalogue[bircat1,complete,"Nichols"]

write part=:each[]
stop

As we have seen in Section 8.2, the keyword complete in the catalogue[] group
function specifies that the whole of the term should be searched for.

This would produce a result like the following

12. Nominal record linkage 231

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Consider Figure 12.1, which shows in diagrammatic form what κλειω does when it creates
a catalogue. It takes each of the names from the database, and creates an item in a
catalogue which relates to it. Notice that the name Owens only occurs once in the
catalogue. This is because κλειω has created a link to show that the entry in the catalogue
refers to multiple entries in the database.

Figure 12.1

However, the soundex algorithm has not yet been applied to the surnames within the
database, so that should be considered next. In this case the standard English soundex code
will be applied.

Thomas
Platziertes Bild

232 A Tutorial for κλειω: Part III

12.4.3 The soundex algorithm

Below is the whole of the logical object contained in file ex12.2:

item name=code;usage=soundex;type=permanent;source=births
conversion without="aeiouywh";preparation=simplify
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code

item name=simplify;usage=conversion;type=permanent;
source=births

substitution current="dli";result="di"
exit name=simplify

This is the soundex algorithm that will be used with the births and deaths databases. Not
only does it include the ‘standard’ English soundex, it includes a single substitution
directive to prepare the names Ridlington and Ridlingdon. (Further details concerning this
directive can be found in Section 12.4.7.)

12.4.4 Creating a catalogue using a soundex algorithm

Once this algorithm has been run it is necessary to create a new catalogue of all the
soundexed surnames.

Example 12.7

query name=births
catalogue name=bircat2;part=:surname;type=terms;soundex=code
stop

This task is slightly different from the task used above to get κλειω to produce a catalogue.
We have introduced a new parameter, soundex=. This takes as its parameter value the
name of the logical object which holds the applicable rules for the soundex algorithm. As
the parameter value in this case is code, κλειω insists that that word occurs in a name=
parameter of an item command. (In this case it can be found in the file ex12.2.)

This new catalogue consists of all the surnames once they have had the soundex algorithm
called code applied to it.

12. Nominal record linkage 233

12.4.5 Querying a catalogue using the soundex algorithm

The previous task that was used to query the catalogue was ex12.6. This needs to be
changed slightly in order to query that part of the catalogue which contains the soundexed
surnames. Since we have made a different catalogue that will need to be changed, and the
keyword complete will have to be changed to algorithm. This tells κλειω that the term
being searched for should first be converted into a "derived format". In this case, because
the catalogue has a soundex entry, soundex is the derived format. (κλειω has two different
coding systems.)

Example 12.8

query name=births;
part=catalogue[bircat2,algorithm,"Nichols"]

write part=:soundex[:surname,code],:surname
continue
query name=births;

part=catalogue[bircat2,algorithm,"Owens"]
write part=:soundex[:surname,code],:surname
stop

This gives the result:

6353
Birth list (4 = "p1-4") : surname Nicholls
6353
Birth list (5 = "p1-5") : surname Nichols
6353
Birth list (6 = "p1-6") : surname Nicalls

1630
Birth list (1 = "p1-1") : surname Owens
1630
Birth list (3 = "p1-3") : surname Owens

In order to describe fully what is happening here, it is worth considering more precisely
how κλειω catalogues function. When κλειω creates a catalogue of an element within a
database, each relevant entry in the database is given an entry in a catalogue, but each
entry in a catalogue can be made up of more than one piece of information. In this case
there are two; the surnames and their soundexed equivalent. The importance of this will
not be lost when it is considered that the keyword algorithm relates to that part of a
catalogue which deals with entries that have had an algorithm applied to them.

234 A Tutorial for κλειω: Part III

Figure 12.2

12.4.6 Joining two databases

The following task shows how two databases are joined together. Notice that, although the
second catalogue that we have created is being used, the soundex part of it is not!

Example 12.9

query name=deaths;also=births;
part=catalogue[<births>bircat2,complete,<deaths>:surname]

write part=<deaths>:each[],<births>:each[]
stop

12. Nominal record linkage 235

An explanation follows:

query name=deaths;also=births;
I am interested in a database called deaths, and I am also interested in a database
called births.

part=catalogue[<births>bircat2,complete,<deaths>:surname]
I am interested in that part of the deaths database where there is a surname.
Once a surname has been found in this database, look it up in the catalogue
called bircat2 (which relates to the database births). If any pairs of surnames are
found to be identical,

write part=<deaths>:each[];<births>:each[]
display all the information about both groups on the screen.

stop

Notice that when two databases are being interrogated with the same task, the query
command must have both a name= parameter and an also= parameter. Each takes as a
value the name of one of the two databases being interrogated. The rules relating to this
are described in the Reference Manual, Section 9.2.1.

Note also another convention:

When more than one database is invoked in a κλειω task the names of those databases
must be enclosed in angled brackets ‘<’, ‘>’ when used in a task.

Compare the second line of this task with the second line of the task in Section 12.4.2.

The result of this task looks like this.

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

236 A Tutorial for κλειω: Part III

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

In this result κλειω has suggested three potential links between the two databases,
displaying information about three people who have exactly the same surnames. In order
to find more potential links it would be wise to perform the same sort of task on the
soundexed names. However, if one checks the contents of the element link from the Death
list and the id from the Birth list that follow them, it can be seen that only one of these
three potential links is correct (the first pair). Eventually we will modify the task as put to
κλειω in order to remove these incorrect links.

To see if κλειω can produce more potential links, it would be wise to perform the same
sort of task on the soundexed names.

We mentioned above that the larger database of a pair was used to make the catalogue.
For the same reason, the smaller database is usually made to be the ‘first’ database in a
task that contains more than one database name.

12. Nominal record linkage 237

12.4.7 Joining two databases using a soundex algorithm

The changes to be made to the previous task are slight. The name of the catalogue has to
be changed, and the access path has to be changed from complete to algorithm. This
signifies that κλειω should search for a term after it has been converted into a derived
format.

Example 12.10

query name=deaths;also=births;
part=catalogue[<births>bircat2,algorithm,<deaths>:surname]

write part=<deaths>:each[],<births>:each[]
stop

This query produces a much longer list of potential linked people:

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

238 A Tutorial for κλειω: Part III

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (6 = "p1-6")
sex male
dob 5.8.1632
id p1-6
fname An.
surname Nicalls

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

12. Nominal record linkage 239

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

240 A Tutorial for κλειω: Part III

Even though this list is much longer, it does not bring up all the possible links. Refer back
to the births and deaths databases. Two important problems remain; linking the surnames
Owen and Griffiths to Owens and ap Gryffith. To cope with this, two further subst-
itution directives have been added to the conversion algorithm.

Example 12.11

item name=code2;usage=soundex;type=permanent;source=births
conversion without="aeiouywh";preparation=simplify2
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code2

item name=simplify2;usage=conversion;type=permanent;
source=births

substitution current="dli";result="di"
type limit=yes
substitution result="";current="s"
type start=yes
substitution result="";current="ap"
exit name=simplify2

In the logical object simplify2, the first substitution directives tell κλειω to substitute
the character string "di" wherever it finds the string "dli". These two strings are parameter
values for the result= and current= parameters respectively. The second subst-
itution directive tells κλειω to replace the character string "s" with the string "" (i.e.
nothing). However, as it would be unwise to remove all occurrences of the letter s in a
word when it was only necessary to replace terminal s’s, the type directive followed by
the parameter limit=yes ensures that these substitutions only take place when the letter
"s" is at the end of a word. Likewise, for the third substitution directive, the preceding
type start=yes command ensures that the string "ap" is only removed when it occurs
at the beginning of an entry.

As a new soundex algorithm has been defined, a new catalogue needs to be defined. (It
would be possible to overwrite the existing algorithm and the catalogue, but for clarity
here we will create new ones.)

Example 12.12

query name=births
catalogue name=bircat3;part=:surname;type=terms;soundex=code2
stop

A new task has also to be written to perform the linkages:

12. Nominal record linkage 241

Example 12.13

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]

write part=<deaths>:each[],<births>:each[]
stop

The result is longer again:

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

242 A Tutorial for κλειω: Part III

Birth list (3 = "p1-3")
sex male
dob 15.6.1625
id p1-3
fname William
surname Owens

Death list (2 = "p2-2")
sex male
age 65y
id p2-2
fname George
surname Griffiths
link p1-9

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

12. Nominal record linkage 243

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (6 = "p1-6")
sex male
dob 5.8.1632
id p1-6
fname An.
surname Nicalls

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

244 A Tutorial for κλειω: Part III

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (3 = "p1-3")
sex male
dob 15.6.1625
id p1-3
fname William
surname Owens

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

12. Nominal record linkage 245

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

This list now gives all the potential links between people in both databases where the
surname from the deaths database (once soundexed) are the same as the soundexed
surnames in the catalogue (bircat3 which relate to the database births). But there are still
problems, for example people who are obviously different, such as Frances Owen and
William Owens who are still linked. There is also the problem that many different people
are suggested as linked. Therefore we should consider using a condition to sort out the
problem caused by the first names.

An example of a task that would be able to consider this is ex12.14:

Example 12.14

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]
:fname=<deaths>:fname

write part=<deaths>:each[],<births>:each[]
stop

This task is only slightly different from the previous one. It adds a condition; to select only
those pairs of surnames from the previous selection where the first names are also the
same. Previously we have seen that one can write part name=group:element="constant".
The condition in the above task works in exactly the same way, where the catalogue[]
group function refers to a group and :fname=<deaths>:fname refers to an element
followed by a condition.

Death list (2 = "p2-2")
sex male
age 65y
id p2-2
fname George
surname Griffiths
link p1-9

246 A Tutorial for κλειω: Part III

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

12. Nominal record linkage 247

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Note that the parameter value of a part= parameter always identifies a group, whether
it is just an element within a group or a group itself. Thus a usable parameter value must
relate to a group, so that:

catalogue[<births>bircat3,algorithm,<deaths>:surname]

refers to a group, while adding :fname after it (as in ex12.14) indicates that it is an
element which refers to that group. In simpler κλειω queries we have seen conditions after
groups; this would be perfectly possible here.

However this task produces a much shorter list, as it misses out the alternative spellings
of the first names. The simplest way of ensuring that this does not happen is to soundex
those names as well.

Though it is not always necessary to produce separate soundex algorithms for first names
and surnames, it is considered good practice to have a different code for each. First names
and surnames have different properties. There are standard abbreviations for Christian
names; for example, Thos is (almost!) always an abbreviation for Thomas, but if the string
Thos occurred as the beginning of a surname it would not be appropriate to convert it into
the string Thomas before processing it. Certain registers in the eighteenth and nineteenth
centuries used pseudo-Latin for first names, which would also require a different coding
system from that for surnames.

The file ex12.15 contains the standard English soundex codes in a logical object called
xtcode. This soundex algorithm will be used with first names.

248 A Tutorial for κλειω: Part III

Example 12.15

item name=xtcode;usage=soundex;type=permanent;source=births
conversion without="aeiouywh"
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=xtcode

Once this has be made, the following task will take care of the problem. Though this looks
much more complicated, compare it with the task in the file ex12.14.

Example 12.16

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]

:soundex[:fname,<births>xtcode]=<deaths>
:soundex[:fname,<births>xtcode]

write part=<deaths>:each[],<births>:each[]
stop

This translates as:

query name=deaths;also=births;
I am interested in a database called births; I am also interested in a database
called deaths.

part=catalogue[<births>bircat3,algorithm,<deaths>:surname]:
soundex[:fname,<births>xtcode]=<deaths>
:soundex[:fname,<births>xtcode]
Firstly assign codes to the first names in the database called births with the
soundex code called xtcode, then go to the database called deaths, treat the first
names in a similar way and then compare them. If they are the same, continue
by checking whether the surnames in the deaths database are the same as those
in the catalogue bircat3 which relates to the database births.

write part=<deaths>:each[],<births>:each[]
Display on the screen all the information about the two groups which fulfil the
criteria mentioned above.

stop

The result of this task will now bring up pairs of people whose surnames have the same
soundex codes after they have been treated by the logical object pre-treating those
surnames, and who have the same first names once they too have been treated by a
different soundex algorithm.

12. Nominal record linkage 249

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (2 = "p2-2")
sex male
age 65y
id p2-2
fname George
surname Griffiths
link p1-9

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

250 A Tutorial for κλειω: Part III

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (6 = "p1-6")
sex male
dob 5.8.1632
id p1-6
fname An.
surname Nicalls

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

12. Nominal record linkage 251

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

252 A Tutorial for κλειω: Part III

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

This has effectively taken care of all the similar first names, but a cursory glance at the
possible solutions that κλειω has suggested shows that there are still some incorrect links.
Most notably, Frances Owen from the death list is a woman, while the potential link
Francis Owen is a man. Though gender-ambiguous first names are not frequent in English,
this problem would be much greater in Romance languages where gender is denoted by
a different vowel ending.

A possible solution to this problem would be to add a further condition to the part=
parameter. The whole of the part= parameter might now read:

part=catalogue[<births>bircat3,algorithm,<deaths>:surname]:
soundex[:fname,<births>xtcode]=
<deaths>:soundex[:fname,<births>xtcode]

and <births>:sex=<deaths>:sex

This extra condition (and <births>:sex=<deaths>:sex) tells the system to continue
to the analysis command only where the sex of the individual in the births database is the
same as the sex of the person in the deaths database.

However, this does not make the whole condition any clearer, and if there were other
conditions to be added to this it would only add to the confusion.

12. Nominal record linkage 253

12.4.8 Block-structured tasks

A much better way of adding a condition is to use it within a block. A block-structured
task performs a similar function to a condition. When a block is used κλειω decides
whether part of a database fulfils a condition set by a query command. If it does then
κλειω will continue to process the task. In the case below, κλειω first selects all the
potential links within the database and then ‘checks’ those results against the query found
in the block. The task in this block could be translated as saying "if the result of the above
task is true AND the sex of the two people chosen is the same then display the results to
the screen".

Blocks must consist of a block initialisation command (in this case confirm), any number
of κλειω instructions, and an exit command. Each block initialisation command must be
followed by a name= parameter, with a user-defined name as the parameter value.
Likewise the exit command. The block initialisation commands confirm and negate
are only valid after a query command which is followed by a condition.

A block will only be entered if a condition in a previous query command is fulfilled.

Example 12.17

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]
:soundex[:fname,<births>xtcode]=
<deaths>:soundex[:fname,<births>xtcode]

confirm name=gender
query part=<births>:sex=<deaths>:sex
write part=<deaths>:each[],<births>:each[]
exit name=gender
stop

In this case the task checks the first names and the surnames as previously, and then, if
the two people chosen are of the same gender, the results are written to the screen.

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

254 A Tutorial for κλειω: Part III

Death list (2 = "p2-2")
sex male
age 65y
id p2-2
fname George
surname Griffiths
link p1-9

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

12. Nominal record linkage 255

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

256 A Tutorial for κλειω: Part III

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

There is an interesting side effect relating to the confirm command. Usually one would
want the condition to be satisfied before continuing with the task, but there may be cases
where we would like output for data not satisfying the condition as well as output of that
data that does satisfy it.

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]
:soundex[:fname,<births>xtcode]=
<deaths>:soundex[:fname,<births>xtcode]

confirm name=gender
query part=<births>:sex=<deaths>:sex
write part=<deaths>:each[],<births>:each[]
exit name=gender
negate name=no
index part=<births>:fname;

part=<deaths>:fname
exit name=no
stop

In this example the contents of the negate block would cause a list to be written of those
first names that were the same but were of a different gender. This list would be displayed
in the output after the other data.

Returning to the previous list, it is still possible to discover some errors in κλειω’s links.
If we remember that the list of burials were all supposed to take place during the same
week, and that we have the age of people at burial, we can ascertain the approximate date
of birth of those people who were buried. For some of the potential links that κλειω has
suggested, the date of burial less the age at burial is nowhere near the date of birth. (In a
real source this could not be used as a discriminating element as people were not always
baptised within the first few weeks of life.)

This problem can be solved by using another block. Just as any retrieval command can be
used within a block, a block can be contained within another block. In this case a further
block containing a condition specifying that the date of birth when added to the age at

12. Nominal record linkage 257

death must be between 1 January 1674 and 1 January 1676. κλειω, will, for example let you
‘add’ dates and numbers. By default, κλειω adds a number (which should represent a
number of year for example an age), to the year ‘element’ of a calendar date. Thus a date
of birth added to an age would give as a result a year. For example, if κλειω were asked
to add the age 25 to the year 1.1.1900 the result would be 1.1.1925.

Example 12.18

query name=deaths;also=births;
part=catalogue[<births>bircat3,algorithm,<deaths>:surname]
:soundex[:fname,<births>xtcode]=
<deaths>:soundex[:fname,<births>xtcode]

confirm name=gender
query part=<births>:sex=<deaths>:sex
confirm name=agecount
query part=<births>:dob&+<deaths>:age=

after "1.1.1674" and before "1.1.1676"
write part=<deaths>:each[],<births>:each[]
exit name=agecount
exit name=gender
stop

The command confirm name=agecount means that once the conditions preceding this
have been fulfilled, check whether the following query command is correct, before
proceeding to perform any of the further commands. The specification

part=<births>:dob&+<deaths>:age= after "1.1.1674" and
before "1.1.1676

means that if the date of birth (found in the births database) added to the age given in the
deaths database (for any potential pair of linked people) is between 2 January 1674 and 31
December 1675, continue processing this task.

This should look familiar if you remember the last chapter where link operators were
described as a facility to assist in more beautiful output. The ampersand is known in κλειω
as the expression operator and must precede any arithmetical operator that is being used.
When used with dates or text these arithmetical operators are known as link operators but
perform the same function. κλειω allows one to perform link operations on dates and
numbers and on text. (i.e. it would be possible to say :surname&+fname).

In κλειω the numerical operators are "+" (for addition), "-" (for subtraction), "*" (for
multiplication) and ":" (for division).

This final task displays only the correct links.

258 A Tutorial for κλειω: Part III

Death list (1 = "p2-1")
sex female
age 31y
id p2-1
fname Frances
surname Owen
link p1-2

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen

Death list (2 = "p2-2")
sex male
age 65y
id p2-2
fname George
surname Griffiths
link p1-9

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith

Death list (3 = "p2-3")
sex female
age 2y
id p2-3
fname Ann
surname Nichols
link p1-4

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls

Death list (4 = "p2-4")
sex male
age 37y
id p2-4
fname Stephen
surname Riddington
link p1-7

12. Nominal record linkage 259

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon

Death list (5 = "p2-5")
sex male
age 52y
id p2-5
fname Frank
surname Owen
link p1-1

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens

Death list (6 = "p2-6")
sex male
age 17y
id p2-6
fname Stephen
surname Ridington
link p1-8

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington

This is the final task needed to link these two databases correctly. All of the correct links
have been found.

12.4.9 Joining two databases permanently

Now that we have all this information about the links between two databases, it is possible
to ask κλειω to use this information in a constructive way. And we can ask κλειω to do it
without having to perform this task over and over again. (Remember that running this task
with two lists of 10,000 names may take quite some time.)

260 A Tutorial for κλειω: Part III

To get κλειω to use this information in a useful way, it would be possible to run the
following task in order to assist the processing of this information. It fulfils the same basic
purpose as the previous task, but it formats the results in a considerably different way.

Example 12.19

options lines=0
query name=deaths;also=births;

part=catalogue[<births>bircat3,algorithm,<deaths>:surname]
:soundex[:fname,<births>xtcode]=
<deaths>:soundex[:fname,<births>xtcode]

confirm name=gender
query part=<births>:sex=<deaths>:sex
confirm name=agecount
query part=<births>:dob&+<deaths>:age=

after "1.1.1674" and before "1.1.1676"
index part=:form[’bridge first="’];limit="";

part=<deaths>/root[0]:sign[];limit=’";second="’;
part=<births>/root[0]:sign[];limit=’"’;
identification=root[0]:sign[];write=no

exit name=agecount
exit name=gender
stop target="ex12.20"

The result looks like this:

bridge first="p2-1";second="p1-2"
bridge first="p2-2";second="p1-9"
bridge first="p2-3";second="p1-4"
bridge first="p2-4";second="p1-7"
bridge first="p2-5";second="p1-1"
bridge first="p2-6";second="p1-8"

For the moment only consider the items contained within quotation marks. In the first line
the two strings are p2-1 and p1-2. These refer to the two id numbers from the deaths and
the births databases respectively of a linked pair. Each subsequent line contains another
pair of id numbers for linked pairs. Since we know that these refer to the same people, a
new declaration can be used to ‘join’ these two databases together. This declaration is
known as the bridge declaration, as it bridges the gap between two different databases.

Every bridge declaration begins with a bridge command, which must specify in two
parameters the names of the two databases being linked. These two parameters are
first= and second=. In this case a type= parameter is needed with the parameter value
definitions to denote that the linkages between the two databases are made by way of
an explicit definition.

12. Nominal record linkage 261

Example 12.21

bridge first=deaths;second=births;type=definitions
bridge first="p2-1";second="p1-2"
bridge first="p2-2";second="p1-9"
bridge first="p2-3";second="p1-4"
bridge first="p2-4";second="p1-7"
bridge first="p2-5";second="p1-1"
bridge first="p2-6";second="p1-8"
exit name=definitions

Figure 12.3 shows what κλειω does when it performs the bridge command,
demonstrating graphically the links between the elements in two databases.

Figure 12.3

Running this task permanently integrates the information from it into the database where
it will be available for all future tasks. Run the file ex12.22 to see what occurs.

Example 12.22

query name=births
write
stop

This produces the following:

Thomas
Platziertes Bild

262 A Tutorial for κλειω: Part III

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens
deaths <deaths>Death list (5 = "p2-5") : Death list (5 = "p2-5") -> births

Birth list (2 = "p1-2")
sex female
dob 24.8.1643
id p1-2
fname Francis
surname Owen
deaths <deaths>Death list (1 = "p2-1") : Death list (1 = "p2-1") -> births

Birth list (3 = "p1-3")
sex male
dob 15.6.1625
id p1-3
fname William
surname Owens

Birth list (4 = "p1-4")
sex female
dob 1.3.1672
id p1-4
fname Ann
surname Nicholls
deaths <deaths>Death list (3 = "p2-3") : Death list (3 = "p2-3") -> births

Birth list (5 = "p1-5")
sex female
dob 23.6.1641
id p1-5
fname Anne
surname Nichols

Birth list (6 = "p1-6")
sex male
dob 5.8.1632
id p1-6
fname An.
surname Nicalls

Birth list (7 = "p1-7")
sex male
dob 10.3.1637
id p1-7
fname Stephen
surname Ridlingdon
deaths <deaths>Death list (4 = "p2-4") : Death list (4 = "p2-4") -> births

12. Nominal record linkage 263

Birth list (8 = "p1-8")
sex male
dob 23.1.1657
id p1-8
fname Steven
surname Ridlington
deaths <deaths>Death list (6 = "p2-6") : Death list (6 = "p2-6") -> births

Birth list (9 = "p1-9")
sex male
dob 27.1.1609
id p1-9
fname George
surname ap Gryffith
deaths <deaths>Death list (2 = "p2-2") : Death list (2 = "p2-2") -> births

Notice that the additional element displayed here takes the name of the database first
mentioned in the bridge declaration.

This element is an example of the data type relation. It denotes the logical connection
between one arbitrary point in one database to one arbitrary point in another. The use of
this new element will be fully described in the next chapter.

264 A Tutorial for κλειω: Part III

Further reading

S. W. Baskerville, P. Hudson & R. J. Morris (eds.), ‘Record Linkage’, special issue of History
and Computing, 4:1 (1992).

G. Bouchard and C. Pouyez, ‘Name Variations and Computerized Record Linkage’,
Historical Methods, 13 (1980), pp.119–125.

Charles Harvey, ‘Record Linkage and Local History’ in Computers and Local History, ed. A.
Brown, P. Wakelin and K. Schürer (Leicester, Leicester UP & Association for History
and Computing, 1993, forthcoming).

Theodore Hershberg, Alan Burnstein and Robert Dockhorn, ‘Record Linkage’, in Historical
Methods Newsletter, IX (1975/76), pp.137–163.

A. Kitts, D. Doulton and E. Reis, The Reconstruction of Viana do Castelo (London, Association
for History and Computing, 1990).

Howard B. Newcombe, Handbook of Record Linkage (Oxford, OUP, 1988) (not historical
record linkage).

IanWinchester, ‘The Linkage of Historical Records byMan and Computer: Techniques and
Problems’, Journal of Interdisciplinary History, 1 (1970), pp. 107–124.

Ian Winchester, ‘What Every Historian Needs to Know about Record Linkage for the
Microcomputer Era’, Historical Methods, 25 (1992), pp.149–165.

E. A. Wrigley (ed.), Identifying People in the Past (London, Edward Arnold, 1973).

Chapter 13

Relational capabilities

13.1 Introduction

This chapter is designed to help you to understand some of the relational capabilities of
κλειω. κλειω is not known for its simplicity and this is where κλειω can start to become
very difficult indeed. For this reason, this chapter has been made as simple as possible,
with very simple made-up data. One of the main uses for this feature of κλειω was almost
introduced in the previous chapter where the bridge command was used to ’join’ two
databases together. This, as we will demonstrate, is an example of the use of the relational
capability of κλειω.

κλειω is neither a hierarchical nor a relational database. It has been described as "a
semantic network tempered by practical considerations", which is all very well for
computer scientists but less than helpful for historians. An explanation of sorts is in order.
We have previously said that κλειω handles hierarchically structured data, which might
have implied that κλειω handles data in a hierarchical fashion. It does not. To confuse
matters further, it could be said that κλειω handles both hierarchically and relationally
structured data. However the way in which κλειω handles data cannot be described as
either. To the user it looks as though κλειω processes data in a fashion similar to the
hierarchical model, but internally κλειω handles everything in a network structure. This
allows it to possess the usual features of a relational DBMS while allowing the user to link
entirely independent databases, rather than just join a number of tables of a database (as
with a relational database). However, one could also join together disparate parts of a
database, in a fashion similar to a relational database.

266 A Tutorial for κλειω: Part III

κλειω achieves its relational properties using a data type called relation. Data of this
type can be used to represent references in any number of databases. As has been shown
κλειω can create an ‘artificial’ element of this data type using the bridge command, which
performs a similar task as a join between two tables in a standard relational database,
except that κλειω does it between two databases that remain independent. κλειω can also
use an element of relation data type to connect pieces of data within a single database.

κλειω has been designed as a source-oriented data processor. No matter how κλειω
represents the underlying structure of a database for its own use, it aims to be able to
process all the types of source likely to be considered by an historian. So whatever the
structure of the primary material, κλειω should be able to process it. A word of warning,
however. Use of the relation data type could become very unwieldy if it were used to
construct a fully fledged relational database. It would be recommended to use the
relation data type only at a low level or at least only with data that is inherently
structured in such a fashion.

Before considering how κλειω can be used in such a way, we will reconsider some of the
points we made about the bridge declaration at the end of the last chapter.

13.2 The bridgebridge declaration

Ensure that ex12.21 has been run. The task contains the bridge declaration which links
the two databases births and deaths.

The following task gives a result which demonstrates how κλειω processes information
within a database once a bridge with another database has been made.

Example 13.1

query name=births
write
stop

Part of the result of this task is shown below:

Birth list (1 = "p1-1")
sex male
dob 13.4.1622
id p1-1
fname Francis
surname Owens
deaths <deaths>Death list (5 = "p2-5") : Death list (5 = "p2-5") -> births

13. Relational capabilities 267

Here κλειω has made a new element called deaths. When two databases are joined
together with a bridge declaration, a new element relating to the link between two
elements is created. The name of this element is taken from the name of the database from
which the information has come. The contents of this element will be explained shortly.

If you receive a rather different result to this, it is possible that you have created the bridge
between the two databases twice. If this happens you should destroy it and create a new
one. The command necessary to delete the bridge between two databases is delete.

delete name=deaths;usage=bridge;source=births;type=permanent
stop

This asks κλειω to delete a bridge called bur which belongs to the database bap, and is
permanent. As the bridge links two databases, it would be perfectly possible to destroy this
bridge with the following command:

delete name=births;usage=bridge;source=deaths;type=permanent
stop

This would be possible because the bridge declaration creates double-sided links and
both are destroyed by one command. Using the metaphor of the bridge crossing a river,
it would be impossible to destroy only half a bridge (no letters about Avignon please).

The following example has been extracted from a task similar to ex13.1, but using the
database deaths as the target database rather than the database births.

Death list (5 = "p2-5")
sex male
age 52years
id p2-5
fname Frank
surname Owen
link p1-1
births <births>Birth list (1 = "p1-1") : Birth list (1 = "p1-1") -> deaths

Both of these results contain an element that was not previously in the databases.

Bridges between two databases are maintained by this element. Note, moreover, that these
elements contain a different type of data than we have encountered before. They contain
data of the type relation.

In order to describe what this element holds it is simplest to break down its contents into
parts:

268 A Tutorial for κλειω: Part III

births the name of the element
<births> the name of the ’other’ database
Birth list the name of the document from which we are going
(1 = "p1-1") the identification of that document
Birth list the name of group from which we are going
(1 = "p1-1") the identification of the group from which we are going
-> deaths the name of the database to which we are going

This example is not entirely clear, as the identifications of the groups that we are using
have the same style as the identifications of the documents we are using. In order to
distinguish this we have created a simple database which should make the difference
between the identification of the groups and documents more clear.

13.2.1 Another example of a bridgebridge declaration

Look at trial.lnk and trial2.lnk. Both of these databases are supposed to contain the same
imaginary people. To make this database slightly more realistic for more complicated (or
ordinary) projects, we have allotted the information relating to the people in the first of
these databases to the second document. We have also asked κλειω to use the contents of
the element id as part of the identification for that group. Before compiling both of these
databases, we suggest that you read through them.

note trial.lnk
database name=trial;first=ref;overwrite=yes
part name=ref;

part=a;
position=refnum

part name=a;
position=id,name,link

element name=id;identification=yes
exit name=trial

read name=trial
ref$First_document
ref$Second_document
a$1/Matthew
a$2/Mark
a$3/Luke
a$4/John

13. Relational capabilities 269

note trial2.lnk
database name=trial2;first=ref;overwrite=yes
part name=ref;

part=b;
position=refnum

part name=b;
position=id,name

element name=id;identification=yes
exit name=trial2

read name=trial2
ref$xxx
b$5/John
b$6/Luke
b$7/Mark
b$8/Matthew

The links between these two databases are not at the document level (as they are in the
births and deaths databases), and we have changed the identifications of the element id.
The bridge declaration is thus slightly more complicated. A full explanation of what is
happening here can be found in the Reference Manual in Section 10.1.1.2.1.2. For the time
being, though, just remember that people with the same names are supposed to be linked.

note bridge.lnk
bridge first=trial;second=trial2;type=definitions
bridge first="Second_document/a=1";second="xxx/b=8"
bridge first="Second_document/a=2";second="xxx/b=7"
bridge first="Second_document/a=3";second="xxx/b=6"
bridge first="Second_document/a=4";second="xxx/b=5"
exit name=definitions

Once you have compiled both the databases and the bridge definition, run the following
task:

Example 13.2

query name=trial
write
stop

This should produce the following result:

ref (1 = "First_docume")
refnum First_document

ref (2 = "Second_docum")
refnum Second_document

270 A Tutorial for κλειω: Part III

a (1 = "1")
id 1
name Matthew
trial2 <trial2>ref (1 = "xxx") : b (4 = "8") -> trial

a (2 = "2")
id 2
name Mark
trial2 <trial2>ref (1 = "xxx") : b (3 = "7") -> trial

a (3 = "3")
id 3
name Luke
trial2 <trial2>ref (1 = "xxx") : b (2 = "6") -> trial

a (4 = "4")
id 4
name John
trial2 <trial2>ref (1 = "xxx") : b (1 = "5") -> trial

If we run through the contents of the element trial2 as we did for the births element it
should make it clearer what they refer to.

trial2 <trial2>ref (1="xxx") : b: (1 = "5") -> trial
| | | | | | |
| | | | | | name of the element
| | | | | | to which we are
| | | | | | going
| | | | | |
| | | | | |
| | | | | identification of the group from
| | | | | which we are going
| | | | |
| | | | name of the group from which we are
| | | | going
| | | |
| | | identification of that document
| | |
| | name of the document from which we are going
| |
| name of the other database
|
the name of the newly created element

While you look at the above diagram, look at the structure declarations and the data files
for the two databases. What κλειω is doing here must be understood before we continue.
Not only does this have to be understood, we must demonstrate that this newly created
element can be used in exactly the same way as other elements.

13. Relational capabilities 271

13.3 The relationrelation data type

For the new sample database, it might be interesting to see the results of this task. Notice
that the new element (trial2) is included as a value of the part= parameter of the write
directive. The task below:

Example 13.3

query name=trial;part=:name
write part=:name,:trial2
stop

produces a result like this:

ref (2 = "Second_docum") : name Matthew
ref (2 = "Second_docum") : trial2 <trial2>ref (1 = "xxx") : b (4 = "8") -> trial
ref (2 = "Second_docum") : name Mark
ref (2 = "Second_docum") : trial2 <trial2>ref (1 = "xxx") : b (3 = "7") -> trial
ref (2 = "Second_docum") : name Luke
ref (2 = "Second_docum") : trial2 <trial2>ref (1 = "xxx") : b (2 = "6") -> trial
ref (2 = "Second_docum") : name John
ref (2 = "Second_docum") : trial2 <trial2>ref (1 = "xxx") : b (1 = "5") -> trial

The same task can also be applied to the database we used in the last chapter. Look at the
result of the following task:

query name=bap;part=:surname
write part=:surname,:bur
stop

This demonstrates that this newly made element can be treated in the same way as any
other element. However, it also has a property which other elements in κλειω do not have.

Access paths in κλειω usually take the following form:

group1/group2/group3....groupn:element

However if the element is of the relation data type, then another element can be added
to the end of this; allowing the user to specify the element within the group that the bridge
points to. For example:

group1/group2/group3....groupn:relation:element

Thus in the following task κλειω is asked to use the database births, go to each group
where there is an element :surname, then to write that surname, and then write the

272 A Tutorial for κλειω: Part III

surname found by following the path from the same group via the element :deaths to
the database <deaths>.

Example 13.4

query name=births;part=:surname
write part=:surname,:deaths<deaths>:surname
stop

Notice the name of the second database must also be specified and it must be specified
within angled brackets. (Unlike the task of joining two databases, though, here we do not
need to specify an also= parameter.)

A single entry from the result is given here:

Birth list (1 = "p1-1") : surname Owens
> Birth list (1 = "p1-1") : ---> <deaths>Death list (5 = "p2-5") : > >
Death list (5 = "p2-5") : surname Owen
<

This result tells us that a person with the surname Owens in the births database is linked
(via the bridge) to a person called Owen in the deaths database.

Notice that at the end of this entry there is a < which signifies the end of that result.

Use of this ‘artificial’ element can be made wherever an element is normally used, for
example in a task using the index command. See also the example ex12.6.

Example 13.5

query name=births;part=:surname
index part=:surname;

part=:deaths<deaths>:surname
stop

The result is:

ap Gryffith Griffiths p1-9
Nicalls p1-6
Nicholls Nichols p1-4
Nichols p1-5
Owen Owen p1-2
Owens p1-3
Owens Owen p1-1
Ridlingdon Riddington p1-7
Ridlington Ridington p1-8

13. Relational capabilities 273

Example 13.6

options lines=0
query name=births;part=:surname
index part=:surname;signs=12;

part=:fname;signs=12;
part=:deaths<deaths>:surname;signs=12;
part=:deaths<deaths>:fname;signs=12;
identification=order[];write=order[]

stop

Exercise 13.1

Create an index which contains entries looking like this, where the elements come from the
databases indicated below:

Griffiths George was born on 1609.01.27

<bur> <bur> was born on <bap>

In all the examples shown in this chapter so far, two databases have been connected using
an element of the data type relation. In these examples the connecting points between
the two databases had to be specified explicitly using the bridge command, but it is
possible to link groups within a single database without explicitly specifying where the
links are to be made. Obviously the use of this will depend on the type of historical source
material that is being used, but beware; while most historical data fits into a hierarchical
structure, almost all historical data could also be forced into a relational structure. κλειω
has exceptionally powerful relational capabilities which should be used whenever
necessary, but they introduce an additional level of complexity and trying to use κλειω to
implement the relational model will be very cumbersome. Therefore the relation data type
should only be used if the data really requires it.

13.4 The relationrelation data type in a single
database

The example database that will be used to demonstrate further uses of the relation data
type is made from a family tree and other written sources pertaining to the life of the
antiquarian and biographer John Aubrey.

The data and the structure declaration of the database can be found in aubrey.dat.

274 A Tutorial for κλειω: Part III

The following lines of data represent two families. The first family (001) is made up of a
man (William Aubrey), his wife (Wilgiford Aubrey) and their children. The second is made
up of a man and his child. If you find it hard to understand what is supposed to be
represented here, refer back to Chapter 3 where there is a family tree of John Aubrey.

fam$001
m$William/Aubrey/#Oxon/0 0 1529/0 0 1595
w$Wilgiford/Aubrey/Williams///002
c$Edward/Aubrey///003
c$Thomas/Aubrey///004
c$John/Aubrey/0.0.1578/0.0.1616/005
c$Elizabeth/Aubrey
c$Mary/Aubrey
c$Joan/Aubrey
c$Wilgiford/Aubrey

fam$002
m$John/Williams/Teynton#Oxon
c$Wilgiford/Williams///001

In family tree form the relationships shown above could be displayed thus:

John Williams

Wilgiford Williams = William Aubrey

Edward Thomas John Elizabeth Mary Joan Wilgiford

The second family in the datafile has a group called fam which contains one element
familynum. In this case the element contains the identification 002.

Each group relating to a co-founder of a family (husband or wife, denoted by the groups
m and w) contains, amongst other elements, one element called parfnum. The element
corresponds to the familynum of the family in which they were born. In this case Wilgiford
Williams (as mentioned in family 001) has the element parfnum with contents of 002. This
refers us to family 002, where she can be found as a child.

Similarly each group relating to a child (denoted by the group c) contains an element
famnum, the contents of which is always the same as the familynum of the family that
they go on to found. In this case, Wilgiford Aubrey (as mentioned in family 002) is the
same woman who later co-founded family 001.

In plain English, these relationships could be described as follows:

13. Relational capabilities 275

In family 002 Wilgiford Williams (a child) later co-founded family 001 and
in family 001 Wilgiford Aubrey (a wife) was born in family 002.

From the information given in that part of the file displayed above we can also say that
Edward Aubrey (a child in family 001) later co-founded family 003; and from the same
family Thomas Aubrey later co-founded family 004 and John Aubrey later founded family
005.

If this still seems confusing, please look at the whole family tree in Chapter 3 and look
back to the file aubrey.dat.

The structure declaration for this database can also be found in aubrey.dat.

There is a logical object which will look unfamiliar.

item name=family;usage=relation
part type=permanent;part=no
exit name=family

This defines a logical object called family which deals with relation type data within a
database. This type of declaration tells κλειω how to treat non-hierarchical relationships
within a database. The type=permanent parameter tells κλειω to keep a file of raw data
to create the database incrementally. The part=no parameter also relates to this; it tells
κλειω not to integrate any of the network identities until it is specifically told to. This line
is not necessary here, but is included to demonstrate two potential problems regarding the
relation data type. It would be wise for any user who was not very familiar with this
mechanism to follow this procedure.

The following element command within the structure declaration of this database tells
κλειω that the elements familynum, famnum and parfnum are all of data type relation
and are operated upon by a logical object called family.

element name=familynum,famnum,parfnum;type=relation;
relation=family

Compile the database now, and then run the following task:

Example 13.7

query name=aubrey;part=m
write part=:each[]
stop

Part of the result looks like this:

276 A Tutorial for κλειω: Part III

fam (3 = "003") : m (1 = "m-1")
parfnum * (Unknown)
fname Edward
surname Aubrey
place Brecon

Compare this with the information in the data file relating to Edward Aubrey in family
003. Notice that within the data file there is information referring to the parfnum of
Edward Aubrey. The reason why κλειω has suggested that this information is unknown
is because κλειω was specifically told in the logical object family not to integrate any of the
network identities until it was told to do so. Therefore it will be necessary to integrate
these network identities. This can be done with the following command:

Example 13.8

relation name=family;source=aubrey;cumulate=yes

which in English means "within the database aubrey, put the logical object family into
operation". This will create the appropriate links between the elements familynum,
famnum and parfnum.

If this task is run a further time, the result will be quite different.

Example 13.9

query name=aubrey;part=m
write part=:each[]
stop

fam (3 = "003") : m (1 = "m-1")
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

fname Edward
surname Aubrey
place Brecon

It is absolutely crucial to understand exactly what this means. Some methods of clarifying
this information will be demonstrated below.

The information in the first line of this result shows that we are dealing with the first m
(man) in the third family (known as 003). The beginning of the next line tells us that there
is some information relating to the parfnum of the man in this family. The remainder of
that line and the subsequent three show that there are links between the parfnum of the
man in family 003 and other families.

13. Relational capabilities 277

The first of these, fam (1 = "001") : fam (1 = "001") -> familynum, says that
the parfnum of the man in family 003 is the same as the familynum of family 001.

The second, fam (2 = "002") : c (1 = "001") -> famnum, says that the parfnum
of the man in family 003 is the same as the famnum of a child in family 002.

The third, fam (4 = "004") : m (1 = "m-1") -> parfnum, says that the parfnum
of the man in family 003 is the same as the parfnum of the man in family 004.

Finally, the fourth line fam (5 = "005") : m (1 = "m-1") -> parfnum, says that
the parfnum of the man in family 003 is the same as the parfnum of the man in family 005.

This can be shown in the following diagram:

Figure 13.1

If you look at the original data you will see that that number occurs four times in the
database (not including where it is given as the parfnum of the third family).

Thomas
Platziertes Bild

278 A Tutorial for κλειω: Part III

Put into the terminology used above, these four lines represent the following information.

1) Family 001 has the same familynum as the parfnum of the man we are looking at,
therefore he was born in this family.

2) In family 002 a child later co-founded the family where the man in family 003 was a
child, therefore this child is a parent of the man we are looking at.

3) The man in family 004 has the same parfnum as the man we are looking at, therefore
they are brothers.

4) The man in family 005 has the same parfnum as the man we are looking at, therefore
they are brothers.

13.4.1 Displaying more information

The following task asks κλειω to perform the same task as above, and also to display all
the information relating to each of the groups found moving along the paths created by
the relation element.

Normally, when κλειω executes a task, it moves through the database from the beginning
to the end in a linear fashion. In the task reproduced below the system is asked to go from
one element to another (i.e. wherever a particular parfunum element can be found). In
doing this, κλειω is no longer processing in a linear fashion, and indicates that it is no
longer doing so by displaying an arrow which ‘points’ to its target. When κλειω reverts
to linear processing the arrows are reversed (and shorter). This may sound rather
confusing at the moment but as you read the following section it will become clearer.

Example 13.10

query name=aubrey;part=m
write part=:each[],:parfnum:each[]
stop

Part of the result is annotated below to show what each part means:

fam (3 = "003") : m (1 = "m-1")
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

fname Edward
surname Aubrey
place Brecon

13. Relational capabilities 279

This represents the first execution of the :each[] element function.

> fam (3 = "003") : ---> fam (1 = "001") : > >

This represents ‘moving’ from family 003 to family 001.

fam (1 = "001")
familynum fam (2 = "002") : c (1 = "001") -> famnum

fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

The information about all the elements in that group are now displayed, fulfilling the
command :parfnum:each[]

> -- " -- ---> fam (2 = "002") : > >

indicates that κλειω has returned to family 003 (shown by the ditto marks) and is now
moving to family 002. This process continues until there is no further relevant information
to display.

fam (2 = "002") : c (1 = "001")
famnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

fname Wilgiford
surname Williams

> -- " -- ---> fam (4 = "004") : > >

fam (4 = "004") : m (1 = "m-1")
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

fname Thomas
surname Aubrey
place Glamorgan

> -- " -- ---> fam (5 = "005") : > >

280 A Tutorial for κλειω: Part III

fam (5 = "005") : m (1 = "m-1")
dob 0.0.1578
dod 11.6.1616
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum

fname John
surname Aubrey
place Burleton
comment Hereford

<

and as there are no further places to go, no further information can be displayed. κλειω
represents this with a <.

Thus κλειω has been asked to display all of the information about all of the groups that
are linked with a group by a relation type element. (Remember that here we are only
looking at a single individual within the database, rather than all of the people contained
in the result.) Try following through the above with a different person within the database
looking at the results of the previous two queries using John Aubrey (the head of family

014) as an example.

How useful is all this information to us? The previous task displayed information relating
to all the people immediately related to all the men within the database. If we only wanted
information about the fathers of men in the database we could specify this using a different
task. Remember that in the case of the man in family 003 there were four links to other
groups in the database:

fam:familynum m:parfnum
\ /
fam$003
/ \

c:famnum m:parfnum

13.4.2 The element function :target[]:target[]

If we could find a way to specify only some of these links or connection lines, it would be
possible to display only certain information about people related to an individual. This is
achieved using the element function :target[]. This function tells κλειω to go to all the
elements in the database that are the same as those specified in the group function. In the
example below, κλειω is asked to follow the connections found only if they relate to
fam:familynum.

13. Relational capabilities 281

Example 13.11

query name=aubrey;part=m
write part=:each[],:target[:parfnum,"fam:familynum"]:each[]
stop

For the example we have been using above, the following information is given as a result:

fam (3 = "003") : m (1 = "m-1")
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

fname Edward
surname Aubrey
place Brecon

> fam (3 = "003") : ---> fam (1 = "001") : > >

fam (1 = "001")
familynum fam (2 = "002") : c (1 = "001") -> famnum

fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum
fam (5 = "005") : m (1 = "m-1") -> parfnum

<

For another member of the family the result looks like this:

fam (14 = "014") : m (1 = "m-1")
dob 12.3.1626
dod 1.1.1500 - 7.6.1697
parfnum fam (5 = "005") : c (1 = "011") -> famnum

fam (11 = "011") : fam (11 = "011") -> familynum
fam (13 = "013") : c (1 = "011") -> famnum

fname John
surname Aubrey
place Easton Pierce

> fam (14 = "014") : ---> fam (11 = "011") : > >

fam (11 = "011")
familynum fam (5 = "005") : c (1 = "011") -> famnum

fam (13 = "013") : c (1 = "011") -> famnum
fam (14 = "014") : m (1 = "m-1") -> parfnum

<

This refers to the John Aubrey. The first part of this result shows that he has two siblings,
one the head of family 011 and one the head of family 013, and that he was born in family
011. The second part of the result shows the links from family 011, which include the link
back to John Aubrey in family 014.

282 A Tutorial for κλειω: Part III

This second part of this result gives information about the links from the family. The
amended task, shown below, gives information about the links from the man in that
family.

If we want information about the father of John Aubrey, we have to specify that request.
As the group m (which contains the data about the husband in the family) is dependent
on the group fam, the access path to that group must be specified.

Example 13.12

query name=aubrey;part=m
write part=:each[],:target[:parfnum,"fam:familynum"]/m:each[]
stop

Line by line, this task means:

query name=aubrey;part=m
I am interested in the database aubrey and I am only interested in that part
where there is information about the group m.

write part=:each[],
display on the screen all the information about the group specified in the line
above.

:target[:parfnum,"fam:familynum"]
move through the database along any link where the element :parfnum (for the
individual displayed previously) is the same as a familynum in a group fam.

/m:each[]
display all the information about the subordinate group m for all those families
which fulfil the conditions above.

The result of this task for John Aubrey of family 014 is shown below.

fam (14 = "014") : m (1 = "m-1")
dob 12.3.1626
dod 1.1.1500 - 7.6.1697
parfnum fam (5 = "005") : c (1 = "011") -> famnum

fam (11 = "011") : fam (11 = "011") -> familynum
fam (13 = "013") : c (1 = "011") -> famnum

fname John
surname Aubrey
place Easton Pierce

> fam (14 = "014") : ---> fam (11 = "011") : > >

13. Relational capabilities 283

fam (11 = "011") : m (1 = "m-1")
dob 0.0.1603
dod 0.0.1652
parfnum fam (1 = "001") : c (3 = "005") -> famnum

fam (5 = "005") : fam (5 = "005") -> familynum
fam (12 = "012") : c (1 = "005") -> famnum

fname Richard
surname Aubrey
place Burleton
comment Heref

<

What is displayed here is the information about the father of John Aubrey. In the same
way we can ask κλειω to give us information about the father of Richard Aubrey:

Example 13.13

query name=aubrey;part=m
write part=:each[],

:target[:parfnum,"fam:familynum"]/m
:target[:parfnum,"fam:familynum"]/m:each[]

stop

The result of this task for John Aubrey of family 014 looks like this:

fam (14 = "014") : m (1 = "m-1")
dob 12.3.1626
dod 1.1.1500 - 7.6.1697
parfnum fam (5 = "005") : c (1 = "011") -> famnum

fam (11 = "011") : fam (11 = "011") -> familynum
fam (13 = "013") : c (1 = "011") -> famnum

fname John
surname Aubrey
place Easton Pierce

> fam (14 = "014") : ---> fam (11 = "011") : > >
> > fam (11 = "011") : ---> fam (5 = "005") : > > >

fam (5 = "005") : m (1 = "m-1")
dob 0.0.1578
dod 11.6.1616
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum

fname John
surname Aubrey
place Burleton
comment Hereford

< <
<

284 A Tutorial for κλειω: Part III

As the task did not specify displaying the results of the first move along the links, only all
the information about John Aubrey’s grandfather is displayed here.

The curious lines shown after the first part of the result show that κλειω is moving from
family 014 to family 011 and then from family 011 to family 005.

13.4.3 The group function continue[]continue[]

Obviously if there is enough information about ancestors it would be possible to continue
specifying the element function :target[] as many times are there are potential
ancestors. In fact κλειω has a built-in function which will continue to perform this over and
over again. It works in a similar way to the :target[] element function. The task below
shows how one would have to use the :target[] function to display information about
four generations

Example 13.14

query name=aubrey;part=m
write part=:each[],

:target[:parfnum,"fam:familynum"]/m:each[],
:target[:parfnum,"fam:familynum"]

/m:target[:parfnum,"fam:familynum"]/m:each[],
:target[:parfnum,"fam:familynum"]

/m:target[:parfnum,"fam:familynum"]
/m:target[:parfnum,"fam:familynum"]/m:each[]

stop

The reason why a task like that below will not work is because all relational ‘jumps’ are
cancelled by the end of a subpath (i.e. the comma):

query name=aubrey;part=m
write part=each[],

:target[:parfnum,"fam:familynum"]/m:each[],
:target[:parfnum,"fam:familynum"]/m
:target[:parfnum,"fam:familynum"]/m:each[]

stop

The group function continue[] is a fully recursive function, which in effect ’cruises’
through all the networks within a database. It is especially useful if we do not know how
far these networks stretch. In the task above we start at the group m, and each time we
reach this group κλειω displays each element it finds there. After that has been displayed
κλειω goes to the parental family number, checks that it relates to a family number in the
group fam. If it does, κλειω moves down one level of the hierarchy and displays each of
the elements contained in the group m. This will be repeated as often as possible using
continue[].

13. Relational capabilities 285

Example 13.15

query name=aubrey;part=fam
write part=continue[m,:parfnum,"fam:familynum"]:each[]
stop

The result shows John Aubrey, his father Richard, his grand-father John and his great
grand father William.

fam (14 = "014") : m (1 = "m-1")
dob 12.3.1626
dod 1.1.1500 - 7.6.1697
parfnum fam (5 = "005") : c (1 = "011") -> famnum

fam (11 = "011") : fam (11 = "011") -> familynum
fam (13 = "013") : c (1 = "011") -> famnum

fname John
surname Aubrey
place Easton Pierce

> fam (14 = "014") : ---> fam (11 = "011") : > >

fam (11 = "011") : m (1 = "m-1")
dob 0.0.1603
dod 0.0.1652
parfnum fam (1 = "001") : c (3 = "005") -> famnum

fam (5 = "005") : fam (5 = "005") -> familynum
fam (12 = "012") : c (1 = "005") -> famnum

fname Richard
surname Aubrey
place Burleton
comment Heref

> > fam (11 = "011") : ---> fam (5 = "005") : > > >

fam (5 = "005") : m (1 = "m-1")
dob 0.0.1578
dod 11.6.1616
parfnum fam (1 = "001") : fam (1 = "001") -> familynum

fam (2 = "002") : c (1 = "001") -> famnum
fam (3 = "003") : m (1 = "m-1") -> parfnum
fam (4 = "004") : m (1 = "m-1") -> parfnum

fname John
surname Aubrey
place Burleton
comment Hereford

> > > fam (5 = "005") : ---> fam (1 = "001") : > > > >

286 A Tutorial for κλειω: Part III

fam (1 = "001") : m (1 = "m-1")
dob 0.0.1529
dod 0.0.1595
fname William
surname Aubrey
place
comment Oxon

< < <
< <
<

Summary

This chapter has introduced:

• The basic relational facilities of κλειω

• Further information on the bridge declaration

• The relation datatype

• The functions :target[] and :collect.

Chapter 14

Mapping

14.1 Introduction

κλειω has the ability to produce graphical representations of topographical objects.
However, in order to produce maps κλειω needs to have topographical information
presented to it in a particular fashion. Some of the examples presented in this chapter have
been produced using digitizing software to which you may not have access, or indeed you
may have access to digitizing equipment that κλειω does not yet support. Once you have
worked through this chapter and you find that you would like to produce your own maps
using κλειω it would be of value to consult the Reference Manual (Section 7.3.1.13.1.4.1 ff.)
to see more clearly the different methods of supplying κλειω with topographical objects.

Producing a map using κλειω is intrinsically no different to producing a result from any
other task in κλειω. When κλειω produces the result of a task it normally displays the
information on the screen in a format which the user has specified. Alphanumeric
information of this kind is displayed with alphanumeric characters on the screen, while
data defined as topographical objects are displayed spatially. Thus databases containing
both ‘historical’ and ‘geographical’ data can produce information in the form of a map.

288 A Tutorial for κλειω: Part III

14.1.1 The locationlocation data type

The file ex14.1 contains the structure declaration for a database called dummy1.

Example 14.1

database name=dummy1;first=x
element name=grid-reference;type=location;location=map

part name=x;
position=id,name,grid-reference

exit name=dummy1

The document for this database is x, and it contains the elements id, name and grid-
reference. The element declaration states that the element grid-reference is of data type
location and that these elements should be operated upon by rules contained in an (as
yet unseen) logical object called map.

This introduces a new data type, location. The data type location refers to data which
κλειω must be able to convert into topographical objects.

So far the data types introduced are text, number, date, category and relation. The
first four of these are relatively common in κλειω databases, the fifth is much rarer. There
are two other types of data, location and image. The first five data types are machine
independent; whatever hardware is being used, κλειω will treat them in the same way
but the other two data types are machine dependent and κλειω will treat the results of any
task involving either of them slightly differently depending on the type of computer being
used.

The file ex14.3 contains the data for this simple database. There is one group, x, which has
an id of a1, the name John Smith and the grid-reference house1.

Example 14.3

read name=dummy1
x$a1/John Smith/house1

If you have already run ex14.1 and attempt to run ex14.3, an error message will appear
which states that an implicitly addressed logical object is missing. This implicitly addressed
logical object is called map, and is of type location. It is introduced in the file ex14.1.
Therefore κλειω is telling you that no logical object called map exists, but it has already
been implicitly addressed in the structure declaration of the database.

Look at the file ex14.2:

14. Mapping 289

Example 14.2

item name=map;usage=location;source=dummy1;type=permanent
type form=arcinfo
location first=house1
2 2
6 2
6 5
2 5
end
exit name=map

This file contains the logical object called map. It understands data of type location, is
related to the database dummy1 and is permanent. (Please ignore the type directive and
the form= parameter for the time being. They will be described in Section 14.2.2.) The
location directive is used to define one (and exactly one) topographical object. The
parameter first= with a location directive takes the user-defined name of the
topographical object. In this case its value is house1 (refer to ex14.3). On the following four
lines are four pairs of coordinates which relate to the four points of the object house1. The
keyword end is used to tell κλειω that these are the only four coordinates used to define
the topographical object house1. The following diagram represents house1.

5 (2,5) (6,5)

4

3

2 (2,2) (6,2)

1

0 1 2 3 4 5 6

Each of the four ‘corners’ of house1 are represented in the logical object map. The points
in the logical object are simple (x,y) coordinates, where x represents the horizontal axis and
y the vertical axis.

κλειω understands these four coordinates as an object, consisting of four lines, one linking
the point (2,2) with (6,2), another linking (6,2) with (6,5), a third joining (6,5) with (2,5) and
finally one joining (2,5) with (2,2). In the location directive all four points are
distinguished, but the lines are not. The sequence of coordinates tells κλειω where the
joining lines should be. In this case, the first line links the first and second coordinates, the
second line joins the second and third coordinates, the third line joins the third and fourth,
and, importantly, the fourth line is represented as being between the fourth and the first
coordinate.

Thomas
Platziertes Bild

290 A Tutorial for κλειω: Part III

14.1.2 The mappingmapping command

The task ex14.4 displays the information contained in the element grid-reference, where the
element name in the database dummy1 contains the character string Smith.

Exercise 14.4

query name=dummy1;part=:name="Smith"
mapping part=:grid-reference
stop

The new command here, mapping, tells κλειω what to map. It is rather like the write
command, except that only data of location data type can be used in a mapping
command. Thus the part= parameter of a mapping command must have the name of an
element which refers to the location data type. (This does not mean that the name of a
group can not appear in part of a path).

Run this file and wait for the map to be displayed on the screen.

κλειω produces a ‘map’, containing one object, which fills the screen. By default κλειω,
whenever producing a map, makes maximum use of the screen. In effect the smallest and
largest values for x coordinates define the left and right boundaries for the map, while the
smallest and largest values for the y coordinates define the top and bottom boundaries of
the map. However, κλειω always attempts to keep the units of measurement for both axes
exactly the same, thereby preserving the original proportions of the objects displayed.

By default κλειω also displays the name of the object shown on the screen, and displays
the object itself in white.

The map will remain on your screen until you press a key (almost any key will do). As on
some national keyboards certain national characters may not have this effect, we would
propose that you use the Enter key to clear the map from the screen.

14.1.3 The deletedelete command

The use of an item command which is explicitly referred to in a structure declaration, but
which is in a different file to the database, is unusual. So far we have only once seen this
type of logical object in a file separate from the structure declaration. It is usually
convenient to have them together because this type of logical object must be in existence
whenever a database is used. However, in the case of logical objects dealing with the
location data type it is usually not convenient to have them together, as the definitions
found in a logical object referring to location data are much more complicated than

14. Mapping 291

those dealing with other data types. If this logical object is kept separately, it can be altered
without the need to recompile the whole database. (Incidentally this is also true for the
data of image data type.) Consider the following task:

Example 14.5

delete name=map;usage=location;source=dummy1;type=permanent
item name=map;usage=location;source=dummy1;type=permanent
type form=arcinfo
location first=house1
2 2
16 2
16 5
2 5
end
exit name=map

There is a slight change in coordinates, but rather than recompiling the structure file, the
data file and the location file, it is possible, using the delete command, just to remove
the old definition of the logical object and replace it with a new one. Even with this very
small database, it is quicker to add this line and run this task than to re-run all three files.
Imagine the time saved if one had a map with a thousand objects.

Run task ex14.5, and then task ex14.4, again. This will show what changes have been made
to the map. You may wonder why in this case you have to delete the defintion explicitly
rather than relying on the usual overwrite=yes parameter. If a logical object already
exists, the item command would ‘modify’ the contents of the logical object, which in the
case of large topographical objects could speed up single changes considerably. (Try to
remember how we modified codebooks (p. 191 above) to understand this concept.) For
smaller applications the way described above is, however, much easier to learn.

14.1.4 Parameters used to control graphical output

There are a number of other parameters used in conjunction with the mapping command
to control the graphical output from a task. Three of these parameters are shown in task
ex14.6:

Example 14.6

query name=dummy1;part=:name="Smith"
mapping part=:grid-reference;colour=red;line=triple;

usage=tenthtone
stop

292 A Tutorial for κλειω: Part III

The colour=colour= parameter

The colour= parameter (which could also be spelled color=. Note that κλειω only looks
at the first four characters of any command) takes four possible parameter values:
contrast, red, blue, and green. contrast is the default, which κλειω understands as
producing a line in white (on the screen) or black (on paper output). The parameter values
red, blue, and green produce output (either to screen or on paper via a plotter or colour
printer) in the particular colour specified.

The line=line= parameter

The line= parameter accepts three possible keywords: simple, double and triple.
Each of these parameter values refers to the thickness of the lines joining the coordinates.
The value simple produces a line of single thickness. (The actual thickness is equal to one
pixel on the screen.) The keywords double and triple produce lines of double and
treble thickness respectively.

The usage=usage= parameter

The usage= parameter accepts four keywords: solid, halftone and tenthtone. The
value solid is the default and produces a continuous line. halftone creates a dashed
line, and the value tenthtone produces a dotted line.

These three parameters can also be contained in the location directive of an item
declaration. For instance, if the parameter usage=tenthtone is added to ex14.7 as
follows:

Example 14.7

delete name=map;usage=location;source=dummy1;type=permanent
item name=map;usage=location;source=dummy1;type=permanent
type form=arcinfo
location first=house1;usage=tenthtone
2 2
16 2
16 5
2 5
end
exit name=map

and this and ex14.4 are run again, the result will show the object with a dotted line.
However, if the query command in ex14.4 were changed to:

14. Mapping 293

Example 14.8

query name=dummy1;part=:name="Smith"
mapping part=:grid-reference;usage=halftone
stop

the object would be displayed with a dashed line. This is because κλειω only checks the
location directive of a logical object if a characteristic of a line has not been specified in
a mapping command.

Exercises

Exercise 14.1

Produce a database which contains ‘Shape 1’ and ‘Shape 2’ in two different groups, and
display them on the screen.

Exercise 14.2

Change the database so that ‘Shape 1’ is displayed in red and ‘Shape 2’ is displayed in
blue.

Thomas
Platziertes Bild

294 A Tutorial for κλειω: Part III

14.2 More complex mapping

14.2.1 Introduction to Winchester Census material

Look at the file colebro.dat. This contains information from one street in Winchester taken
from the 1881 English Census. A small example is shown below.

house$/37 Colebrook Street/site=n83
schedule$139
head$mz/William/Ventham/51/General Laboror/Winchester/Hants
relp$fs/Emma/Ventham/daur/12/Scholar/Winchester/Hants
relp$fs/Thomas/Ventham/son/6/Scholar/Winchester/Hants

You should be familiar with this database as it was used in the exercises on codebooks.
Look at the datafile. There is an unusual element in the group house. This element is called
site and contains data of type location.

This can be seen in the file colebro.mod. Here is one line of it:

element name=site;type=location;location=houses

This shows that the element site is of location data type and refers to a logical object
called houses.

The next file to consider is colebro.loc. This file contains the logical object houses. The fact
that this file is over 800 lines long and refers to just over 100 objects suggests that it would
be wiser to follow the instructions above about keeping this type of logical object in a
separate file in case it needs correcting.

This logical object is called houses, relates to location type data and has the database
colebro as a source.

The coordinates described in this command refer in the same way as do those above to a
particular house. (In this case, however, the coordinates are given to six decimal places.)

14. Mapping 295

item name=houses;usage=location;source=colebro;type=permanent
type form=arcinfo;
location first=n1
26.326000 11.083000
26.878000 11.052000
26.898001 10.785000
26.337000 10.789000
END
location first=n2
26.337000 10.789000
26.900000 10.776000
26.945000 10.140000
26.365999 10.101000
END
...
...
exit name=houses

The coordinates in this example were produced using a software application called
ARC/INFO which is used for producing, controlling, analysing and presenting
geographical information. Most data processed by geographical information systems like
ARC/INFO are input using a digitizer. There are three components to a digitizer, a
computer, a digitizing table and a pointer (rather like a mouse). Coordinates are collected
by placing a basemap on the digitizing table and clicking on the pointer. Each click of the
pointer represents a coordinate. Once all the objects have been digitized the GIS
(Geographical Information System) allows the user to produce output in a format very
similar to that shown above. Some slight editing was needed to produce this format.

As we have seen above, it is possible to input coordinates ‘by hand’, but for a map of any
complexity a digitizer is recommended. Notice that in this example the coordinates are
given to six decimal places. This is the default format of ARC/INFO. κλειω will accept
these coordinates, but, as we have shown, you do not require them.

If you have not already created this database, do so now, first compiling the .mod file, then
the .loc file and finally the .dat file. Please note that it is essential to compile the files in
this order.

296 A Tutorial for κλειω: Part III

14.2.2 The typetype directive and the form=form= parameter

In the colebro database the type directive takes a form= parameter which has the value
arcinfo. This particular directive indicates to κλειω the format of the coordinates that
follow it. The parameter value arcinfo relates to the software used to create the
coordinates. Currently κλειω understands data of this type in two formats; as above (called
arcinfo) and as below, called digipad. (See the Reference Manual, Section 7.3.1.13.1.4.1
ff).

type form=digipad
location first=n1
3 2632, 1108 2687, 1105 2689, 1078
1 2633, 1078

The coordinates in this example have been made up to look as though they have been
output from a digitizer using the software application digipad.

14.2.3 The structure of the colebro database

The task contained in the file ex14.9 displays the occupations of the heads of the household
within this database:

Example 14.9

query name=colebro;part=head
write part=:occupation
stop

There are rather a lot of bricklayers in this sample, and perhaps we might consider it
useful to see where they all lived whether they all lived close together or were regularly
distributed over the whole of the street. Look at the results of the following task:

Example 14.10

query name=colebro;part=head:occupation="brick" or "Brick"
write part=back[2]:site
stop

This task will give the ‘site’ of each person whose occupation contained the character string
"brick" or "Brick", but the manner in which the information was retrieved is not very
useful.

14. Mapping 297

Also note that the function back[] is needed as the site is on a different level in the
hierarchy to the group head.

Compare the following task with ex14.10 before executing it:

Example 14.11

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site
stop

This task will display the element site (i.e. a graphical representation of the house) where
the head of household has an occupation which has the character string "brick" or "Brick"
in it. This will include all bricklayers’ labourers.

The task below slightly alters the information to be shown on the screen. The only change
in the display is that the outline of the houses is produced with a triple line. The other
added parameters need not be included, as they only tell κλειω to do what it would by
default.

Run this task now:

Example 14.12

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;

colour=contrast;usage=solid;lines=triple
stop

What is displayed? Only the houses of the bricklayers and the bricklayers’ labourers. The
line at the bottom left of the map is part of the castle wall. (We will explain this shortly.)
All the reference labels relating to those houses are also displayed.

14.2.4 The sign=sign= and total=total= parameters

The following example introduces the sign= parameter:

Example 14.13

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;

colour=contrast;usage=solid;lines=triple;sign=no
mapping total=yes;sign=no;colour=red
stop

298 A Tutorial for κλειω: Part III

In this task κλειω is again asked to produce a map displaying the houses where all the
bricklayers and their labourers live. κλειω is asked to produce them in continuous lines of
treble thickness, but without their reference labels.

The parameter sign=, followed by the parameter value no, tells κλειω not to display the
reference labels of the objects that it is displaying. In effect sign=no suppresses the
labelling of an object. This is of considerable value when displaying results on the monitor
of a PC, as these labels are not always shown in the most convenient place. However,
when you are using a plotter or a printer, these labels are displayed in a much more useful
position and could be worth retaining.

The second mapping command tells κλειω to display all the other topographical objects
in the database on the screen without their labels and in red.

A full explanation of how the two mapping commands in this task interact will be
described in detail in Section 14.2.6.

14.2.5 Reference objects

In the map just produced there is still one label, and the castle wall is still produced in
white even though the task specified that no labelling should be specified and all the
remaining items in the database should be displayed in red. This is because this particular
object is defined as a reference object within the logical object houses. The following lines
are taken from the logical object map.

location first=n111;connected=no;always=yes
4.806000 13.729000
5.399000 13.634000
4.570000 11.163000
5.413000 10.714000
7.512000 7.945000
8.707000 6.778000
10.787000 5.509000
12.569000 4.439000
14.910000 3.213000
end

The following two sections describe the two new parameters.

14. Mapping 299

The connected=connected= parameter

The parameter connected= followed by the keyword no tells κλειω not to join the last
coordinate to the first coordinate. This allows the user to define a line, rather than a
polygon. In the case of this map it defines the route of the castle wall.

The always=always= parameter

The other new specification, always=yes, tells κλειω always to display an object defined
in the logical object as a reference object, i.e. defined in the logical object with the
specification always=yes in a location declaration as in the above example.

The following task shows that it is possible to modify the way in which κλειω interprets
this. As shown earlier, κλειω first checks the mapping command to see if any rules apply
to an object, and then looks at the logical object containing such data to see if any rules are
shown there. In the following task there is an always= parameter, so κλειω produces the
results in accordance with this task rather than the instructions in the logical object.

Example 14.14

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;

colour=contrast;usage=solid;lines=triple;sign=no
mapping total=yes;sign=no;colour=red
mapping always=yes;usage=halftone;sign=no;colour=green
stop

The always= parameter can also have the parameter value no if reference objects were
not to be displayed.

In this case the boundary of the castle wall is displayed with a green dashed line without
its label.

Notice that this parameter can be used both in the definition of a logical object and within
a query command.

A full translation of that task would be:

I am interested in a database called colebro, and I am particularly interested
in those people whose occupation contains the character string "brick".
Display the outlines of the houses of those people, in the default colour, in
solid lines of treble thickness and without their labels. Display all the other
houses in the database as well, omitting their labels and showing them in
red. Also display any reference objects with dashed lines and in green, also
without their reference labels.

300 A Tutorial for κλειω: Part III

14.2.6 How mappingmapping commands cooperate

κλειω always uses information from all the mapping commands in one task to produce
a single map. How the individual parameters are interpreted depends to some extent on
the other commands specified within the task. In the example above, the houses of
bricklayers are displayed with the attributes described by the first mapping command
while ‘everything else’ is displayed with the attributes specified in the mapping command
followed by total=yes. In this case total=yes means "apply the following set of
attributes to all the topographical objects in our location definition which have not
already been displayed by another mapping command".

For this mechanism to work, the order in which the mapping commands occur with in a
task is immaterial. The order of precedence is as follows:

• Each topographical object which is selected by criteria specified in the query
command is included in the map by the part= parameter of a mapping
command. These objects are displayed with the attributes specified in the same
command.

• All topographical objects which have not been displayed are scanned for those
which have a location declaration containing the specification always=yes.
If you have specified a mapping command which has the same parameter set,
the attributes specified there will be used to display those objects.

• Finally, if you have specified a mapping command which contains the
parameter total=yes, every topographical object not selected in any of the
steps already mentioned will be displayed with the attributes specified by this
mapping command.

For advanced applications there is the possibility to combine a set of topographical objects
in a group, which can be addressed by a common name. Such a group can be addressed
by the name= parameter of the mapping command. This mechanism will not be discussed
further in this volume. For the sake of completeness, however, any topographical object
which is not included because of a part= specification but because it belongs to one of
these groups specified by a name= parameter will be displayed with the attributes
specified in a mapping command with the name= parameter. This option would fall
second in the order of precedence mentioned above.

14. Mapping 301

Exercises

The following exercises will take some time. They have been designed to exercise a number
of techniques, which have been demonstrated both in this chapter and in earlier ones.

Exercise 14.3

Using the database colebro, create a codebook which classifies the occupations of the heads
of household into three categories (manual labourer, artisan and others). (It is not vitally
important to be accurate in deciding which of the occupations refer to which of the
categories for this exercise, But it is important to have three categories of occupations.)

Exercise 14.4

Using this codebook, write a task which displays the houses of the artisans, using the
codebook, in green with double strokes. Display the remaining houses in red and the castle
wall in blue.

Exercise 14.5

Write a task which leaves the castle wall white, displays the houses of the artisans in
green, the houses of the manual labourers in red and the other houses in blue. HINT: use
the query ... confirm ... negatemechanism. This needs to be expressed as follows; if the
occupation is artisan, paint green, if occupation is labourer, paint red; else if occupation
is other, paint blue.

302 A Tutorial for κλειω: Part III

14.3 Printing a map using a PostScript
printer

The following task demonstrates how a map is output to a PostScript printer rather than
to the screen.

Example 14.15

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;colour=contrast;

usage=solid;lines=triple;sign=no;target="plot.15";
write="Solution for mapping example 15";overwrite=yes

mapping total=yes;sign=no;colour=red
mapping always=yes;usage=halftone;sign=no;colour=green
location usage=Postscript
stop

There are four additional parameters, but otherwise it is relatively similar to ex14.14.

These differences can be found in the first mapping command and after a new command
location.

14.3.1 The target=target= parameter

When κλειω produces a map to be output on a PostScript printer, it needs to convert the
data into a special PostScript format. This must be placed in a particular file before it can
be sent to the printer. The target= parameter in a mapping command takes the value of
a user-defined file where this information should be stored. In the case of the task ex14.15
the name of this file is plot.15. If this parameter is absent and there is also a location
command (see below), κλειω will send the information to a file called kleio.plt if you are
using a DOS system. (If you are using another operating system you should refer to the
Reference Manual, Section 8.3.7.2.4.1).

14.3.2 The write=write= parameter

The write= parameter expects a parameter value consisting of a character string. The
contents of this string are displayed below the map, centred on the page.

14. Mapping 303

14.3.3 The overwrite=overwrite= parameter

This parameter is used in the same way as it usually is within κλειω, expecting the value
yes or no. It relates, in this case, to the file plot.15.

14.3.4 The locationlocation command

In the task shown above there is also a new command, location. This command tells
κλειω what format the result of the task is to be displayed in. If this command is absent,
κλειω will direct the result to the screen. This can be explicitly requested with location
usage=doscreen. If this command is followed by a usage=postscript parameter,
κλειω will produce the result in PostScript format and send it to the file specified in the
target= parameter. If you are using a colour PostScript printer you can use the parameter
usage=colourpostscript. If you are not using a DOS based system there are different
defaults. Refer to the Reference Manual, Section 7.3.4.6.2.

Once the task ex14.15 has been run, the results are stored in a file called plot.15. This file
can then be copied to a PostScript printer. This will not work if any other sort of printer
is being used.

If you are using a network, some special command may have been implemented to access
a multi-purpose laser printer as a PostScript device. If you are unsure about how to access
a particular printer you should consult an advisor, otherwise you may end up sending the
printer hundreds of pages of PostScript code rather than a map. In simple set-ups the file
plot.15 can be sent to a printer using the following command at the DOS prompt:

copy plot.15 prn:

304 A Tutorial for κλειω: Part III

14.4 Shading objects

The following task demonstrates how to control the shading of selected objects:

Example 14.17

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;sign=no;

colour=contrast;colour=contrast;
usage=solid;usage=solid;
lines=triple;
write="Solution for mapping example 17";overwrite=yes

mapping total=yes;sign=no;
colour=red;colour=red;
usage=solid;usage=halftone

mapping always=yes;sign=no;
colour=green

stop

The use in this task of two colour= parameters and two usage= parameters is the main
difference between this task and the previous one. κλειω interprets the first of each of these
parameters to relate to the outline of the object being displayed on the screen and the
second to the ‘contents’ of the object. These second parameters take the same keywords as
the first, but these keywords do not have to have the same value as each other. (ex14.16
is the same as ex14.17, except that it sends the output to a PostScript file.)

14.5 Using variable names with the printer

The following task demonstrates how κλειω uses variable names with the printer. In this
case all the labels defined for the houses and the reference objects will be displayed on the
printed output. Print this map out to see how κλειω positions these labels on the map.
These are not particularly beautiful but may help you to interpret the map.

14. Mapping 305

Example 14.18

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;

colour=contrast;
usage=solid;
lines=triple;overwrite=yes;
write="Solution for mapping example 18";
target="plot.18"

mapping total=yes;
colour=red;
usage=solid;
mapping always=yes;
usage=solid;
colour=green

location usage=postscript
stop

This final task shows one of the limitations of producing the labels on the printed output.
Look carefully at object n62 on the map produced from task ex14.17, and then compare it
with the map produced from this task. In this task the label has been overwritten by the
shading of the ‘contents’ of the object.

Example 14.19

query name=colebro;part=head:occupation="brick" or "Brick"
mapping part=back[2]:site;

colour=contrast;colour=contrast;
usage=solid;usage=tenthtone;
lines=triple;overwrite=yes;
write="Solution for mapping example 19";
target="plot.19"

mapping total=yes;
colour=red;
usage=solid;

mapping always=yes;
usage=solid;
colour=green

location usage=postscript
stop

306 A Tutorial for κλειω: Part III

14.6 Other features

The mapping features of κλειω have been under-used for some time, as only the recent
accessibility of PostScript printers has made hardcopy output available to most users.
These features are now under active development. If you would like to experiment, we
would briefly like to point to three groups of parameters, one of which has not even made
it into the Reference Manual yet.

14.6.1 Scale of maps

Normally κλειω will try to produce a map in such a scale as to use the plotting or display
area as effectively as possible. You can influence this by specifying the parameters first=
and second= in a mapping command. Both parameters accept a pair of numbers
separated by a comma. For example:

mapping....;first=10,250;second=30,300

This tells κλειω to restrict the display area to a box extending from 10 units to 250 units
of the area in the horizontal, and from 30 to 300 units in the vertical. The units that κλειω
uses depends on the granularity of your output device (that is, the size of the smallest
distinguishable dot that can be drawn). Rather than going into a lengthy technical
explanation, we would suggest that you experiment with these parameters.

14.6.2 Distribution maps

All the maps we have described so far are topographical; that is, they show the layout of
a restricted area, where individual objects cover a wide area. Recently support for another
type of map has been implemented, where individual objects are displayed by symbols
rather than by lines surrounding them a good method to display phenomena like the
geographical place of origin. This method of display will be chosen automatically when
topographical objects consist of a single coordinate (which by default will be represented
by a circle centred around that point). To force κλειω to represent a topographical object
by a symbol, another attribute can be specified with the symbol= parameter which accepts
the keywords circle, square and triangle which unsurprisingly produces those
symbols for the topographical object to be displayed. Sections 8.3.7.2.2.6 ff. in the Reference
Manual describe this mechanism in slightly more detail.

14. Mapping 307

14.6.3 Directional parameters

Four parameters not described in the Reference Manual may be useful with distribution
maps which relate to larger areas. Assume you have a database which contains information
about the geographical origin of a group of individuals. Assume also that these people are
only from places within the British Isles. However, when producing a map of all those
individuals, you find that a number of points cluster around London in fact the symbols
are too dense to discriminate between them. It would be more convenient to see a map
which only contains those people who came from south-eastern England. The display area
of the map can be modified with these parameters:

mapping....;north=Buckingham;east=Southend;south=Brighton;
west=Windsor

This means that places further north than Buckingham, further east than Southend, further
south than Brighton and further west than Windsor will not be displayed. Obviously these
names must be valid names in the location definition. For example:

location first=Buckingham
320, 475
end

Exercise 14.6

Using the data from the colebrook database, produce a map which shows the households
for which the occupation of the wife is unknown. Make these houses solid. HINT:
conditions in κλειω can have a syntax like this:

part=:element1=xxx and :element2=yyy

Summary

There are three ways to select objects for display:

• Specifying it in a part= parameter of a query command

• Specifying it with a total= parameter after a mapping command

• Specifying it in an always= parameter after a mapping command.

308 A Tutorial for κλειω: Part III

Further reading

Kenneth E. Foote, ‘Mapping the Past. A Survey of Microcomputer Cartography’, Historical
Methods, 25:3 (1992), pp.121–131.

A. King and J. R. Moeschl, ‘Mapping 19th Century Transport: The Application of
Computer Cartography to Historical Data’, Histoire et Informatique V, ed. J. Smets,
(Montpellier, 1992), pp. 325–31.

Paul M. Mather, Computer Applications in Geography (Wiley, Chichester, 1991)

H. Southall and E. Oliver, ‘Drawing Maps with a Computer... and Without’, History and
Computing, 2:2 (1990), pp. 146–54.

Chapter 15

Database design;
some advanced features

15.1 Introduction

This chapter introduces some further information on the production of databases and some
tips and tricks for dealing with κλειω databases.

15.1.1 Using the :query[]:query[] function

Probably the most common error (apart from missing out semi-colons) encountered using
κλειω involves not using the built-in function :query[]. This problem relates to the use
of more than one entry within a particular information element.

The following task:

query name=colebro;part=:occupation="Bricklayers Laborer" equal
index part=:occupation
stop

will produce the following result:

310 A Tutorial for κλειω: Part III

Bricklayers Laborer 1
Bricklayers Laborer 1
Bricklayers Laborer 1
Bricklayers Laborer 1
Bricklayers Laborer 1
Chelsea Pensioner 1

The task asked κλειω to produce an index of all the occupations of all those people whose
occupation was exactly the same as the character string "Bricklayers Laborer" and κλειω
has responded by displaying a list of five Bricklayers Laborers and one Chelsea Pensioner.
This is because κλειω has been asked to go to the database colebro, and that part of the
database where the element occupation contains the string "Bricklayers Laborer". And then
display all the occupations found where that string occurs. The following is a line from the
data file:

head$mz/Henry/Taplin/50/Chelsea Pensioner;Bricklayers Laborer
/London/Middlesex

κλειω would select this group while processing the first line of the task, but when asked
to produce an index of all the occupations in all of the groups selected it would also select
Chelsea Pensioner as an occupation. This problem can be solved by using the element
function :query[]. This function is interpreted by κλειω as the last entry reached in a
query command. In this case the group contains only those occupations that are exactly
equal to the character string "Bricklayers Laborer".

query name=colebro;part=:occupation="Bricklayers Laborer" equal
index part=:query[]
stop

A similar problem may occur on the level of groups. Remember the probate database.
There we had a structure in which the group p (which can occur only once) occurs at the
same level as the group relp (which can occur with varying frequency). So a specific
document might contain the structure:

inventory
| |

p —— | |—— relp 1
|—— relp 2
|—— relp 3

Now assume that we want to create an index in which we want to have information about
related people on one line with some information about those people. We might, for
example, use a query like the following:

query name=probate;part=relp:occupation="widow"

If we use the index command:

15. Database design; some advanced features 311

index part=back[1]/p:surname;
part=:fname;
part=back[1]/relp:surname;
part=:fname

we would be rather disappointed with the result. κλειω, as always interpreting everything
at the most general level, would be directed to go back from the specific relp which we
selected to the group containing it. When it is ordered to go back to relp (by the third
part= parameter), the system would interpret this as "go to all relps which you can reach
from here". So while our widow might be relp "2" in the diagram above, we would actually
produce three index lines, one for each of the relps above.

The problem would be solved if instead we specified the following:

index part=back[1]/p:surname;
part=:fname;
part=query[]:surname;
part=:fname

Now query[] would bring us back to exactly that group which we were in when the
query command selected a group for further processing.

15.1.2 Using the comparison operator nullnull

Probably the next most common problem in κλειω relates to the use of the comparison
operator null.

Try running the following task:

query name=colebro;part=:birthto=null
index part=:surname;part=:fname;part=:birthco;part=:country
stop

κλειω will produce this:

System did not find any information items for further processing.

The following task will work, however:

options lines=0
query name=colebr;part=relp:birthto=null
index part=:surname;part=:fname;part=:birthco;part=:country
stop

and the result should be as follows:

312 A Tutorial for κλειω: Part III

Boyle Mary Ireland 1
Harvey Ann Cape of Good Hope 1
Warren Kate Ireland 1

In the first task, κλειω is directed to all groups where there is an element birthto but where
that element is missing. However, once κλειω is in the group(s) where the element birthco
does not exist, it is unable to access any other information, so it says that there is no
further information for processing. In the second task the group from which we want
κλειω to extract data is explicitly mentioned, so it is able to produce the required result.
κλειω must be able to select some information before processing it.

If we wanted to look at all those people in this list (both heads of household and related
people) who were distinguished by not having an entry for their town of birth, we would
have to formulate the task in a rather different way:

options lines=0
query name=colebro;part=father[:surname]:birthto=null
write part=:each[]
stop

This introduces a new built-in function, father[], which always takes as an element
specification as an argument. κλειω interprets this built-in function as all the groups which
have that particular element. As all people in this database have a surname, it is possible
to call up both of the groups which have this element with this single function.

15.1.3 A further note on catalogues

As we said in Chapter 8, creating a catalogue is easy. Run this:

query name=colebro;part=:surname
catalogue part=:surname;name=colecat
stop

This produces a catalogue of all the surnames from the database colebro.

query name=colebro;part=:surname="Holloway"
write part=:each[]
stop

This task produces all the information about all the people in the database colebro whose
surname is Holloway. Try to time the task, i.e. see how long you have to wait between the
display of the task on the screen and the start of the display of the result.

Compare that time with the time necessary for κλειω to start producing results from this
task:

15. Database design; some advanced features 313

query name=colebro;part=catalogue[colecat,complete,"Holloway"]
write part=:each[]
stop

The following task produces an alphabetical list (by surname) of all the people in the
database colebro:

query name=colebro;part=catalogue[colecat]
write part=:each[]
stop

whereas the usual task set up for this purpose would produce the names in the order that
they appeared in the database:

query name=colebro;part=:surname
write part=:each[]
stop

If this catalogue also included the soundexed surnames, the result of the third task here
would result in a list of all the people in soundex order.

item name=code;usage=soundex;type=permanent;source=colebro
conversion without="aeiouy"
part signs="bpfv"
part signs="cgjkqsxz"
part signs="dt"
part signs="l"
part signs="mn"
part signs="r"
exit name=code

query name=colebro;part=:surname
catalogue name=colecat;part=:surname;type=terms;soundex=code;

overwrite=yes
stop

query name=colebro;part=catalogue[colecat,algorithm]
write part=:each[],soundex[:surname,code]
stop

314 A Tutorial for κλειω: Part III

15.1.4 Using catalogues with the indexindex command

Using a catalogue with the index command? Considering what has been said above,
which of the following two tasks would you think were quicker? Why? Try running them
both.

query name=colebro;part=:surname
index part=:surname
stop

query name=colebro;part=catalogue[colecat]
index part=:surname
stop

Actually in this case there is almost no difference in the amount of time it takes to run
these two tasks. But theoretically the first solution is quicker than the second. In the first
task κλειω goes to each of the groups where there is a surname and extracts it, then when
it has collected all the surnames, it processes them in accordance with the instructions on
the following line. Thus it sorts them alphabetically and displays them on the screen. In
the second case where the index is already in alphabetical order, κλειω still goes through
the whole list extracting all the surnames, and then sorts them into alphabetical order,
which takes just as long whatever their order.

15.2 Databases made up from more than
one source

The Reference Manual (Section 5.8.1) is very clear in its description of how to have several
types of document in the same database.

The main points to remember are that within the structure declaration of a database, each
different ‘document’ must be explicitly described with a start= parameter in the part
directive. This example uses data from East Indian Army registers, which are simply lists
of all the soldiers in the British Army serving in the East Indian army. The volumes of
registers contain many different lists of individuals which contain some information in
common but refer to different groups of people. It would be perfectly possible for κλειω
to understand different documents within the same database, so that information relating
to different groups of people can be gathered from the source, or information relating to
all the people can be output.

A possible solution to the problem is shown below:

15. Database design; some advanced features 315

database name=eir1858;first=doc1;overwrite=yes
part name=doc1;

start=yes;part=doc2;position=title
part name=doc2;

part=doc3;position=type
part name=doc3

part=ann;position=area
part name=ann;

position=id,surname,forename,middle,appointed,retired
part name=doc4;

start=yes;part=doc5;position=title
part name=doc5;

part=doc6;position=area
part name=doc6;

part=doc7;position=station,arrived
part name=doc7;

part=sol;position=station,arrived
part name=sol;

position=id,appointed,surname,forename,middle,honour,rank,
regiment,army,remarks

exit name=eir1858

read name=eir1858
doc1$EIR & AL 1858
doc2$Civil service Annuitants
doc3$Bengal Establishment
ann$a1-228/Alexander/George//1824/1845
ann$a2-228/Alexander/W/S/1825/1852
ann$a3-228/Armstrong/H//1824/1850
ann$a4-228/Ainslie/Montague//1807/1836
doc4$EIR & AL 1858
doc5$Bengal
doc6$Third European Regiment
doc7$Agra/19.5.56
sol$s1-104/1819/Huyshe/G//C.B./24.11.1853/28.11/1854/On
furlough
sol$s2-104/1826/Swatman/W//12.1.1853/12.1.1856/Do#on furlough

There are two comments to make about this solution. First, the two entries for the element
title in the two different documents (doc1 and doc4) are the same (EIR & AL 1858). This
causes what is known in κλειω as disambiguation.

doc1 (1 = "EIR") : ann (4 = "ann-4")
id a4-228
surname Ainslie
forename Montague
appointed 1807
retired 1836

316 A Tutorial for κλειω: Part III

doc4 (2 = "EIRa") : sol (1 = "sol-1")
id s1-104
surname Huyshe
forename G
appointed 1819
honour C.B.
rank 24.11.1853
regiment 28.11
army 1854
remarks On furlough

Notice that the identifier for the second person here is EIRa. There are two solutions to this
problem. First, this group could be moved down the hierarchy so that an artificial identifier
could be used to construct the identifying prefix.

The other solution is simpler to implement but is likely to lead to subsequent problems.

database name=eir1858;first=doc1;overwrite=yes;more=yes

Adding the more=yes parameter to the database command means that absolutely
addressable identifiers can appear more than once in a database. In that case an id may
describe more than one document. κλειω will try and interpret all references to such an id
by resolving it as a series of documents. However, you lose the possibility of addressing
one of them explicitly.

The other comment to make with this particular example is that the names of the groups
are rather confusing. If this database was made up of 30 to 40 different documents, the use
of the names doc1, doc2 etc for groups could become unwieldy, leading to group names
such as doc100, etc.

This problem may be easier to see, using the describe command in a different way to
that which has been described before.

The following task asks κλειω to describe a ‘logical object’ called eir1858, which is related
to the database eir1858, and also to describe the structure of this logical object:

describe name=eir1858;source=eir1858;write=structure;
usage=source;type=permanent

stop

Part of the result of this task is displayed below:

15. Database design; some advanced features 317

Schema of data structure for documents named: doc4

* doc4
*
* - title
*
* * doc5
* *
* * - area
* *
* * * doc6
* * *
* * * - station
* * * - arrived
* * *
* * * * doc7
* * * *
* * * * - station
* * * * - arrived
* * * *
* * * * * sol
* * * * *
* * * * * - id
* * * * * - appointed
* * * * * - surname
* * * * * - forename
* * * * * - middle
* * * * * - honour
* * * * * - rank
* * * * * - regiment
* * * * * - army
* * * * * - remarks

(This result is similar to that achieved using the write= parameter with the database
command.)

Another example which solves the problem of using more than one source to make a
database is shown below. This data is from the same type of source but uses slightly
different information. The example also demonstrates the use of the cumulate= parameter.

database name=indies;first=civser;overwrite=yes
part name=civser;start=yes;

position=class,seasap,title,fname,surname,funct,station
part name=orders;start=yes;

position=order,class,rank,title,fname,surname,estab,
date

exit name=indies

318 A Tutorial for κλειω: Part III

read name=indies
civser$first class/1794//John/French/
civser$first class/1807//Robert/Lowther/commissioner of revenue

and circuit/Allahabad division
civser$first class/1809//Abercromby/Dick/judge of sudder

dewanny and nizamut adawlut/presidency
civser$first class/1810//Chas./Du Pre Russell/collector/Purneah
civser$first class/1812//Ralph John/Tayler/civil and sessions

judge/Jaunpore
civser$first class/1817//William/Dampier/commissioner of

revenue and circuit/Patna division
civser$first class/1817/Sir/Robt./Barlow, Bart./judge of the

sudder dewanny and nizamut adawlut/presidency
civser$first class/1817//George Alexander/Bushby/resident/

Hyderabad
civser$first class/1818//George Charles/Cheap/civil and

sessions judge/Rajeshye
civser$first class/1818//William/Popham Palmer/civil

auditor/Bengal
civser$first class/1819//Alfred William/Begbie/judge of the

courts of sudder dewanny and sudder foujdarry adawlut/
N.W. provinces

orders$order of the Bath/military knights Grand Cross/general/
Sir/James L./Lushington/Madras/20.7.1836

orders$order of the Bath/military knights Grand Cross/Lieut.
Gen./Sir/George/Pollock/Bengal/2.12.1842

orders$order of the Bath/military knights Grand Cross/Lieut.
Gen./Sir/John H./Littler/Bengal/3.2.1848

orders$order of the Bath/military knights Grand Cross/General/
Sir/James L./Caldwell/Madras/30.8.1848

orders$order of the Bath/civil knights Grand Cross/Sir/John/
M’Neill#retired from the service/Bombay/15.4.1839

orders$order of the Bath/civil knights Grand Cross/The Right
Hon. Sir/H./Pottinger, Bart./Bombay/2.10.1842

orders$order of the Bath/military knights commanders/General/
Sir/Hopetoun S./Scott/Madras/27.9.1831

orders$order of the Bath/military knights commanders/General/
Sir/David/Leighton/Bombay/10.3.1837

orders$order of the Bath/military knights commanders/General/
Sir/James/Russell/Madras/10.3.1837

orders$order of the Bath/military knights commanders/General/
Sir/Robert/Houston/Bengal/10.3.1837

orders$order of the Bath/military knights commanders/General/
Sir/William/Richards/Bengal/20.7.1838

orders$order of the Bath/military knights commanders/General/
Sir/John/Doveton/Madras/20.7.1838

orders$order of the Bath/military knights commanders/Maj.
Gen./Sir/John/Cheape/Bengal/9.6.1849

orders$order of the Bath/military knights commanders/Maj.
Gen./Sir/H.M./Wheeler/Bengal/17.8.1850

orders$order of the Bath/military knights commanders/Maj.
Gen./Sir/S.W./Steel/Madras/9.12.1853

15. Database design; some advanced features 319

Consider the second half of the data file for this database. There is an extraordinary
amount of repetition of information, all of which can be simplified by a single parameter.
Consider the following datafile (the related structure declaration can be left unchanged):

read name=indies;cumulate="
civser$civ-1/first class/1794//John/French/
civser$civ-2/"/1807//Robert/Lowther/commissioner of revenue and

circuit/Allahabad division
civser$civ-3/"/1809//Abercromby/Dick/judge of sudder dewanny

and nizamut adawlut/presidency
civser$civ-4/"/1810//Chas./Du Pre Russell/collector/Purneah
civser$civ-5/"/1812//Ralph John/Tayler/civil and sessions

judge/Jaunpore
civser$civ-6/"/1817//William/Dampier/commissioner of revenue

and circuit/Patna division
civser$civ-7/"/1817/Sir/Robt./Barlow, Bart./judge of the sudder

dewanny and nizamut adawlut/presidency
civser$civ-8/"/1817//George Alexander/Bushby/resident/Hyderabad
civser$civ-9/"/1818//George Charles/Cheap/civil and sessions

judge/Rajeshye
civser$civ-10/"/1818//William/Popham Palmer/civil

auditor/Bengal
civser$civ-11/"/1819//Alfred William/Begbie/judge of the courts

of sudder dewanny and sudder foujdarry adawlut/N.W. provinces
orders$ord-1/order of the Bath/military knights Grand Cross/

general/Sir/James L./Lushington/Madras/20.7.1836
orders$ord-2/"/military knights Grand Cross/Lieut.Gen./Sir/

George/Pollock/Bengal/2.12.1842
orders$ord-3/"/"/Lieut. Gen./Sir/John H./Littler/Bengal/

3.2.1848
orders$ord-4/"/"/General/Sir/James L./Caldwell/Madras/30.8.1848
orders$ord-5/"/civil knights Grand Cross/Sir/John/

M’Neill#retired from the service/Bombay/15.4.1839
orders$ord-6/"/"/The Right Hon. Sir/H./Pottinger, Bart./Bombay/

2.10.1842
orders$ord-7/"/military knights commanders/General/Sir/Hopetoun

S./Scott/Madras/27.9.1831
orders$ord-8/"/"/General/Sir/David/Leighton/Bombay/10.3.1837
orders$ord-9/"/"/General/Sir/James/Russell/Madras/10.3.1837
orders$ord-10/"/"/General/Sir/Robert/Houston/Bengal/10.3.1837
orders$ord-11/"/"/General/Sir/William/Richards/Bengal/20.7.1838
orders$ord-12/"/"/General/Sir/John/Doveton/Madras/20.7.1838
orders$ord-13/"/"/Maj. Gen./Sir/John/Cheape/Bengal/9.6.1849
orders$ord-14/"/"/Maj. Gen./Sir/H.M./Wheeler/Bengal/17.8.1850
orders$ord-15/"/"/Maj. Gen./Sir/S.W./Steel/Madras/9.12.1853

320 A Tutorial for κλειω: Part III

15.2.1 The cumulate=cumulate= parameter

The parameter cumulate= in a read command can be followed by any special character
(defined by the user) to simulate a ditto mark. In this case the ‘"’ symbol has been used.
This character does not have to be used, but as the quotation mark is very unlikely to be
valid as the only character in an element there should be no conflict. Look at the result of
a simple task using this parameter. κλειω will produce the correct entry for any entry
where this symbol has been used. However, there is one important limitation to using this
parameter.

Consider the following data (adapted from the 1881 Winchester census):

read name=qqq;cumulate="
schedule$164
head$mz/William/Holloway/60/Upholsterer;Paper Hanger/

Winchester/Hants
relp$fz/Laura/Holloway/wife/56//"/"
relp$mz/Alfred/Holloway/son/26/Carpenter/"/"
relp$fz/Ellen/Holloway/daughter#in law/23//"/"
relp$fs/Mary/Holloway/daughter/28/Washerwoman/"/"

Compare the results for Ellen and Mary Holloway:

schedule (1 = "164") : relp (3 = "rel-3")
status female, married
fname Ellen
surname Holloway
age 23
birthto Winchester
birthco Hants
relation daughter
comment in law

schedule (1 = "164") : relp (4 = "rel-4")
status female, unmarried
fname Mary
surname Holloway
age 28
occupation Washerwoman
birthto Winchester
birthco Hants
relation daughter

If the datafile is changed to look like this:

read name=qqq;cumulate="
schedule$164
head$mz/William/Holloway/60/Upholsterer;Paper Hanger/

Winchester/Hants

15. Database design; some advanced features 321

relp$fz/Laura/Holloway/wife/56//"/"
relp$mz/Alfred/Holloway/son/26/Carpenter/"/"
relp$fz/Ellen/Holloway/daughter#in law/23//"/"
relp$fs/Mary/Holloway/"/28/Washerwoman/"/"

the result will look like this:

schedule (1 = "164") : relp (3 = "rel-3")
status female, married
fname Ellen
surname Holloway
age 23
birthto Winchester
birthco Hants
relation daughter
comment in law

schedule (1 = "164") : relp (4 = "rel-4")
status female, unmarried
fname Mary
surname Holloway
age 28
occupation Washerwoman
birthto Winchester
birthco Hants
relation daughter
comment in law

Notice that both Mary and Ellen are described as daughters-in-law.

15.2.2 The substitution=substitution= parameter

In fact all we wanted to repeat was that they were both daughters of the head of
household. If the data file is again changed to this:

read name=qqq;cumulate=";substitution=&
schedule$164
head$mz/William/Holloway/60/Upholsterer;Paper Hanger/

Winchester/Hants
relp$fz/Laura/Holloway/wife/56//"/"
relp$mz/Alfred/Holloway/son/26/Carpenter/"/"
relp$fz/Ellen/Holloway/daughter#in law/23//"/"
relp$fs/Mary/Holloway/&/28/Washerwoman/"/"

the result will appear as follows:

322 A Tutorial for κλειω: Part III

schedule (1 = "164") : relp (3 = "rel-3")
status female, married
fname Ellen
surname Holloway
age 23
birthto Winchester
birthco Hants
relation daughter
comment in law

schedule (1 = "164") : relp (4 = "rel-4")
status female, unmarried
fname Mary
surname Holloway
age 28
occupation Washerwoman
birthto Winchester
birthco Hants
relation daughter

The addition of the substitution= parameter followed by a & can be said to tell κλειω
only to repeat the main information in the preceding element (if the symbol & replaces the
" symbol) and not any information contained in either the comment or original aspects of
that element.

The Reference Manual describes in detail what is happening here. (See Sections 6.2.3.2.1,
6.2.3.2.2, 6.2.3.2.2.1 and the following section for how to use this feature in more complex
data structures.)

Returning to the start= parameter, one most important thing to remember is that a
group can either be described as a document (i.e. in a first= parameter of a database
command or with a start=yes parameter within a part command) or it can be defined
in a part= parameter of a part command. It cannot, however, be defined in both, as this
would make one document subordinate to another, which is an impossibility in κλειω.

A few further points referring to the cumulate= parameter used in a read command.
Consider the following .mod file:

database name=aaa;first=m;overwrite=yes
part name=m;

position=surname,fname;
part=f

part name=f;
position=maidenname,fname;
part=c

part name=c;
position=surname,fname

exit name=aaa

and the following data file:

15. Database design; some advanced features 323

read name=aaa;cumulate="
m$Smith/John
f$"/Anne
c$"/Eric

κλειω would bring up this error message:

***** Error: The specification you are trying to repeat is unknown.
m (1 = "Smith"),f (1 = "* (Unknown)"), maidenname

This is because κλειω only repeats elements which have the same name. In this case the
surnames of men and children are different to those of women. The error message suggests
that there should already be a maiden name in the database for κλειω to ditto.

15.3 The identification=identification= parameter

This parameter allows the user to change the identification of a group. Normally these are
made by κλειω, depending on the name of the group.

In the colebro database, the following line contains the group identification for the group
schedule. κλειω has made the group identifier out of the name of the group, by taking the
first three letters of the word schedule and adding a hyphen and the group’s ordinal
number.

schedule (1 = "sch-1")

As all groups can be addressed by their identification, there are certain cases where it may
be useful for different groups in a database to have identifiers that are not based on the
name of the group but rather on the contents of the element within that group.

If, for example, the database made up of the East India lists contained 20,000 individuals
with, say, 400 different documents, it might be useful to be able to look through parts of
the database rather than documents. If one uses the identification=yes parameter
within the structure definition of a database different groups or documents can be given
an absolutely addressable identifier which means that κλειω accesses only those groups or
documents specified in the task rather than sorting through the whole database. This is
achieved in a similar way to a catalogue in κλειω, but in this case the user has only to
specify how groups are to be identified.

In the following structure file the identification=yes parameter has been added to
both of the documents in the database, and a new element command has been added
which tells κλειω that the element to use to construct the new document identifier should

324 A Tutorial for κλειω: Part III

be id. In this case the database has also been changed to give each individual in the
database a unique identifier.

database name=eastind;first=civser;overwrite=yes
element name=id;identification=yes
part name=civser;

start=yes;
position=id,class,seasap,title,fname,surname,funct,

station;
identification=yes

part name=orders;
start=yes;
position=id,order,class,rank,title,fname,surname,

estab,date;
identification=yes

exit name=eastind

read name=eastind;cumulate="
civser$1/first class/1794//John/French/
civser$2/"/1807//Robert/Lowther/commissioner of revenue and

circuit/Allahabad division
civser$3/"/1809//Abercromby/Dick/judge of sudder dewanny and

nizamut adawlut/presidency
civser$4/"/1810//Chas./Du Pre Russell/collector/Purneah
civser$5/"/1812//Ralph John/Tayler/civil and sessions

judge/Jaunpore

Once this has been compiled, it would be possible to question the database in such a way
as to bring up those people who occurred in the second five of the database.

query name=eastind;part=sign[civserv,"6"-"10"]
write part=each[]
stop

However, as these people are absolutely addressable by their group identifier, it would be
possible to get exactly the same results as in the above task by asking the following task:

query name=eastind;part=sign[orders,"6"-"10"]
write part=each[]
stop

The other benefit of using some system like this is that these absolutely addressable
identifiers can be used within the bridge command, making the process of linking various
entries in various databases much easier than in the way described in Chapters 12 and 13.

The notes above suggest that if it is necessary to use identifications that are not unique, a
possible way to avoid disambiguation is to use the identification= parameter in a
database command. For instance with a structure definition like this:

15. Database design; some advanced features 325

database name=y;first=y;identification=no
....
....
exit name=y

data like this would be acceptable:

y$abc/
y$abc/

Why are we interested in these identifications at all? As we mentioned above, the use of
these identifications can assist in searching a very large database. In conjunction with the
sign[] function it is possible to ask for all the instances of a document for a specific
group which are within a given range of document identifications in the same order as
they have been entered in the data file.

If an index command is very complicated, and a database very large, it may be worth
testing the task on small portions of the database until all errors have been removed. This
can be achieved using an element directive which included an identification=yes
parameter.

query name=database;part=sign[x,"y1"-"y"]
index part=<complex command>

This access mechanism allows the user to go straight to part of a database to check
whether data has been put in correctly mainly useful for large scale databases! and also
‘checks’ for redundant data, say when κλειω is unable to execute a command as there is
no data on which the command can be performed.

These identifications can also be used for more complicated purposes. For example if you
had a database with documents like this:

x$n325

this identification could be used in a command like this:

bridge first="n325"

However there is a problem here with the East India database. Part of the datafile could
look like this:

y$bengal
division$military
regiment$12th
officer$David/Leighton

In order for this material to be used with a bridge command a symbolic address would
have to made for this officer to relate back to the document level. See Chapter 13.

326 A Tutorial for κλειω: Part III

bridge first="bengal/division=1/regiment=1/officer=1";

But if a unique identification were to be added (on an individual level), it would be
possible to replace the above line with something like this:

bridge first="m324"

In this case both bengal and m324 need to be absolutely addressable. Therefore κλειω
needs to know that the identifier m324 in the database can be addressed in the same way
as κλειω would understand "bengal".

There are two stages in this process:

First, κλειω needs to put m324 into the group identification. For example:

officer (1 = "off-1")

officer (1 = "m324")

Second, this identification needs to be able to be used in the bridge command.

Both of these problems can be solved with the use of the identification= parameter.
These are used in the following places:

database name=x;first=y;
element name=id;identification=yes - solves 1)
....
....
part name=officer;

position=id,surname,fname;
identification=yes - solves 2)

exit name=x

Obviously if one were using data such as that below, the structure definition above would
need to be completed. We leave this to you.

read name
y$bengal
division$military
regiment$12th
officer$m234/John/Smith

15. Database design; some advanced features 327

15.4 Elements

15.4.1 Visibilities

Elements and groups within κλειω databases share two properties. These two properties
are known as the visibility and the view of an element or a group. If you were even more
unsure of your original data, and were not happy in giving an entry a status tag, it would
be possible to denote the visibility of an element or a group. In the case of an element you
can give a numerical value to denote its ‘quality’. Using other κλειω tools, you can ask
κλειω not to process data unless it has a visibility of, say, 95%. In other words the visibility
of an element is a level of confidence. The same applies to groups.

Visibility clauses must follow an element name. In the case of the example below, we can
see that the element name occupation is followed by a colon, followed by a question mark,
followed by an equals sign and then the entry contained in the element.

relp$fs/Ann//Fox/servant/28/occupation:?=General Serv
/birthto=Andover/birthco=Hants

There are two predefined symbols for this level of confidence. The question mark denotes
50% confidence and the exclamation mark denotes 95% confidence. Any other level can be
defined by the user replacing the symbol by a numerical value which can be any number
between 0 and 100. 65 would represent 65% confidence. If an element has no visibility
clause, κλειω assumes that we have given it a level of confidence of 100%.

Remember that if you specify the name of an element in a data file, all the remaining
elements must also have their names specified.

If the database was queried the database with a task like this:

query name=censsamp;part=relp:occupation
index part=:surname;

part=:firstname;
part=:occupation

stop

we would achieve a result like the following:

Bacon George Grocer’s shopman RG11-5490
Cook Jane General Serv RG11-5490
Doyle Catherine Barmaid RG11-5490
Farmer Jane Corset Maker RG11-5490
Johnson Emma Corset Maker RG11-5490
Johnson Henry Organist RG11-5490
Morrison Elizabeth Annuitant RG11-5490

328 A Tutorial for κλειω: Part III

Newton Henrietta scholar RG11-5490
Newton William scholar RG11-5490
White Sophia General Serv RG11-5490

where there is no result for Ann Fox.

This is because κλειω only accepts data that we have ascribed at least 95% confidence
unless we ask it to do otherwise, and we have allocated a visibility of 50% to Ann Fox’s
occupation.

There is a command that allows us to define the level of confidence that we wish κλειω
to use, when specifying a task (i.e. this does not have to be built in during the design
stage). If the task above were changed to this:

options minimum=0.45
query name=censsamp;part=relp:occupation
index part=:surname;

part=:firstname;
part=:occupation

stop

The result would be as follows:

Bacon George Grocer’s shopman RG11-5490
Cook Jane General Serv RG11-5490
Doyle Catherine Barmaid RG11-5490
Farmer Jane Corset Maker RG11-5490
Fox Ann General Serv RG11-5490
Johnson Emma Corset Maker RG11-5490
Johnson Henry Organist RG11-5490
Morrison Elizabeth Annuitant RG11-5490
Newton Henrietta scholar RG11-5490
Newton William scholar RG11-5490
White Sophia General Serv RG11-5490

The options command added before a query command and followed by the parameter
minimum=, with a parameter value of a number between 0 and 1, tells κλειω the lowest
level of visibility to accept when processing a task.

There is a similar parameter, maximum= which denotes the highest level of confidence that
we wish κλειω to accept. By default these two parameters are set at 0.95 (minimum) and
1 (maximum) (i.e. levels of 95% and 100%).

Groups can be given a level of confidence, in much the same way as elements. However,
if you assign a level of confidence to a group it is also given to the elements that are
contained in it. This can often produce some surprising results given that the visibility of
an element is equal to its visibility multiplied by the visibility of the group containing it.

Groups are assigned a visibility in a similar way to elements. For example:

15. Database design; some advanced features 329

head:65$mz/Michael//Morrison/31/Licensed Victualler
/Islington/Middlesex

relp$fz/Mary/J/Morrison/wife/29//Candover/Salop
relp$f/Ellen//Morrison/daughter/7m//Shrewsbury/Salop
relp$fl/Elizabeth//Morrison/mother/58/Annuitant/Shrewsbury

/Salop
relp$fs/Ann//Fox/servant/28/General Serv/Andover/Hants
relp$fs/Catherine//Doyle/servant/24/Barmaid/country=Ireland

Here the group name head is followed by a colon and the number 65, indicating that the
group head here has a visibility of 0.65.

If the following task is run:

query name=censsamp;part=person
write part=:surname
stop

the following result will be produced.

reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Bacon
reference (1 = "RG11-5490") : surname Cook
reference (1 = "RG11-5490") : surname Phillips
reference (1 = "RG11-5490") : surname Phillips
reference (1 = "RG11-5490") : surname White
reference (1 = "RG11-5490") : surname Frampton
reference (1 = "RG11-5490") : surname Frampton
reference (1 = "RG11-5490") : surname Johnson
reference (1 = "RG11-5490") : surname Johnson
reference (1 = "RG11-5490") : surname Johnson
reference (1 = "RG11-5490") : surname Farmer
reference (1 = "RG11-5490") : surname Campbell

Notice that all of the people related that to that head of household have also been given
a visibility of 0.65. In fact κλειω understands that if a group has a certain level of visibility
all those groups directly subordinate to that particular group also receive that level of
visibility. This is because the visibility of a group is equal to the visibility assigned to it
(which defaults to one) multiplied by the visibility of the group that contains it. Defining
the visibility of a group or an element is a very powerful tool but we suggest that you
think very carefully before using it, and remember what might happen if you do it.

For an initiate of statistics this way of multiplying numerical values between 0 and 1
should look familiar: it is the concept of conditional probability. That is, the ‘visibility’ is
interpreted by κλειω semantically as the probability that an element actually describes
what we as historians assume it to be.

330 A Tutorial for κλειω: Part III

For the non-statistical historian a slightly more detailed explanation may be appropriate.

• If you say that you are not sure that a person has actually been a witness in a
court session, κλειω assumes that all the information is doubtful. So if you
assign a visibility of 50% to the group witness, the surname of that person will
only be selected in a task if you are interested in data with a lower visibility
even in queries where you don’t care whether the role of a person has been
understood. Therefore you would have to set the threshold of acceptable
visibility to 0.50 to include surnames of those people whose role is unclear.

• However, when you are not sure of an attribute of a person, independently of
whether their role is clear, and you specify a visibility for that element, the
visibility of that attribute will be higher when you are sure that their role is
clear than when it isn’t. Therefore of you were to assign a visibility of 50% to
an element as well as a visibility of 50% to a group the visibility of that element
would be understood to be 0.25. (0.5 multiplied by 0.5).

15.4.2 Views

Views are another particularly powerful tool that κλειω provides for the user. They allow
the user to use a database in more than one state. In effect this means that you can tell
κλειω only to use certain information found in a database when it is asked for. However
all data occurs in all alternative views unless otherwise specified. For example, if the
following line from the censsamp data file were changed from this:

relp$fs/Catherine//Doyle/servant/24/Barmaid/country=Ireland

to this:

relp$fs/Catherine//Doyle/servant/24/Barmaid/1=country=Ireland

we have told κλειω that we only want the country of origin to be displayed when we are
viewing the database in alternative view number 1. All of the other information will be
displayed in the usual manner in the original view of the database, while the whole of that
group will be displayed in alternative view number 1.

For example, the following task aims to extract the countries of origin of all the related
people in the database.

query name=censsamp;part=relp
write part=:country
stop

The following result would be produced:

15. Database design; some advanced features 331

reference (1 = "RG11-5490") : country Scotland

There is another parameter which we can use in conjunction with the options command
while allows us to specify that we would like to use the first alternative view. This task:

options also=1
query name=censsamp;part=relp
write part=:country
stop

produces the following result:

reference (1 = "RG11-5490") : country Ireland
reference (1 = "RG11-5490") : country Scotland

On most machines 16 views, numbered from 1 to 16, are available. On some very powerful
workstations 32 views are accessible. Again, views need to be used with care, especially
as κλειω does not allow you to use single views. The also= parameter of the options
command actually specifies up to which level you want to be able to use. Thus if you
allocated an element to a low level of alternative view, that data would always be present
if you allocated a high level to the also= parameter in the options command

Groups can also be assigned to a single view, in a similar fashion to elements. (See
Reference Manual, Section 4.3.4.1.)

Groups and elements share a further property, namely that the same group or element can
exist in different views with different names. This is getting rather complex, and if you are
not to sure about the concept of views we would suggest that you stop here and move on
to the next section.

Elements can be assigned to several views by prefixing it with several names. Each of these
names must be separated from each other by an equals sign and the last name must be
connected to the element by an equals sign.

In the case of the censsamp database, the following example would not be historically
accurate, but it should demonstrate this point easily. If we were to edit the data file so that
all groups containing unmarried women were given a second name for their element
surname, which denoted their maiden name, as follows:

relp$f/Ellen//surname=maidenname=Morrison/relation=daughter
/age=7m//birthto=Shrewsbury/birthco=Salop

relp$fl/Elizabeth//Morrison/mother/58/Annuitant/Shrewsbury
/Salop

relp$fs/Ann//surname=maidenname=Fox/relation=servant/age=28
/occupation=General Serv/birthto=Andover/birthco=Hants

relp$fs/Catherine//surname=maidenname=Doyle/relation=servant
/age=24/occupation=Barmaid/country=Ireland

332 A Tutorial for κλειω: Part III

we would be able to query the database on the original view with a query like this:

query name=censsamp;part=relp:status="f"
write part=:surname
stop

and receive a result like this:

reference (1 = "RG11-5490") : surname Morrison
reference (1 = "RG11-5490") : surname Morrison
reference (1 = "RG11-5490") : surname Morrison
reference (1 = "RG11-5490") : surname Fox
reference (1 = "RG11-5490") : surname Doyle
reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Newton
reference (1 = "RG11-5490") : surname Cook
reference (1 = "RG11-5490") : surname Phillips
reference (1 = "RG11-5490") : surname White
reference (1 = "RG11-5490") : surname Frampton
reference (1 = "RG11-5490") : surname Johnson
reference (1 = "RG11-5490") : surname Farmer

while we could also query the first alternative view of the database like this:

options also=1
query name=censsamp;part=relp:status="f"
write part=:maidenname
stop

and obtain a result like this:

reference (1 = "RG11-5490") : maidenname Morrison
reference (1 = "RG11-5490") : maidenname Fox
reference (1 = "RG11-5490") : maidenname Doyle
reference (1 = "RG11-5490") : maidenname Newton
reference (1 = "RG11-5490") : maidenname Cook
reference (1 = "RG11-5490") : maidenname White
reference (1 = "RG11-5490") : maidenname Johnson
reference (1 = "RG11-5490") : maidenname Farmer

This result occurs because the element name maidenname has been allocated only to exist
in the first alternative view of this database.

This feature works with groups as well as with elements. (See Reference Manual, Section
4.3.4.2.)

Chapter 16

Data entry with menus

In this chapter we will be describing a different method of building a database, using the
menu system. κλειω allows the user to enter data into a database using a form in the menu
system. This is only possible for databases which have already been ‘created’ in the sense
that a .mod file declaring its structure has previously been written and run. Nonetheless
the feature is useful because it makes it easier to enter certain kinds of data, in particular
data that is heavily structured, or repetitive, or both.

In this chapter we will be using the same source material as we used in Chapter 4 when
we created a database for the first time. In order to prevent odd things from happening,
create a new directory (we would suggest you call it tester) and copy the file tester.mod
(on the tutorial disc) to that directory and compile it. At the DOS prompt, type kleio to
enter the menu system. A menu like this should appear:

Kleio Version 5.1.1

Systematic processing of a database

Interactive processing of a database

Creating a new database

With the ↑ and ↓ keys, move to creating a new database. Activate this by pressing F1.
There should now be a menu that looks like this:

Creating a new database

Preparing raw data: filtered input

out-of-date

334 A Tutorial for κλειω: Part III

Press F1 again. You should get a menu which looks rather like this:

Preparing the data

Database :

Output file :

Ordinal no. :1

Extension :dat

Replace :Save

Characters :No

Back-up :25

Please enter the name of the database

The first line of this menu should be highlighted. In this field you should type the name
of the database that you wish to use. κλειω expects the name of a database that has already
been created. In this case the database directive in the structure declaration has a name=
parameter with the value tester. This should be the name that you type here. By default
κλειω expects that you want to give the file to which you will be adding data the same
name as the name of the database, i.e. tester. If you type tester in the Database field,
κλειω will automatically give that name to the output file (.dat). You can change this.

Run down the other fields using the up and down arrows. You will get some idea of what
the other fields in this menu represent. The Ordinal number refers to the name of the
data file. By default, κλειω will make a datafile with the name of the database followed by
the number 1, with the suffix .dat. For example, the name of the data file that we are
making will be tester1.dat.

If you move down to the Replace field and toggle with the left and right arrow keys, you
will see that κλειω gives three options for this file. It can be saved, overwritten or extended
(i.e. your most recent additions will be added to the end of the file). If, however, you tell
κλειω to save a file which already exists, κλειω will increment the ordinal number by one
until it finds a number that has not already been used.

The Characters field asks you whether or not data signal characters entered in the filters
should act as ‘hotkeys’, as the function they perform are replaced by the menu-system.
(More prosaically: if this field is set to no and you enter a slash ("/"), that slash will be
ignored. If Characters is set to yes the slash will take you to the next element in the
filter on the screen.) The Back-up field asks after how many filters the data should be
saved. The default here is 25, which is reasonable if you are using material of this kind,
but if you were inputting larger strings of full text you may want to reduce this number.
Each filter refers to a group. If you had been using material like this and a screen editor

16. Data entry with menus 335

to enter the data you might have saved your file every 30 or 40 lines. Setting this to 25
groups would mean that you would be saving your data at about the same frequency.

Once you have changed this menu to look like this:

Preparing the data

Database :tester

Output file :tester

Ordinal no. :1

Extension :dat

Replace :Save

Characters :No

Back-up :25

Please enter the name of the database

you should press F1 to activate this menu. You will then see a menu like this:

reference : 1

refnum 1:

Enter data of the ’Text’ type according to the ’text’ specification

This is the highest level of the hierarchy of this database. If you cannot remember the
structure of this database, refer either to Chapter 4 or to the .mod file in your newly
created directory. You should also refer to the figure in Chapter 4 of the original data.

In this field you are prompted to add the elements within the group reference. You should
type RG11-5490 here. Then press F2. This selects a dependent group. If you pressed F1 you
would have got another reference menu. Pressing F2 (don’t do it a second time) will
produce a menu of the dependent group. In this case you should see a menu like this:

336 A Tutorial for κλειω: Part III

address : 1

parish 1:

town 1:

ward 1:

parlb 1:

sandis 1:

ecclp 1:

Enter data of the ’Text’ type according to the ’text’ specification

These five fields can easily be filled by typing St Mary, Shrewsbury, Welsh, Shrewsbury,
Shrewsbury and St Michael.

Once you have done this, press F2 to move you down to the dependent group.

house : 1

status 1:

address 1:

name 1:

Enter data of the ’Category’ type according to the ’abbreviation’ specification

Notice here that the message on the bottom line of the menu has changed. This signifies
that κλειω expects data to conform to certain rules. All the previous menus had displayed
the message Enter data of the ’Text’ type according to the ’text’ spec-
ification. This meant that κλειω expected data of text type as defined by the logical
object text. This logical object is usually defined by κλειω, but it would be possible to
overwrite κλειω’s default logical object for the text type of data. In this case, a logical
object called abbreviation was defined in the file tester.mod, which refers to elements called
status. κλειω thus prompts for data that will conform to those rules. If you were to type
something that was illegal, κλειω would produce a message like this:

***** Error: The following Category expression contains illegal
character(s): r
ESC - continue

16. Data entry with menus 337

If you then press Esc, the illegal text remains as the data in the element, but when you try
and compile the database it will produce an error message which will prevent the data
from being understood. For that reason, if you typed in the letter r here to see what
happens, use the up arrow to move up and correct it to i.

These three fields should be filled with the following information: i, 7 Charlotte Street and
Queen’s Arms.

Then press F2 again as you want another dependent group.

schedule : 1

schednum 1:

Enter data of the ’Text’ type according to the ’text’ specification

Type 4 in the highlighted field. Then press F2, to move you to a menu for the first head
of household in the database. You will see a menu like this (to save on space we have
filled it in):

head : 1

status 1: mz

fname 1: Michael

fname2 1:

surname 1: Morrison

age 1: 31

occupation 1: Licensed Victualler

birthto 1: Islington

birthco 1: Middlesex

Enter data of the ’Text’ type according to the ’text’ specification

Press F2 to move you down the hierarchy of the database once more to get to the first
menu of related people. This should be filled in like this:

338 A Tutorial for κλειω: Part III

relp : 1

status 1: fz

fname 1: Mary

fname2 1: J

surname 1: Morrison

relation 1: wife

age 1: 29

occupation 1:

birthto 1: Cendover

birthco 1: Salop

Enter data of the ’Text’ type according to the ’text’ specification

Now press F1 which, rather than moving you down one level of the hierarchy, allows you
to add a further group with the same name. This will give you a menu that looks like this.
Again it has been filled in for you:

relp : 2

status 1: fs

fname 1: Ellen

fname2 1:

surname 1: Morrison

relation 1: daur

age 1: 7m

occupation 1:

birthto 1: Shrewsbury

birthco 1: Salop

Enter data of the ’Text’ type according to the ’text’ specification

You should now be able to fill in the details for both Elizabeth Morrison and Ann Fox. Try
entering the data for these two people and also Catherine Doyle.

When you get to the end of Catherine Doyle you will notice that there is no field in the
menu to put Ireland in. This is because in the .mod file the element country was not

16. Data entry with menus 339

defined in a position= parameter in a part directive. In this case we need to insert an
additional element into this group. Press F7. A menu will appear with a list of all the
elements in the database mentioned so far:

Select the element

* (Unknown)

age

status

refnum

parish

As we do not want to use an element that has already been defined, we should move the
cursor on to the first field in the menu (* (Unknown)). Press F1 to activate it. This will
result in a different menu. (Notice also that this menu has a symbol in the bottom left
hand corner. This means that there are further entries after the entry to the right of that
symbol.)

Element definition

Name :

Please enter the name of the element

Enter the name of the new element that you would like to define. In this case you should
enter the name country. Then press F1 to activate this menu. Your menu should have
changed to take account of this new element:

340 A Tutorial for κλειω: Part III

relp : 5

status 1: fs

fname 1: Catherine

fname2 1:

surname 1: Doyle

relation 1: serv

age 1: 24

occupation 1: Barmaid

birthto 1:

birthco 1:

country 1:

Enter data of the ’Text’ type according to the ’text’ specification

You can now enter the data in this field.

You should now have entered the whole of that house. Press Esc twice to get to a new
schedule menu. You can then continue to enter the data. You should have no problems
entering any of the remaining data.

All of the usual features that can be used in a normal .dat file can also be used in the
menu version.

Press F10 when you are within a menu, while creating a data file. A menu with a list of
all the functions that are currently available are listed. These are:

• F1 Include the present group

This key includes the group that you are currently inputting into the data
file. Once κλειω has added that group to the data file it will consider that
you want to include another similar group. In effect, you will get an empty
menu for the same group that you have been working on. You also should
press this key before you press ESC to stop working on entering data.

• F2 Selection of dependent groups

This key moves you to a menu for a group subordinate to the one that you
are currently working on. If you were working with a database with a
slightly more complicated structure than this sample database, you would be

16. Data entry with menus 341

given the choice of group dependent on the one you were working on. Thus,
if there is only one group dependent on the group you are working on and
you press F2, κλειω will automatically move you down one level. If you have
more than one group dependent on the group that you are working on,
κλειω will give you a choice of all the groups currently subordinate to that
group. Note, however, that once you have completed a group and all levels
of its hierarchy, you must press F1 to include that group. Otherwise you may
lose material.

• F3 Repeat element in next filter

This function key can be used to save time when typing in repetitious
material. When you have entered the contents of an element, and the
highlighted bar is still on that particular element, you can press F3 to repeat
the contents of that element in the next menu. Notice, however, that if you
had two groups, person and relp, both with the element surname, and you
pressed F3 to repeat a surname from the group head to the group relp, it
would not work, as κλειω would think that you wanted to repeat that
surname in the next group called head. This works in a similar way to the
cumulate= parameter in conjunction with the read command.

• F4 Choosing an aspect

This function key allows you to choose the aspects of an element. When you
are in an input filter and you press F4, κλειω produces a menu like the one
below. This menu refers to the current element.

Select the aspect

Basic information

Notes

Original text

If you want to select an aspect, move down to the aspect you want and press
F1.

342 A Tutorial for κλειω: Part III

relp : 1

status 1:

fname C 1:

fname2 1:

surname 1:

relation 1:

age 1:

occupation 1:

birthto 1:

birthco 1:

Enter data of the ’Text’ type according to the ’text’
specification

The letter C in this menu represents a comment aspect. If you also wanted
to add an ‘original’ aspect, you would have to press F4 again and select
original text, and press F1. This would return you to the same menu,
with an O in the place of the C. If you then wanted to return to the basic
information, you would need to repeat the same process, this time selecting
Basic information.

• F5 Insert an entry (after the current one)

This function key replaces the entry separator in the text edited .dat file.
When you are in a menu, you can press F5 to insert another entry within the
element. For example, if you had pressed F5 in the fname field of a relp
menu, the menu would change to look like the one below. Notice that the
ordinal number in the middle of that menu has increased from one to two.
This designates the second entry in that element.

16. Data entry with menus 343

relp : 1

status 1:

fname 2:

fname2 1:

surname 1:

relation 1:

age 1:

occupation 1:

birthto 1:

birthco 1:

Enter data of the ’Text’ type according to the ’text’
specification

• F6 Insert an entry (in front of the current one)

This function key performs a similar role to the F5 key, except that it places
an entry before the entry that you have just been working on.

• F7 Insert an element

The role of this key has been explained above.

• F8 From now on, display element in menu

This function key works in conjunction with the F7 function key. If you have
defined a new element which was not in the .mod file, you can ask κλειω to
display that newly created element in all subsequent menus for that group.
This means that you would not have to use the F7 function key so frequently.

• F9 Change the data type

This function key allows one to change the data type of an element.

344 A Tutorial for κλειω: Part III

There are a further seven functions which are performed by holding down the CTRL key
and then pressing the appropriate function key. (As these keys negate the role of function
keys there is no CRTL/F2).

• CTRL/F1 Delete present group

• CTRL/F3 Do not repeat the element in the next filter

• CTRL/F4 Delete an aspect

• CTRL/F5 Delete an entry

• CTRL/F6 Delete an entry

• CTRL/F7 Delete an element

• CTRL/F8 Do not display an element

With the commands described in this chapter you should be able to input data into most
databases with the menu-driven system. There are further commands that could be
described to assist in the data entry of a database, but they are all reasonably well
documented in the system.

Envoi

If you have managed to read this far you should have a good idea of how to use the
system and should need no real assistance from us. If, however, you do have difficulties
which you cannot solve with the help of either this volume or the Reference Manual, you
might try contacting the U.K. κλειω Support Team at:

kleio@qmw.ac.uk

or, by post:

κλειω Support Team
Humanities Computing Centre
Queen Mary & Westfield College
University of London
Mile End Road
London E1 4NS
United Kingdom

Fax: +44 81 980 8400.

They may be able to help. They would also be interested to hear any comments or
feedback that you may have.

Good luck!

Answers to exercises

Exercise 2.1

query name=burial;part=p:occupation="alderman"
write part=:each[]
stop

Exercise 2.2

query name=burial;part=relp:occupation="alderman"
write part=:each[]
stop

Exercise 2.3

query name=burial;part=p
index part=:surname;

part=:firstname;
part=:occupation

stop

Exercise 2.4

query name=burial;part=:surname
index part=:surname;

part=:firstname;
part=:occupation

stop

348 A Tutorial for κλειω

Exercise 2.5

query name=burial;part=p:status="f"
index part=:surname;

part=:firstname
part=:occupation

stop

Exercise 2.6

query name=baptism;part=relp
index part=:surname;

part=:firstname;
part=:occupation

stop

Exercise 2.7

query name=baptism;part=:occupation
index part=:surname;

part=:firstname;
part=:occupation

stop

Exercise 2.8

query name=burial;part=:occupation
index part=:occupation="clerke"
stop

This is the correct answer. However we think that your most natural answer would have
been:

query name=burial;part=:occupation="clerke"
index part=:occupation
stop

Can you see why κλειω produces the result that it does? Look at the datafile, (type edit
burial.dat at the DOS prompt). The answer to this last exercise will be fully described
later.

Answers to exercises 349

Exercise 4.1

query name=censsamp;part=relp:occupation
write part=:occupation,:surname,:firstname
stop

Exercise 4.2

query name=censsamp;part=:status="f" and :age="29" equal
write part=:each[]
stop

Exercise 4.3

query name=censsamp;part=:status="f" and :age="29" greater
write part=:each[]
stop

Exercise 4.4

query name=censsamp;part=:status="z" and "f" and :age="30" less
write part=:each[]
stop

Exercise 4.5

query name=censsamp;part=house:status="u"
write part=:address
stop

Exercise 4.6

query name=censsamp;part=relp:birthto=not "Shrewsbury"
index part=:birthto;

part=:surname
stop

350 A Tutorial for κλειω

Exercise 4.7

query name=censsamp;part=:status="m" and (:status="s" or "w")
and :occupation=not "Grocer"

index part=:surname;
part=:firstname;
part=:status;
part=:occupation

stop

Exercise 4.8

query name=censsamp;part=:age="16" less and
:occupation=not "scholar"

index part=:surname;
part=:firstname;
part=:occupation

stop

This, the logical answer, does not produce a satisfactory result. Try the following task:

query name=censsamp;part=:age="16 less and :occupation=null
index part=:surname;

part=:firstname;
part=:occupation

stop

Exercise 5.1

query name=burial;part=:occupation="organist"
index part=:surname;

part=:firstname;
part=:query[]

stop

Exercise 5.2

query name=baptism;part=p:surname="Love"
index part=:query[];

part=:firstname;
part=:bapdat

continue
query name=burial;part=p:surname="Love"
index part=:query[];

part=:firstname;
part=:burialdate

stop

Answers to exercises 351

Exercise 5.3

query name=baptism;part=:bapdat
index part=:bapdat;substitute="---//---"
stop

query name=baptism;part=:bapdat="3 Mar 1624" or "24 Sept 1600"
index part=:surname;without=yes;

part=:firstname;without=yes;
part=:bapdat

stop

Exercise 5.4

query name=baptism;part=:bapdat="3 Mar 1624" or "24 Sept 1600"
index part=:surname;without=yes;

part=:firstname;
part=:bapdat;
first=limit

stop

Exercise 5.5

query name=burial;part=p:relation="wife"
index part=:firstname;without=yes;

part=:surname;limit=" the ";
part=:query[];limit=" of ";
part=relp:title;
part=:firstname;
part=:surname

stop

Exercise 5.6

query name=baptism;part=p
index part=relp:firstname;without=yes;

part=:surname;limit="’s ";
part=back[1]:relation;without=yes;
part=:firstname;limit=" was baptised on ";without=yes;
part=:bapdat

stop

352 A Tutorial for κλειω

Exercise 5.7

query name=censsamp;part=relp
index part=:fname;without=yes

part=:surname;
part=back[1]:firstname;
part=:surname;
part=back[2]:address
part=:town

stop

Exercise 5.8

Something like the following answer would go a long way to see whether there was in fact
any difference in the months in which children of both sexes were born. However, in order
to make any valid conclusions we should be using a much larger sample.

query name=baptism;part=:status="m"
index part=:month[bapdat];type=count
continue
query name=baptism;part=:status="f"
index part=:month[bapdat];type=count
stop

There is another element function which may be of interest. This function, :weekday[],
will ‘calculate’ the day of the week of a certain date. Try running the following task.
(Remember that if you use this to ensure that the correct calendar system has been defined.
The information output from this result is accurate as the calendar has been defined as
being Julian, rather than Gregorian.)

query name=baptism;part=:status="m"
index part=:weekday[bapdat];type=count
stop

Exercise 7.1

query name=probate;part=:material
index part=:material;type=count
stop

Exercise 7.2

query name=probate;part=:material="wood"
write part=:each[]
stop

Answers to exercises 353

Exercise 7.3

query name=probate;part=:material="wood"
cumulation part=:value
stop

Notice that κλειω has only selected a small proportion of the goods made out of wood that
were selected in the last task. This is because the cumulation command only retrieves
those items which have a value. Many of the items in the database only have a collective
value rather than an individual value. In this case the same result could have been
obtained using the following task:

query name=probate;part=piece:material="wood"
cumulation part=:value
stop

Exercise 7.4

query name=probate;part=:quality="old" or "ould" or "oyld"
index part=:quality;type=count
stop

Note that, although this task works, it does not do exactly what the question asked. This
is another example of where the :query[] function might be usefully employed.

query name=probate;part=:quality="old" or "ould" or "oyld"
index part=:query[];type=count
stop

Exercise 8.1

query name=probate;part=catalogue[objects,complete,"beere"]
write part=:each[]
stop

Exercise 8.2

query name=probate;part=catalogue[objects,starts,"brewing"]
write part=back[2]/p:each[]
stop

354 A Tutorial for κλειω

Exercise 8.3

query name=probate;part=catalogue[objects,starts,"brewing"]
index part=:each[];

part=back[2]/p:surname;
part=:firstname

stop

Exercise 8.4

query name=probate;part=catalogue[objects,starts,"brewing"]
index part=root[1]/p:surname;

part=:firstname
stop

Exercise 8.5

The standard answer to this exercise is likely to be:

query name=probate;part=relp
index part=:surname;

part=back[1]/p:surname;
part=back[1]/relp:firstname;
part=back[1]/p:firstname

stop

However the first part of the result looks like this:

Abraham Clerke Mathew Robert 9
Abraham Clerke Richard Robert 9
Abraham Clerke Robert Robert 9
Abraham Clerke Rob[ert] Robert 9
Abraham Clerke Simon Robert 9

From this we might deduce that Mathew Abraham, Richard Abraham etc. were all people
related to Robert Clerke. However, if we refer to the original data we find the following:

inventory$HR01623B11\/2/5 Sept 1623
relp$ma/Simon/Perdew
relp$ma/Rob[ert]/Lamborne
relp$mai/Mathew/Fox
relp$ma/Richard/Siddon
relp$ma/Robert/Abraham

Thus only the third person in the original result is a real person. The other four are ‘made-
up’ names consisting of the related person’s surname followed by the firstnames of all
those relps found in the database. This occurs because in the first line of the task κλειω is

Answers to exercises 355

asked to go to the part of the database where there is a group called relp. The first part=
parameter of the index command asks for the information about a surname found in that
group to be displayed; the second part= parameter asks κλειω to go back one level in the
database then follow a path down to the group p and display the surname found there;
the third part= parameter tells κλειω to go from there to all the first names in the group
of related people. This causes all the first names to be displayed.

A method of avoiding this is to use the function query[] as a group function. A ‘correct’
solution to this problem would be:

query name=probate;part=relp
index part=query[]:surname;

part=back[1]/p:surname;
part=query[]:firstname;
part=back[1]/p:firstname

stop

The reason why this works differently is that in the third part= parameter κλειω is only
being directed to the element in the group encountered in the query command.

Exercise 10.1

options lines=0
query name=colebro;part=:occupation
index part=:form[’form text="’];

limit="";
part=:occupation;
limit=’";number=99’;
maximum=1;
signs=39;
identification=order[];
write=no;

stop target="c:\kleio\q10.1a"

form text="Bag Manufacturer ";number=99
form text="Baker ";number=99
form text="Beer Retailer ";number=99
form text="Boot Fitter ";number=99
form text="Boot Maker ";number=99
form text="Brewers Labourer ";number=99
form text="Bricklayer ";number=99
form text="Bricklayers Laborer ";number=99
form text="bricklayers labourer ";number=99
form text="Bricklayer’s Labourer ";number=99
form text="builder ";number=99
form text="Builders Labourer ";number=99
form text="Cabinet Maker ";number=99
form text="Carman ";number=99

356 A Tutorial for κλειω

form text="Carpenter ";number=99
form text="Carter ";number=99
form text="Chair Man ";number=99
form text="Charwoman ";number=99
form text="Chelsea Pensioner ";number=99
form text="Chimney Sweep ";number=99
form text="City Crier ";number=99
form text="Clerk ";number=99
form text="Coachman ";number=99
form text="Cole merchant ";number=99
form text="Companion ";number=99
form text="Cook ";number=99
form text="Cordwainer ";number=99
form text="Cordwainers Assistant ";number=99
form text="Corn dealers porter ";number=99
form text="Corn Miller ";number=99
form text="Corn Store Man ";number=99
form text="Dairyman ";number=99
form text="Dom ";number=99
form text="Domestic Servant ";number=99
form text="Drapers Porter ";number=99
form text="Drayman ";number=99
form text="Dress Maker ";number=99
form text="Dressmaker ";number=99
form text="Dyer ";number=99
form text="Errand Boy ";number=99
form text="Farm Labourer ";number=99
form text="Freeholder ";number=99
form text="Gardener ";number=99
form text="Gas Stoker ";number=99
form text="Gen Lab ";number=99
form text="Gen Serv ";number=99
form text="General Dealer ";number=99
form text="General Laborer ";number=99
form text="General Laboror ";number=99
form text="Genl Labourer ";number=99
form text="Greenwich Pensioner ";number=99
form text="Grocer ";number=99
form text="Grocers Porter ";number=99
form text="Groom ";number=99
form text="Harness Maker ";number=99
form text="Hawker ";number=99
form text="Housekeeper ";number=99
form text="Housemaid ";number=99
form text="Inn Servant ";number=99
form text="Invalid Nurse ";number=99
form text="Iron & Brass Founder ";number=99
form text="Joiner ";number=99
form text="labourer ";number=99
form text="labourer general ";number=99
form text="late dressmaker ";number=99
form text="late Gen[era]l Serv ";number=99
form text="late grocer ";number=99

Answers to exercises 357

form text="late laundress ";number=99
form text="late Nurse ";number=99
form text="late publican ";number=99
form text="late staymaker ";number=99
form text="late [?] ";number=99
form text="Laundress ";number=99
form text="Licensed Victualler ";number=99
form text="Maltster ";number=99
form text="Maltsters Laborer ";number=99
form text="Mantle Maker ";number=99
form text="Mason ";number=99
form text="Master Chimney Sweep ";number=99
form text="Medical Student ";number=99
form text="Miller ";number=99
form text="Milliner ";number=99
form text="Milliner &c ";number=99
form text="Needlewoman ";number=99
form text="No occupation ";number=99
form text="None ";number=99
form text="Nurse ";number=99
form text="Nursemaid ";number=99
form text="Painter ";number=99
form text="Paper Hanger ";number=99
form text="Plough Boy ";number=99
form text="Plumbers Labourer ";number=99
form text="Policeman ";number=99
form text="Porter ";number=99
form text="Postman ";number=99
form text="Printers Compositor ";number=99
form text="prison warder ";number=99
form text="Purveyor of Milk ";number=99
form text="Scholar ";number=99
form text="shoemaker ";number=99
form text="Slater ";number=99
form text="Stationers Porter ";number=99
form text="Stone Mason ";number=99
form text="Stonemason ";number=99
form text="Straw Hat Manufacturer ";number=99
form text="Tailor ";number=99
form text="Tallow Chandler ";number=99
form text="Tinman ";number=99
form text="Upholsterer ";number=99
form text="Upholstress ";number=99
form text="Verger Winton Cathedral ";number=99
form text="Waiter ";number=99
form text="Whitesmith ";number=99
form text="[?] ";number=99
form text="[?] Carpenter ";number=99
form text="[?] Servant (unemployed) ";number=99

358 A Tutorial for κλειω

item name=occupations;usage=codebook;source=colebro;
type=permanent;overwrite=yes

part name=system;type=create
form text="Bag Manufacturer ";number=6
form text="Baker ";number=4
form text="Beer Retailer ";number=4
form text="Boot Fitter ";number=4
form text="Boot Maker ";number=6
form text="Brewers Labourer ";number=18
form text="Bricklayer ";number=6
form text="Bricklayers Laborer ";number=18
form text="bricklayers labourer ";number=18
form text="Bricklayer’s Labourer ";number=18
form text="builder ";number=6
form text="Builders Labourer ";number=18
form text="Cabinet Maker ";number=6
form text="Carman ";number=17
form text="Carpenter ";number=6
form text="Carter ";number=6
form text="Chair Man ";number=6
form text="Charwoman ";number=13
form text="Chelsea Pensioner ";number=24
form text="Chimney Sweep ";number=17
form text="City Crier ";number=99
form text="Clerk ";number=8
form text="Coachman ";number=12
form text="Cole merchant ";number=4
form text="Companion ";number=11
form text="Cook ";number=11
form text="Cordwainer ";number=7
form text="Cordwainers Assistant ";number=18
form text="Corn dealers porter ";number=18
form text="Corn Miller ";number=4
form text="Corn Store Man ";number=18
form text="Dairyman ";number=3
form text="Dom ";number=12
form text="Domestic Servant ";number=12
form text="Drapers Porter ";number=18
form text="Drayman ";number=99
form text="Dress Maker ";number=6
form text="Dressmaker ";number=6
form text="Dyer ";number=6
form text="Errand Boy ";number=18
form text="Farm Labourer ";number=3
form text="Freeholder ";number=14
form text="Gardener ";number=2
form text="Gas Stoker ";number=18
form text="Gen Lab ";number=18
form text="Gen Serv ";number=12
form text="General Dealer ";number=4
form text="General Laborer ";number=18
form text="General Laboror ";number=18
form text="Genl Labourer ";number=18

Answers to exercises 359

form text="Greenwich Pensioner ";number=24
form text="Grocer ";number=4
form text="Grocers Porter ";number=18
form text="Groom ";number=12
form text="Harness Maker ";number=6
form text="Hawker ";number=23
form text="Housekeeper ";number=11
form text="Housemaid ";number=12
form text="Inn Servant ";number=17
form text="Invalid Nurse ";number=11
form text="Iron & Brass Founder ";number=6
form text="Joiner ";number=6
form text="labourer ";number=18
form text="labourer general ";number=18
form text="late dressmaker ";number=24
form text="late Gen[era]l Serv ";number=24
form text="late grocer ";number=24
form text="late laundress ";number=24
form text="late Nurse ";number=24
form text="late publican ";number=24
form text="late staymaker ";number=24
form text="late [?] ";number=24
form text="Laundress ";number=13
form text="Licensed Victualler ";number=4
form text="Maltster ";number=4
form text="Maltsters Laborer ";number=18
form text="Mantle Maker ";number=6
form text="Mason ";number=6
form text="Master Chimney Sweep ";number=6
form text="Medical Student ";number=9
form text="Miller ";number=6
form text="Milliner ";number=6
form text="Milliner &c ";number=6
form text="Needlewoman ";number=13
form text="No occupation ";number=22
form text="None ";number=22
form text="Nurse ";number=11
form text="Nursemaid ";number=11
form text="Painter ";number=6
form text="Paper Hanger ";number=6
form text="Plough Boy ";number=18
form text="Plumbers Labourer ";number=18
form text="Policeman ";number=9
form text="Porter ";number=18
form text="Postman ";number=9
form text="Printers Compositor ";number=6
form text="prison warder ";number=9
form text="Purveyor of Milk ";number=4
form text="Scholar ";number=20
form text="shoemaker ";number=6
form text="Slater ";number=6
form text="Stationers Porter ";number=18
form text="Stone Mason ";number=6

360 A Tutorial for κλειω

form text="Stonemason ";number=6
form text="Straw Hat Manufacturer ";number=7
form text="Tailor ";number=6
form text="Tallow Chandler ";number=4
form text="Tinman ";number=18
form text="Upholsterer ";number=6
form text="Upholstress ";number=6
form text="Verger Winton Cathedral ";number=8
form text="Waiter ";number=18
form text="Whitesmith ";number=6
form text="[?] ";number=99
form text="[?] Carpenter ";number=99
form text="[?] Servant (unemployed) ";number=99
exit name=occupations

Exercise 10.2

item name=occupations;usage=codebook;source=colebro;
type=permanent

part name=system;type=insert
write number=1;text="Agricultural Self-employed"
write number=2;text="Skilled Agricultural Workers"
write number=3;text="Agricultural Labourers"
write number=4;text="Shopkeepers, traders"
write number=5;text="Skilled Crafts, non-industrial"
write number=6;text="Manufacturers"
write number=7;text="Skilled Industrial Craftsmen"
write number=8;text="Upper Professional"
write number=9;text="Professional"
write number=10;text="Clerical"
write number=11;text="Upper Servants"
write number=12;text="General Servants"
write number=13;text="Lower Servants"
write number=14;text="Private Income Recipient"
write number=15;text="Rentiers"
write number=16;text="Annuitants"
write number=17;text="Semi-skilled/Service"
write number=18;text="Unskilled"
write number=19;text="Supervisory"
write number=20;text="Children"
write number=21;text="Housewives"
write number=22;text="No occupation"
write number=23;text="Paupers"
write number=24;text="Retired People"
write number=25;text="Visitors"
write number=99;text="Unknown"
exit name=occupations

Answers to exercises 361

Exercise 10.3

query name=colebro;part=:occupation
translation target=pcspss;

first="jobs.num";
second="jobs.sps"

case part=:codebook[:occupation,system,occupations];
name=occupation;write="code";
part=:age;name=age;write="age"

stop

Exercise 11

However you create your result, the only part of the result that may need explanation is
the part pertaining to getting the total value of the person’s wealth in pounds. This is done
like so:

part=:value&::form["240",number]

Your query might be slightly differently formulated, but you will need something like this
to complete this exercise correctly.

Exercise 12.1
Anderson, Andersen = 1647, 1647
Bergman, Brigham = 2736, 2736
Fischer, Fisher, Fisshire = 2370, 2370, 2370
Oldroyd, Holroyd = 1547, 1547

Exercise 12.2

The database should look something like this:

database name=newcast;first=d;overwrite=yes
part name=d;

position=id,name
exit name=newcast
read name=newcast
d$1/Cay
d$2/Kay
d$3/Carr
d$4/Kerr
d$5/Leighton
d$6/Leaton
d$7/Layton
d$8/Turnbull

362 A Tutorial for κλειω

d$9/Trumball
d$10/Hindmarsh
d$11/Hynmers
d$12/Atkinson
d$13/Atchison
.
.
.

and the soundex commands should look something like this:

item name=code;usage=soundex;type=permanent;source=newcast;
overwrite=yes

conversion without="aeiouywhg"
part signs="ck"
part signs="r"
part signs="l"
part signs="tj"
part signs="nmds"
part signs="vxq"
part signs="bpf"
exit name=code

An example of a possible task:

query name=newcast;part=:soundex[:name,code]=
:soundex[:form["Cay"],code

write part=:soundex[:name,code],:name
stop

Exercise 13.3

query name=deaths;part=:surname
index part=:surname;limit", ";

part=:fname;limit=" was born on ";
part=:births<births>:dob;
identification=:order[];write=no

stop

Answers to exercises 363

Exercise 14.1

The database needed to create these two shapes can be seen below. Essentially the database
is the same used in tasks ex14.1, ex14.2 and ex14.3.

database name=exercise;first=x;overwrite=yes
element name=grid-reference;type=location;location=shape
part name=x;

position=id,name,grid-reference
exit name=exercise

item name=shape;usage=location;source=exercise;type=permanent
type form=arcinfo
location first=shape1
1 1
5 1
3 5
end
location first=shape2
3 0
1 4
5 4
end
exit name=shape

read name=exercise
x$a1/x/shape1
x$a2/x/shape2

To display this information the following task would be necessary:

query name=exercise;part=:name="x"
mapping part=:grid-reference
stop

Exercise 14.2

item name=shape;usage=location;source=exercise;type=permanent
type form=arcinfo
location first=shape1;colour=red
1 1
5 1
3 5
end
location first=shape2;colour=blue
3 0
1 4
5 4
end
exit name=shape

364 A Tutorial for κλειω

Exercise 14.3

options lines=0
query name=colebro;part=head:occupation
index part=:form[’form text="’];limit="";

part=:occupation;limit=’";number=’;maximum=1;sign=39;
identification=:order[];write=no

stop target="ex14.3"

This query produces an index of all the occupations of heads of household, with some
additional text necessary to add new codes to a codebook. The result of the file is sent to
a file ex14.3. Part of the result follows:

form text=" ";number=
form text="Bag Manufacturer ";number=
form text="Baker ";number=
form text="Beer Retailer ";number=
form text="Boot Maker ";number=
form text="Brewers Labourer ";number=

This result needs to be changed slightly to create the codebook classifying the occupations
of these heads of household.

Exercise 14.4

item name=status;source=colebr;usage=codebook;type=permanent
part type=insert;name=system
form text=" ";number=3
form text="Bag Manufacturer ";number=2
form text="Baker ";number=2
form text="Beer Retailer ";number=2
form text="Boot Maker ";number=2
form text="Brewers Labourer ";number=1
.
.
.
exit name=status

Above is part of the logical object called status which creates a codebook. The code 1 has
been allocated to manual labourers, 2 to artisans and 3 to others.

Once this codebook has been created, it is possible to run the following task to display all
the objects as specified in the question.

Answers to exercises 365

Exercise 14.5

The task that follows is one of many possible solutions to this question. This solution is
however slightly faulty. Unless you had studied the data file carefully, it would not be
obvious exactly why this is the case. In this task, κλειω is asked to produce a map where
those people with the occupational code 1 have their houses displayed in red, and those
people whose occupational code is 2 have their houses displayed in green, but κλειω is
asked to display all the other houses in the database in blue. However there are some
houses in the location file that are NOT represented in the data file. Therefore we do NOT
know the occupation of the head of household of these houses. Therefore they should not
necessarily be displayed in blue. The second example, shown further below, takes this
problem into account and displays those houses for which we know the head of household
falls into the occupational category 3 in blue and the remainer of houses in white.

FAULTY ANSWER

query name=colebr;
part=head:codebook[:occupation,system,status]="1"

confirm name=first
mapping always=yes;sign=no
mapping part=back[2]:site;sign=no;colour=red
exit name=first
negate name=second
query part=:codebook[:occupation,system,status]="2"
confirm name=third
mapping part=back[2]:site;sign=no;colour=green
exit name=third
negate name=fourth
mapping total=yes;sign=no;colour=blue
exit name=fourth
exit name=second
stop

An English translation of this task might read: I am interested in a database called colebr.
Check the codebook for all entries with 1 as the system code. Once those people have been
found, display the city wall without a label and these houses in red. For all those people
whose occupational code number is not 1, check to see if they equal 2, if so display the
houses referring to those people in green. For all those people whose code is neither 1 nor
2 (i.e. all that is left), display their houses in blue.

366 A Tutorial for κλειω

CORRECT ANSWER

query name=colebr;
part=head:codebook[:occupation,system,status]="1"

confirm name=group1
mapping always=yes;sign=no
mapping part=back[2]:site;sign=no;colour=red
exit name=group1
negate name=group23
query part=:codebook[:occupation,system,status]="2"
confirm name=group2
mapping part=back[2]:site;sign=no;colour=green
exit name=group2
negate name=group3
query part=:codebook[:occupation,system,status]="3"
confirm name=group4
mapping part=back[2]:site;sign=no;colour=blue
negate name=group34
mapping total=yes;sign=no;
exit name=group34
exit name=group4
exit name=group3
exit name=group23
stop

Exercise 14.6

query name=colebr;part=relp:relation="wife"
and :occupation=null

mapping part=back[3]:site;
usage=solid;usage=solid;
colour=contrast;colour=contrast;
sign=no;
write="ex14.4";
target="14_4.plt";
overwrite=yes

mapping total=yes;sign=no
mapping always=yes;sign=no
location usage=Postscript

Bibliography

Writings of Manfred Thaller in English

‘Automation on Parnassus. CLIO A Databank Orientated System for Historians’,
Historical Social Research/Historische Sozialforschung, 15 (1980), pp. 40–65.

‘The Winds of Change’, Problems of a Databank Oriented System Using the Concept of
Fuzzy Sets, in: Papers Invented at the 1981 Joint Conference of IFDO and IASSIST,
Grenoble, 14–18 September 1981.

‘Recycling the Drudgery, On the Integration of Software Supporting Secondary Analysis
of Machine-Readable Texts into a DBMS’, in Linguistica Computazionale 3 (1983),
Supplement, pp. 253–68.

‘Beyond Collecting: the Design and Implementation of CLIO, a DBMS for the Social-
Historical Sciences’, in Data Bases in the Humanities and Social Sciences 2, ed. Robert
F.Allen (Paradigm Press, Florida, 1985), pp. 328–34.

‘A Draft Proposal for the Coding of Machine Readable Sources’, in Historical Social
Research/Historische Sozialforschung, 40 (1986), pp. 3–46, repr. in Modelling Historical
Data, ed. D. Greenstein. Halbgraue Reihe zur historischen Fachinformatik, A11 (St.
Katharinen, 1991), pp. 19–64.

‘Can We Afford to Use the Computer; Can We Afford Not to Use it?’, in Informatique et
Prosopographie, ed. H. Millet (Paris, 1986), pp. 339–52.

‘Methods and Techniques of Historical Computation’, in History and Computing, eds. P.
Denley & D. Hopkin (Manchester, 1987), pp. 147–56.

368 A Tutorial for κλειω

‘The Daily Life of the Middle Ages. Editions of Sources and Data Processing’, Medium
Aevum Quotidianum, 10 (1987), pp. 6–29.

‘Data Bases v. Critical Editions’, in Data Base Oriented Source Editions. Papers from two
Sessions at the 23rd International Congress of Medieval Studies, Kalamazoo, 5–8
May 1988, ed. M. Thaller, pp. 1–8; also in Historical Social Research/Historische
Sozialforschung, 13:3 (1988), pp. 129–39.

‘A Draft Proposal for a Standard Format Exchange Program’, in Standardisation et échange
des bases de données historiques, ed. J.-P. Genet (CNRS, Paris, 1988), pp. 329–75.

‘The Need for a Theory of Historical Computing’, in History and Computing II, eds. P.
Denley, S. Fogelvik & C. Harvey (Manchester, 1989), pp. 2–11.

‘Have Very Large Data Bases Methodological Relevance?’, in Conceptual and Numerical
Analysis of Data, ed. O. Opitz (Berlin, 1989), pp. 311–26.

‘Databases and Expert Systems as Complementary Tools for Historical Research’, Tijdschrift
voor Geschiedenis, 103 (1990), pp. 233–47.

‘The Historical Workstation Project’, in Computers and the Humanities, 25 (1991), pp. 149–62.

‘The Need for Standards: Data Modelling and Exchange’, in Modelling Historical Data, ed.
D. Greenstein. Halbgraue Reihe zur historischen Fachinformatik, A11 (St.
Katharinen, 1991), pp. 1–18.

‘The Historical Workstation Project’, in Historical Social Research/Historische Sozialforschung,
16:4 (1991), pp. 51–61 (introduction to section).

‘The Historical Workstation Project’, in Histoire et Informatique. Ve Congrès ‘History &
Computing’, 4–7 Septembre 1990 à Montpellier (Montpellier, 1992), ed. J. Smets, pp.
251–60 (introduction to section).

‘On the Conception, Training and Employment of Historical Data and Knowledge
Daemons’, in Eden or Babylon?, ed. J. Oldervoll. Halbgraue Reihe zur historischen
Fachinformatik, A13 (St. Katharinen, 1992), pp. 53–67.

‘The Processing of Manuscripts’, in Images and Manuscripts in Historical Computing, ed. M.
Thaller. Halbgraue Reihe zur historischen Fachinformatik, A14 (St. Katharinen,
1992), pp. 41–72.

‘The Role of Summer Schools in Teaching History and Computing’, in Towards an
International Curriculum for History and Computing, eds. D. Spaeth, P. Denley, V.
Davis & R. Trainor. Halbgraue Reihe zur historischen Fachinformatik, A12 (St.
Katharinen, 1992), pp. 49–53.

Bibliography 369

‘What is "source oriented data processing"; what is a "historical information science"?’,
paper given to ‘New information technologies in historical research and teaching’,
June 1992 in Uzhgorod, Ukraine, published in Russian in Istoriia i comp’iuter. Novye
informatsionnye tekhnologii v istoricheskikh issledovanii akh i obrazovanii, eds. Leonid I.
Borodkin &Wolfgang Levermann. Halbgraue Reihe zur historischen Fachinformatik,
A15 (St. Katharinen, 1993), pp. 5–18.

‘The Archive on the Top of your Desk? On Self-Documenting Image Files’, in Image
Processing in History: towards Open Systems, eds. Jurij Fikfak & Gerhard Jaritz.
Halbgraue Reihe zur historischen Fachinformatik, A16 (St. Katharinen, 1993), pp.
21–24.

‘Levels of "Computing in History" Curricula’, in The Teaching of Historical Computing: An
International Framework, eds. Virginia Davis, Peter Denley, Donald Spaeth & Richard
Trainor. Halbgraue Reihe zur historischen Fachinformatik, A17 (St. Katharinen,
1993), pp. 5–9.

‘Historical Information Science: Is There Such a Thing? New Comments on an Old Idea’,
in Discipline umanistiche e informatica. Il problema dell’integrazione (Seminario, Roma,
8 ottobre 1991), ed. Tito Orlandi. Contributi del Centro Linceo Interdisciplinare
‘Beniamino Segre’, 87 (Accademia Nazionale dei Lincei, Rome, 1993), pp. 51–86.

κλειω. A Database System. Halbgraue Reihe zur historischen Fachinformatik, B11 (St.
Katharinen, 1993).

Other κλειω literature in English

Peter Becker, ‘Illsex A Databank for Studying Illegitimacy, Historical Social
Research/Historische Sozialforschung, 15:1 (1990), pp. 59–65.

Susanne Botzem, Ingo H. Kropač, ‘Integrated Computer Supported Editing, Approaches
and Strategies’, inHistorical Social Research/Historische Sozialforschung, 16:4 (1991), pp.
106–15.

Susanne Botzem, Ingo H. Kropač, ‘As You Like It or Archiving, Editing and Analysing
Medieval Manuscripts’, in Histoire et Informatique. Ve Congrès ‘History &
Computing’, 4–7 Septembre 1990 à Montpellier, ed. J. Smets (Montpellier, 1992), pp.
267–78.

370 A Tutorial for κλειω

Andrea Bozzi & Giuseppe Cappelli, ‘A Latin Morphological Analyser’, in Data Base
Oriented Source Editions. Papers from two sessions at the 23rd International Congress
of Medieval Studies, Kalamazoo, 5–8 May 1988, ed. M. Thaller, pp. 47–54.

Bettina Callies, Lothar Kolmer, ‘A Computerised Medieval City Archive: the Project
"Regensburger Bürger- und Häuserbuch"’, in History and Computing II, eds. P.
Denley, S. Fogelvik & C. Harvey (Manchester, 1989), pp. 266–72.

Peter Denley, ‘Source-Oriented Prosopogyaphy: κλειω and the Creation of a Data Bank of
Italian Renaissance University Teachers and Students’, in Storia & Multimedia, eds.
F. Bocchi and P. Denley (Grafis Edizioni, Bologna, forthcoming, 1994).

Josef Ehmer, ‘The Vienna Data Base on European Family History’, in Data Bases in the
Humanities and Social Sciences 2, ed. Robert F. Allen (Paradigm Press, Florida, 1985),
pp. 113–16.

Claudia Engel, Eckart Voland, ‘Female Choice in Humans: A Conditional Mate Selection
Strategy of the Krummhörn Women (Germany 1720–1874), Ethology 84 (1990), pp.
144–54.

Thomas Engelke, ‘EDP-Based Projects at the Regensburg Archives’, in Histoire et
Informatique. Ve Congrès ‘History & Computing’, 4–7 Septembre 1990 à Montpellier,
ed. J. Smets (Montpellier, 1992), pp. 279–87.

Hans-Christoph Hobohm, ‘Using Databases for Everyday Work in Literary History,
Exchange and Standardization Problems’, in Standardisation et échange des bases de
données historiques, ed. J.-P. Genet (CNRS, Paris, 1988), pp. 323–28.

Hans-Christoph Hobohm, ‘Establishing a Reconstructive Metasource on Censorship of
Novels in the Early French Enlightenment’, in Computers in the Humanities and Social
Sciences. Proceedings of the Cologne Computer Conferece 1988, eds. H. Best, E.
Mochmann & M. Thaller (Munich, 1991), pp. 130–35.

Kathrin Homann, ‘StanFEP Standardization without Standards’, in Histoire et
Informatique. Ve Congrès ‘History & Computing’, 4–7 Septembre 1990 à Montpellier,
ed. J. Smets 1992), pp. 289–99.

Gerhard Jaritz, ‘Daily Life in the Middle Ages, Iconography of Medieval Art and the Use
of EDP’, Historical Social Research/Historische Sozialforschung, 21 (1981), pp. 43–55.

Gerhard Jaritz, ‘Daily Life in Medieval Literature’,Medium Aevum Quotidianum, Newsletter
2 (1984), pp. 2–23.

Gerhard Jaritz, ‘Finding the Signs, Pictures of Medieval Life’, in Data Base Oriented Source
Editions. Papers from two Sessions at the 23rd International Congress of Medieval
Studies, Kalamazoo, 5–8 May 1988, ed. M. Thaller, pp. 15–28.

Bibliography 371

Gerhard Jaritz, ‘Toward Standards of Very Different Materials: Problems of
Standardization in EDP-Supported Research in the Material Culture of the Middle
Ages’, in Standardisation et échange des bases de données historiques, ed. J.-P. Genet
(CNRS, Paris, 1988), pp. 153–60.

Gerhard Jaritz, ‘The Image as Historical Source or: Grabbing Contexts’, in Historical Social
Research/Historische Sozialforschung, 16:4 (1991), pp. 100–105.

Gerhard Jaritz, ‘"New Patterns of Response" Digital Image Processing and the
Explanation of Medieval Pictures’, in Histoire et Informatique. Ve Congrès ‘History &
Computing’, 4–7 Septembre 1990 à Montpellier (Montpellier, 1992), ed. J. Smets, pp.
261–66.

Gerhard Jaritz, Images. A Primer of Computer-Supported Analysis with κλειω IAS. Halbgraue
Reihe zur historischen Fachinformatik, A22 (St. Katharinen, 1993).

Gerhard Jaritz & Albert Müller, ‘The History of Medieval and Early Modern Migration.
Computer-Supported Methods and Results’, in History and Computing II, eds. P.
Denley, S. Fogelvik & C. Harvey (Manchester, 1989), pp. 161–68.

Gerhard Jaritz & Barbara Schuh, ‘Describing the Indescribable’, in Images and Manuscripts
in Historical Computing, ed. M. Thaller. Halbgraue Reihe zur historischen
Fachinformatik, A14 (St. Katharinen, 1992), pp. 143–53.

Ingo H. Kropač, ‘Homo ex Machina. Prosopography and Cartularies’, in Data Base Oriented
Source Editions. Papers from two Sessions at the 23rd International Congress of
Medieval Studies, Kalamazoo, 5–8 May 1988, ed. M. Thaller, pp. 37–45, and in
Computers in the Humanities and Social Sciences. Proceedings of the Cologne Computer
Conferece 1988, eds. H. Best, E. Mochmann &M. Thaller (Munich, 1991), pp. 97–102.

Ingo H. Kropač, ‘Who’s Who in the Southeast of Germany: the Design of the
Prosopographical Data Bank of Graz University’, in History and Computing II, eds.
P. Denley, S. Fogelvik & C. Harvey (Manchester, 1989), pp. 273–79.

Ingo H. Kropač, ‘The Prosopographical Data Bank on the History of the South-East
Territories of the Old "Reich" up to 1250’, in Data Bases in the Humanities and Social
Sciences, ed. L. J. McCrank (Paradigm Press, Florida, 1990), pp. 383–90.

Ingo H. Kropač, Ursula Leiter-Köhrer, ‘Parsing the Past Reflections on the Analytical
Semantic Parsing System (ASPS)’, Histoire et Informatique. Ve Congrès ‘History &
Computing’, 4–7 Septembre 1990 à Montpellier, ed. J. Smets (Montpellier, 1992), pp.
301–13.

Ursula Leiter-Köhrer, ‘Linguistic Knowledge as a Background Component of an
Application Oriented Workstation’, in Historical Social Research/Historische
Sozialforschung, 16:4 (1991), pp. 89–99.

372 A Tutorial for κλειω

B. Pöttler, ‘Modelling Historical Data. Probate Inventories as a Source for the History of
Everyday Life’, in Storia & Multimedia, eds. F. Bocchi and P. Denley (Grafis Edizioni,
Bologna, forthcoming, 1994).

Wolfgang Levermann, ‘Historical Data Bases and the Context Sensitive Handling of Data.
Towards the Development of Historical Data Base Management Software’, in
Historical Social Research/Historische Sozialforschung, 16:4 (1991), pp. 74–88.

Carola Lipp, ‘Symbolic Dimensions of Serial Sources. Hermeneutical Problems of
Reconstructing Political Biographies Based on Computerized Record Linkage’,
Historical Social Research/Historische Sozialforschung 15:1 (1990), pp. 30–40.

D. Sabean, Property, Production, and Family in Neckarshausen, 1700–1870 (Cambridge, 1990).

J. Smets, ‘South French Society and the French Revolution: the Creation of a Large
Database with CLIO’, in History and Computing, eds. P. Denley & D. Hopkin
(Manchester, 1987), pp. 49–58.

Peter Teibenbacher, ‘The Computer, Oral History and Regional Studies’, in History and
Computing II, eds. P. Denley, S. Fogelvik & C. Harvey (Manchester, 1989), pp.
286–90.

Elisabeth Vavra, ‘CLIO, a Computer Program Supporting the Interpretation of the
Iconographic Content of Medieval Pictorial Sources’, in Automatic Processing of Art
History Data and Documents, Pisa, Scuola Normale Superiore, 24–27 September 1984,
I, pp. 407–20.

Eckhard Voland, ‘Differential Reproductive Success within the Krummhörn Population
(Germany, 18th and 19th Centuries)’, Behavioral Ecology and Sociobiology, 26 (1990),
pp. 65–72.

Thomas Werner, ‘Transforming Machine Readable Sources’, in Historical Social
Research/Historische Sozialforschung, 16:4 (1991), pp. 62–73.

For a bibliography of works in German, see ‘κλειω-Bibliographie’, in Thomas Engelke,
Jürgen Nemitz & Carolin Trenkler (eds.), Historische Forschung mit κλειω, Halbgraue Reihe
zur historischen Fachinformatik, A8 (St. Katharinen, 1990).

Index of topics

Aspects 4, 58, 111–12
comments 58–59
original material 58–59

Block-structured tasks 253
confirm 195, 253–57, 365–66
negate 195, 255, 365–66

Bridge declarations, commands for 260,
324–26

bridge
first= 260
second= 260
type= 260

Built-in functions
back[] 104–5, 134, 153–54
catalogue[] 139, 230, 233,
234–35, 313–14

:codebook[] 184–85, 192–93
:collect[] 112–13
:comment[] 111–12
continue[] 284–86
:day[] 108–9
:each[] 17–18, 139
father[] 312
:form[] 26, 207–9, 219, 224
keyword[] 158–59, 185
:lines[] 190–91
:month[] 108–9
order[] 186–87
:original[] 111–12
:query[] 93–94, 309–10
query[] 310–11, 354–55
root[] 153–55
sign[] 260, 324–25
:soundex[] 219, 223, 224

:status[] 109–11
:target[] 280–84
:total[] 21–22
:weekday[] 352
:year[] 108–9

Calendars 33–36
byzantine 35
islam 34
latin 35
moses (Jewish) 35
numbers 34, 36
revolution (French
Revolutionary) 34

saints 35
western 34

Catalogue declarations, commands for
138, 151, 172, 230, 232

catalogue 138, 230
name= 138, 230
overwrite= 151
part= 138, 230
soundex= 232
type= 151, 172, 230

terms 230
keyword 158

form= 158
name= 158

Catalogues 137 ff., 171–72, 189–90,
312–14

category declarations, commands for
sign 72

signs= 72
write= 72

part 72

374 A Tutorial for κλειω

CensSys 45, 188
Chronology declarations, commands
for 123–25

name 123
after= 124
before= 124
date= 123
easter= 123
first= 125
form= 123
name= 123–24
second= 125
weekday= 124

Codebook declarations, commands
for 187–92

form 188, 191
number= 191
text= 188, 191

item 187
source= 187
usage= 187

part
name= 187
type= 187, 188, 191

write
number= 192
text= 192

Codebooks 181–99
Codebooks, commands for 182–83

create 182–83
name= 182
overwrite= 183
part= 182
repeat= 182–83
write= 182–83

Coding variables 183
Commands 4–5, 49. For (see also under
these headings):

bridge declarations 260
category declarations 72–73
chronology declarations 123–25
codebook declarations 187–92
codebooks 182–83
conversion declarations
227–28, 232, 240

creating catalogues 138, 151, 172,

230, 232
data files 50, 53, 288
data types 125
date declarations 122
defining data types of
elements 288, 294

defining output of maps 302–3
deleting logical objects 267,
291–92

displaying information 4–5, 14,
24–26, 94 ff., 180, 186, 194, 206,
207–8

displaying maps 290 ff.
extracting information 102 ff.,
234 ff.

linking tasks 92
location declarations 289, 292,
296, 299, 300

logical objects 70–73, 115–17, 120,
138, 188–89

number declarations 72–73
producing statistical cases 195,
197–98

producing statistical information
107–8, 194

relation declarations 275
soundex declarations 221,
227–28

structure declarations 61–64,
79–81, 132

text declarations 172
Command file (tasks) 4
Comments (type of aspect) 58–59
Comments, commands to include

note 30
Comparison modifiers 22–24

equal 23
limit 23
start 9, 23, 24

Compiling a database 7, 48–49, 73–74
Conditions 18–24
Conditions using group functions as
groups 245, 247

Conversion declarations, commands
for 227–28, 232, 240

item 227

Index of topics 375

name= 227
source= 227
type= 227
usage= 227

substitution 227–28, 232, 240
current= 227–28, 232, 240
result= 227–28, 232, 240

type 240
start= 240
limit= 240

Counting 107–8
Creating a database 45 ff.
Currency 37–38

Data entry 56–57, 59–60
for statistical data 87

Data files, commands in 50, 53, 288
read 50, 53, 288

cumulate= 319–21, 322–23
name= 50, 288
substitution= 321–22

Data signal characters 88
Data structures see Structure
Data types 31–42

category 38–39, 56–57, 69–70,
72–73, 119, 158

date 33–36, 118
image 42, 120, 288
location 40–41, 120, 288–89,
290, 294

number 37–38, 60, 68–70, 118
relation 39–40, 119, 263,
265–66, 267–68, 271–73, 275–76

text 31–33, 68–69, 118
date, command for altering defaults of

date 125
first= 125
maximum= 125
minimum= 125

date declarations, commands for
type 122

date= 122
name= 122

Defining output of maps, commands
for 302–3

location 302, 303

usage= 302
colourscreen 303
dos-screen 303
postscript 302

Deleting logical objects, commands
for 267, 291–92

delete 267, 290–91, 292
name= 267, 291, 292
source= 267, 291, 292
type= 267, 291, 292
usage= 267, 291, 292

Description of a database, producing
a 79–82

Diagnostics see Error messages
Disambiguation 76–77
Displaying information, commands for:

index 24–26, 94
cumulate= 100–1
first= 97–98
form= 97
identification= 186,
194, 206

limit= 101–3, 186, 205
maximum= 186, 194
part= 25–26
position= 94–95
signs= 95–96
substitution= 98–101
type= 107, 194
without= 96
write= 96, 186, 206

note 30
options 180

also= 331–32
explain= 30
lines= 186
maximum= 328
minimum= 328

write 4–5, 14, 25
part= 14–18
position= 207–8
second= 207–8
self= 207–8
start= 207–8

Displaying maps, commands for:
mapping 290

376 A Tutorial for κλειω

always= 299
colour= 291–92, 304

blue 292
contrast 292, 297,
304

green 292
red 291–92

east= 307
first= 306
line= 291

double 292
simple 292
triple 291, 297

north= 307
overwrite= 303
part= 290
second= 306
sign= 297, 305
south= 307
symbol= 306

circle 306
square 306
triangle 306

target= 302
total= 297, 300
usage= 292

halftone 292, 293
solid 292, 297, 304
tenthtone 292

west= 307
write= 302

Documents 3, 50, 53

Element functions 17–18
see Built-in functions

Elements 4, 55–59, 91–93, 275, 327–32
as parameter values 15–16
created by bridge declaration
263, 266, 267, 270, 272

Entries 4, 58, 91–93, 109–13
Error messages 29–30, 74–77
Expression operators 209–10
Extracting information, commands for:

query 4–5, 13, 102 ff.
also= 234 ff.
name= 13

part= 14, 103
write 4–5

Files 6–7, 48
Full text processing 171–79

Groups 3, 54–55, 328–29
as parameter values 15–16

Group functions: see Built-in functions

Hierarchies 9
Hierarchy of databases 9, 50 ff., 69–73,
130

Images xviii–xix, 42
Installation of κλειω 6
Instructions 5

Joining two databases 229

κλειω IAS xviii–xix, 42

Lemmatisation xvii
Link operators 211–12, 257
Linking two databases 259 ff.
Linking tasks, command for 92

continue 92
location declarations, commands for

end 289
location 289

always= 298, 299, 300
connected= 298–99
first= 289
usage= 292

type 289, 296
form= 289, 296

arcinfo 296
digipad 296

Logical environment xv–xvi, 115
Logical objects 47, 69–73, 115 ff.
(for commands in these logical objects,
see under the name of the type of
logical object)

catalogue 120
category 72–73, 119
chronology 120

Index of topics 377

classification 120
codebook 119
connection 120
conversion 119
date 118
guth 119
image 120
location 120
number 73, 118
order 120
relation 119
skeleton 119
soundex 119
substitution 119
text 118, 172

Logical objects, commands for
create 115
delete 115
describe 115–17, 120, 138,
188–89

name= 116–17, 138
source= 117, 138
type= 117
usage= 116, 118, 138

exit 70–71
name= 71

item 70–71
name= 71
usage= 71

Logical objects, deleting 290–91
Logical operators 18–21

and 18–20
not 18–21
or 18–19

Maps & mapping 287 ff.
how mapping commands
operate 300

altering scale of 306
changing default output for map
display 291–93, 297

defining 289–90
displaying 290
displaying parts of 307
distribution 306
printing 302

shading objects in 304
Menu system 140 ff., 156–57, 159–70,
171–79, 190

entering data using 333–44
reference lists, using 156–58
searching catalogues 140–50

Months: unknown, defining a month as
36

number declarations, commands for
text 72, 117

name= 72, 117
number= 73, 117

Original material (type of aspect) 58–59
Output:

additional text (limit=) 101–2
ditto marks (substitution=,
cumulation=) 98–101

fixed-column (signs=) 95–96
reverse-sorted (first=) 97–98
right-justified (form=) 97
tabular (position=) 94–95
undisplayed (write=) 96
unsorted (without=) 96

Outputting to different formats 212–13

Parameters 5, 14, 49
Paths, path definitions 14, 18, 91–93,
102–5, 133–34, 153–55, 177–78, 309–11,
354–55

Print constants 194, 205–7
Producing statistical cases 181, 194–99

Record linkage 217
Reference objects 298
Reference pattern null 20–21, 311–12
relation data type, command for
integrating network identities of

relation 276
cumulate= 276
name= 276
source= 276

relation declarations, commands for
part 275

part= 275

378 A Tutorial for κλειω

type= 275
permanent 275

Relationships between groups 133–34

Soundex 219–233 ff.
Soundex declarations, commands for

conversion 221
preparation= 227

simplify 227
without= 221

item 221
name= 221
source= 221
type= 221
usage= 221

part 221, 228
signs= 221, 228

Source-oriented data processing xiv–xv,
45–47

Specifications 5
StanFEP xviii, 215
Statistical cases, commands for
producing

case 195, 197–98
name= 198
part= 197–98
write= 198

translation 195–96
first= 196–97
second= 196–97
target= 196

Statistical information, commands for
producing

cumulate 107–8, 194
type= 107

Structure 3, 8–10, 50, 130
Structure declarations 47, 61, 79–83
Structure declarations, commands/
directives for

database 61–62, 79
first= 63
identification= 324–25
more= 316
name= 62
overwrite= 64
write= 79–81

element 68–70
first= 87
identification=
323–26

name= 69
second= 87
source= 86
type= 69
write= 86

element data types
category= 69–70
date= 121
location= 288, 294
number= 69–70
relation= 275
text= 110, 172

exit 62
part 63–68

alias= 68
always= 65–66
arbitrary= 132
guaranteed= 84
identification= 323–26
name= 64
only= 66
order= 84–85
part= 64–65
position= 66–67
sequence= 85
source= 83–84
start= 314–15, 322
write= 82–83

Structuring tasks, commands for
continue 92
stop 5, 14

target= 5

text declarations, commands for
signs 110, 172

part= 172
signs= 110
without= 172

Uncertainty operators 37
circa 37
equal 37

Index of topics 379

greater 37
less 37

Using database names when joining two
databases 234–35

Views
of elements 327, 330–32
of groups 332

Visibility
of elements 327–30
of groups 328–29

Index of terms

absolute parameter value with weekday= in chronology type logical objects 124
after= parameter with name command in chronology declarations 124
algorithm keyword with catalogue[] function in part parameter for catalogue

creation 233, 237
alias= parameter with part directive in structure declarations 68
also= parameter with options command for displaying information 331–32
———parameter with query command for extracting information 234 ff.
always= parameter with location command in location declarations 298–300
———parameter with mapping command 299
———parameter with part directive in structure declarations 65–66
and logical operator 18–20
arbitrary= parameter with part directive in structure declarations 132
arcinfo keyword with form= parameter with item command in location

declarations 296

back[] built-in function 104–5, 134, 153–54
before= parameter with name command in chronology declarations 124
blue keyword with colour= parameter with mapping command 292
bridge command for bridge declarations 260, 269, 324–26
byzantine calendar definition 35

case command for producing statistical cases 195, 197–98
catalogue[] built-in function 139, 230, 233, 234–35, 313–14
catalogue command for creating catalogues 138, 230
———logical object 120
category data type 38–39, 56–57, 69–70, 72–73, 119, 158
———logical object 72–73, 119
category= parameter with element directive in structure declarations 69–70
censsys keyword with target= parameter with translation command for

producing statistical cases 196
chronology logical object 120, 122
circa uncertainty operator 37
circle keyword with symbol= parameter with mapping command 306
classification logical object 120
codebook logical object 119

Index of terms 381

:codebook[] built-in function 184–85, 192–93
:collect[] built-in function 112–13
colour= parameter with mapping command 291–92, 304
colourscreen keyword with usage= parameter with location command for

defining output of maps 303
:comment[] built-in function 111–12
complete keyword with catalogue[] function in part parameter for catalogue

creation 139, 230
confirm command 195, 253–57, 365–66
connected= parameter with location command in location declarations 298–99
connection logical object 120
continue command for linking tasks 92
continue[] built-in function 284–86
contrast keyword with colour= parameter with mapping command 292, 297, 304
conversion command in soundex declarations 221
———logical object 119
create command with codebooks 182–83
———command for logical objects 115
cumulate command for producing statistical information 107–8, 194
cumulate= parameter with index command, for outputting ditto marks 98–101
———parameter with read command in data files 319–21, 322–23
———parameter with relation command 276
current= parameter with substitution command in conversion declarations

227–28, 232, 240

database command in structure declarations 61–62
date command for data types 125
———data type 33–36, 118
———logical object 118
date= parameter with element directive in structure declarations 121
———parameter with name command in chronology declaration 123
———parameter with type command in date declarations 122
:day[] built-in function 108–9
delete command for logical objects 115, 267, 290-91, 292
describe command for logical objects 115–17, 120, 138, 188–89
digipad keyword with form= parameter with item command in location

declarations 296
dos-screen keyword with usage= parameter with location command for defining

output of maps 303
double keyword with line= parameter with mapping command 292

:each[] built-in function 17–18, 139
east= parameter with mapping command 307
easter= parameter with name command in chronology declarations 123
end command in location declarations 289

382 A Tutorial for κλειω

element command for defining data types of elements 288, 294
———directive in structure declarations 68–70
equal comparison modifier 23
———uncertainty operator 37
exclusive parameter value with before= and after= in logical objects 124
exit command for logical objects 70–71
———command for structure declarations 62
explain parameter with options command for obtaining error messages 30

father[] built-in function 312
first= parameter with bridge command in bridge declarations 260, 269
———parameter with database in structure declarations 63
———parameter with date command for data types 125
———parameter with element directive in structure declarations 87
———parameter with index command, for reverse-sorted output 97–98
———parameter with location command in location declarations 289
———parameter with mapping command 306
———parameter with name command in chronology declarations 125
———parameter with translation command for producing statistical cases 196–97
:form[] built-in function 26, 207–9, 219, 224
form command with codebook declarations 188, 191
form= parameter with index command, for right-justified output 97
———parameter with keyword command for catalogue declarations 158
———parameter with name command in chronology declarations 123
———parameter with type command in location declarations 289, 296

generic parameter value for write= parameter with database in structure
declarations 81

greater uncertainty operator 37
green keyword with colour= parameter with mapping command 292
guaranteed= parameter with part directive in structure declarations 84
guth logical object 119

halftone keyword with usage= parameter with mapping command 292, 293

identification= parameter with database command in structure declarations
324–25

———parameter with element directive in structure declarations 323–26
———parameter with index command 186, 206
———parameter with part directive in structure declaration 323–26
image data type 42, 120
inclusive parameter value with before= and after= in logical objects 124
index command 24–26, 94
islam calendar definition 34

Index of terms 383

item command for logical objects 70–71
———command with codebook declarations 187
———command in conversion declarations 227
———command in location declarations 289
———command for defining relation data type 275
———command in soundex declarations 221
———command in text declarations 172

keyword[] built-in function 158–59, 185
keyword command for catalogue declarations 158
kleio keyword with :codebook[] function 184–85, 188

latin calendar definition 35
left keyword with form= parameter in index command 97
less uncertainty operator 37
limit comparison modifier 23
———keyword with first= parameter in index command 97–98
limit= parameter with index command, for outputting additional text 101–2, 186,

206
———parameter with type command in conversion declarations 240
line= parameter with mapping command 291
:lines[] built-in function 190–91
lines= parameter with options command 180, 260
location command for defining output of maps 302, 303
———command in location declarations 289
———data type 40–41, 120, 288–89, 290, 294
———logical object 120
location= parameter with element directive in structure declarations 288, 294
———parameter with item command in location declarations 289
location keyword with type= parameter with element command for defining data

types of elements 288,294
———keyword with usage= parameter with item command in location

declarations 289

mapping command for displaying maps 290
maximum= parameter with date command 125
———parameter with index command 186, 194
———parameter with options command for displaying information 328
minimum= parameter with date command 125
———parameter with options command for displaying information 328
:month[] built-in function 108–9
more= parameter with database command in structure declarations 316
moses calendar definition 35

name command in chronology declarations 123
name= parameter, passim (see Index of topics)

384 A Tutorial for κλειω

names parameter value for write= parameter with database in structure
declarations 81

negate command 195, 255, 365–66
north= parameter with mapping command 307
not logical operator 18–21
note command for including comments in tasks 30
null keyword with target= parameter with translation command for producing

statistical cases 196
———reference pattern 20–21, 311–12
number data type 37–38, 118
———logical object 73, 118
number= parameter with element directive in structure declarations 69–70
———parameter with form command with codebook declarations 191
———parameter with text command in number declarations 73, 117
———parameter with write command with codebook declarations 192
numbers calendar definition 34, 36

octave parameter value with weekday= in chronology type logical objects 124
only= parameter with part directive in structure declarations 66
options command for displaying/extracting information 180, 260
———command for explaining errors 30
or logical operator 18–19
order logical object 120
order[] built-in function 186–87
order= parameter with part directive in structure declarations 84–85
:original[] built-in function 111–12
overwrite= parameter with catalogue command for creating catalogues 151
———parameter with create command with codebooks 183
———parameter with database in structure declarations 64
———parameter with database in logical objects 121
———parameter with item command in location declarations 291
———parameter with mapping command 303

part command for category declarations 72
———command with codebook declarations 187, 188, 191
———command for defining relation data type 275
———command in soundex declarations 221, 228
———directive in structure declarations 63–68, 132
part= parameter with case command for producing statistical cases 197–98
———parameter with catalogue command for creating catalogues 138, 230
———parameter with create command with codebooks 182
———parameter with index command 25–26
———parameter with mapping command 290
———parameter with part command for defining relation data type 275
———parameter with part directive in structure declarations 64–65
———parameter with query command 14, 103

Index of terms 385

———parameter with signs in text declarations 172
———parameter with write command 14–16
parts parameter value for write= parameter with database in structure

declarations 81
pcspss keyword with target= parameter with translation command for

producing statistical cases 196
permanent keyword with type= parameter 117, 275
position= parameter with index command, for right-justified output 94–95
———parameter with part directive in structure declarations 66–67
———parameter with write command 207–8
postscript keyword with usage= parameter with location command for defining

output of maps 302
preparation= parameter with conversion command in soundex declarations 227
previous parameter value with weekday= in chronology type logical objects 124

query command 4–5, 13, 102 ff.
:query[] built-in function 93–94
query[] built-in group function 310–11, 354–55

read command in data files 50, 53, 288
red keyword with colour= parameter with mapping command 291–92
relation command for integrating relation data type into a database 276
———data type 39–40, 119, 263, 265–66, 267–68, 271–73, 275–76
———logical object 119
relation= parameter with element directive in structure declarations 275
repeat= parameter with create command with codebooks 182–83
result= parameter with substitution command in conversion declarations

227–28, 232, 240
revolution calendar definition 34
right keyword with form= parameter in index command 97
root[] built-in function 153–55

saints calendar definition 35
sas keyword with target= parameter with translation command for producing

statistical cases 196
second= parameter with bridge command in bridge declarations 260, 269
———parameter with element directive in structure declarations 87
———parameter with mapping command 306
———parameter with name command in chronology declarations 125
———parameter with translation command for producing statistical cases 196–97
———parameter with write command 207–8
self= parameter with write command 207–8
sequence= parameter with part directive in structure declarations 85
sign[] built-in function 260, 324–25
sign command for category declarations 72
sign= parameter with mapping command 297, 305

386 A Tutorial for κλειω

signs command in text declarations 110, 172
signs= parameter with index command, for outputting fixed columns 95–96
———parameter with part command in soundex declarations 221, 228
———parameter with sign command in category declarations 72
simple keyword with line= parameter with mapping command 292
simplify keyword with preparation= parameter with conversion command in

soundex declarations 227
skeleton logical object 119
solid keyword with usage= parameter with mapping command 292, 297, 304
:soundex[] built-in function 219, 223, 224
soundex logical object 119
soundex= parameter with catalogue command for creating catalogues 232
source= parameter with delete command 267, 291, 292
———parameter with describe command for logical objects 117, 138
———parameter with element directive in structure declarations 86
———parameter with item command with codebook declarations 187
———parameter with item command in conversion declarations 227
———parameter with item command in location declarations 289
———parameter with item command in soundex declarations 221
———parameter with part directive in structure declarations 83–84
———parameter with relation command for integrating relation data type into a

database 276
south= parameter with mapping command 307
spss keyword with target= parameter with translation command for producing

statistical cases 196
square keyword with symbol= parameter with mapping command 306
start comparison modifier 9, 23, 24
start= parameter with part directive in structure declarations 314–15, 322
———parameter with type command in conversion declarations 240
———parameter with write command 207–8
:status[] built-in function 109–11
stop command for structuring tasks 5, 14
structure parameter value for write= parameter with database in structure

declarations 81
substitution command in conversion declarations 227–28, 232, 240
———logical object 119
substitution= parameter with index command, for outputting ditto marks 98–101
———parameter with read command in data files 321–22
symbol= parameter with mapping command 306
system keyword with :codebook[] function 190–93

:target[] built-in function 280–84
target= parameter with mapping command 302
———parameter with stop command for directing output 5
———parameter with translation command for producing statistical cases 196
tenthtone keyword with usage= parameter with mapping command 292

Index of terms 387

terms keyword with type= parameter with catalogue command for creating
catalogues 230

text command for number declarations 72, 117
———data type 31–33, 118
———logical object 118, 172
text= parameter with element directive in structure declarations 110, 172
———parameter with form command with codebook declarations 188, 191
———parameter with write command with codebook declarations 192
:total[] built-in function 21–22
total= parameter with mapping command 297, 299–300
translation command for producing statistical cases 195–96
triangle keyword with symbol= parameter with mapping command 306
triple keyword with line= parameter with mapping command 291, 297
type command in conversion declarations 240
———command in date declarations 122
———command in location declarations 289, 295–96
———parameter with bridge command in bridge declarations 260, 269
———parameter with catalogue command for creating catalogues 151, 172, 230
———parameter with delete command for deleting logical objects 267, 291, 292
———parameter with describe command for logical objects 117
———parameter with element command for defining data types of elements 288,294
———parameter with element directive in structure declarations 69
———parameter with index command, for counting occurrences 107, 194
———parameter with item command in conversion declarations 227
———parameter with item command in location declarations 289, 296
———parameter with item command in soundex declarations 221
———parameter with part command with codebook declarations 187, 188, 191
———parameter with part command for defining relation data type 275

unknown keyword with calendars 36
usage= parameter with delete command for deleting logical objects 267, 291, 292
———parameter with describe command for logical objects 116, 118, 138
———parameter with item command for logical objects 71
———parameter with item command with codebook declarations 187
———parameter with item command in conversion declarations 227
———parameter with item command in location declarations 289
———parameter with item command in soundex declarations 221
———parameter with item command for defining relation data type 275
———parameter with location command for defining output of maps 302
———parameter with location command in location declarations 292
———parameter with mapping command 292

:weekday[] built-in function 352
weekday= parameter with name command in chronology declarations 124
west= parameter with mapping command 307
western calendar definition 34

388 A Tutorial for κλειω

without= parameter with conversion command in soundex declarations 221
———parameter with index command, for not sorting output 96
———parameter with signs in text declarations 172
write command 4–5, 14, 25
———command with codebook declarations 192
write= parameter with case command for producing statistical cases 198
———parameter with create command with codebooks 182–83
———parameter with database in structure declarations 79–81
———parameter with element directive in structure declarations 86
———parameter with index command 96, 186, 206
———parameter with mapping command 302
———parameter with part directive in structure declarations 82–83
———parameter with sign command in category declarations 72

:year[] built-in function 108–9

Max�Planck�Institut f�ur Geschichte� G�ottingen

