
Generalizing over several learning settings

Anna Kasprzik (kasprzik@informatik.uni-trier.de)

University of Trier

Abstract. We recapitulate regular one-shot learning from membership
and equivalence queries, positive and negative finite data. We present
a meta-algorithm that generalizes over as many settings involving one
or more of those information sources as possible and covers the whole
range of combinations allowing inference with polynomial complexity.
The algorithm uses the concept of an observation table as a means to
perform and document the inference process at the same time.
Keywords: Regular one-shot inference, query learning, sample learning

1 Introduction

The area of grammatical inference is concerned with learning algorithms, i.e.,
algorithms that infer a description (e.g., a grammar or an automaton) for an un-
known formal language from given information in finitely many steps. Various
conceivable learning settings have been delineated, and based on those quite a
lot of algorithms have been developed. A language class studied most thoroughly
with respect to algorithmical learnability so far is the class of regular languages.

In the learning model we assume a learner should take finitely many steps and
then present a solution (one-shot learning). Motivated by existing algorithms
for the one-shot inference of a regular language L we consider four kinds of
information sources that can be accessible to a learner. Two of them involve a
teacher, or oracle, who is able to answer queries pertaining to the membership
of an element w (MQs; ‘w ∈ L?’) or the equivalence of a description A with the
target (EQs; ‘L = L(A)?’, resulting in a counterexample CL(A) ∈ (L \ L(A)) ∪
(L(A)\L) in case of a negative answer). The other two kinds are finite subsets of
L (positive samples), or of its complement (negative samples), which in addition
can fulfil certain significant properties with respect to the target.

[1–3] have shown that regular languages cannot be learned from one kind of
query/sample only. Three well-studied combinations of two such sources favou-
rable to regular inference involve MQs and EQs [4, 5], MQs and positive data [6,
7], and positive and negative data [8, 9]. In these cases identification is possible
with a polynomial number of queries or steps depending on the size of the data
received throughout the process and the chosen description of the target.

We present a meta-algorithm intended as a generalization of existing and con-
ceivable (polynomial) one-shot algorithms based on the retrieval of the correct
set of equivalence classes under the Myhill-Nerode relation from a combination
of the information sources introduced above. This includes a discussion of the
combinations for which no such well-studied algorithms exist as for those named

2 Anna Kasprzik

in the previous paragraph. The meta-algorithm is based on the system of an
observation table which is a useful and relatively abstract means to perform and
document the inference process at the same time. We also give information on the
(different kinds of) complexity of the algorithm for various input constellations.

2 Preliminaries

The type of learner we consider infers a minimal automaton for a regular string
language L over some fixed alphabet Σ from given information, and solves this
task principally by means of an observation table in which it keeps track of the
obtained information it has processed so far. The rows of the table are labeled
by elements from some set S, the columns by elements from some set E.

Definition 1. A triple T = 〈S,E, obs〉 with S,E ⊆ Σ∗ finite, non-empty is an
observation table iff S is prefix-closed (uv ∈ S ⇒ u ∈ S for u, v ∈ Σ∗) and
obs : S × E −→ {0, 1, ∗} is a function with

obs(s, e) =

1 if se ∈ L is confirmed,
0 if se /∈ L is confirmed,
∗ if unknown.

For T = 〈S,E, obs〉 and s ∈ S, the row of s is row(s) := {(e, obs(s, e))|e ∈ E},
and row(S) := {row(s)|s ∈ S}. A table/row not containing any ‘∗’s is complete.

Definition 2. Two elements r, s ∈ S are obviously different (OD; denoted by
r <> s) iff ∃e ∈ E such that obs(r, e) 6= obs(s, e) for obs(r, e), obs(s, e) ∈ {0, 1}.

S is partitioned into red and blue (according to criteria proper to each learner)
where blue ⊇ {sa ∈ S\red|s ∈ red, a ∈ Σ}, i.e., blue must contain those one-
symbol extensions of red elements that are not in red themselves. Elements are
moved successively from blue to red and blue is filled up with all the available
one-symbol extensions of a moved element from a third “supply” set white.

Definition 3. T is closed iff ¬∃s ∈ blue : ∀r ∈ red : r <> s. T is weakly
consistent iff ∀s1, s2 ∈ red, s1a, s2a ∈ S, a ∈ Σ : s1a <> s2a⇒ s1 <> s2.

We add ‘weakly’ because the ∗-symbol may mask differences that are not obvious
yet. Definition 4 rules out the cases in which hidden differences might prove fatal:

Definition 4. T is strongly consistent iff it is weakly consistent and, for all
s ∈ S and all r ∈ red: If ¬(s <> r) then row(s) and row(r) must be complete.

Definition 5. A finite-state automaton is a tuple A = 〈Σ,Q, q0, δ, F 〉 with finite
input alphabet Σ, finite non-empty state set Q, start state q0 ∈ Q, set of final
states F ⊆ Q, and transition relation δ ⊆ (Q×Σ)×Q, the elements of which we
write as mappings (q1, a) 7→ q2. If δ is a function the automaton is deterministic
(a DFA; we use the function notation). If δ maps a state to every pair in Q×Σ

Generalizing over several learning settings 3

the automaton is total. The transition relation can be extended to δ ⊆ (Q×Σ∗)×
Q with {(q, ε) 7→ q} ⊆ δ and δ∩{(q1, ε) 7→ q2|q1 6= q2} = ∅ and (q1, aw) 7→ q2 ∈ δ
for a ∈ Σ, w ∈ Σ∗ iff (q1, a) 7→ q3 ∈ δ and (q3, w) 7→ q2 ∈ δ for some q3. The set
accepted by A is L(A) = {s ∈ Σ∗|∃q ∈ F : (q0, s) 7→ q ∈ δ} (a regular language).
For DFA, A(w) = 1 stands short for ∃q ∈ F : (q0, w) 7→ q ∈ δ, A(w) = 0 for
∃q ∈ Q \ F : (q0, w) 7→ q ∈ δ, and A(w) = ∗ for ¬∃q ∈ Q : (q0, w) 7→ q ∈ δ.

The equivalence relation ≡L for a language L is defined by: r ≡L s iff re ∈
L⇔ se ∈ L for all r, s, e ∈ Σ∗. The index of L is IL := |{[s0]L|s0 ∈ Σ∗}| where
[s0]L denotes the equivalence class containing s0. The Myhill-Nerode theorem
(see for example [10]) states that IL is finite iff L is recognized by a finite-
state automaton, i.e., is regular. A total DFA AL with IL states and each state
recognizing a different equivalence class under ≡L is unique up to isomorphism
and minimal with respect to the number of states.

From a table T = 〈S,E, obs〉 with ε ∈ E we derive an automaton AT =
〈Σ,QT , qT , FT , δT 〉 with QT = row(red), qT = row(ε), FT = {row(s)|s ∈ red,
obs(s, ε) = 1}, and δT = {(row(s), a) 7→ q|¬(q <> row(sa)), s ∈ red, a ∈ Σ,
sa ∈ S}. If T is strongly consistent AT is deterministic. The DFA for a language
L derived from a closed and strongly consistent table has at most IL states (see
[4], Theorem 1). If this DFA is total it is isomorphic to AL, otherwise it may
lack the “failure state” for all strings that are not a prefix in L (if they exist).

All learning algorithms mentioned in this paper can be conceived to start out
with a provisional set of equivalence classes and then try and converge to the
partition induced by ≡L by splitting up or merging these classes, according to
the obtained information. In a table T = 〈S,E, obs〉 the set S contains strings
whose rows are candidates for states in the minimal DFA for L, and E contains
experiments – or ‘contexts’, as we will say – proving that two strings in S do
belong to distinct equivalence classes and should represent two different states.

Another concept we will need is the prefix automaton for some set of strings.
Let Pref (X) := {u ∈ Σ∗|∃w ∈ X, v ∈ Σ∗ : uv = w}, and Suff (X) := {u ∈ Σ∗|
∃w ∈ X, v ∈ Σ∗ : vu = w} for X ⊆ Σ∗. We write u � w if u is a prefix of w.

Definition 6. The prefix automaton for X ⊆ Σ∗ is a (generally non-total) DFA
PA(X) := 〈Σ,Q, q0, F, δ〉 with Q = {{x}|x ∈ Pref (X)}, q0 = {ε}, F = {{x}|x ∈
X} and (q1, a) 7→ q2 ∈ δ for a ∈ Σ iff there are x ∈ q1, y ∈ q2 such that y = xa.
By qw we denote a state containing w ∈ Σ∗ as an element in its label.

The states of PA(X) are labeled by singleton sets of strings. GENMODEL unites
some of these sets during the process, according to the information processed so
far, so that at each step each state is labeled by the set of all strings ending in
it the learner has already found.

Finally, we will have to classify language samples that are given to the learner:

Definition 7. A finite set X ⊆ L is representative for a language L with min-
imal DFA A = 〈Σ,Q, q0, F, δ〉 iff for each transition (q1, a) 7→ q2 ∈ δ with
q1, q2 ∈ Q and a ∈ Σ there are w ∈ X and u, v ∈ Σ∗ such that w = uav and
(q0, u) 7→ q1 ∈ δ, and for all q ∈ F there is w ∈ X such that (q0, w) 7→ q ∈ δ.

4 Anna Kasprzik

Definition 8. A finite set X ⊆ Σ∗ \ L is separative for a language L with
minimal DFA A = 〈Σ,Q, q0, F, δ〉 if for all q1 6= q2 ∈ Q there are w ∈ X and
u, v ∈ Σ∗ with w = uv such that δ(qL, u) = q1 ∨ δ(qL, u) = q2 and (qa ∈ F ∧ qb ∈
(Q \ F)) ∨ (qb ∈ F ∧ qa ∈ (Q \ F)) for (q1, v) 7→ qa, (q2, v) 7→ qb ∈ δ.

Intuitively, X is representative for L if to parse the elements of X every transition
ofA has to be used at least once, and for every final state there is w ∈ X ending in
it. Note that as X ⊆ L in this case A cannot be required to be total. Intuitively,
X is separative for L if for any two distinct states of A there is some string
w ∈ X with a prefix leading up to one of them and a suffix proving that these
states should represent different equivalence classes under ≡L because w /∈ L.

3 The algorithm GENMODEL

The input of our meta-algorithm consists of a tuple IP = 〈EQ ,MQ , X+, X−〉
with two Boolean values indicating if there is a teacher answering EQs and/or
MQs, a positive, and a negative finite sample of L. We assume that the compo-
nents of IP are visible as global variables throughout all procedures, as well as all
other variables that are not explicitly passed on. Let T = 〈red ∪ blue, E, obs〉
and O = 〈Σ,QO, qO, FO, δO〉 always be defined by the current values of their
respective components, with obs(s, e) := ∗ if the value has not been set explicitly.
We also give the smallest alphabet Σ with L ⊆ Σ∗ for the target language L.

We will now present GENMODEL step by step. The main body is simple:
Input: A 4-tuple IP = 〈EQ ,MQ , X+, X−〉, an alphabet Σ.

Output: A DFA.

1 INIT;

2 while white 6= ∅
3 if T is not closed CLOSURE

4 else NEXTDIST

5 return AT .

The table T is initialized. Then, while there is still information left to process
(‘white 6= ∅’) we check for closedness and if T is closed we check if we can still
find states in our current hypothesis automaton that should be split up.
procedure INIT

6 P := POOL;

7 O := MQORACLE;

8 red := {ε};
9 blue := P ∩Σ;

10 E = {ε};
11 white := P \ (red ∪ blue);

12 UPDATE.

INIT initializes the membership oracle O (procedure MQORACLE), and T .
It resorts to the procedure POOL to obtain the set of all strings we want to
consider as candidates under the given input at present. red is the set of already

Generalizing over several learning settings 5

processed candidates that were fixed to represent a state in the final automaton,
and is initialized with a single element ε (the start state), whereas blue contains
candidates representing states to which there exists a transition from one of the
states in red. white is the set of the remaining candidates from which blue will
be filled up. The cells of the initial table are filled by the procedure UPDATE.

procedure POOL

13 if IP = 〈0, 1, ∅, X−〉 ∧ X− 6= ∅ X+ := {w ∈ Σ∗||w| = d1 +
√

2n− + 1 e}
14 if X+ 6= ∅ ∧ ∃v ∈ X+ : |v| ≥ 2 return Pref (X+)

15 else return Σ≤2.

POOL builds a suitable set of candidates using all information available at the
moment. Note that if a sample is non-empty we depend on X+ being representa-
tive and X− separative for L. Therefore, if X+ 6= ∅ with sufficiently long strings
such that white will not be empty POOL returns Pref (X+) (line 14), otherwise
the pool is initialized with the set of all strings up to length 2 (line 15). Also
note that if we use X+ the output automaton will not contain a failure state.
Line 13: If X− 6= ∅ and we have MQs to exploit it we can build a representative
sample from the information included in X− about the number of states in AL:
Let n− be the length of all elements of X− added up, which is also the maximal
cardinality of Suff (X−). In the worst case, every suffix in X− distinguishes a
different pair of states, of which there are (I2

L − IL)/2. From the resulting in-
equation n− ≤ (I2

L − IL)/2 we compute an upper bound for IL and take the set
of all members of L up to that length as a representative sample X+ since the
longest shortest representative of a state in AL is at most of length IL. Observe
that unfortunately in this case |X+| can be exponential with respect to |X−|.
procedure MQORACLE

16 if MQ = 1 return OL else return PA(X+).

MQORACLE returns the best membership oracle the learner can hope for at
the time. For MQ = 1 this is trivial: We assume a total DFA OL recognizing L.
Else the oracle is initialized by the prefix automaton recognizing X+ (which for
X+ = ∅ is the all-rejecting automaton A∅ = 〈Σ, {{ε}}, {ε}, ∅, ∅〉). This imperfect
oracle is developed during the process every time the learner gains a new insight.
procedure CLOSURE

17 while T is not closed

18 find s ∈ blue such that ∀s0 ∈ red : s <> s0;

19 red := red ∪ {s};
20 blue := (blue \ {s}) ∪ {s1 ∈ white|∃a ∈ Σ : s1 = sa};
21 UPDATE.

CLOSURE is straightforward, it successively finds all elements preventing the
closedness of T , moves them to red, and calls UPDATE to fill up the table. Note
that since GENMODEL is the only procedure moving elements to red and since
it only moves them if they are OD from every element in red, the elements of
red are all pairwise OD as well, and every equivalence class of the target L does

6 Anna Kasprzik

not have more than a single(!) official representative in the output.
procedure NEXTDIST

22 sx := FINDNEXT;

23 if sx 6= 〈ε, ε〉 MAKEOD(sx)

24 else if X+ = ∅ ∧X− = ∅ white := ∅
25 else blue := blue ∪ white;

26 UPDATE.

NEXTDIST relies on T being closed and calls FINDNEXT to look for another
candidate that should be fixed as a distinct state of the solution. Then T is
modified by MAKEOD such that the next call of CLOSURE will move this el-
ement to red. If no such candidate is to be found FINDNEXT returns a pair
〈ε, ε〉 (and can thus be seen as a test for the termination criterion). In that case
white is emptied for the cases in which we use information from queries only,
for all other cases the remaining candidates are moved to blue in order not to
lose the information contained in the pool, and T is updated once more.
procedure FINDNEXT

27 if MQ = 1 ∧ (EQ = 1 ∨X+ 6= ∅)
28 if EQ = 1 ∧ EQ(AT) = ’no’ c := CL(AT)

29 else if X+ 6= ∅ ∧ ∃s0 ∈ blue ∪ white and e0 ∈ E ∪ Suff (X+) such

that AT (s0e0) 6= O(s0e0) ∧ (AT (s0e0) = ∗ ⇒ O(s0e0) = 1)

30 (choose s0 with minimal length) c := s0e0
31 return MINIMIZE(c)

32 else if MQ = 0 MERGENEXT;

33 if ∃s ∈ blue : ∀b ∈ blue : |qb| = 1⇒ s � b (qb ∈ QO)

34 return 〈s, ε〉
35 return 〈ε, ε〉.

procedure MINIMIZE(c)

36 find s ∈ blue, a ∈ Σ, e ∈ Σ∗ such that c = sae;

37 if ∃s′ ∈ red : ¬(s′ <> s) ∧ (O(c) = 1⇔ O(s′ae) = 1) ∧ s′a ∈ blue

38 return MINIMIZE(s′ae)

39 else return 〈s, ae〉.

Various parts of FINDNEXT are inspired by the algorithms in [4, 5] (L∗; MQs
& EQs), [7] (MQs & positive data), and [9] (RPNI; positive & negative data).
If MQ = 1 we can exploit a counterexample c. If EQ = 1 then c can be obtained
from the teacher (line 28). Else if X+ 6= ∅ the learner tries to build c from an
extension Text = 〈S ∪white, E ∪ Suff (X+), obsext〉 of T . We can show that this
always succeeds if X+ is representative because S ∪white contains strings that
are either OD from all red elements or make Text inconsistent (see App. A.1).
We choose a shortest prefix s0 for c to reduce the number of MQs in MINIMIZE.
At least one prefix of c must be an undetected distinct state of the solution, but
as this prefix might not be in blue MINIMIZE is called to replace the unique1

prefix of c in blue by a red string with the same row such that the result is a
1 There is at least one prefix of c in red (ε) and the one-symbol extension of the longest

one is in blue as in the present cases either blue = red ·Σ, or c is constructed with

Generalizing over several learning settings 7

counterexample as well. This is repeated as often as possible, eventually yielding
a string s′e′ with s′ ∈ blue and e′ distinguishes s′ from all elements in red.
For MQ = 0 we continue the improvement of O by merging states unless there
is information preventing it. MERGENEXT (called in line 40, given below) re-
trieves all strings representing states that can be but have not yet been merged
with some other state in O and do not have a prefix not fulfilling this property
in blue. These strings are found by the cardinality of the state labels containing
them (labels of states resulting from a merge contain more than one string). The
mergeability of two states is tested via COMPATIBLE which checks if a given
automaton (here: O with the two states merged) correctly rejects all elements of
X−. When such a string b ∈ blue is found the corresponding state qb is merged
with an arbitrary other state of O it can be merged with. The merge is done by
RECMERGE which calls MERGE and then recursively “repairs” the possible
non-determinism introduced by that merge. blue is filled up with the successors
of b, and white is updated by UPDATE. Note that b stays in blue. After the
call of MERGENEXT either all strings in blue correspond to states resulting
from a merge or there is a (smallest) string representing a non-mergeable state.
This string should be a distinct state of the solution as well and is returned along
with the arbitrary string ε in order to meet the requirements of the interface but
for MQ = 0 this second string will not be used (see below). Also note that the
tests in line 33 and 40 will always fail for X+ = ∅ since O = A∅ and blue = ∅.
In all cases that were not covered by the distinctions in lines 27–34 we have to
state that we cannot reliably find another candidate to move and return 〈ε, ε〉.
procedure MERGENEXT

40 while ∃b ∈ blue : |qb| = 1 (qb ∈ QO) ∧ ¬∃s ∈ blue : [s � b ∧ ¬∃t ∈ red

such that COMPATIBLE(RECMERGE(qt, qs, O)) (qt, qs ∈ QO)]

41 find r ∈ red such that COMPATIBLE(RECMERGE(qr, qb, O));

42 O := RECMERGE(qr, qb, O);

43 blue := blue ∪ {w ∈ white|∃a ∈ Σ : w = ba};
44 UPDATE.

procedure COMPATIBLE(A)

45 if A(w) = 1 for some w ∈ X− return false else return true.

procedure RECMERGE(q1, q2, A) [q1, q2 ∈ QA]

46 A := MERGE(q1, q2, A);

47 for a ∈ Σ do

48 if |D = {q ∈ QA|((q1 ∪ q2), a) 7→ q ∈ δA}| > 1 find qa 6= qb ∈ D;

49 A := RECMERGE(qa, qb, A)

50 return A.

procedure MERGE(q1, q2, A) [q1, q2 ∈ QA]

51 qx := q1 ∪ q2;
52 QA := (QA \ {q1, q2}) ∪ {qx};
53 if q2 ∈ FA FA := (FA \ {q1, q2}) ∪ {qx}

a prefix from blue ∪ white, and S ∪ white is prefix-closed. Since in those cases
blue = {sa ∈ S \ red|s ∈ red, a ∈ Σ} there is only one such extension in blue.

8 Anna Kasprzik

54 if q1 = qA qA := qx

55 δA := (δA \ ({(q, a) 7→ qy|q ∈ QA, a ∈ Σ, y ∈ {1, 2}} ∪
{(qy, a) 7→ q|q ∈ QA, a ∈ Σ, y ∈ {1, 2}})) ∪

{(q, a) 7→ qx|(q, a) 7→ qy ∈ δ, q ∈ QA, a ∈ Σ, y ∈ {1, 2}} ∪
{(qx, a) 7→ q|(qy, a) 7→ q ∈ δ, q ∈ QA, a ∈ Σ, y ∈ {1, 2}};

56 return A.

————————————————————————————————
procedure MAKEOD(〈s, e〉)
57 for r ∈ red do

58 if ¬(s <> r)

59 if MQ = 1 E := E ∪ {e}
60 else c := PREVENTMERGE(qr, qs, O);

61 find x ∈ {y|δO(qε, y) = qr} ∪ {s}, er ∈ Σ∗ with c = xer;

62 E := E ∪ {er};
63 obs(r, er) := 1; obs(s, er) := 0.

procedure PREVENTMERGE(q1, q2, A) [q1, q2 ∈ QA]

64 A := RECMERGE(q1, q2, A);

65 return w ∈ X− such that A(w) = 1.

MAKEOD is called if FINDNEXT has returned a pair 〈s, e〉 with s 6= ε so that
we know that s should be moved to red as a distinct state of the target by
CLOSURE. For MQ = 1 there is only one red element r that is not OD from s
(as the red elements are all pairwise OD, and all rows of S are complete), and
the given e is a context distinguishing s and r, so we add e to E. For MQ = 0 the
row of s contains only ‘∗’s and we have to make s OD from every red element r
“by hand”: We find a counterexample c ∈ X− that prevents the merge of qr and
qs using PREVENTMERGE and a suffix er of c leading from qr or qs to a final
state (note that X− 6= ∅ as in all other cases with MQ = 0 FINDNEXT returns
〈ε, ε〉). As c should not be accepted er is a context distinguishing s and r. We
add er to E and fill the two corresponding cells of T with differing values – note
that they do not have to be correct as they are only once compared in the next
call of CLOSURE, and T will be updated completely just before termination.

procedure UPDATE

66 white := white \ blue;
67 if MQ = 1 ∨ white = ∅ obs := {(s, e) 7→ O(se)|s ∈ red ∪ blue, e ∈ E}
68 if IP = (EQ, 1, ∅, ∅) white := blue ·Σ.

UPDATE clears the elements that were moved to blue out of white and fills
in the cells of T in case we have a perfect membership oracle which for MQ = 1
is true at any time and for MQ = 0 when we have processed all the available
information, provided that it was sufficient. For the cases with empty samples
but MQ = 1 we have to fill up white with all one-symbol extensions of blue
(which has the effect that in these cases the output automaton will be total).

————————————————————————————————
GENMODEL is intended as a generalization of existing and conceivable al-

gorithms for those settings where one-shot inference is possible in polynomially

Generalizing over several learning settings 9

many steps from the given information sources under consideration, which also
implies that it is deterministic and does not guess or backtrack. However, we have
taken care to make it behave in a way that can be intuitively called appropriate
for cases where (polynomial) one-shot inference is not possible as well.

We call an information source non-void for queries if MQ = 1/EQ = 1, for a
positive sample if it is representative, and for a negative sample if it is separative.

Theorem 1. a. Let L be the regular target language. GENMODEL terminates
for any input after at most 2IL−1 main loop executions and returns a DFA.

b. For any input including at least two non-void information sources except for
〈1, 0, X+, X−〉 with X+ or X− void the output is a minimal DFA for L.

Proof. We will discuss each constellation individually (in more or less detail).
The cases where only brief explanations are given can be easily verified by going
through the algorithm step by step observing the relevant case distinctions.

– 〈0, 0, ∅, ∅〉: ReturnsA∅ after one execution (T is closed, FINDNEXT = 〈ε, ε〉).
– 〈0, 1, ∅, ∅〉: Terminates as soon as T is closed as FINDNEXT = 〈ε, ε〉. T is

closed after at most two executions, and AT can have at most two states.
– 〈1, 0, ∅, ∅〉: Returns A∅ after one execution – see 〈0, 0, ∅, ∅〉.
– 〈0, 0, X+, ∅〉: Returns AΣ∗ after one execution given that every a ∈ Σ figures

in X+ (T is closed, FINDNEXT merges all states of O so that white = ∅).
– 〈0, 0, ∅, X−〉: Returns A∅ after one execution – see 〈0, 0, ∅, ∅〉.

Of course for MQ = 1 or EQ = 1 a learner can continue querying possible strings
or DFAs in any order, but as polynomial identification is not guaranteed [2, 3]
the behaviour of FINDNEXT is supposed to represent “reasonable resignation”.
For the other three cases listed above the output seems rather intuitive as well.

– 〈1, 1, ∅, ∅〉: We emulate the well-known algorithm L∗ [4] except that instead
of adding the prefixes of a counterexample to S we add a single suffix to E,
which however does not affect the correctness of the algorithm (see Appendix
A.2). This version needs O(IL) EQs and O(I2

L · |Σ|+ IL ·n) MQs where n is
the length of the longest counterexample (for details see Appendix A.3).

– 〈0, 1, X+, ∅〉: Pref (X+) is processed incrementally in the manner of L∗, but
we rely on a lemma proven for the algorithm in [7] to compute distinctions
(see Appendix A.1). This constellation needs O(n2

+ + n+ · IL) MQs where
n+ is the sum of the lengths of all strings in X+ (see Appendix A.3).

– 〈0, 0, X+, X−〉: We emulate the algorithm RPNI [8, 9] and in addition record
our progress in a table. The overall complexity amounts to O(n3

+ ·n−) steps
where n− is the sum of the lengths of all strings in X− (see Appendix A.3).

The next three cases are of interest because to our knowledge there are no such
well-studied algorithms for these settings as in the three cases listed above.

– 〈0, 1, ∅, X−〉: See 〈0, 1, X+, ∅〉. We build a positive sample (line 13, see above)
which however may be exponential in size with respect to |X−| so that the
number of MQs is not polynomial with respect to the size of the given data.

10 Anna Kasprzik

– 〈1, 0, X+, ∅〉: See 〈0, 0, X+, ∅〉. Let us suppose we wanted to handle this case in
a similar way as the previous four: We would have to test the mergeability
of states in O via EQs. If X+ is representative a positive counterexample
reveals the existence of states that should be merged, and a negative one of
states that should not have been. When we query the result of a merge (even
without repairing non-determinism by further merges) and receive a positive
counterexample we could either repeat the same EQ and wait for a negative
one but the number of positive ones may be infinite. Or we could query the
next merge but when (if!) we eventually get a negative counterexample we
do not know which of the previous merges was illegitimate. So this method
is not less complex than ignoring all counterexamples and simply asking an
EQ for the result of every possible set of merges in O, of which there are
exponentially many. Therefore, since we cannot proceed as in the cases where
inference is possible with a polynomial number of steps or queries this case
is eclipsed from GENMODEL by the corresponding case distinctions.

– 〈1, 0, ∅, X−〉: This case is equally problematic to include in the present frame-
work. First, observe that if X− is separative negative counterexamples do
not contribute additional information, and their number may be infinite at
any step. Second, the set of positive counterexamples obtained so far may
not be representative so that we cannot reliably detect an illegitimate merge
because there may be final states of the solution that are not even repre-
sented in the current version of O such that the compatibility check is too
weak. If we make the merge we might have to undo it on the reception of
another positive counterexample, which is a situation we want to avoid. This
case is therefore eclipsed from GENMODEL by case distinctions as well.

Input containing more than two non-empty sources is treated by choosing one of
the options above where the solution for MQs and EQs is preferred over the one
for MQs and a positive sample as a result from the integrated case distinctions.

Note that for L = ∅ any representative sample must be empty, and a separa-
tive sample for a DFA with just one state can be empty as well. It is easy to
verify that in those cases GENMODEL also returns the correct solution.

Theorem 1b: As long as the termination criterion is not met, in each loop
execution either a blue element is moved to red by CLOSURE or NEXTDIST
adds contexts distinguishing a blue element from all red ones so that it is
moved to red in the next execution. This can be seen from the discussion of
the individual procedures above (also see the proofs of the emulated algorithms
in [4, 7, 9]). Consequently, GENMODEL terminates after at most 2IL − 1 loop
executions, and each string in red represents a different equivalence class under
≡L. Due to the pairwise difference of the red elements and the completeness
of the table T is strongly consistent and AT deterministic. Since red ∪ blue =
Pref (X+) if we have or build a representative sample X+ and blue = red · Σ
in the other cases no transition is missing and AT is a minimal DFA for L. �

Generalizing over several learning settings 11

4 Conclusion

GENMODEL represents a generalized learner starting out with a single equiva-
lence class under the Myhill-Nerode relation which is then split up according to
the obtainable information (sometimes referred to as a specializing algorithm).
The process is executed and documented using an observation table which is built
incrementally.2 We have aimed to design GENMODEL as modular as possible as
an inventory of the essential procedures in existing and conceivable polynomial
one-shot regular inference algorithms of the considered kind. This may help to
give clearer explanations for the interchangeability of information sources (see
for example [15, 16]). Practically, an extended GENMODEL (see below) could
be used as a template from which individual algorithms for hitherto unstudied
scenarios can be instantiated (however, in concrete implementations one might
prefer to minimize complexity by making more case distinctions, whereas we have
taken care to minimize case distinctions in order to be as universal as possible).

GENMODEL offers itself to be extended in several directions. We could try
to generalize over the type of objects: An adaptation to trees suggests itself as
many of the integrated algorithms have been adapted to (multi-dimensional)
trees already [5, 7, 17, 18], a main challenge probably being complexity. Further
possibilities are graphs, matrices, and infinite strings. Then there are other kinds
of sources of essential information for the computation of distinctions which
might be integratable here, such as correction queries [19], active exploration [20],
distinguishing functions [21], and many more. The third direction concerns an
extension of the learned language class beyond regularity (for example by using
strategies as in [22] for even linear languages, or [23] for languages recognized by
DFA with infinite transition graphs) and even beyond context-freeness [22, 24].
The development of GENMODEL may be of use in the concretization of an even
more general model of learning in the sense of polynomial one-shot inference as
considered here – also see the very interesting current work of Clark [25, 26].

References

1. Gold, E.: Language identification in the limit. Inf. & Contr. 10(5) (1967) 447–474

2. Angluin, D.: Queries and concept learning. Mach. L. 2 (1988) 319–342

3. Angluin, D.: Negative results for equivalence queries. Mach. L. 5 (1990) 121–150

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

5. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: DLT.
(2003) 279–291

2 We have chosen observation tables as a sufficiently abstract, intuitive, and versatile
concept: From a completed table we can derive a DFA, but also other descriptions
like an NFA (see [11]), or a grammar. For a survey of similar representations see [12].
Note that GENMODEL recasts some existing algorithms (RPNI and the one in [6]) in
an incremental form in connection with a table. However, see [13] for an incremental
RPNI, and [14] for learning from a stream of labeled examples and MQs.

12 Anna Kasprzik

6. Angluin, D.: A note on the number of queries needed to identify regular languages.
Inf. & Contr. 51 (1981) 76–87

7. Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and
membership queries. In: ALT 2003. (2004) 440–453

8. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In Bunke,
H., ed.: Advances in Structural and Syntactic Pattern Recognition. Volume 5 of
Machine Perception and Artificial Intelligence. World Scientific (2002) 99–108

9. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010)

10. Hopcroft, J., Ullmann, J.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Longman (1990)

11. Kasprzik, A.: Learning residual finite-state automata using observation tables.
Technical report, University of Trier (2009)

12. Balcázar, J., Dı́az, J., Gavaldà, R., Watanabe, O.: Algorithms for learning finite
automata from queries: A unified view. In: Advances in Algorithms, Languages,
and Complexity. (1997) 53–72

13. Dupont, P.: Incremental regular inference. In: ICGI. (1996) 222–237
14. Parekh, R., Nichitiu, C., Honavar, V.: A polynomial time incremental algorithm

for learning DFA. In: ICGI. (1998) 37–49
15. Parekh, R., Honavar, V.: On the relationship between models for learning in helpful

environments. In: ICGI. (2000) 207–220
16. Jain, S., Kinber, E.: Learning languages from positive data and a finite number of

queries. Information and Computation 204(1) (2006) 123–175
17. Oncina, J., Garcia, P.: Inference of recognizable tree sets. Technical report, DSIC

II/47/93, Universidad de Valencia (1993)
18. Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learning beyond

context-freeness. In: ICGI. (2008) 111–124
19. T̂ırnăucă, C.: A note on the relationship between different types of correction

queries. In: ICGI. (2008) 213–223
20. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: AII. (1989)
21. Fernau, H.: Identification of function distinguishable languages. Theoretical Com-

puter Science 290(3) (2003) 1679–1711
22. Fernau, H.: Even linear simple matrix languages: Formal language properties and

grammatical inference. Theoretical Computer Science 289(1) (2002) 425–456
23. Berman, P., Roos, R.: Learning one-counter languages in polynomial time. In:

SFCS. (1987) 61–67
24. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional

substitutability from positive data. In: ALT. (2009) 278–292
25. Clark, A.: A learnable representation for syntax using residuated lattices. In:

Formal Grammar. (2009)
26. Clark, A.: Three learnable models for the description of language. (LATA 2010)

Generalizing over several learning settings 13

A Appendix

A.1 Text contains a counterexample for AT

Lemma 1. Let T = 〈S,E, obs〉 and X+ representative. As long as white 6= ∅
Text = 〈S ∪white, E ∪ Suff (X+), obsext〉 contains a counterexample for AT .

Proof: Either Text has IL − 1 distinct rows and represents the solution so that
as T cannot contain IL − 1 distinct rows yet there must be at least one string
s0 ∈ white that is OD from all red elements. We distinguish two cases:

– AT (s0) ∈ {0, 1}: As s0 is OD from all red elements there must be e0 ∈
E ∪ Suff (X+) distinguishing s0 from the state assigned to s0 by AT .

– AT (s0) = ∗ (and consequently AT (s0e0) = ∗): Since s0 ∈ Pref (X+) we can
find e0 ∈ Suff (X+) such that s0e0 ∈ X+ (and consequently O(s0e0) = 1).

In both cases s0e0 is a counterexample for AT (as defined in line 29 – note that
we need the second condition because O is total and AT generally is not).
If Text does not represent the solution we use the fact that Text contains the entire
information provided by X+ and corresponds to a table built by an algorithm
learning from MQs and positive data described in [7] (adapted to strings by
conceiving them as non-branching trees), and that consequently the lemmata
applying to this table can be applied to Text as well: By contraposition of Lemma
4 in [7] (stating that as soon as the table is consistent it represents the solution)
Text has an inconsistency involving s1, s2 ∈ Pref (X+), a ∈ Σ such that ¬(s1 <>
s2) but s1a <> s2a. As T is closed, either s1a ∈ white or s2a ∈ white and
can be taken as s0. As s1a <> s2a there must be e0 ∈ E ∪ Suff (X+) separating
s1a from s2a, and either s1ae0 or s2ae0 is a counterexample for AText

because
¬(s1 <> s2) in Text although O(s1ae0) 6= O(s2ae0). As Text contains at least as
much information as T any counterexample for AText is one for AT as well. �

A.2 Equivalence of four ways to use a counterexample for MQ = 1

Lemma 2. Let T be an observation table, MQ = 1, and c a counterexample for
AT . These methods all lead to the existence of one more distinct row in red:

(a) Add Pref (c) to red.
(b1) Add Suff (c) to E.
(b2) Find s ∈ blue, e ∈ Σ+ with c = se and add Suff (e) to E.
(c) (Procedure MINIMIZE) Find s ∈ blue, e ∈ Σ+ with c = se. If there is

r ∈ red with ¬(r <> s) and re is a counterexample for AT as well, replace
s by r. Repeat this for the resulting string until no such r can be found. Let
the result be s′e′ with s′ ∈ blue and e′ ∈ Σ+. Add e′ to E.

Proof. (a): Either such a row is created directly if E already contains a suitable
separating context, or T becomes inconsistent. To see the latter, assume that no
element of Pref (c) is OD from every red element. Note that in GENMODEL
this occurs for EQ = 1 only since when we use a positive sample c is constructed

14 Anna Kasprzik

with a prefix s0 that is OD from all red elements. We may also assume that
AT (c) ∈ {0, 1} since AT is total for EQ = 1. As the automaton derived from the
new table containing Pref (c) can obviously assign a different state to c than AT
although no new distinct row representing a separate state has been created this
automaton must be non-deterministic, and the table inconsistent. A consistency
check (which is necessary with this method) would correct that in the following
loop execution by adding a context distinguishing two red elements that have
not been OD before, thus creating another distinct row (also see [4]).
(c): As T is closed s′ ∈ blue has a match r′ ∈ red but s′e′ is a counterexample
whereas r′e′ is not. Consequently s′ and r′ should represent distinct states such
that e′ leads to a final state from one of them but there is no such final state for
the other. Obviously s′ and r′ will be distinguished by adding e′ to E.
(b1)/(b2): Consider (c) and the fact that e′ ∈ Suff (e) ⊆ Suff (c). �

Method (b1) was proposed in a footnote in Maler&Pnueli (1995).3 Note that
adding Suff (c) finds all distinguishing suffixes of c, which may save some EQs
but may also lead to redundant columns and thus unnecessary MQs. Method (c)
is a combination of (b1)/(b2) and a method from a version of L∗ for trees [5].

Remark: With (b2) and (c) E may not be suffix-closed anymore, which how-
ever is a not an essential property for the extraction of an automaton from an
observation table. The fact that E fulfils it both in [4] and [7] is just a by-product
of the way how those two algorithms compute distinguishing contexts.

A.3 Complexity of GENMODEL for different input constellations

– 〈1, 1, ∅, ∅〉: The number of EQs needed is O(IL) because in a worst case every
counterexample obtained via an EQ reveals just one more distinct state.
The number of necessary MQs is O(I2

L · |Σ| + IL · |c0|) with |c0| the length
of the longest counterexample c0 because (a) red and E contain at most IL
elements each and blue contains at most IL · |Σ| elements, so that O((IL +
IL · |Σ|) · IL) = O(I2

L · |Σ|) MQs are needed to fill the cells of T , and (b) as
MINIMIZE needs O(|c|) MQs for a counterexample c because it may have
to check every prefix of c for substitutability by a red element, processing
O(IL) counterexamples takes another O(IL · |c0|) MQs in addition.
Note that MINIMIZE significantly improves the MQ complexity with respect
to the original L∗ (see Subsection A.2 above, and also [12]).

– 〈0, 1, X+, ∅〉: |Pref (X+)| (|Suff (X+)|) equals the sum n+ of the lengths of
all strings in X+ if no two strings in X+ have a common prefix (suffix) 6= ε.
Text has |Pref (X+)| rows and |Suff (X+)|+O(IL) columns, i.e., O(n+ · (n+ ·
IL)) = O(n2

+ + n+ · IL) cells to be filled via MQs. Note that as we rely on
the representativity of X+ the final table has |Pref (X+)| rows as well.
The length of the longest counterexample c0 the algorithm can construct is
O(IL·m) wherem is the length of the longest string inX+: We add at most IL
contexts, and every context can be m symbols longer than the previous one,

3 Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information and
Computation 118(2), pp. 316–326 (1995)

Generalizing over several learning settings 15

so the length of the longest context is O(IL ·m). Obviously, the longest prefix
is O(m) symbols long, so the length of c0 is O(IL ·m+m) = O(IL ·(m+1)) =
O(IL ·m). As MINIMIZE needs O(|c|) MQs to process a counterexample c
we have to add this to the overall complexity: O(n2

+ + n+ · IL + IL ·m), but
since m ≤ n+ this can be resimplified to O(n2

+ +2n+ ·IL) = O(n2
+ +n+ ·IL).

– 〈0, 0, X+, X−〉: Since we exactly emulate RPNI [8, 9] GENMODEL is at least
as complex as RPNI. Let n− be the sum of the lengths of all strings in X−.
If no two strings in X+ have a common prefix 6= ε then PA(X+) has n+ − 1
states and n+ transitions. Therefore, testing if the automaton we are building
from PA(X+) (wrongly) accepts a string in X− takes O(n+ · n−) steps. We
try to merge every state with a red state (O(n2

+) steps), checking each merge
against X−, so building the oracle has a complexity of O(n3

+ · n−).
In addition we fill a table of size O(n3

+) (containing O(n+) rows and O(n2
+)

columns as we may add a different distinguishing context for every pair of
candidates), but O(n3

+ · n− + n3
+) = O(n3

+ · (n− + 1)) = O(n3
+ · n−).

Remark: Due to the tree structure of the prefix automaton the merges under
consideration can all be computed in a polynomial number of steps (see [9]).
Note that in a concrete implementation we would rather arrange the strings
in a total (e.g., length-lexical) order to avoid the cumbersome prefix checks
in FINDNEXT and MERGENEXT, and we could also store the strings that
prevent a merge and pass this information on to MAKEOD.

