6: 3 = ‘7/9
RN it

UNIVERSITAT TRIER

Top-Down Construction of Finite
Automata from Regular
EXxpressions

Stefan Gulan Henning Fernau
FB IV, Informatik FB 1V, Informatik
gulan@uni-trier.de fernau@uni-trier.de

TRIERERFORSCHUNGSBERICHTE
INFORMATIK / MATHEMATIK

No. 08-7

Juli 2008

Abstract

We consider the construction of finite automata from theiresponding regu-
lar expressions by a series of digraph-transformationsgetioe expression’s struc-
ture. Each intermediate graph represents an extended dimibdenaton accepting
the same language. The character of our construction alidfivee-grained anal-
ysis of the emerging automaton’s size, eventually leadingnt optimality result,
i.e., a tight bound.

1 Introduction

Regular expressions provide a description of regular laggs in a manner convenient
for the human reader. On the machine level, however, the apgsDpriate represen-
tation is arguably that of finite automata. Thus, considleraffort has been put into
ways of constructing automata describing the same langaagegiven expression.
All algorithms known to the authors work by either incorpiarg the expression’s syn-
tactic structure into the state graph of the emerging autom@F61, Kle65, Tho68,
[SSS88, 1Y03] or by looking for first-time occurrences of syishin subexpressions
[Glu61, MY60,BS86]. The first kind of construction geneyaiésults in an NFA with
e-transitions (NFA, for short), the latter produces no such transitions ieag even
provide a DFA. An exhaustive overview, structured by a maitetle, categorization is

given in [Wat94].

Our construction yields aaNFA. No tight bound for the size of such an automaton
representing a given expression has been published ye& Mu came pretty
close, proving a lower bound @ftimes the size of a given expression while construct-
ing aneNFA smaller than% times the expression length. We close this gap by raising
the lower bound and giving a construction reaching that ddnrthe worst case. Un-
fortunately, there are plenty of definitions of the sizes pitéi automata and regular
expressions. This holds especially for regular expressiomwever, in [EKSWO05], the
authors show how the different values relate to each otloercémparability, we stick

by the definition given in [IYO03].

The algorithm presented in this paper is basically an eiderts the one in[[OF61],
which is, together with a variation of Thompson’s algorithmjWat94], the only top-
down algorithm among a variety of bottom-up proceduresurtg out that the top-
down character is very helpful in the analysis, since itvadieystematic construction
of an expression yielding the worst ratio of automatonpression sizes. This con-
struction relies on extremal combinatorial argumentstiéeriring structural properties
of a worst-case input. To our knowledge this is a novel apgraa this kind of prob-
lem.

2 Preliminaries

Enclosing braces for singleton sets will be omitted. KMebe a finite set of symbols,
calledalphabetthe elements aflUe will be calledliterals. The set of regular expres-
sions overA, denotedReg(A), is the closure ofAUe under produce, sum+ and
Kleene-star. Operator precedenceise, +. We will casually speak oéxpressions
only. In the following,a and 8 will always be expressions. The regular language
expressed by is denotedL(«). We will call « and 3 equivalent denotedn=g, if
L(a)=L(3). The number of products (sums, starshiwill be denoted«|e (a4,
|a|.). Likewise, the number of literals in, counted with multiplicity, will be denoted
|| 4. Theoperator complexityf « is defined asa|,p:=|a|e+| |+ +|c|«. Thesizeof

an expression is defined as:=|a| 4+|a|op. We calla complexif |« > 2. The set
of subexpressions af will be denotedsub(«).

Both iterated products and sums will be denoted as is commarithmetic, defining

n n
Hai =aqieaqe...0q, and Zai =] Fas+ ..+
i=1 i=1
Eachq; as above will be called amperandto the product or sum. An iterated product
(sum) which is not operand to a product (sum) itself, will ladled maximal If all
operands in a maximal product (sum) are starred, it will Biedatar-maximal

An extended finite automatpshortEFA, is a 5-tupleE=(Q, A, 4, qo, F'), wherego€Q),
FCQ, andéCc@x Reg(A)xQ. This renders conventional FAs a special case of EFAs.
An EFA is callednormalizedif |F|=1. A pair (¢, w) € Q@ x.A* is calledconfiguration

of F, valid changes irE’s configuration are denoted by writing (¢, vw) F (¢/, w) if

(¢, a,¢")ed andve L(a). The language accepted by an EEAs L(E)={w|(qo, w) F*
(g5.€),qr € F'}, where* is the reflexive-transitive closure bf

The class of regular languages is not extended by allowigglae expressions as la-
bels in automata, see [Woo87] for a proper introduction. 3ize of an EFAE is
|E|:=|Q|+|d]. The sets of transitions leaving and reaching sqm€ are given by
qt:=0N(gx Reg(A)xQ) and ¢~ :=0N(Qx Reg(A)xq), respectively. The notion is
extended to setSCQ, thusS™ = (J, .4 sT, resp.S~. We callyCé ane-cycle in £,

if v = {(q, € qi+1)|1<i<|y[-1} U {(qy, 6, 01) }-

Let A be a FA generated from by some algorithn. We call %’ the conversion-

ratio of C with respect tawv. The maximal conversion-ratio @f with respect to any
expression, will simply be called conversion-ratiof An expression reaching this
bound is said to beorst-case

3 A Lower Bound

First we improve on a lower bound fanyconstruction of FAs from expressions, given
by llie & Yu in [IY03], by a slight variation of their argumenfo this end, a property
of digraphs is shown, in which we refer to both vertices arnd aselements

Proposition 3.1. Consider a digraptV, A). Let L, R be nonempty, disjoint subsets of
V such that

1. thereis a path from eadhe L to eachr € R,

2. there is no path connecting any two vertiéd$ € L or anyr,r’ € R.
Then at leastmin{|L||R|, |L|+|R|+1} elements are necessary to realize these paths.
Proof. Two cases need to be considered:

1. There is no vertex on any path connectingith ». This can only be realized
with |L||R]| arcs, by pairwise connections.

2. Thereis at least one vertexn a path connectinge L with r, € R, this path con-
tains at least 3 elements. To connkolvith the vertices ofR\r, at leasiR|—1
further arcs are necessary. An additiofgl-1 arcs are leaving the vertices of
L\lp. These numbers total {d.|+| R|+1. O

Next we show the actual lower bound. Both states and transitof an FAA will be
called elements, the number of elements is simgly

Theorem 3.1. Letx; ; be distinct literals, consider the expression

n
o = H(mgzem + $§i71,2)($§i,1 + l’le + 1‘313)
i=1

= (271427) (@51 +25 04+75 3) - (5,1 1+T5,_1 2) (25, 1 +T5, o +T3,, 3)
Any normalized automatas satisfyingL(A) = L(«) has at least size2n + 1.

Proof. A has to provide disjoint cycles accepting somﬁg otherwise the relative
order of ther; ; could be violated. This calls for at least a state and a transition per
x;,5, or 10n elements. Further, there must be paths fipmto ¢; ;. for reasonable
i,7,k,s > 1. Thisrequires at least the existence of paths fgpio ¢;11, 5. The order

of literals in« disallows paths frong; ; to ¢; » wherek+j. By Prop/3.1, each two
layersg; ;. ¢i+1,1 are connected by at least 6 elements, thus1 layers require at least
12n—6 more elements. Finally, elements result from requiring to be normalized.

The total number of elements, i.e., the sizedok thus at leask2n + 1. O

For the following, note that from Thm/[3.1 has sizé5n — 1.

Corollary 3.1. The conversion-ratio of any algorithm converting expressito nor-
malized FAs is bounded from below by

Al 2041 22 1 _ 1

e 146+ —
ol = Tn—1"15 ' |of Tl

4 Construction

The idea is to expand an initial EFA according to the strietfithe expression, by in-
troducing as few states and transitions as possible, wedemposing transition labels.
Certain substructures in the expanded automata will baceplby smaller equivalents.
This is done until amNFA emerges, i.e., there are no more complex labels.

Definition 4.1 (Expansion) Let E = (Q, A, J, qo, F') be an EFA with a complex la-
beled transitiort. We call an EFAE’ = (Q', A, ¥, qo, F') the expansiorof E, if it is
derived fromFE according tot’s label as follows:

- if t = (p,ap, q) thenQ" = QUp', &' = s\ t U{(p,,), (1", B,q)}
- if t=(p,a+B,q) thenQ = Q,d =5\t U{(p,a,q),(p,3,9)}
- if t = (p,a*,q), we distinguish several cases

x0: if p = ¢, replacea* with «,
letQ =Q,0 =5\tU (¢, a,q)
x1:if |pT| = |q¢~| = 1, mergeq into p:
letQ =Q\q, 6" =0\ (¢" Uq) U{(p,7,7)l(g;7,7) €6} U (p, v, p)
x2: if |pT| > 1, |¢~| = 1, introduce a loop iny:
letQ" = Q, 0" =6\t U{(p,€,q), (¢ q)}
«3: if [pT| =1, |¢~| > 1, introduce a loop irp:
letQ" = Q, 0" =6\t U{(p,,p), (p.€:0)}

0.0« 02-0L-0

(a) product

a* «

T T T T T
(c) superfluous stak0

~a O{* /
O—0
I\

(e) target-looping staw2

() -
O o

@”&)«Q%bo

(b) sum

~

OYX 07 <
/ \

(d) state-merging sta1

N O
OO0« 2050

(f) source-looping stak3

N \/
O < /OHOH ~
/N

(g) state-introducing stax4

Dok
/\

Figure 1: Expansions of complex labeled transitions.

«4: if |pT| > 1, |[¢~| > 1, introduce a new statg':
letQ" = QUp', 8" =3\ tU{(p.ep), (. p"), (' €. q)}

Cases are sketched in Fig. 1. Expansions will be denotetiomdd, writing £ <1; E’
if £’ results from expansion afin E. Occasionally we will also writed,, <1, <.
or simply <, if ¢ or its root operator are irrelevant. This might be formaizs< =
<o U <14 U <. Then-fold iteration of< will be denoteda™, thus if E <™ E’ there is
a series of EFA%;, 0 < i < n, such thatt’ = Ey, F; < F;.1, F,, = E’. Usually we
referto<i(y.q,q) Py mentioningy's operator, e.g,é-expansion’. Distinck-expansions
will be referred to as+0-expansion’ to ¥4-expansion’ according to Def. 4.1.

Definition 4.2. Let A be the least alphabet satisfyinge Reg(A). The EFAAS =
({0, a7}, A, (90, @, qr), g0, gr}) is called theprimal EFA representing. We denote
by A¢, any automaton satisfying® < A%.

Thus, A?, denotes any EFA derived from the primal automaton représgnt in a
series ofi expansions. Note that generall, is not unique. However, a most useful
property of< is that the order of expansion is irrelevant, or formally:

Lemma 4.1. < islocally confluent modulo isomorphism, i.e.dikc B; and A <1 Bs,
then3dCy,Cs : By < Cy and By <« Cy andCy = Cs.

Proof. Let A <;, B; andA <, B,. First, assume one of the transitions is labeled by
either a product or a sum:

- Lett; = (¢, @ 3,¢"). Upon expansion a bridge-stajé will be introduced,
however the number of arcs leaving and reachjrgdq’ will remain constant.
The structure ofA will change insofar as that an arc will be elongated. Since

any <, will at most have the effect oh that one of its states might be renamed
(uponxl-expansion), the order &f;, , <, is irrelevant.

- If t1=(¢, «+ 3, ¢’), informal reasoning is that an arc is merely doubled. Logkin
at Def[4.1, the booleans >1 etc. are not changed by such an operation.

Now let botht; be star-labeled. Note that the statement is trivial, if exgians take
place in 'different parts’ of the EFA, so lét, ¢ share at least a common state. If
the transitions are parallel, both will be-expanded anyway. Further)-expansion
does not change the structure of the state-graph at ajlneéher oft, ¢; is a loop.
So assume; = (p,a*,q), t2 = (¢,a*,r) wherep # ¢ # r. Some of the possible
combinations are shown in Fig. 4, the remaining are a simyecese. O

Corollary 4.1. < is confluent.

Proof. Since< is terminating, the claim follows from Lem. 4.1. Detailedpf of this
argument can be found, e.g., in [Hue80]. O

We introduce two further conversions of different natuisrang EFAs with respect to
e-labeled substructures.

Definition 4.3 (State-Elimination) Let E=(Q, A, 6, qo, F') be an EFAg € Q\ F such
that

- gt lla| < lg*[+la™ |
- all labels ing™ or in ¢~ (or both) aree

Letd'=d\(¢"Uq™) U{(¢,ab,q")I(d',a,9)€q™, (¢,D,q")€q™ }, then theg-reductof
Eis defined a®’ = (Q\q, A, 9, qo, F) , and we writeEr>,E’.

State-elimination can be appliedgoif all leaving or all reaching transitions (or both)
are labeled and if either oflg™|, |¢~| is 1, or both are 2. Though state-eliminations
reduces the size of an EFA by either 1 or 2 its effects will touhto be crucial in the
proof of Thm[5.2.

Definition 4.4 (e-Cycle-Elimination) Let E=(Q, A, 6, g0, F') be an EFA;y ane-cycle
connecting the set of staté,, then the EFAE'=(Q)’, A, ¢, qo, F) is called they-
reduct written Et> ., E, if

- Q'=Q\Q,Ug, whereq, ¢ Q
- 8 = \(YWRIUQT)U{(gy, . ¢')(g, o, ¢)€QT YU{(ds , g)|(d @,) €Q5 }

Note that both eliminations strictly reduce the size of av\Ekthout re-introducing
complex labels. Exhaustive application of these transétions to a primal automaton
yields aneNFA.

Proposition 4.1(Acceptance-Invariance).et E, E’ be EFAs. Thel.(E) = L(E'), if
E<E orEp>gE orE>, E'.

A schematic algorithm showing how to convert from an expgogs® a corresponding
eNFAis givenin Alg. 1. The algorithm is intentionally crudedihas unfortunate time-
complexity — however, runtime-analysis and implementatietails lie not within the
scope of this report.

Algorithm 1 RegEx— eNFA
A—AY
while A is not an NFAdo
choose a complex-labeled transitiom A
let A <, A’
if <1, introduced some = (¢, ¢, ¢’) then
if ¢ can be eliminatethen

let A’ >, A”
AI - A/I
if ¢’ can be eliminatethen
let A" >, A"
A/ HA”
if e is part of some-cycle~ then
let A" >, A”
AI - A/I
A— A
end while
|| <o | <]+ | 4*0 | 4*1 | <]*2; <*3 | <]*4 || ‘>w | l>q
A(Q)) || 1 0 0 -1 0 1 (v —1) -1
A(|0]) 1 1 0 0 1 2 -9 -lor0

Table 1: Number of elements introduced (i.e., removed, if negatiyg)n expansion and elimi-
nation, broken down to states and transitions.

Clearly, there is no infinite series of expansions and rednstof an EFA, both opera-
tions either reduce the overall length of labels or the nurobstates and transitions.
Thus, Alg. 1 is terminating. By Prop. 4.1 it is also partialyrrect, thus the algorithm
is totally correct.

5 Analysis

Let A, denote arNFA constructed by our algorithm from?. We start by bounding
|A.| from above. To this end, we refine the definition|af.. Let|«|.; denote the
number of stars im which will be xi-expanded. Clearlye|. = > ;4 o]

Theorem 5.1. The size of an automaton built fromby our algorithm is bounded by
|Aal < la] +2lafu — laly +2
The bound is tight iff neither elimination nef, x1-expansion is applied.

Proof. A% has size 3. The number of elements introduced upon expaissiteter-
mined by|al,, |a|+, . . ., weighted by the entries in Tab. 1. Usifig 4=|c|e+|c| - +1
and|a| = |a|e+|a| 4 +|alwo+ . . . +|afa+]|a] 4, this yields:

l[Aal < 2fale +[al+ — |ala + |oles 4 3lafu + 3

lal + lafe = [alwo = 2|ala + 2]alu — [ofla+3
la] + |ale + 2[at)ss — || 4 + 3
= laf + 2ol — |ol+ +2

IN

O Liteet=R" Q @ @

@ > a) = (* by %0- expansmns

O 3
suso . .U B

0) ([Taf)* = (- ai)* by ellmlnatlon ofe-cycles.

Figure 2: Transformations respect the equivalences given in Praf{c3abels are omitted).

The first inequality results from state- ardtycle eliminations, the second frosf-
andx1-expansions, thus equality holds in absence of these tianafions. O

Proposition 5.1. Both sides in each of the following equivalences will be exjea to
the same (sub)automaton:

(@)'=a* and (Y)= @) and (JJ[a)) =0 a)*

wherea; = f3;, if a; = 3f anda; otherwise.
Proof. The first two equivalences are realized Hy+expansion, the third by-cycle-
elimination. Examples are given in Fig. 2. O
Corollary 5.1. Leta be worst-case, then

1. The conversion-ratio fot is

Aol _, , 2lalus = ol +2
o o

2. |a|wo=]|a|+«1=0, further both a sum with starred operands and a maximallgrsth
product are not starred themselves.

Proof. The first item is a trivial consequence of THm.5.1. The sedotidws from
Prop/5.1 and Thm. 5.1. O

We proceed with a series of results, each putting additicostraints to the structure
of a worst-case expression. Almost all proofs work by a lihargumentation that is
common in extremal combinatorics: assume worst-case (clearly, such an expres-
sion must exist), i.e., extremal with respect to conversatio, then infer some further
property by contradicting extremality of

Proposition 5.2. A worst-case expression contains stars.

Proof. Let o be worst-case witha|.=0. Cor.[5.1 implies% < 1+‘72|, the right-
hand side of which drops belo4, if || > 5. Since by Cor. 3.1, the conversion-
ratio is bounded from below by.46, the assumptiof|,=0 is wrong, if o is worst-
case. O

Lemma 5.1. Let~y* be a proper subexpression @f Theny* will be «4-expanded iff
- itis operand to a sum, which is not starred itself, or
- wlog. it occurs rightmost in a star-maximal product.

Proof. The first case is clear by looking at the expansion of semeg. If v* is an
infix, say, a;v*as, we distinguish 3 cases: If botly are non-starredy* will be x1-
expanded. If only one of the; is non-starred, then* can bex2- or «3-expanded by
introducing a loop at the state incident to the transitidoelad with the non-starred .
Finally, if both o; are starred, we can by confluence assume that expansionsewill
applied from left to right. Then, every starred factor wil k2-expanded until the final
one necessitateg-expansion. This embraces all possible cases, giving babtibns
of the statement. O

Lemma 5.2. Let o be worst-case, assume esub(a) is x4-expanded. Then* is
operand to a sum.

Proof. By Lem.[5.1,~* is either operand to a sum or rightmost in a star-maximal
product. Assume the latter, thus= 7} e ... e 7 _, e v*. Constructa’ from « by
replacingr with o = ni+ ... + 7} _;+~*. Then|a|=|d/|, however|a/|.,—|d/ |+ =
2|a)wa—|al++n—1. Since by Prop. 5.% is not starred inv, the stars inr will not
accidentally become). By Cor.!?l,"@;]‘ > ‘ﬁj“ , thusa is not worst-case. Therefore

~* is necessarily operand to a sum. O

The interrelation between sums and stars in a worst-case®sipn is tightened in
Lemma 5.3. Let« be worst-case. Then

1. every starred subexpressiondris operand to a sum and

2. all operands in a maximal sum are starred.
Proof.

1. Assumey*esub(a) will not be x4-expanded. Construet from a by replacing
~* with . Since|a’|=|a|—1, yet|o/|.4=|a|.4, Cor.[5.1 again yield$2arl >

Jo/
'ﬁ;“, thusa is not worst-case. Therefore each star in a worst-case sipreis

subject tox4-expansion, thus by Lem. 5.2 operand to a sum.

2. Let} 0, be maximal with some; unstarred, i.e., a product. Constra¢tfrom
a by replacingo; with 3. Then|a’| = |a| + 1, [a/[.4 = [al.4 + 1 and by
Cor/5.1,|Ay| = |Au| + 2. Now

|Ao/| _ |Aa| +2 |Aa|
o laf +1 = |af

iff |Aq| < 2/al

We proceed similar to the proof of Thin. 5.1, additionallyngsihat the previous
item implies|a|.4 < 2|a4:

Aol < 2fafe +lafy —[ala +[als + 3alu +3
= 2laf = |aly = 3lala — ol + ol +3 = 2|ala
= 2] = 2aly — |l = 3ala —[ales +[alu +2 = |ala

< 2| —Jals - 2lafe + 1

By assumptionja|; > 1, any further binary operator pushes the right-hand side
strictly below2|«/|. Indeed, the only expression containing only anas binary
operator, that reaches a conversion-ratio of 2;jist+ x5, which is of claimed
structure. O

Lemma 5.4. A worst-case expressianhas no subexpression of the form
o=I> o)
i

Proof. If ¢ € sub(«), e-cycle elimination would occur upon expansion. By Cor. 5.1
thena would not be worst-case. O

This allows us to provide a pretty detailed template of a Woese expression:

Lemma 5.5. Leta be worst-case. Then the structurecofs

n
o=11
i=1

ki

*

ol
j=1

where ther;; are literals.

Proof. By Prop/5.2, a worst-case expression contains starredkgrassions, so fix
someos;; which is by Lem| 5.8 operand to a sum. A maximal sum with s&esfactor,
since it may not be starred itself and is already maximaliHeuyo;; is necessarily a
maximal product. If its operands were maximally starred sutimis would contradict
Lem.[5.4, thusr;; is a product of literals. Them;; influences the conversion-ratio as
given in Cor[5.1 only by its length, which has to be minimizedrder to maximize
the ratio. Thusr;; is a literal. From Leni. 5.4 it also follows thatitself may not be
starred. O

It remains to analyze the influence of the number of summahes(in Lem/[5.5) on
conversion-ratio. This is done in the proof of our main

Theorem 5.2. An expressiom is worst-case, if its structure is

n 24(i mod 2)
a=]] > aj where z;; € AUe
i=1 =1

Proof. Leta be of the general structure given in Lem. 5.5, the FA prodingeaseries
of expansions from!? is sketched in Fig. 3. The sizes of these objects are

=1 =1
|Ao| = §5M%+n—1:4§ih+n—1
i=1 i=1

thus the ratio is
|Aa| - 42]{314*7171 71+ Zlirn

o] 33 k-1 33 ki — 1

Figure 3: Automaton constructed from a worst-case expressidaliels are omitted).

The fraction on the right-hand side is maximized; is maximal with respect td_ k;,
or equivalently, if>" k; is minimal. Two restrictions result from prohibiting state
elimination, namely that: : k; > 2 and if k;=2 thenk;_,>2 andk;,>2 (if they
exist). Thusy_ k; is minimal, if k; alternates between 2 and 3, i/e.~ 2+ (i mod 2).

O

Corollary 5.2. The size of an automaton produced by our construction is dediby
2al + 1. The construction is optimal.

Proof. The value is reached by the expression given in Thm. 5.2,lwlias proven to
give the maximal ratio of sizes. Since by Cor. 1%%104 + 1is also a lower bound, the
bound is tight, hence the construction is optimal. O

6 Conclusions & Remarks

We have given a construction for converting regular expoessnto equivalendNFAs.
To our knowledge it is the only provably optimal construatao far. It should be men-
tioned that the generated automata differ from these aactedl in [IY03] only by the
effects of state-elimination. This element is crucial hegreboth for raising the lower
bound as well as for upper bound analysis as we did.

Treatment of) in expressions can easily be added to our algorithm by cerisiglit a
literal throughout the expansion/reduction-sequenceaaiaéhg a final step: removing
(-labeled transitions followed by running some reachabdigorithm. The final step
will reduce the size of the automaton, thus the bound is ramiatl even if) does not
countinto the expressions’ size. Since we condides being of no practical relevance,
it was omitted from formal treatment.

Maybe more interesting, Kleene-can be added by reformulatirgexpansions, where
additionale-transitions need to be introduced. This yields smallertias by applying
the equivalence™ = aa* (which would double the number of elements introduced
by «), yet it is not feasible with the given bound.

Finally we claim tha{< U, Ut) is confluent as well, thus a series of combined ex-

pansions and eliminations converges to a unique FA. The prealves more complex
cases and is postponed to a future article.

10

References

[BS86]

[EKSWO5]

[Glu61]

[Hue80]

[1Y03]

[Kle65]

[MY60]

[OF61]

[SSS88]

[Tho68]

[Wat94]

[Wo087]

Gerard Berry and Ravi Sethi. From regular expresstordeterministic
automataTheoretical Computer Sciencé8:117-126, 1986.

Keith Ellul, Bryan Krawetz, Jeffrey Shallit, andidvy-Wei Wang. Reg-
ular expressions: new results and open probledwirnal of Automata,
Languages and Combinatorics0(4):407-437, 2005.

Victor Michailowitsch Glushkov. The abstract thgof automataRussian
Mathematical Survey46:1-53, 1961.

Gérard Huet. Confluent reductions: Abstract proggrand applications
to term rewriting systemslournal of the ACM27(4):797-821, 1980.

Lucian llie and Sheng Yu. Follow automaténformation and Computa-
tion, (186):140-162, 2003.

Stephen Cole KleeneRepresentation of Events in Nerve Nets and Finite
Automatapages 3—41. Annals of Mathematics Studies. 1965.

Robert McNaughton and Hisao Yamada. Regular expoassand state
graphs for automatdRE Transactions on Electronic Compute®$1):39—
47, 1960.

Gene Ott and Neil H. Feinstein. Design of sequentethines from their
regular expressiongournal of the ACM8(4):585-600, 1961.

Seppo Sippu and Eljas Soisalin-Soinirarsing TheoryEATCS Mono-
graphs on Theoretical Computer Science. Springer, 1988.

Ken Thompson. Regular expression search algorit@@mmunications
of the ACM 11(6):419-422, 1968.

Bruce W. Watson. A taxonomy of finite automata camdtion algorithms.
Technical Report Computing Science Note 93/43, Eindhoveivaysity
of Technology, may 1994.

Derick Wood.Theory of Computatianlohn Wiley & Sons, Inc., 1987.

11

T~ a*

/8*
KSR

B

%@ ﬁ/@

7

/o

N T

K WA
/

. B
NSO
T~ o € v
/@H@H/@a\\
NG

a B
G .
>@4'®\
2
SN
. € g
::@4’@\
5 &
™~ € € e
/@H@H/@a\\
i
& 5
T~ € € —
/@H@H/(@\\
. a B
N/ o O |
@@
/N
i
a B
NG G .

Figure 4: Examples for confluence of expanding consecutive staregtitions. Isomorphism

is denoted by~.

12

	Introduction
	Preliminaries
	A Lower Bound
	Construction
	Analysis
	Conclusions & Remarks

