
UNIVERSITÄT TRIER

Top-Down Construction of Finite
Automata from Regular

Expressions

Stefan Gulan
FB IV, Informatik
gulan@uni-trier.de

Henning Fernau
FB IV, Informatik

fernau@uni-trier.de

TRIERERFORSCHUNGSBERICHTE

INFORMATIK / MATHEMATIK

NO. 08-7

Juli 2008

Abstract

We consider the construction of finite automata from their corresponding regu-
lar expressions by a series of digraph-transformations along the expression’s struc-
ture. Each intermediate graph represents an extended finiteautomaton accepting
the same language. The character of our construction allowsa fine-grained anal-
ysis of the emerging automaton’s size, eventually leading to an optimality result,
i.e., a tight bound.

1 Introduction
Regular expressions provide a description of regular languages in a manner convenient
for the human reader. On the machine level, however, the mostappropriate represen-
tation is arguably that of finite automata. Thus, considerable effort has been put into
ways of constructing automata describing the same languageas a given expression.
All algorithms known to the authors work by either incorporating the expression’s syn-
tactic structure into the state graph of the emerging automaton [OF61, Kle65, Tho68,
SSS88, IY03] or by looking for first-time occurrences of symbols in subexpressions
[Glu61, MY60, BS86]. The first kind of construction generally results in an NFA with
ǫ-transitions (ǫNFA, for short), the latter produces no such transitions andmay even
provide a DFA. An exhaustive overview, structured by a more subtle, categorization is
given in [Wat94].

Our construction yields anǫNFA. No tight bound for the size of such an automaton
representing a given expression has been published yet. Ilie & Yu [IY03] came pretty
close, proving a lower bound of43 times the size of a given expression while construct-
ing anǫNFA smaller than3

2 times the expression length. We close this gap by raising
the lower bound and giving a construction reaching that bound in the worst case. Un-
fortunately, there are plenty of definitions of the sizes of finite automata and regular
expressions. This holds especially for regular expressions, however, in [EKSW05], the
authors show how the different values relate to each other. For comparability, we stick
by the definition given in [IY03].

The algorithm presented in this paper is basically an extension to the one in [OF61],
which is, together with a variation of Thompson’s algorithmin [Wat94], the only top-
down algorithm among a variety of bottom-up procedures. It turns out that the top-
down character is very helpful in the analysis, since it allows systematic construction
of an expression yielding the worst ratio of automaton-to-expression sizes. This con-
struction relies on extremal combinatorial arguments for inferring structural properties
of a worst-case input. To our knowledge this is a novel approach to this kind of prob-
lem.

2 Preliminaries
Enclosing braces for singleton sets will be omitted. LetA be a finite set of symbols,
calledalphabet, the elements ofA∪ǫ will be calledliterals. The set of regular expres-
sions overA, denotedReg(A), is the closure ofA∪ǫ under product•, sum+ and
Kleene-star∗. Operator precedence is∗, •, +. We will casually speak ofexpressions
only. In the following,α andβ will always be expressions. The regular language
expressed byα is denotedL(α). We will call α andβ equivalent, denotedα≡β, if
L(α)=L(β). The number of products (sums, stars) inα will be denoted|α|• (|α|+,
|α|∗). Likewise, the number of literals inα, counted with multiplicity, will be denoted
|α|A. Theoperator complexityof α is defined as|α|op:=|α|•+|α|++|α|∗. Thesizeof

1

an expression is defined as|α|:=|α|A+|α|op. We callα complex, if |α| ≥ 2. The set
of subexpressions ofα will be denotedsub(α).

Both iterated products and sums will be denoted as is common in arithmetic, defining

n∏

i=1

αi := α1 • α2 • . . . • αn and
n∑

i=1

αi := α1 + α2 + . . . + αn

Eachαi as above will be called anoperandto the product or sum. An iterated product
(sum) which is not operand to a product (sum) itself, will be called maximal. If all
operands in a maximal product (sum) are starred, it will be called star-maximal.

An extended finite automaton, shortEFA, is a 5-tupleE=(Q,A, δ, q0, F), whereq0∈Q,
F⊆Q, andδ⊂Q×Reg(A)×Q. This renders conventional FAs a special case of EFAs.
An EFA is callednormalized, if |F |=1. A pair (q, w) ∈ Q×A∗ is calledconfiguration
of E, valid changes inE’s configuration are denoted by⊢, writing (q, vw) ⊢ (q′, w) if
(q, α, q′)∈δ andv∈L(α). The language accepted by an EFAE isL(E)={w|(q0, w) ⊢∗

(qf , ǫ), qf ∈ F}, where⊢∗ is the reflexive-transitive closure of⊢.

The class of regular languages is not extended by allowing regular expressions as la-
bels in automata, see [Woo87] for a proper introduction. Thesize of an EFAE is
|E|:=|Q|+|δ|. The sets of transitions leaving and reaching someq∈Q are given by
q+:=δ∩(q×Reg(A)×Q) andq−:=δ∩(Q×Reg(A)×q), respectively. The notion is
extended to setsS⊆Q, thusS+ =

⋃
s∈S s+, resp.S−. We callγ⊆δ anǫ-cycle inE,

if γ = {(qi, ǫ, qi+1)|1≤i≤|γ|−1} ∪ {(q|γ|, ǫ, q1)}.

Let A be a FA generated fromα by some algorithmC. We call |A|
|α| the conversion-

ratio of C with respect toα. The maximal conversion-ratio ofC with respect to any
expression, will simply be called conversion-ratio ofC. An expression reaching this
bound is said to beworst-case.

3 A Lower Bound
First we improve on a lower bound foranyconstruction of FAs from expressions, given
by Ilie & Yu in [IY03], by a slight variation of their argument. To this end, a property
of digraphs is shown, in which we refer to both vertices and arcs aselements.

Proposition 3.1. Consider a digraph(V, A). LetL, R be nonempty, disjoint subsets of
V such that

1. there is a path from eachl ∈ L to eachr ∈ R,

2. there is no path connecting any two verticesl, l′ ∈ L or anyr, r′ ∈ R.

Then at leastmin{|L||R|, |L|+|R|+1} elements are necessary to realize these paths.

Proof. Two cases need to be considered:

1. There is no vertex on any path connectingl with r. This can only be realized
with |L||R| arcs, by pairwise connections.

2. There is at least one vertexb on a path connectinglb∈L with rb∈R, this path con-
tains at least 3 elements. To connectlb with the vertices ofR\rb at least|R|−1
further arcs are necessary. An additional|L|−1 arcs are leaving the vertices of
L\lb. These numbers total to|L|+|R|+1.

2

Next we show the actual lower bound. Both states and transitions of an FAA will be
called elements, the number of elements is simply|A|.

Theorem 3.1. Letxi,j be distinct literals, consider the expression

α =

n∏

i=1

(x∗
2i−1,1 + x∗

2i−1,2)(x
∗
2i,1 + x∗

2i,2 + x∗
2i,3)

= (x∗
1,1+x∗

1,2)(x
∗
2,1+x∗

2,2+x∗
2,3) . . . (x∗

2n−1,1+x∗
2n−1,2)(x

∗
2n,1+x∗

2n,2+x∗
2n,3)

Any normalized automatonA satisfyingL(A) = L(α) has at least size22n + 1.

Proof. A has to provide disjoint cycles accepting somexk
i,j , otherwise the relative

order of thexi,j could be violated. This calls for at least a stateqi,j and a transition per
xi,j , or 10n elements. Further, there must be paths fromqi,j to qi+s,k for reasonable
i, j, k, s ≥ 1. This requires at least the existence of paths fromqi,j to qi+1,k. The order
of literals inα disallows paths fromqi,j to qi,k wherek 6=j. By Prop. 3.1, each two
layersqi,j , qi+1,k are connected by at least 6 elements, thus2n−1 layers require at least
12n−6 more elements. Finally,7 elements result from requiringA to be normalized.
The total number of elements, i.e., the size ofA is thus at least22n + 1.

For the following, note thatα from Thm. 3.1 has size15n− 1.

Corollary 3.1. The conversion-ratio of any algorithm converting expressions to nor-
malized FAs is bounded from below by

|A|

|α|
≥

22n + 1

15n− 1
>

22

15
+

1

|α|
= 1.46̄ +

1

|α|

4 Construction
The idea is to expand an initial EFA according to the structure of the expression, by in-
troducing as few states and transitions as possible, while decomposing transition labels.
Certain substructures in the expanded automata will be replaced by smaller equivalents.
This is done until anǫNFA emerges, i.e., there are no more complex labels.

Definition 4.1 (Expansion). Let E = (Q,A, δ, q0, F) be an EFA with a complex la-
beled transitiont. We call an EFAE′ = (Q′,A, δ′, q0, F) theexpansionof E, if it is
derived fromE according tot’s label as follows:

- if t = (p, αβ, q) thenQ′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, α, p′), (p′, β, q)}

- if t = (p, α + β, q) thenQ′ = Q, δ′ = δ \ t ∪ {(p, α, q), (p, β, q)}

- if t = (p, α∗, q), we distinguish several cases

∗0: if p = q, replaceα∗ with α,
let Q′ = Q, δ′ = δ \ t ∪ (q, α, q)

∗1: if |p+| = |q−| = 1, mergeq into p:
let Q′ = Q \ q, δ′ = δ \ (q+ ∪ q−) ∪ {(p, γ, r)|(q, γ, r) ∈ δ} ∪ (p, α, p)

∗2: if |p+| > 1, |q−| = 1, introduce a loop inq:
let Q′ = Q, δ′ = δ \ t ∪ {(p, ǫ, q), (q, α, q)}

∗3: if |p+| = 1, |q−| > 1, introduce a loop inp:
let Q′ = Q, δ′ = δ \ t ∪ {(p, α, p), (p, ǫ, q)}

3

ααβ β
⊳

(a) product

αα + β

β
⊳

(b) sum

αα∗

⊳

(c) superfluous star,∗0

α

α∗

⊳

(d) state-merging star,∗1

ǫ

α

α∗

⊳

(e) target-looping star,∗2

ǫ

α

α∗

⊳

(f) source-looping star,∗3

ǫǫ

α

α∗

⊳

(g) state-introducing star,∗4

Figure 1: Expansions of complex labeled transitions.

∗4: if |p+| > 1, |q−| > 1, introduce a new statep′:
let Q′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, ǫ, p′), (p′, α, p′), (p′, ǫ, q)}

Cases are sketched in Fig. 1. Expansions will be denoted relational, writingE ⊳t E′

if E′ results from expansion oft in E. Occasionally we will also write⊳•, ⊳+, ⊳∗

or simply⊳, if t or its root operator are irrelevant. This might be formalized as⊳ =
⊳• ∪⊳+ ∪⊳∗. Then-fold iteration of⊳ will be denoted⊳n, thus ifE ⊳

n E′ there is
a series of EFAsEi, 0 ≤ i ≤ n, such thatE = E0, Ei ⊳ Ei+1, En = E′. Usually we
refer to⊳(q,α,q′) by mentioningα’s operator, e.g, ’•-expansion’. Distinct∗-expansions
will be referred to as ’∗0-expansion’ to ’∗4-expansion’ according to Def. 4.1.

Definition 4.2. LetA be the least alphabet satisfyingα ∈ Reg(A). The EFAA0
α =

({q0, qf},A, (q0, α, qf), q0, qf}) is called theprimal EFA representingα. We denote
byAi

α any automaton satisfyingA0
α ⊳

i Ai
α.

Thus,Ai
α denotes any EFA derived from the primal automaton representing α in a

series ofi expansions. Note that generally,Ai
α is not unique. However, a most useful

property of⊳ is that the order of expansion is irrelevant, or formally:

Lemma 4.1. ⊳ is locally confluent modulo isomorphism, i.e., ifA ⊳ B1 andA ⊳ B2,
then∃C1, C2 : B1 ⊳ C1 andB2 ⊳ C2 andC1 ≡ C2.

Proof. Let A ⊳t1 B1 andA ⊳t2 B2. First, assume one of the transitions is labeled by
either a product or a sum:

- Let t1 = (q, α • β, q′). Upon expansion a bridge-stateq′′ will be introduced,
however the number of arcs leaving and reachingq andq′ will remain constant.
The structure ofA will change insofar as that an arc will be elongated. Since

4

any⊳t2 will at most have the effect ont1 that one of its states might be renamed
(upon∗1-expansion), the order of⊳t1 , ⊳t2 is irrelevant.

- If t1=(q, α+β, q′), informal reasoning is that an arc is merely doubled. Looking
at Def. 4.1, the booleansq+>1 etc. are not changed by such an operation.

Now let bothti be star-labeled. Note that the statement is trivial, if expansions take
place in ’different parts’ of the EFA, so lett1, t2 share at least a common state. If
the transitions are parallel, both will be∗4-expanded anyway. Further,∗0-expansion
does not change the structure of the state-graph at all, i.e., neither oft1, t2 is a loop.
So assumet1 = (p, α∗, q), t2 = (q, α∗, r) wherep 6= q 6= r. Some of the possible
combinations are shown in Fig. 4, the remaining are a simple exercise.

Corollary 4.1. ⊳ is confluent.

Proof. Since⊳ is terminating, the claim follows from Lem. 4.1. Detailed proof of this
argument can be found, e.g., in [Hue80].

We introduce two further conversions of different nature, altering EFAs with respect to
ǫ-labeled substructures.

Definition 4.3 (State-Elimination). LetE=(Q,A, δ, q0, F) be an EFA,q ∈ Q\F such
that

- |q+||q−| ≤ |q+|+|q−|

- all labels inq+ or in q− (or both) areǫ

Let δ′=δ\(q+∪q−) ∪ {(q′, ab, q′′)|(q′, a, q)∈q−, (q, b, q′′)∈q+}, then theq-reductof
E is defined asE′ = (Q\q,A, δ′, q0, F) , and we writeE⊲qE

′.

State-elimination can be applied toq, if all leaving or all reaching transitions (or both)
are labeledǫ and if either of|q+|, |q−| is 1, or both are 2. Though state-eliminations
reduces the size of an EFA by either 1 or 2 its effects will turnout to be crucial in the
proof of Thm. 5.2.

Definition 4.4 (ǫ-Cycle-Elimination). LetE=(Q,A, δ, q0, F) be an EFA,γ anǫ-cycle
connecting the set of statesQγ , then the EFAE′=(Q′,A, δ′, q0, F) is called theγ-
reduct, writtenE⊲γE′, if

- Q′ = Q \Qγ ∪ qγ whereqγ /∈ Q

- δ′ = δ\(γ∪Q+
γ ∪Q

−
γ)∪{(qγ , α, q′)|(q, α, q′)∈Q+

γ }∪{(q
′, α, qγ)|(q′, α, q)∈Q−

γ }

Note that both eliminations strictly reduce the size of an EFA without re-introducing
complex labels. Exhaustive application of these transformations to a primal automaton
yields anǫNFA.

Proposition 4.1(Acceptance-Invariance). LetE, E′ be EFAs. ThenL(E) = L(E′), if
E ⊳ E′ or E ⊲q E′ or E ⊲γ E′.

A schematic algorithm showing how to convert from an expression to a corresponding
ǫNFA is given in Alg. 1. The algorithm is intentionally crude and has unfortunate time-
complexity — however, runtime-analysis and implementation details lie not within the
scope of this report.

5

Algorithm 1 RegEx→ ǫNFA

A← A0
α

while A is not an NFAdo
choose a complex-labeled transitiont in A
let A ⊳t A′

if ⊳t introduced somee = (q, ǫ, q′) then
if q can be eliminatedthen

let A′
⊲q A′′

A′ ← A′′

if q′ can be eliminatedthen
let A′

⊲q′ A′′

A′ ← A′′

if e is part of someǫ-cycleγ then
let A′

⊲γ A′′

A′ ← A′′

A← A′

end while

⊳• ⊳+ ⊳∗0 ⊳∗1 ⊳∗2, ⊳∗3 ⊳∗4 ⊲γ ⊲q

∆(|Q|) 1 0 0 -1 0 1 -(|γ| − 1) -1
∆(|δ|) 1 1 0 0 1 2 -|γ| -1 or 0

Table 1: Number of elements introduced (i.e., removed, if negative)upon expansion and elimi-
nation, broken down to states and transitions.

Clearly, there is no infinite series of expansions and reductions of an EFA, both opera-
tions either reduce the overall length of labels or the number of states and transitions.
Thus, Alg. 1 is terminating. By Prop. 4.1 it is also partiallycorrect, thus the algorithm
is totally correct.

5 Analysis

Let Aα denote anǫNFA constructed by our algorithm fromA0
α. We start by bounding

|Aα| from above. To this end, we refine the definition of|α|∗. Let |α|∗i denote the
number of stars inα which will be∗i-expanded. Clearly,|α|∗ =

∑
0≤i≤4 |α|∗i.

Theorem 5.1. The size of an automaton built fromα by our algorithm is bounded by

|Aα| ≤ |α|+ 2|α|∗4 − |α|+ + 2

The bound is tight iff neither elimination nor∗0, ∗1-expansion is applied.

Proof. A0
α has size 3. The number of elements introduced upon expansionis deter-

mined by|α|•, |α|+, . . ., weighted by the entries in Tab. 1. Using|α|A=|α|•+|α|++1
and|α| = |α|•+|α|++|α|∗0+ . . .+|α|∗4+|α|A, this yields:

|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= |α|+ |α|• − |α|∗0 − 2|α|∗1 + 2|α|∗4 − |α|A + 3

≤ |α|+ |α|• + 2|α|∗4 − |α|A + 3

= |α|+ 2|α|∗4 − |α|+ + 2

6

(x∗

1+x2+x∗

3)∗

x∗

1+x2+x∗

3 x∗

1

x∗

3

x1

x2x2

x3

⊳ ⊳
2

⊳
2

(a) (
P

αi)∗ ≡ (
P

αi)∗ by ∗0-expansions.

x1

x1

x2

x2

(x∗

1x∗

2)∗

x∗

1x∗

2

⊳⊳

γ
⊲γ

(b) (
Q

α
∗

i
)∗ ≡ (

P

αi)∗ by elimination ofǫ-cycles.

Figure 2: Transformations respect the equivalences given in Prop. 5.1 (ǫ-labels are omitted).

The first inequality results from state- andǫ-cycle eliminations, the second from∗0-
and∗1-expansions, thus equality holds in absence of these transformations.

Proposition 5.1. Both sides in each of the following equivalences will be expanded to
the same (sub)automaton:

(α∗)∗≡α∗ and (
∑

αi)
∗≡(

∑
αi)

∗ and (
∏

α∗
i)

∗ ≡ (
∑

αi)
∗

whereαi = βi, if αi = β∗
i andαi otherwise.

Proof. The first two equivalences are realized by∗0-expansion, the third byǫ-cycle-
elimination. Examples are given in Fig. 2.

Corollary 5.1. Letα be worst-case, then

1. The conversion-ratio forα is

|Aα|

|α|
= 1 +

2|α|∗4 − |α|+ + 2

|α|

2. |α|∗0=|α|∗1=0, further both a sum with starred operands and a maximally starred
product are not starred themselves.

Proof. The first item is a trivial consequence of Thm. 5.1. The secondfollows from
Prop. 5.1 and Thm. 5.1.

We proceed with a series of results, each putting additionalconstraints to the structure
of a worst-case expression. Almost all proofs work by a line of argumentation that is
common in extremal combinatorics: assumeα is worst-case (clearly, such an expres-
sion must exist), i.e., extremal with respect to conversion-ratio, then infer some further
property by contradicting extremality ofα.

Proposition 5.2. A worst-case expression contains stars.

Proof. Let α be worst-case with|α|∗=0. Cor. 5.1 implies|Aα|
|α| ≤ 1+ 2

|α| , the right-
hand side of which drops below1.4, if |α| ≥ 5. Since by Cor. 3.1, the conversion-
ratio is bounded from below by1.46̄, the assumption|α|∗=0 is wrong, if α is worst-
case.

7

Lemma 5.1. Letγ∗ be a proper subexpression ofα. Thenγ∗ will be ∗4-expanded iff

- it is operand to a sum, which is not starred itself, or

- wlog. it occurs rightmost in a star-maximal product.

Proof. The first case is clear by looking at the expansion of someγ∗+β. If γ∗ is an
infix, say,α1γ

∗α2, we distinguish 3 cases: If bothαi are non-starred,γ∗ will be ∗1-
expanded. If only one of theαi is non-starred, thenγ∗ can be∗2- or ∗3-expanded by
introducing a loop at the state incident to the transition labeled with the non-starredαi.
Finally, if both αi are starred, we can by confluence assume that expansions willbe
applied from left to right. Then, every starred factor will be∗2-expanded until the final
one necessitates∗4-expansion. This embraces all possible cases, giving both directions
of the statement.

Lemma 5.2. Let α be worst-case, assumeγ∗∈sub(α) is ∗4-expanded. Thenγ∗ is
operand to a sum.

Proof. By Lem. 5.1,γ∗ is either operand to a sum or rightmost in a star-maximal
product. Assume the latter, thusπ = π∗

1 • . . . • π∗
n−1 • γ∗. Constructα′ from α by

replacingπ with σ = π∗
1+ . . . + π∗

n−1+γ∗. Then|α|=|α′|, however2|α′|∗4−|α′|+ =
2|α|∗4−|α|++n−1. Since by Prop. 5.1π is not starred inα, the stars inσ will not
accidentally become∗0. By Cor. 5.1,|Aα′ |

|α′| > |Aα|
|α| , thusα is not worst-case. Therefore

γ∗ is necessarily operand to a sum.

The interrelation between sums and stars in a worst-case expression is tightened in

Lemma 5.3. Letα be worst-case. Then

1. every starred subexpression inα is operand to a sum and

2. all operands in a maximal sum are starred.

Proof.

1. Assumeγ∗∈sub(α) will not be∗4-expanded. Constructα′ from α by replacing
γ∗ with γ. Since|α′|=|α|−1, yet |α′|∗4=|α|∗4, Cor. 5.1 again yields|Aα′ |

|α′| >
|Aα|
|α| , thusα is not worst-case. Therefore each star in a worst-case expression is

subject to∗4-expansion, thus by Lem. 5.2 operand to a sum.

2. Let
∑

σi be maximal with someσj unstarred, i.e., a product. Constructα′ from
α by replacingσj with σ∗

j . Then|α′| = |α| + 1, |α′|∗4 = |α|∗4 + 1 and by
Cor. 5.1,|Aα′ | = |Aα|+ 2. Now

|Aα′ |

|α′|
=
|Aα|+ 2

|α|+ 1
>
|Aα|

|α|
iff |Aα| < 2|α|

We proceed similar to the proof of Thm. 5.1, additionally using that the previous
item implies|α|∗4 ≤ 2|α|+:

|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= 2|α| − |α|+ − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 3− 2|α|A

= 2|α| − 2|α|+ − |α|• − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 2− |α|A

≤ 2|α| − |α|+ − 2|α|• + 1

8

By assumption,|α|+ ≥ 1, any further binary operator pushes the right-hand side
strictly below2|α′|. Indeed, the only expression containing only one+ as binary
operator, that reaches a conversion-ratio of 2, isx∗

1 + x∗
2, which is of claimed

structure.

Lemma 5.4. A worst-case expressionα has no subexpression of the form

φ = (
∏

i

∑

j

σ∗
ij)

∗

Proof. If φ ∈ sub(α), ǫ-cycle elimination would occur upon expansion. By Cor. 5.1
thenα would not be worst-case.

This allows us to provide a pretty detailed template of a worst-case expression:

Lemma 5.5. Letα be worst-case. Then the structure ofα is

α =

n∏

i=1

ki∑

j=1

σ∗
ij

where theσij are literals.

Proof. By Prop. 5.2, a worst-case expression contains starred subexpressions, so fix
someσ∗

ij which is by Lem. 5.3 operand to a sum. A maximal sum with stars is a factor,
since it may not be starred itself and is already maximal. Further,σij is necessarily a
maximal product. If its operands were maximally starred sums, this would contradict
Lem. 5.4, thusσij is a product of literals. Then,σij influences the conversion-ratio as
given in Cor. 5.1 only by its length, which has to be minimizedin order to maximize
the ratio. Thusσij is a literal. From Lem. 5.4 it also follows thatα itself may not be
starred.

It remains to analyze the influence of the number of summands (theki in Lem. 5.5) on
conversion-ratio. This is done in the proof of our main

Theorem 5.2. An expressionα is worst-case, if its structure is

α =

n∏

i=1

2+(i mod 2)∑

j=1

x∗
ij where xij ∈ A ∪ ǫ

Proof. Let α be of the general structure given in Lem. 5.5, the FA producedby a series
of expansions fromA0

α is sketched in Fig. 3. The sizes of these objects are

|α| = (n− 1) +
n∑

i=1

(3ki − 1) = 3
n∑

i=1

ki − 1

|Aα| =

n∑

i=1

4ki + n− 1 = 4

n∑

i=1

ki + n− 1

thus the ratio is
|Aα|

|α|
=

4
∑

ki + n− 1

3
∑

ki − 1
= 1 +

∑
ki + n

3
∑

ki − 1

9

x11

x12

x1k1

x21

x22

x2k2

xn1

xn2

xnkn

Figure 3: Automaton constructed from a worst-case expression (ǫ-labels are omitted).

The fraction on the right-hand side is maximized, ifn is maximal with respect to
∑

ki,
or equivalently, if

∑
ki is minimal. Two restrictions result from prohibiting state-

elimination, namely that∀i : ki ≥ 2 and if ki=2 thenki−1>2 andki+1>2 (if they
exist). Thus

∑
ki is minimal, ifki alternates between 2 and 3, i.e.,ki = 2+(i mod 2).

Corollary 5.2. The size of an automaton produced by our construction is bounded by
22
15 |α|+ 1. The construction is optimal.

Proof. The value is reached by the expression given in Thm. 5.2, which was proven to
give the maximal ratio of sizes. Since by Cor. 3.122

15 |α|+ 1 is also a lower bound, the
bound is tight, hence the construction is optimal.

6 Conclusions & Remarks
We have given a construction for converting regular expressions into equivalentǫNFAs.
To our knowledge it is the only provably optimal construction so far. It should be men-
tioned that the generated automata differ from these constructed in [IY03] only by the
effects of state-elimination. This element is crucial however, both for raising the lower
bound as well as for upper bound analysis as we did.

Treatment of∅ in expressions can easily be added to our algorithm by considering it a
literal throughout the expansion/reduction-sequence andadding a final step: removing
∅-labeled transitions followed by running some reachability algorithm. The final step
will reduce the size of the automaton, thus the bound is maintained even if∅ does not
count into the expressions’ size. Since we consider∅ as being of no practical relevance,
it was omitted from formal treatment.
Maybe more interesting, Kleene-+ can be added by reformulating∗-expansions, where
additionalǫ-transitions need to be introduced. This yields smaller FAsthan by applying
the equivalenceα+ ≡ αα∗ (which would double the number of elements introduced
by α), yet it is not feasible with the given bound.

Finally we claim that(⊳∪⊲q∪⊲γ) is confluent as well, thus a series of combined ex-
pansions and eliminations converges to a unique FA. The proof involves more complex
cases and is postponed to a future article.

10

References
[BS86] Gerard Berry and Ravi Sethi. From regular expressions to deterministic

automata.Theoretical Computer Science, 48:117–126, 1986.

[EKSW05] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Reg-
ular expressions: new results and open problems.Journal of Automata,
Languages and Combinatorics, 10(4):407–437, 2005.

[Glu61] Victor Michailowitsch Glushkov. The abstract theory of automata.Russian
Mathematical Surveys, 16:1–53, 1961.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems.Journal of the ACM, 27(4):797–821, 1980.

[IY03] Lucian Ilie and Sheng Yu. Follow automata.Information and Computa-
tion, (186):140–162, 2003.

[Kle65] Stephen Cole Kleene.Representation of Events in Nerve Nets and Finite
Automata, pages 3–41. Annals of Mathematics Studies. 1965.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata.IRE Transactions on Electronic Computers, 9(1):39–
47, 1960.

[OF61] Gene Ott and Neil H. Feinstein. Design of sequential machines from their
regular expressions.Journal of the ACM, 8(4):585–600, 1961.

[SSS88] Seppo Sippu and Eljas Soisalin-Soininen.Parsing Theory. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1988.

[Tho68] Ken Thompson. Regular expression search algorithm. Communications
of the ACM, 11(6):419–422, 1968.

[Wat94] Bruce W. Watson. A taxonomy of finite automata construction algorithms.
Technical Report Computing Science Note 93/43, Eindhoven University
of Technology, may 1994.

[Woo87] Derick Wood.Theory of Computation. John Wiley & Sons, Inc., 1987.

11

ǫ

ǫ

α α

α

α∗

α∗

β

ββ

β∗

β∗

pp

p

pp

q

qq

r

r

r

⊳

⊳

⊳

⊳

≃

(a)

ǫ

ǫǫ

ǫ ǫ

α

α

α

α∗

α∗

β

β

β

β∗

β∗

p

p

p p

p

p′

q

q q

r

r

rr

r

⊳

⊳

⊳

⊳

≃

(b)

ǫ ǫǫ

ǫ

ǫ

α

α

α

α∗

α∗

β

ββ

β∗

β∗

p

p

p

p

p p′

q′q

q

q

q

q

r

r

r r

r

⊳

⊳

⊳

⊳

≃

(c)

Figure 4: Examples for confluence of expanding consecutive starred transitions. Isomorphism
is denoted by≃.

12

	Introduction
	Preliminaries
	A Lower Bound
	Construction
	Analysis
	Conclusions & Remarks

