
Meta-algorithm GENMODEL: Generalizing over
three learning settings using observation tables

Anna Kasprzik (kasprzik@informatik.uni-trier.de)

Technical report 09-2 University of Trier

Abstract. We present a learning algorithm for regular languages that
unifies three existing ones for the settings of minimally adequate teacher
learning, learning from membership queries and positive data, and learn-
ing from positive and negative data, respectively. We choose these three
algorithms as an example to back up the conjecture that the learning pro-
cess of every algorithm for the class of regular languages founded on the
retrieval of equivalence classes under the Myhill-Nerode relation can be
mapped to an observation table as introduced by Angluin [1]. Different
aspects of this generalization and suggestions for possible (architectural
and theoretical) extensions are discussed in the second part of the paper.

Key words: Generalization, regular, exact learning, observation table

1 Introduction

The area of grammatical inference centers on the study of learning algorithms,
i.e., algorithms that infer a description (e.g., a grammar or an automaton) of an
unknown formal language from given examples and/or other information sources.
For this kind of learning processes various conceivable settings have been delin-
eated, and based on those quite an amount of algorithms have been developed.
One of the language classes that have been studied most thoroughly with respect
to their algorithmical learnability so far is the class of regular languages.

We present an algorithm learning regular languages that incorporates three
existing ones for the settings of minimally adequate teacher learning ([1]), learn-
ing from membership queries and positive data ([2]), and learning from positive
and negative data ([3]). We choose these three algorithms as an example to
demonstrate that in the field of grammatical inference there exist a number of
learning algorithms for regular languages which can be seen to be founded on a
common notion, viz. the retrieval of the appropriate set of equivalence classes
under the Myhill-Nerode relation, and more importantly, in doing so we would
like to sustain the hypothesis that in all cases this process can be performed
using the concept of an observation table as introduced by Angluin [1] in 1987.

Different aspects of this generalization and suggestions for possible (architec-
tural and theoretical) extensions are discussed in the second part of the paper.
We conceive this work as a further step to work out as many as possible of the
basic features and universal principles that most of the existing learning algo-
rithms seem to have in common, which may hopefully lead to an even more
unified base for the theory of grammatical inference in general in the future.

2 Anna Kasprzik

2 Preliminaries

Definition 1. Let Σ be an alphabet. Then u is a prefix (suffix) of w – denoted
by u � w (w � u) – iff there is v with w = uv (w = vu) for u, v, w ∈ Σ∗. If
u � w then w is an extension of u. Let Pref(X) := {u ∈ Σ∗|∃w ∈ X : u � w}
and Suff(X) := {u ∈ Σ∗|∃w ∈ X : w � u} for X ⊆ Σ∗.

The type of learner we consider infers a regular string language L over some
fixed alphabet Σ, or rather, the canonical automaton recognizing L, from given
samples of L and Σ∗ \ L and answers to certain kinds of queries, and solves
this task principally by means of an observation table in which it keeps track of
the information it has obtained and processed so far. The rows of the table are
labeled by elements from some set S, the columns by elements from some set E.

Definition 2. A triple T = (S,E, obs) with S,E ⊆ Σ∗ finite, non-empty for
some alphabet Σ is called an observation table if obs : S × E −→ {0, 1, ∗} is a
function with

obs(s, e) =


1 if se ∈ L is confirmed,
0 if se /∈ L is confirmed,
∗ if unknown.

For an observation table T = (S,E, obs) and s ∈ S, the observed behaviour of s
is row(s) := {(se, obs(s, e))|e ∈ E}, and row(S) is defined as {row(s)|s ∈ S}.
A table or row not containing any pairs (s, e) with obs(s, e) = ∗ is complete.

Definition 3. Two elements r and s are obviously different (r <> s) iff ∃e ∈ E
such that obs(r, e) 6= obs(s, e) for obs(r, e), obs(s, e) ∈ {0, 1}.

S is partitioned into two sets red and blue where uv ∈ red⇒ u ∈ red for
u, v ∈ Σ∗ (prefix-closedness), and blue := {sa ∈ S \ red|s ∈ red, a ∈ Σ}, i.e.,
blue contains those one-symbol extensions of red elements in S that are not in
red. The generalized model of a learner we are about to present moves elements
successively from blue to red and for every moved element fills up blue with
its available one-symbol extensions from a third “supply” set white.

Definition 4. T is closed iff ¬∃s ∈ blue : ∀r ∈ red : r <> s. T is weakly
consistent iff ∀s1, s2 ∈ red, s1a, s2a ∈ S, a ∈ Σ : s1a <> s2a⇒ s1 <> s2.

We add ‘weakly’ because the ∗-symbol may mask differences that are not obvious
yet. Definition 5 rules out the cases in which hidden differences might prove fatal:

Definition 5. T is strongly consistent iff it is weakly consistent and, for s1, s2 ∈
red or for s1 = sxa, s2 = sya ∈ S with a ∈ Σ, sx, sy ∈ red and ¬(sx <> sy):
If ¬(s1 <> s2) then row(s1) and row(s2) are complete.

Definition 6. A finite-state automaton is a tuple A = (Q,Σ, q0, δ, F) with
finite input alphabet Σ, finite non-empty state set Q, start state q0 ∈ Q, set of
accepting states F ⊆ Q, and transition relation δ ⊆ (Q × Σ) ×Q, the elements

Meta-algorithm GENMODEL: Generalizing over three learning settings 3

of which we write as mappings (q1, a) 7→ q2. If δ maps at most one state to any
pair from Q × Σ the automaton is deterministic (a DFA). If δ maps a state to
every pair in Q×Σ the automaton is total, otherwise partial. δ can be extended
to δ ⊆ (Q×Σ∗)×Q with {(q, ε) 7→ q} ⊆ δ and δ∩{(q1, ε) 7→ q2|q1 6= q2} = ∅ and
(q1, aw) 7→ q2 ∈ δ for a ∈ Σ, w ∈ Σ∗ iff (q1, a) 7→ q3 ∈ δ and (q3, w) 7→ q2 ∈ δ for
some q3. The set accepted by A is L(A) = {s ∈ Σ∗|∃q ∈ F : (q0, s) 7→ q ∈ δ} (a
regular language). A(w) = 1 stands short for ∃q ∈ F : (q0, w) 7→ q ∈ δ, A(w) = 0
for ∃q ∈ Q \ F : (q0, w) 7→ q ∈ δ, and A(w) = ∗ for ¬∃q ∈ Q : (q0, w) 7→ q ∈ δ.

From an observation table T = (red∪blue, E, obs) with ε ∈ E we can derive an
automaton AT = (QT , Σ, qT , δT , FT) with QT = row(red), qT = row(ε), FT =
{row(s)| s ∈ red, obs(s, ε) = 1}, and δT = {(row(s), a) 7→ q|¬(q <> row(sa)),
s ∈ red, a ∈ Σ, sa ∈ S}. If T is strongly consistent AT is deterministic. The
DFA for a language L derived from a closed and strongly consistent table has
the minimal number of states (see [1], Theorem 1). This DFA is the canonical
automaton AL for L and is unique up to isomorphism. However, if AL is required
to be total it contains a “failure state” for all strings that are not a prefix of
some string in L (if there are any), which does not have to appear otherwise.

The Myhill-Nerode equivalence relation ≡L is defined by: r ≡L s iff re ∈ L⇔
se ∈ L for all r, s, e ∈ Σ∗. The index of L is IL := |{[s0]L|s0 ∈ Σ∗}| where [s0]L
denotes the equivalence class containing s0. The Myhill-Nerode theorem (see for
example [4]) states that IL is finite iff it can be recognized by a finite-state au-
tomaton. The total canonical automatonAL has exactly IL states, and each state
can be seen to represent an equivalence class under ≡L. All learning algorithms
mentioned in this paper can be conceived to start out with a provisional set of
equivalence classes and then to try and converge to the Myhill-Nerode relation
by splitting up or merging these classes, according to the obtained information.
Note the correspondence between the table T = (S,E, obs) representing AL and
the equivalence classes of L under ≡L (reflected by symbols S and E): S con-
tains strings whose rows are candidates for states in AL, and the elements of E
– ‘contexts’, as we will call them – can be taken as experiments which prove that
two strings in S belong to distinct equivalence classes and that their rows should
represent two different states of the automaton. red can be seen as the set of
strings whose rows’ status as a state in the final automaton is already fixed, and
blue contains the remaining candidates that are “visible” to the learner so far.

Finally, we have to classify the language samples given to the learner:

Definition 7. A finite set X is representative for a regular language L with
canonical automaton AL = (QL, Σ, qL, δL, FL) if X ⊆ Pref(L) and for each
transition (q1, a) 7→ q2 ∈ δL (q1, q2 ∈ QL, a ∈ Σ) there is w ∈ X and u, v ∈ Σ∗
such that w = uav and (qL, u) 7→ q1 ∈ δL.

Definition 8. A finite set X is separative for a regular language L with total
canonical automaton AL = (QL, Σ, qL, δL, FL) if for all q1, q2 ∈ QL there is
w ∈ X and v ∈ Σ∗ such that w � v and (qa ∈ FL ∧ qb ∈ (QL \ FL)) ∨ (qb ∈
FL ∧ qa ∈ (QL \ FL)) for (q1, v) 7→ qa, (q2, v) 7→ qb ∈ δL.

4 Anna Kasprzik

Intuitively, X is representative for L if in order to parse the elements of X every
transition of AL has to be used at least once, and X is separative for L if for
every pair of different states of AL there is some suffix in X proving that these
two states do indeed represent two different equivalence classes of L.

3 A meta-algorithm for three learning settings

3.1 Algorithm GENMODEL

The algorithm GENMODEL we will present covers three learning paradigms (at
least): Minimally adequate teacher (MAT) learning, learning from membership
queries and positive data, and learning from positive and negative data.

In the MAT setting the learner is helped by a teacher able to answer member-
ship (MQs; ‘w ∈ L?’, w ∈ Σ∗) and equivalence queries (EQs; ‘Is this automaton
equivalent to AL?’). The prototypical algorithm for this setting, L∗, was devel-
oped by Angluin [1] in 1987. The main loop of L∗ builds a closed, consistent
observation table T and asks for a counterexample CL(AT) ∈ (L \ L(AT)) ∪
(L(AT) \ L) until AT = AL. L∗ has been adapted to other structures such as
trees (see [5]). We use the fact that every tree algorithm can be applied to strings
when conceived as non-branching trees with the last symbol as the root label.

Angluin [6] also introduced an algorithm learning from MQs and positive
data, which was adapted to trees in [2] (ALTEX). The ALTEX algorithm builds
a (closed) table T from a representative positive sample of L and adds elements
to E distinguishing equivalence classes of L (‘separating contexts’) until T is
consistent and AT deterministic, which is tantamount to AT = AL (see [2]).

In the third setting the learner receives no external help at all, but is given
a finite positive and negative sample from which it is possible to infer L. The
algorithm we will consider for this setting (RPNI; see [3]) builds the prefix au-
tomaton from the positive sample and then merges its states as long as this is
consistent with the negative sample until all states are processed and AT = AL.

The architecture of our meta-algorithm incorporates features of all three, and
its syntax is inspired by the MAT algorithm for regular tree languages in [5].

Let the input of the algorithm be a tuple (X+, X−, MQ, EQ) consisting of
a positive and a negative finite sample of L, and two Boolean values indicating
if there is a teacher able to answer MQs and/or EQs including the provision of
counterexamples in case of a negative answer to the latter. In its current form,
the output of the algorithm is defined for the following constellations:

– (X+, X−, 1, 1) (MAT learning) where X+ ∪X− = ∅,
– (X+, X−, 1, 0) where X− = ∅ and X+ is representative for L,
– (X+, X−, 0, 0) where X+ is representative and X− separative for L.

We assume for convenience that the number I of states of AL is given, which
however represents no (inadmissible) additional help for the learner (see below).
Note that for EQ = 0 the final automaton is generally partial and contains no
failure state so that we set I = IL − 1 in the cases where the total minimal
automaton for L would contain one. In all other cases (including L = ∅) I = IL.

Meta-algorithm GENMODEL: Generalizing over three learning settings 5

We also assume that the components of the tuple (X+, X−, MQ, EQ) are
visible to the subprocedures. Let T = (red ∪ blue, E, obs), white, and O =
(QO, Σ, qO, δO, FO) be global variables for the observation table, the set from
which blue is filled up, and the membership oracle (see below), respectively.

The main body of GENMODEL looks like this:

INIT;

while |red| < I

if T is not closed CLOSURE

else SEPCONT;

UPDATE;

return AT .

The procedure INIT (given below) initializes the table T , white, and the
membership oracle O with the given information sources. It recurs to two other
procedures: POOL returns the set of all strings that can ever be considered as
candidates for representatives of states under the given input, and MQORACLE
yields an instance of the best membership oracle the learner can hope for. Of
course for MQ = 1 this is trivial, and MQORACLE will return an arbitrary
correct total finite-state automaton (a black box) OL for the language L that
can be used for MQs. However, for MQ = 0 we are forced to exploit other sources
of information – GENMODEL builds an imperfect membership oracle based on
the given data, which is updated during the process every time the learner gains
a new insight. This oracle is initialized with the prefix automaton PA(X+) built
from the positive sample. A prefix automaton is a generally partial DFA:

Definition 9. Let the prefix automaton for X ⊆ Σ∗ be defined as PA(X) =
(Q,Σ, q0, δ, F) with Q = {{x}|x ∈ Pref(X)}, q0 = {ε}, F = {{x}|x ∈ X} ⊆ Q
and (q1, a) 7→ q2 ∈ δ for a ∈ Σ iff ∃x ∈ q1, y ∈ q2 such that y = xa.

The states of PA(X) are labeled by singleton sets of strings. This comes in handy
for GENMODEL, as we unite some of these sets during the process, according
to the information processed so far. This way, each state will be labeled by the
set of all strings ending in it the learner has already found. Let qw stand short
for the state containing w ∈ Σ∗ in its label (qw is unambiguously defined).

procedure INIT

O := MQORACLE;

P := POOL;

red := {ε};
blue := Pref(P) ∩Σ;

white := Pref(P) \ (red ∪ blue);
E = {ε};
obs := {(ε, ε) 7→ O(ε)}.

procedure MQORACLE

if MQ = 1 return OL

else if X+ 6= ∅ return PA(X+).

procedure POOL

if X+ 6= ∅ return X+ else return Σ∗.

6 Anna Kasprzik

We will now discuss the two most essential subroutines of GENMODEL:

procedure CLOSURE

find s ∈ blue such that ∀s0 ∈ red : s <> s0;
red := red ∪ {s};
blue := (blue \ {s}) ∪ {s1 ∈ white|∃a ∈ Σ : s1 = sa}.

procedure SEPCONT

if MQ = 1

if EQ = 1 c := CL(AT)

else if X+ 6= ∅ [find s0 ∈ blue ∪ white, e0 ∈ E ∪ Suff(X+) such that

AT (s0e0) 6= O(s0e0) ∧ AT (s0e0) = ∗ ⇒ O(s0e0) = 1;

c := s0e0];

find s ∈ blue, e ∈ Σ+ such that c = se;

E := E ∪ {e};
else MERGENEXT;

find s ∈ blue such that ∀s0 ∈ blue : |qs0 | = 1⇒ s � s0 (qs0 ∈ QO);

for s2 ∈ red do

c := PREVENTMERGE(qs2 , qs, O);

find x ∈ qs2 ∪ {s}, e ∈ Σ+ such that c = xe;

E := E ∪ {e};
if x = s [obs(s2e) := 1; obs(se) := 0]

else [obs(s2e) := 0; obs(se) := 1];

if |red| = I − 1 MERGENEXT.

CLOSURE relies on the fact that there is at least one blue element obviously
different from all red elements, which is then promoted to red. blue is filled up
with all one-symbol extensions of that element from white. CLOSURE is the
only way to promote blue elements to red, which entails that all red elements
are pairwise obviously different at any time and that for every blue element
there is exactly one element matching it in red. The purpose of CLOSURE can
be conceived to fix a string’s status as the (only!) “official” representative of a
separate equivalence class under ≡L, and its row must be a separate state of AL.

SEPCONT relies on the fact that T is closed and strongly consistent but does
not representAL so that there is a counterexample c. If the learner has access to a
perfect membership oracle c is procured either by asking an EQ (as in L∗), which
is answered by ‘no’ so that c is given by the teacher, or, for EQ = 0, by looking
for c in an extension Text of T where the rows are labeled with S ∪white and
the columns with E ∪Suff(X+), and whose cells can be filled via MQs. We can
show that such a counterexample always exists using a correspondence between
Text and the table built by the ALTEX algorithm by which it is guaranteed that
Text contains elements the learner has not seen yet that are either obviously
different from all elements in red or make Text inconsistent (see A.2 for a proof).
GENMODEL finds the prefix s of c in blue (see Lemma 1) and e ∈ Σ∗ such
that c = se, and adds e to E. Since c is a counterexample, s is distinguished
from its previous match in red by e, and since the red elements are pairwise
obviously different s is now obviously different from all of them and must thus
be promoted to red by CLOSURE in one of the next loop executions.

Meta-algorithm GENMODEL: Generalizing over three learning settings 7

Lemma 1. For MQ = 1: For every counterexample c GENMODEL retrieves
there is exactly one prefix of c in blue.

Proof: There is at least one prefix of c in red (ε is a prefix of every string) and
the one-symbol extension of the longest such prefix is in blue as in the MAT
case blue = red · Σ, and in the case of learning from MQs and positive data
c is constructed by appending a string to some element from blue ∪ white,
and red ∪ blue ∪ white is prefix-closed. By the definition of blue = {sa ∈
S \ red|s ∈ red, a ∈ Σ} there can only be one such extension in blue. �

If the learner has no access to a perfect membership oracle (MQ = 0) we
cannot make use of a counterexample the way described above because first we
cannot complete a table (extended or not) in order to search for hidden dif-
ferences or inconsistencies, and second, in the present case the only source the
learner can draw a counterexample from is the negative sample and there is no
guarantee that there is a prefix of that example in blue, which were two impor-
tant conditions we relied on before. Since in this case the table generally contains
a lot of ∗-symbols the available candidates must all be checked for inconsistencies
with the help of the imperfect oracle O built from the prefix automaton for X+

and made obviously different “by hand”, if necessary. To do so, GENMODEL
proceeds as follows: First the procedure MERGENEXT (given below) searches
all strings in blue which correspond to states in O that can be but have not
yet been merged with some other state, and of which there is no prefix in blue
representing a non-mergeable state. MERGENEXT finds those strings by the
cardinality of the state labels they are contained in (labels of states that result
from a merge must contain more than one string) and by testing the mergeability
of two states via the procedure COMPATIBLE, which checks if a given automa-
ton (here: O with the two states merged) still correctly rejects all elements of
X−. As soon as such a string s0 ∈ blue is found, the corresponding state qs0
is merged with an arbitrary other state of O it can be merged with (imitating
RPNI, see Subsection 3.2). The merge is done by the procedure RECMERGE
which calls MERGE and then recursively “repairs” the possible non-determinism
introduced by that merge (COMPATIBLE, RECMERGE and MERGE are taken
from the description of RPNI in [7] and adapted to automata whose states are
labeled by sets of strings). blue is then filled up with the successors of s0. Note
that as s0 stays in blue we are violating the definition of blue, but this is
irrelevant since the algorithm will never consider these particular strings again.

procedure MERGENEXT

while ∃s0 ∈ blue : |qs0 | = 1 (qs0 ∈ QO) ∧ ¬∃s ∈ blue : [s � s0 ∧ ¬∃sa ∈ red

such that COMPATIBLE(RECMERGE(qsa , qs, O)) (qsa , qs ∈ QO)]

find sb ∈ red such that COMPATIBLE(RECMERGE(qsb , qs0 , O));
O := RECMERGE(qsb , qs0 , O);
blue := blue ∪ {sc ∈ white|∃a ∈ Σ : sc = s0a}.

procedure COMPATIBLE(A)
if A(w) = 1 for some w ∈ X− return false else return true.

procedure RECMERGE(q1, q2, A) [q1, q2 ∈ QA]

A := MERGE(q1, q2, A);

8 Anna Kasprzik

for a ∈ Σ do

if |D = {q ∈ QA|((q1 ∪ q2), a) 7→ q ∈ δA}| > 1 find qa, qb ∈ D st qa 6= qb;

A := RECMERGE(qa, qb, A);
return A.

procedure MERGE(q1, q2, A) [q1, q2 ∈ QA]

qx := q1 ∪ q2;
QA := (QA \ {q1, q2}) ∪ {qx};
if q2 ∈ FA FA := (FA \ {q1, q2}) ∪ {qx};
if q1 = qA qA := qx;

δA := (δA \ ({(q, a) 7→ qy|q ∈ QA, a ∈ Σ, y ∈ {1, 2}} ∪
{(qy, a) 7→ q|q ∈ QA, a ∈ Σ, y ∈ {1, 2}})) ∪

{(q, a) 7→ qx|(q, a) 7→ qy ∈ δ, q ∈ QA, a ∈ Σ, y ∈ {1, 2}} ∪
{(qx, a) 7→ q|(qy, a) 7→ q ∈ δ, q ∈ QA, a ∈ Σ, y ∈ {1, 2}};

return A.

procedure PREVENTMERGE(q1, q2, A) [q1, q2 ∈ QA]

A := RECMERGE(q1, q2, A);

return w ∈ X− such that A(w) = 1.

When all mergeable prefixes have been processed any one-symbol extension
s ∈ blue of the longest of these prefixes corresponds to a state that is non-
mergeable with any other in O already represented in red (and should thus
represent a separate state of AL). SEPCONT finds s and, for every s2 ∈ red,
retrieves a string from X− preventing a merge of qs2 with qs (recall that X− is
separative for L). It uses the procedure PREVENTMERGE, which relies on the
fact that the two given states cannot be merged and returns a string c ∈ X−
that would be accepted by the given automaton if they had been. From this
counterexample c the algorithm computes the context e separating s and s2,
where e must be the suffix of c leading from the state resulting from a merge
of qs and qs2 to a final state, adds e to E, and updates the cells (s, e) and
(s2, e) of T “by hand” depending on the gained information from which state e
should lead to a final state of O and from which not. Clearly after this loop s
is obviously different from all red elements and will be promoted in the next
main loop execution by CLOSURE. When there is but one state missing from
AT we know that a string corresponding to this state will be promoted to red
in the next loop execution and thus MERGENEXT is called again to merge all
states in O corresponding to the remaining elements in blue∪white with states
corresponding to elements in red to make sure that O evolves into the perfect
membership oracle AL so that T is completed by the next call of UPDATE.

procedure UPDATE

white := white \ blue;
obs := {(s, e) 7→ O(se)|s ∈ red ∪ blue, e ∈ E};
if EQ = 0 ∧ |red| = I − 1 ∧ T is not closed blue := blue ∪ white.

UPDATE clears the candidates that have been moved to blue out of white
and fills in more cells of the table with the help of the oracle O in case the sets
S or E have been modified. Usually the change in the output of a function is

Meta-algorithm GENMODEL: Generalizing over three learning settings 9

assumed to be implied as soon as its domain has been changed, but we prefer to
build obs explicitly as a set of mappings (like δ in Definition 6) in order to state
more clearly where obs gets its information, namely from O, and also to allow
the procedure SEPCONT to modify individual values of obs more easily when
learning from positive and negative data. For EQ = 0, if there is one more state
missing from AL and the needed separating context is already in E so that T is
not closed we have to move the remaining candidates to blue to ensure that no
transition is lacking (recall that X+ is representative for L). Again this violation
of the definition of blue is not fatal for the correctness of the algorithm.

Theorem 1. GENMODEL terminates after at most 2I−1 loop executions and
the final table correctly represents AL.

Proof: In each main loop execution either CLOSURE promotes a blue element
to red or SEPCONT adds a context to E separating a blue element from its
single match in red so that it is promoted to red by CLOSURE in one of
the following loop executions. Consequently, the algorithm must terminate after
2I − 1 loop executions at most, and every string in red represents a different
equivalence class under ≡L. Due to the pairwise obvious difference between the
red elements and the completeness of the table T is always strongly consistent
and AT deterministic. Since blue = red·Σ for EQ = 1 and X+ is representative
for L and red ∪ blue = Pref(X+) in the other cases when |red| = I no
transition is missing and AT corresponds to the minimal DFA AL. �

Note that knowing I is not essential for the termination of GENMODEL
as there exists at least one additional criterion for each of the three underlying
learning settings: We could use an EQ for MAT learning, check if Text is con-
sistent when learning from MQs and positive data, and stop when there are no
more states of O to process when learning from positive and negative data.

3.2 The relationship of GENMODEL to L∗, ALTEX, and RPNI

GENMODEL is based on the same principle as the algorithm L∗ by Angluin [1]
insofar as GENMODEL, too, uses an observation table labeled by a partitioned
set of candidates for representatives of states and a set of contexts, and starts out
with a single equivalence class [ε] which is split up successively according to the
received information (sometimes this is referred to as a specializing algorithm).
It was one of the purposes of this paper to show that this particular way of
proceeding can be applied to a number of other learning settings as well.

Between L∗ and GENMODEL there is only one major difference, which is
the use of counterexamples: Whereas L∗ adds the example and all its prefixes
to red GENMODEL adds a single suffix of it to E. However, both methods
correctly lead to at least one more distinct row in red (see A.1 for a proof).

Adapting ALTEX to the ‘L∗’ pattern is relatively easy since it uses a table
labeled by candidates for representatives of states and contexts as well. ALTEX
starts with a table whose rows are labeled by Pref(X+) and the columns by
Suff(X+) (with X+ a positive representative sample of L), and adds separating

10 Anna Kasprzik

contexts it computes from inconsistencies in the table until the latter is consis-
tent, which corresponds to the determinism of the derived automaton and (as
X+ is representative) to its equivalence with AL. Thus in general ALTEX starts
with several distinct equivalence classes but still has to split them up in order
to arrive at the relation ≡L. Note that although ALTEX has the “head start” of
having all the candidates and some contexts separating them at its disposal from
the beginning this disadvantage is evened out for GENMODEL when learning
from MQs and positive data by giving the algorithm access to a table enriched
with the complete information available at every call of SEPCONT.

Adapting RPNI to the ‘L∗’ pattern requires more work. The most striking
difference is that RPNI does not use a table but starts out with a special au-
tomaton – the prefix automaton for the given positive sample X+ – and then
merges its states as far as this is consistent with the given negative sample X−
(and since the states can be seen as provisional equivalence classes whose number
is successively reduced RPNI may be referred to as a generalizing algorithm).
However, we have shown that the actions of RPNI can be mapped to an ‘L∗’-
style table as well: GENMODEL constructs a table T starting with a single
row and column labeled by ε and simultaneously builds an automaton O from
PA(X+) in the manner of RPNI. Each state of PA(X+) corresponds to an ele-
ment of Pref(X+), the set of candidates for red. These states are then tested
for mergeability successively (respecting the prefix order on the corresponding
strings): In RPNI, if a hitherto unprocessed state qs is mergeable with any of
the already established ones those two states are merged, which is imitated in
GENMODEL by leaving s in blue, but if it is not RPNI marks it down as a
separate state of AL and GENMODEL does the same by adding a context sepa-
rating s from r to E for every r ∈ red, which it computes from some string in
the separative sample X− preventing the merge of qs and qr in O, causing s to
be promoted to red by CLOSURE in the next loop execution. Due to this paral-
lelism RPNI and GENMODEL end up distinguishing the same number of states.
Since we assume that X+ is representative and no transitions of PA(X+) are
erased all necessary transitions are present in the automaton built by RPNI, and
since finally red ∪ blue = Pref(X+) in T the same is true for GENMODEL.
Furthermore, as O is used as a membership oracle and evolves into AL as well T
is completed by the last call of UPDATE: Completeness of blue together with
the fact that red is pairwise obviously different is sufficient to make T strongly
consistent and AT deterministic so that AT represents AL when |red| = I.

Another aim in designing GENMODEL was to optimize certain features of
the other algorithms by trying to slim down the table wherever possible: The
fact that in GENMODEL (as opposed to L∗ and ALTEX) the red elements are
all pairwise obviously different entails that in red no equivalence class under ≡L
is represented twice, and the fact that for MQ = 1 we add a single separating
context only in order to promote a blue element to red entails that E contains
no “useless” contexts (as opposed to ALTEX, for example). This stays true for
MQ = 0, although we may need one separating context for every red element
in order to promote one blue element to red in the worst case.

Meta-algorithm GENMODEL: Generalizing over three learning settings 11

4 Generalizing even further – reflections on other
constellations of information sources

Although the output of the version of GENMODEL presented above is well
defined for MAT learning, learning from MQs and positive data, and learning
from positive and negative data (with the data fulfilling certain properties) only,
we believe the algorithm to be potentially more general than that, i.e., that
with minor modifications it can be made to correctly infer a regular language
(in the sense of Theorem 1 and all its preconditions) when given other suitable
combinations of information sources as well. Of course, one way to verify this is
to check all possible constellations systematically. However, it has already been
shown by various authors ([8–10]) that regular languages cannot be learned from
one of the named information sources alone, i.e., one kind of queries or sample
only. In this section, let us briefly reflect which combinations of two of those
could be of interest for an extension of our meta-algorithm.

Arguably, MQs are a very fundamental means of gaining information since
they enable a learner to fill in the cells of an observation table completely. It
seems that one class of suitable combinations joins MQs and any method of
retrieving a counterexample, from which a separating context can be computed
as described in 3.1. Three of those methods that are already known to us are:

– EQs (MAT learning). Counterexamples are given by the teacher.
– A representative sample of L. Counterexamples can be computed from in-

consistencies in a table extended by the prefixes and suffixes of the sample.
– A separative sample of L, either positive or negative. Like a teacher, such a

sample is just another source of counterexamples.

However, from our (successful) adaptation of RPNI to the ‘L∗’ pattern we
deduce that it is possible to do without MQs if we combine a positive represen-
tative sample of L with one of the other two methods of obtaining a counterex-
ample given above, i.e., either a separative sample of L or EQs. In that case
we would use counterexamples not only in order to compute the necessary sepa-
rating contexts for strings corresponding to non-mergeable states but to check
the mergeability of states in the auxiliary automaton that is built simultane-
ously with the table as well. Note that when choosing the option of checking the
mergeability of two states via a query what we would ask is not an equivalence
but rather a consistency query, in the sense that the automaton ATM resulting
from the merge may not contradict AL for any string s with ATM (s) 6= ∗.

An aside about equivalence queries: Since in GENMODEL I is given, EQs
are not needed as termination test (see 3.1). As long as |red| < I (i.e., any time
the main loop is entered and queries are used at all) an EQ must be answered
negatively and a counterexample given so that in the context of this work we
prefer to reconstrue this kind of queries as mere requests for a counterexample.

Apparently two information sources fulfilling certain essential properties seem
to suffice. For MQ = 1 the availability of more than one of the other sources
represents no essential gain in terms of information since for example the pos-
sibility of asking EQs would make an additional separative or representative

12 Anna Kasprzik

sample of L as a source of counterexamples superfluous, and the possibility of
asking MQs would in turn make the sample superfluous altogether. However, as
a representative sample can serve the further purpose of supplying the set of
potential candidates for red, a constellation of three information sources that
may make some sense is the combination of MQs with a representative sample
of L and one of the other two ways to obtain counterexamples because then the
set of candidates is finite and the derived automaton partial in general, if that is
desired (e.g., to achieve more uniformity with other constellations the algorithm
is defined for). For MQ = 0, combining a representative sample with a separative
sample and EQs would be futile since in our algorithm both separative samples
and EQs serve the same purpose of providing counterexamples only.

If we want GENMODEL to be defined for any conceivable input we also
have to decide on its output in the case of insufficient information. If only one
kind of queries is allowed and no data given a standard solution is to return a
default automaton such as AΣ∗ or A∅. However, if a sample is given the returned
automaton should at least be consistent with the data. For a positive sample X+

the most evident option would be PA(X+), and for a negative sample X− we
could return A∅ or AΣ∗\X− . A third solution involves another version of finite-
state automata sometimes found in the literature (see for example [7]), which
adds explicit rejecting states and classifies the membership status of elements
that are neither assigned a final nor a rejecting state as unknown – an output
automaton of that definition would explicitly reject the sample but refrain from
making a statement about any other elements, which is perhaps more satisfying.

For a further exploration concerning the combination of samples and queries
see for example [11]. Another interesting paper is [12] in which it is shown that
the number of EQs in the MAT setting can be reduced but that in return the
number of MQs has to be increased by a certain factor, and vice versa. The
general efficiency of GENMODEL remains to be studied formally, but since our
construction either adopts or even improves the principal mechanisms of some
of the prototypical algorithms for the respective settings the assumption that
the efficiency of these algorithms is at least preserved seems relatively safe.

5 Conclusion

In this paper we have presented the learning algorithm GENMODEL, which is
defined for MAT learning, learning from MQs and positive data, and learning
from positive and negative data, and incorporates features of each of three pro-
totypical algorithms (known as L∗, ALTEX, and RPNI) for these settings in
its architecture. We have shown that the algorithm terminates and is able to
correctly infer a regular language L in less than 2I executions of its main loop,
where I is the number of states of the canonical automaton AL for L, and we
have pointed out some of its intrinsic and architectural properties in comparison
to the ones of the three algorithms it unifies in order to make their relationship
more explicit. Several other suitable combinations of information sources which
could be integrated into the algorithm were surveyed and discussed.

Meta-algorithm GENMODEL: Generalizing over three learning settings 13

One of the most important motivations for the creation of GENMODEL was
an endeavour to find out more about the theoretical foundations of algorithmi-
cal language learning. We intended to show that quite a number of the settings
and corresponding algorithms that have hitherto been described and developed
in the area of grammatical inference can be seen to be founded on a common
conception (which seems to be closely linked to the Myhill-Nerode equivalence
relation) and that accordingly many of the existing algorithms can be remod-
eled into a common form (involving an observation table or a similar concept),
and we did so by presenting a concrete algorithm of which we hope that it has
the potential of incorporating as many different learning settings as possible.
Our main goal in developing such a meta-algorithm was a more thorough under-
standing and thus an easier formulation of universal principles and conditions
for formal learnability. On the other hand, it might also be possible to use it
as a template from which individual learning algorithms for hitherto unstudied
learning settings or language classes may be instantiated immediately.

Our suggestions for future work also concentrate mainly on the further ex-
ploration of GENMODEL’s generalization potential and the theoretical impli-
cations for algorithmical learnability. There are other conceivable kinds of infor-
mation sources that remain to be studied with respect to their applicability in
the present framework, such as subset queries (‘Does my result describe a subset
of L?’, where in case of a negative answer a counterexample is given; see [9, 11])
or so-called correction queries (a superordinate concept uniting several types of
queries where in case of a negative answer the teacher returns some kind of cor-
rected version of the queried item; see [13] for references), or oracles that deviate
from a perfect neutral randomized one either by impeding the learner (giving no
or even a wrong answer in a certain percentage of the cases) or by being more
“helpful” in some way (for example by returning counterexamples of minimal
length, or examples that distinguish a maximal number of elements, etc., thus
possibly making the learner proceed more efficiently). Other directions for future
research include the investigation of the conditions we may be able to impose on
the information sources when GENMODEL is learning certain subclasses of the
regular languages (such as reversible or locally testable languages; see [14, 15]),
or a survey of other kinds of mathematical objects GENMODEL may be adapted
to, such as trees (which should be easy since the incorporated algorithms have
been adapted to trees already – see [5, 2, 16] – but there are some complexity
issues to be solved), graphs, pictures, infinite strings, and many more.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

2. Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and
membership queries. In: ALT 2003. Volume 3244 of LNCS. Springer (2004) 440–453

3. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In Bunke,
H., ed.: Advances in Structural and Syntactic Pattern Recognition. Volume 5 of
Machine Perception and Artificial Intelligence. World Scientific (2002) 99–108

14 Anna Kasprzik

4. Hopcroft, J.E., Ullmann, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Longman (1990)

5. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: DLT
2003. Volume 2710 of LNCS. Springer (2003) 279–291

6. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51 (1981) 76–87

7. de la Higuera, C.: Grammatical inference. Unpublished manuscript.
8. Gold, E.M.: Language identification in the limit. Information and Control 10(5)

(1967) 447–474
9. Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319–342

10. Angluin, D.: Negative results for equivalence queries. Machine Learning 5 (1990)
121–150

11. Jain, S., Kinber, E.: Learning languages from positive data and a finite number of
queries. Information and Computation 204(1) (2006) 123–175

12. Balcázar, J.L., Dı́az, J., Gavaldà, R., Watanabe, O.: A note on the query complex-
ity of learning dfa. In: ALT 1992, Springer (1993) 53–62

13. T̂ırnăucă, C.: A note on the relationship between different types of correction
queries. In: ICGI 2008, Springer (2008) 213–223

14. Angluin, D.: Inference of reversible languages. JACM 29(3) (1982) 741–765
15. Head, T., Kobayashi, S., Yokomori, T.: Locality, reversibility, and beyond: Learning

languages from positive data. In: ALT 1998, Springer (1998) 191–204
16. Oncina, J., Garcia, P.: Inference of recognizable tree sets. In: Research Report

DSIC - II/47/93. (1993)
17. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information

and Computation 118(2) (1995) 316–326

A Appendix

A.1 Equivalence of two ways to use a counterexample for MQ = 1

Lemma 2. Let T be an observation table, c a counterexample for AT , and MQ
= 1. These methods both lead to the existence of one more distinct row in red:

(a) Add c and all its prefixes to red.
(b) Find s ∈ blue, e ∈ Σ+ with c = se and add e to E.

Proof. (a) Either such a row is created directly if E already contains an appro-
priate separating context, or the table becomes inconsistent. To see the latter,
assume that neither c nor any of its prefixes is obviously different from every red
element. Note that in GENMODEL this can occur in the MAT case only, since
in the case of learning from MQs and positive data c is constructed taking some
string s0 obviously different from all red elements as a prefix. We may therefore
also assume that AT (c) ∈ {0, 1} because in the MAT case AT is total. As the
automaton derived from the new table including c and its prefixes can assign a
different state to c than AT (c is a counterexample) although no new distinct
row and thus no new state has been created this automaton is non-deterministic,
which equals the inconsistency of the table. A consistency check (which would be
needed when using this first method) would correct that by adding a separating

Meta-algorithm GENMODEL: Generalizing over three learning settings 15

context distinguishing two red elements that have not been obviously different
before in the following loop execution, thus creating another distinct row.
(b) By Lemma 1 there is always a prefix s of c in blue. After adding e ∈ Σ+

with c = se to E the table is not closed anymore: Since O(c) 6= AT (c) and since
with this method the red elements are pairwise obviously different because no
elements are added except by closure s is distinguished by e from its single red
match and promoted to red by closure in one of the next loop executions. �

Remark: With the second method suffix-closedness for E is given up, which
however is a not an essential property for the extraction of an automaton from
an observation table. The fact that E fulfils it both in L∗ and in ALTEX is just
a by-product of the two algorithms’ ways to generate separating contexts.

The equivalence of adding the prefixes of a counterexample to the candidates
and adding the suffixes to the contexts was first mentioned in a footnote in [17].

A.2 Text contains a counterexample for AT

Lemma 3. Let T = (S = red∪blue, E, obs). As long as |red| < I a counterex-
ample for AT can always be found in Text = (S∪white, E∪Suff(X+), obsext).

Proof. Either Text contains I distinct rows and represents (the failure state-free)
AL so that as T cannot contain I distinct rows yet there must be at least one
element s0 ∈ white obviously different from all red elements in Text. We find a
counterexample for AT by distinguishing two cases (note that there can be two
reasons for a string to be rejected by an automaton – either it ends in a non-final
state or there are transitions missing that would be needed to parse it):

– AT (s0) ∈ {0, 1}: Since s0 is obviously different from all red elements there
must be a context e0 ∈ E ∪ Suff(X+) separating s0 and the representative
of the state assigned to s0 by AT , so s0e0 is a counterexample for AT .

– AT (s0) = ∗ (and consequently AT (s0e0) = ∗): Since s0 ∈ Pref(X+) we
can find a context e0 ∈ Suff(X+) such that s0e0 ∈ X+ (and consequently
O(s0e0) = 1), so s0e0 is a counterexample for AT .

If Text is not the final table we exploit the fact that Text = (S ∪ white =
Pref(X+), E ∪ Suff(X+), obsext) corresponds to T enriched with the informa-
tion initially available to the ALTEX algorithm and that consequently the same
lemmata that apply to the ALTEX table can be applied to Text as well: By con-
traposition of Lemma 4 in [2] (stating that as soon as the table is consistent it re-
presents AL) Text must contain an inconsistency involving s1, s2 ∈ Pref(X+) and
a ∈ Σ such that ¬(s1 <> s2) but s1a <> s2a. As T is closed, either s1a ∈ white
or s2a ∈ white, and we can take that element as s0. Since s1a <> s2a there
must be some e0 ∈ E ∪ Suff(X+) separating s1a from s2a in Text, and either
s1ae0 or s2ae0 is a counterexample for AText because ¬(s1 <> s2) in Text al-
though O(s1ae0) 6= O(s2ae0). As Text contains at least as much information as
T any counterexample for AText

is one for AT as well. �
It is easy to check that in all cases the two conditions defining a counterexample
stated in the fifth line of the subprocedure SEPCONT are fulfilled.

