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Abstract. The unavoidable presence of uncertainties poses several difficulties to the numerical treatment of

optimization tasks. A novel approach towards stochastic distributed uncertainties is discussed for the specific ap-

plication of shape uncertainties in aerodynamic design. Algorithmic approaches based on multiple-setpoint ideas in

combination with one-shot methods are presented as well as numerical results.
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1. Introduction. Aerodynamic design aims at providing shapes for parts of an aircraft

such that an objective like the drag is minimized subject to important aerodynamic restrictions

like maintaining a certain level of aerodynamic lift or pitching moment. The major compu-

tational burden is imposed by often expensive flow solvers. Therefore structure exploitation

of these solvers is of utmost importance, when designing an efficient design algorithm. In

particular one-shot techniques for the design problem are discussed in [1, 2, 3, 4].

Nevertheless, additional computational effort is required in handling unavoidable un-

certainties arising in the formulation of the design tasks. Several approaches to this more

complex problem class are discussed in [5, 6, 7] for scalar uncertainties. In this publication,

we focus on distributed or function-valued uncertainties and develop a novel approach to ef-

ficient robust aerodynamic design in this context. In particular, we aim at robust designs for

the case that the shape to be optimized is uncertain itself. From an application point of view,

we look for shapes which give a good optimal model answer (in terms of drag minimization

and lift preservation), even if the computed shape undergoes unforeseeable changes due to

manufacturing inaccuracies or wear and tear. The major methodological approach exploits

the truncated Karhunen-Loeve-expansion, uses sparse grid approaches and applies a goal ori-

ented point of view towards the optimization objective in order to reduce the computational

effort. A major algorithmic tool is the multiple-setpoint approach towards robustness issues
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established in [8, 9].

The paper is organized in the following way. The next section gives a characterization

of the distributed uncertainties we are dealing with together with introductory application

of the Karhunen-Loeve-expansion. Section 3 presents the discretized version the resulting

robust shape optimization problem. Section 4 modifies this technique in a goal-oriented man-

ner. Section 5 discusses sparse grid techniques. In section 6 the algorithmic working horse,

the one-shot approach, is generalized to the robust problem formulation. Finally, section 7

presents numerical results for a standard transonic test case in a robust formulation.

2. Mathematical description of the uncertainties. To include geometry uncertainties

in the aerodynamic shape optimization problem, we need a mathematical description of the

perturbations on the shape. We want to avoid a parametrization of the uncertainties which

would lead to a reduction of the space of perturbed geometries. Therefore, we choose a

stochastic approach. The perturbations of the profile are modeled as a random field ψ :

Γ,Ω→ R, defined on a probability space (Ω, Y, P ) and on the shape of the airfoil Γ. In each

point x of the shape Γ, the uncertainty is described by a random variable ψ(x, ·) : Ω → R.

Additionally, the second order statistics, the mean value and the covariance function, are

given to fully describe the random field.

Since we expect no perturbations, the mean value of the random field ψ is equal to 0 and

the squared exponential covariance function describes the interaction between the random

variables on the shape:

E (ψ (x, ζ)) = ψ0 (x) = 0 ∀x ∈ Γ (2.1)

Cov (x, y) = b2 · exp
(
−‖x− y‖

2

l2

)
∀x, y ∈ Γ (2.2)

The parameter l determines how quickly the covariance falls off and b controls the magnitude

of the bumps. Then, a perturbed geometry is given as

v (x, ζ) = x+ ψ (x, ζ) · ~n (x) ∀x ∈ Γ, ζ ∈ Q (2.3)

where ~n is the unit vector in x normal to the profile Γ. Figure 2.1 shows a realization of the
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random field s and the corresponding, resulting pertubed shape Figure 2.2.

FIG. 2.1. one realization of the random field ψ: perturbations on the upper side of the profile (above) and on
the lower side (below)

FIG. 2.2. resulting perturbed geometry compared with the original shape (in green)

As we need to compute statistics of the flow depending on the uncertainty in our opti-

mization algorithm, we have to approximate the infinite dimensional probability space in a

finite number of random variables. In the next subsection, we will introduce the Karhunen-

Loève-Expansion which provides an approximation of the random field ψ for the numerical

evaluation of such statistics.

2.1. Karhunen-Loève-Expansion. The Karhunen-Loève-Expansion, also known as

Proper Orthogonal Decomposition, represents the random field as a infinite linear combina-

tion of orthogonal functions chosen as the eigenfunctions of the covariance function [25],
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[27]. The Karhunen-Loève-Expansion of the Gaussian random field ψ is given as:

ψ (x, ζ) = ψ0 (x) +
∞∑

i=1

√
λizi (x)Yi (ζ) (2.4)

=
∞∑

i=1

√
λizi (x)Yi (ζ) x ∈ Γ, ζ ∈ Ω (2.5)

where λ1 ≥ λ2 ≥ . . . ≥ λi ≥ . . . ≥ 0 and zi are the eigenvalues and eigenfunctions of

the covariance function Cov which is symmetric and positive definite by definition. The de-

terministic eigenfunctions zi are obtained from the spectral decomposition of the covariance

function via solution of

∫
Γ

Cov (x, y) zi (y) = λizi (x) . (2.6)

Having the eigenpairs, the uncorrelated Gaussian random variables Yi in equation 2.5 can be

expressed as

Yi (ζ) =
1√
λi

∫
Γ

ψ (x, ζ) zi (x) dx j = 1, 2, . . . (2.7)

with zero mean and unit variance, i.e. E (Yi) = 0 and E (YiYj) = δij for j = 1, 2, . . . [13].

In the special case of a Gaussian random field, uncorrelated implies independent which is an

important property we will need later on for the Sparse Grid.

Truncating now the Karhunen-Loève-Expansion after a finite number of terms, we obtain

the approximation of the random field ψ

ψd (x, ζ) =
d∑

i=1

√
λizi (x)Yi (ζ) x ∈ Γ, ζ ∈ Ω. (2.8)

The corresponding covariance function is given by

Covd (x, y) =
d∑

i=1

λizi (x) zi (y) . (2.9)

In [19], it is shown that the eigenfunction basis {zi} is optimal in the sense that the mean

square error resulting from the truncation after the d-th term is minimized.
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The following approximation error representation is then obtained by Mercer’s theorem

lim
d→∞

{
sup

Γ

∫
Ω

(ψ − ψd)2
dP (ζ)

}
= lim

d→∞

{
sup

Γ

 ∞∑
j=d+1

λjz
2
j

} = 0. (2.10)

So, ψd may provide a suitable approximation of ψ, if the eigenvalues decay sufficiently fast

and d is large enough [13]. If one assumes a Gaussian covariance function (cf. 2.2), the

eigenvalues will exponentially decay towards zero. The proof of this behaviour of the eigen-

values can be found e.g. [29]. This paper also provides a fast algorithm based on a kernel

independent fast multipole method to compute the Karhunen-Loève approximation. Another

approach to solve the large eigenvalue problem arising from the Karhunen-Loève-Expansion

can be found in [23]. They introduce a Krylov subspace method with a sparse matrix approx-

imation using sparse hierarchical matrix techniques to solve it.

3. Robust shape optimization problem. The usual single setpoint aerodynamic shape

optimization problem can be described in the following rather abstract form

min
y,p

f(y, p) (3.1)

s.t. c(y, p) = 0 (3.2)

h(y, p) ≥ 0 (3.3)

We think of the equation (3.2) as the discretized outer flow equation around, e.g., an airfoil

described by geometry parameter p ∈ Rnp . The vector y is the state vector (velocities, pres-

sure,...) of the flow model (3.2) and we assume that (3.2) can be solved uniquely for y for all

reasonable geometries p. The objective in (3.1) f : (y, p) 7→ f(y, p) ∈ R typically is the drag

to be minimized. The restriction (3.3) typically denotes lift or pitching moment requirements.

To make the discussion here simpler, we assume a scalar valued restriction, i.e., h(y, p) ∈ R.

The generalization of the discussions below to more than one restriction is straight forward.

In contrast to previous papers on robust aerodynamic optimization, we treat the angle of at-

tack as an fixed parameter which is not adjusted to reach the required lift (cp. e.g. Ref.[22],

Ref.[21], Ref.[28] ).
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Uncertainties arise in all aspects of aerodynamic design. However, we want to limit the

discussion here to uncertainties which cannot be avoided at all before constructing an air-

craft. We distinguish two types of uncertainties: uncertainties with respect to the flight condi-

tions and geometry uncertainties. The comparison of different robust formulation considering

scalar valued uncertainties in the flight conditions can be found in [7].

In this paper, we will focus on geometry uncertainties. We mean by this the case that the real

geometry deviates from the planned geometry. The sources for deviations from the planned

geometry may lie in manufacturing, usage and wearing of the aircraft or wheather conditions

(e.g., ice crusts). In order to compute a shape which is robust to small perturbations of the

shape itself, we choose a semi-infinite formulation of the aerodynamic shape optimization

influenced by stochastic disturbances modeled as random fields. This results in the following

robust optimization problem

min
y,p

∫
Ω

f(y, p, ψ (ζ))dP(ζ) (3.4)

s.t. c(y, p, ψ (ζ)) = 0 , ∀ζ ∈ Ω (3.5)

h(y, p, ψ (ζ)) ≥ 0 , ∀ζ ∈ Ω (3.6)

The semi-infinite reformulation 3.7-3.9 aims at optimizing the average objective function but

maintaining the feasibility with respect to the constraints everywhere. Thus, it aims at an

average optimal and always feasible robust solution. To ensure the feasibility over the whole

range of variations, we have to consider infinitely many inequality constraints, one for each

realizations of the random field s of perturbations. This definition of robustness can also be

found in Ref. [7], in Ref.[21] and in Ref.[24]. For the numerical treatment of complicated

design tasks, one has to approximate the integral in the objective (3.4). The integral in (3.4)

can be efficiently evaluated by a Gaussian quadrature for small stochastic dimensions, where

the quadrature points {ψi}Ni=1 are the roots of a polynomial belonging to a class of orthogonal

polynomials. Due to the exponential growth of the effort with increasing dimension, the full

tensor product Gaussian quadrature rule should be replaced in the higher dimensional case by

Smolyak type algorithms which use a recursive contribution of lower-order tensor products
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to estimate the integral Ref.[30]. We will discuss this method in the next section. Therefore,

we can reformulate problem (3.4-3.6) in an approximate fashion in the form of a multiple

set-point problem for the set-points {ψi}Ni=1:

min
yi,p

N∑
i=1

f(yi, p, ψ
i)ωi (3.7)

s.t. c(yi, p, ψ
i) = 0 , ∀i ∈ {1, . . . , N} (3.8)

h(yi, p, ψ
i) ≥ 0 , ∀i ∈ {1, . . . , N}. (3.9)

This approximation supports a generalization of the optimization method used to solve the

usual single setpoint aerodynamic shape optimization problem very well. For each realization

of the uncertainty, the update in the design variables can be computed completely indepen-

dently, so this formulation suggests a parallel implementation of the optimization method

which we will introduce in section 6.

4. Model reduction using a goal-oriented Karhunen-Loève basis. The evaluation of

the objective function in the robust optimization problem (3.4) requires the computation of the

mean, i.e. the computation of the integral of the random field with respect to its probability

measure. Applying the introduced Karhunen-Loève-Approximation, the objective function

can be written as the following d-dimensional integral

E (f(y, p, ψ (x, ζ))) =
∫

R
· · ·
∫

R
(f(y, p, s (x, ζ1, . . . , ζd))dγ1 (ζ1) · · · dγ1 (ζd) (4.1)

where dγ1 (ζi) is the one-dimensional Gaussian measure. So, one term more in the truncated

Karhunen-Loève expansion to increase the approximation accuracy results in an integral of

one-dimension higher. In order to reduce the computational effort, the orthogonal basis func-

tions {zi} will be chosen goal-oriented, i.e. the individual impact of the eigenvectors on the

target functional will be taken into account. This method is well established in the model

reduction methods of dynamic systems and the adaptive mesh refinement (cf. [10]). The

idea is to develop an error indicator for the individual eigenvectors reflecting the influence

on the drag. The introduced error analysis of the Karhunen-Loève-Expansion in section 2.1
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only gives the approximation error of the random field ψ, but not of the function of interest

f (y, p, ψ). We propose to use sensitivity information to capture the local sensitivities of the

drag with respect to the eigenvectors

ηi :=
df
dzi

= −λ> ∂c
∂zi

+
∂f

∂zi
, ∀i = 1, . . . , d (4.2)

where λ solves the adjoint equation. The adjoint equation is independent of i, hence it has to

be solved only once and the indicator ηi is numerically cheap to evaluate. Now, the reduced

basis {ẑi} can be automatically selected, the eigenvector zi with a large value ηi have to be

kept in the reduced basis, whereas a small value indicates that the basis vector can be rejected

from the basis.

5. Adaptive Sparse Grid for high-dimensional integration. The mean value of the

robust optimization problem depending on the current design vector is required in each it-

eration of the optimization algorithm. Since we cannot solve this integral analytically, we

have to approximate it in appropriate, efficient way. Several possibilities can be found in the

literature, the most common are: Monte-Carlo simulation , respectively general Sampling

methods, full Tensor grid interpolation and Sparse Grid interpolation. Their efficiency de-

pends on the dimension d of the probability space Ωd and on the properties of the integrand

f(y, p, ψd). Each of these methods provides an approximation EN of the mean value E(f)

by evaluating the function f(y, p, ψd) in N integration points ζ1, · · · , ζN and summing the

results f(yi, p, ψd(., ζi)) multiplied with the weights ω1, · · · , ωN up

EN =
N∑

i=1

ωi · f(yi, p, ψd(., ζi)) (5.1)

The Sampling methods randomly select realizations of the uncertainties in the given

probability space and take some kind of average of the function values at these points which

converges to the exact value of the integral due to the law of large numbers. The advantage

of this approach consists of the straightforward implementation, the algorithm only needs

the underlying integration space as input and function evaluations at the randomly selected

points. But on the other hand, the expected convergence rate O(N−
1
2 ) requires a large num-
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ber of function evaluations to ensure a given error tolerance. In our application, one function

evaluation is very expensive since the solution of the flow equation, Euler or Navier Stokes

equation, is needed. So, the Sampling methods, even the improved methods which use addi-

tional information in order to select the realizations, are not an appropriate choice in our case

to compute the mean value in our optimization problem.

Another possibility obtaining the objective value is the full tensor grid quadrature derived

from the full tensor product of the one-dimensional interpolation formulas. Constructing the

multi-dimensional interpolation, we first consider the following one-dimensional interpola-

tion formula in order to approximate a function h : [−1, 1]→ R:

Qi(h) =
N∑

j=1

h(Y i
j ) · ai

j (5.2)

with the set of interpolation points Xi = {Y i
j |Y i

j ∈ [−1, 1], j = 1, 2, . . . ,mi} , mi is the

number of elements of the set Xi and ai
j ≡ aj(Y i

j ) are the interpolation functions.

(Qi1 ⊗ · · · ⊗Qid)(f) =
m1∑

j1=1

· · ·
md∑

jd=1

f(Y i1
j1
, . . . , Y id

jd
) · (ai1

j1
⊗ · · · ⊗ aid

jd
) (5.3)

This generalization of the one dimensional formula to the full tensor interpolation (5.3) pro-

vides an approximation of f : [−1, 1]d → R by evaluating the function f on the regular mesh

Xi1 × · · · ×Xid . Considering the difference formulas defined by

∆i := Qi+1 −Qi (5.4)

Q0 := 0 (5.5)

5.3 can be reformulated as

(Qi1 ⊗ · · · ⊗Qid)(f) =
∑

i1,...,id≤k

(
∆i1 ⊗ · · · ⊗∆id

)
(f) (5.6)
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The mean value is then derived from the following equation:

EN (f) =
m1∑

j1=1

· · ·
md∑

jd=1

f(Y i1
j1
, . . . , Y id

jd
) ·
∫

[−1,1]d
(ai1

j1
⊗ · · · ⊗ aid

jd
)(Y)dY (5.7)

The approximation error for functions with bounded derivatives up to order r has a behaviour

of O(N−
r
d ) [15]. Thus, due to the exponential growth of the effort with increasing dimen-

sion, this method is not suitable for high stochastic dimensions, which is the case in our

application. To circumvent this curse of dimensionality, we apply a Sparse Grid method in

order to preserve the accuracy of the tensor grid quadrature, but avoiding the exponential

growth of interpolation nodes.

The underlying idea of Sparse Grids was originally found by the Russian mathematician

Smolyak [30]. The sparse interpolant is given as [31]:

S(k, d)(f) =
∑

k−d+1≤|i|≤k

(−1)k−|i| ·
(
d− 1
k − |i|

)
· (Qi1 ⊗ · · · ⊗Qid)(f) (5.8)

with k ≥ d, i ∈ Nd multi-index and |i| =
∑d

j=1 ij . The index ij indicates the order in the

j-th dimension, so the algorithm combines only those one-dimensional quadrature formulas

whose indices fullfill the constraint that the total sum across all dimensions is greater or equal

than k− 1 + d and smaller or equal than k. Using incremental interpolation formulas ∆i, 5.8

can be transformed to

S (k, d) (f) =
∑
|i|≤k

(
∆i1 ⊗ · · · ⊗∆id

)
(f)

= S (k − 1, d) (f) +
∑
|i|=k

(
∆i1 ⊗ · · · ⊗∆id

)
(f)

with ∆i = Qi+1 − Qi, Q0 ≡ 0 and S(d − 1, d) ≡ 0. The collection of all the interpolation

points

H(k, d) =
⋃

k−d+1≤|i|≤k

(
Xi1 × · · · ×Xid

)
(5.9)

is called a Sparse Grid of level k.



11

The derivation of the Sparse Grid suggests the use of nested interpolation functions due to

the recursive construction. In the literature, the most popular choice of the collocation points

is the Clenshaw-Curtis grid at the non-equidistant extrema of the Chebyshev polynomials and

the underlying interpolation formula is the Chebyshev-Gauss-Lobatto formula.

5.1. Adaptive Sparse Grid. Since the function evaluations are very expensive in our

application, we use an adaptive Sparse Grid strategy in order to further reduce the number of

grid points but conserving the approximation quality. The presented isotropic Smolyak algo-

rithm is effective for problems whose input data uniformly depend on all dimensions. But the

convergence rate deteriorates for highly anisotropic problems, such as those appearing when

the input random variables come from a Karhunen-Loève-Expansion as in our application

[16]. The reduction of computational effort can be achieved by using spatially adaptive or

dimension-adaptive refinement [31], [18]. In order to develop adaptive schemes during the

cubature process, the interpolation error can be used as an adaptivity indicator. Therefore,

nested cubature formulas are useful since they allow the error evaluation based on the dif-

ference of two subsequent formulas. Due to the fact that in our application the mean value

is computed by the Sparse Grid interpolation, this target value is also used as an error indi-

cator for the adaptivity. The dimension-adaptive quadrature method tries to find important

dimensions and adaptively refines in this with respect to given error estimators. This leads to

an approach which is based on generalized sparse grid index sets [18]. This strategy allows

to employ every nested interpolation formulas, so it can be chosen problem dependent, e.g.

in our application depending on the distribution of the random variables. On the other hand,

the locally refined Sparse Grid gives more flexibility in the adaptive procedure, but requires

equidistant support nodes.

Below, we introduce a locally adaptive hierarchical Sparse Grid approach using piece-

wise multilinear hierarchical basis functions following closely [26], [31]. Due to the straight-

forward implementation of the refinement, we choose the linear hat functions as interpolation

basis functions which are also well established in the adaptive mesh refinement [11]. Hence,
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the interpolation formulas in the one dimensionl case are defined by

ai
j (Y ) =


1− 1

2 (mi − 1) ·
∣∣Y − Y i

j

∣∣ , if
∣∣Y − Y i

j

∣∣ < 2
mi−1

0, otherwise.
(5.10)

with the support nodes Y i
j =


0 for j = 1,mi = 1

2 · j−1
mi−1 − 1 for j = 1, . . . ,mi,mi > 1

and

mi =


1, for i = 1

2i−1 + 1 for i > 1
.

Due to the fact that the support nodes are nested (e.g. Xi ⊂ Xi+1) the Sparse Grid can

be rewritten in the following hierarchical form

S (k, d) (f) = S (k − 1, d) (f) +
∑
|i|=k

(
∆i1 ⊗ · · · ⊗∆id

)
(f) (5.11)

= S (k − 1, d) (f) + ∆S (k, d) (f) (5.12)

with

∆S (k, d) (f) =
∑
|i|=k

∑
j∈Bi

(
ai1

j1
⊗ · · · ⊗ aid

jd

)︸ ︷︷ ︸
ai

j

·

·
(
f
(
Y i1

j1
, . . . , Y id

jd

)
− S (k − 1, d) (f)

(
Y i1

j1
, . . . , Y id

jd

))︸ ︷︷ ︸
wi

j

(5.13)

where Bi := {j ∈ NN : Y il
jl
∈ Xik

∆ for jl = 1, . . . ,mil

∆, k = 1, . . . , d} is a new set of

multi-indices consistent with the multivariate hierarchical basis {ai
j : j ∈ Bl, l ≤ i}, Xi

∆ =

Xi \Xi−1, m∆
i = #Xi

∆ = mi −mi−1.

Thus, the objective function in our application can be approximated by the following

rather abstract expression:

f (p, ψd(ζ)) =
∑
|i|≤k

∑
j∈Bi

wi
j (p) · ai

j (ζ) (5.14)
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The mean value of the objective function can be then computed as:

EN (f (p)) =
∑
|i|≤k

∑
j∈Bi

wi
j (p) ·

∫
Ω

ai
j (ψd (ζ)) dP (ζ) (5.15)

Instead of using the hierarchical surplus wi
j as an error indicator for the adaptivity (cf.

[26], [31]), we suggest to adapt the grid checking the following expression:

w̃i
j := wi

j ·
∫

Ω

ai
j (ψd (ζ)) dP (ζ) (5.16)

Since it is not necessary to exactly interpolate the drag depending on the uncertainty in the

optimization loop in our application, the adaptivity indicator w̃i
j only measures the difference

between the value of the mean inserting a new point Y i
j of the current level of interpolation

and the corresponding value of the mean at the previous interpolation level. The underlying

algorithm in order to construct the adaptive Sparse Grid which is then used for the optimiza-

tion can be found in [26], [31].

6. One-shot aerodynamic shape optimization and its coupling to robust design.

Novel one-shot aerodynamic shape optimization in the form (3.1-3.3) have been introduced in

[3, 2] . They have the potential of fast convergence in only a small multiple of cpu-time com-

pared to on flow simulation. These methods are based on approximate reduced SQP iterations

in order to generate a stationary point satisfying the first order KKT optimality conditions.

In this context, a full SQP-approach reads as



Lyy Lyp h
>
x c>x

Lpy Lpp h
>
p c>p

hx hp 0 0

cx cp 0 0





∆y

∆p

∆µ

∆λ


=



−L>y

−L>p

−h

−c


,



yk+1

pk+1

µk+1

λk+1


=



yk

pk

µk

λk


+ τ ·



∆y

∆p

∆µ

∆λ


(6.1)

The symbol L denotes the Lagrangian function. We assume that the lift constraint h is active

at the solution, which is the reason that we formulate is rather as an equality condition in

the single setpoint case. The approach (6.1) is not implementable in general, because one

usually starts out with a flow solver for c(y, p) = 0 and seeks a modular coupling with an
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optimization approach, which does not necessitate to change the whole code structure, as

would be the case with formulation (6.1). A modular but nevertheless efficient alternative is

an approximate reduced SQP approach as justified in [4] .



0 0 0 A>

0 B γ c>p

0 γ> 0 0

A cp 0 0





∆y

∆p

∆µ

∆λ


=



−L>y

−L>p

−h

−c


,



yk+1

pk+1

µk+1

λk+1


=



yk

pk

µk

λk


+ τ ·



∆y

∆p

∆µ

∆λ


(6.2)

where

γ = h>p + c>p α , such that A>α = −h>x

The matrix A denotes an appropriate approximation of the system matrix cx, which is used

in the iterative forward solver. An algorithmic version of this modular formulation is given

by the following steps

(1) generate λk by performing N iterations of an adjoint solver with right hand side

f>y (yk, pk) starting in λk

(2) generate αk by performing N iterations of an adjoint solver with right hand side

h>y (yk, pk) starting in αk

(3) compute approximate reduced gradients

g = f>p + c>p λ
k+1 , γ = h>p + c>p α

k+1

(4) generate Bk+1 as an approximation of the (consistent) reduced Hessian

(5) solve the QP

B γ

γ> 0


 ∆p

µk+1

 =

−g
−h


(6) update pk+1 = pk + ∆p
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(7) compute the corresponding geometry and adjust the computational mesh

(8) generate yk+1 by performing N iterations of the forward state solver starting from

an interpolation of yk at the new mesh.

This highly modular algorithmic approach is not an exact transcription of equation (6.2),

but is shown in [4] to be asymptotically equivalent and to converge to the same solution. The

overall algorithmic effort for this algorithm is typically in the range of factor 7 to 10 compared

to a forward stationary simulation.

Now we generalize this algorithmic framework to the semi-infinite problem formulation

(3.4-3.6). Numerical approaches to this problem class have already been proposed in [8, 9].

For the sake of simplicity, we restricted the formulation to a problem with two set-

points coupled via the objective, which is a weighted sum of all set-point objectives (weights:

ω1, ω2), and via the free optimization variables p, which are the same for all set-points. The

generalization to more setpoints (i.e., the adaptive Sparse Grid points below) is then obvi-

ous. The lift constraint is formulated for the smallest value ψmin of all grid points. The

corresponding Lagrangian in our example is

L(y1, y2, p, λ1, λ2) =
2∑

i=1

ωifi(yi, p, ψ
i) +

2∑
i=1

λ>i ci(yi, p, ψ
i) + µh(ymin, p, ψ

min) (6.3)

The approximate reduced SQP method above applied to this case can be written in the

following form



0 0 0 0 A>1 0

0 0 0 0 0 A>2

0 0 B γ1 c
>
1,p c

>
2,p

0 0 γ1 0 0 0

A1 0 c1,p 0 0 0

0 A2 c2,p 0 0 0





∆y1

∆y2

∆p

∆µ

∆λ1

∆λ2


=



−L>y1

−L>y2

−L>p

−h

−c1

−c2


(6.4)

We notice that the linear sub-problems involving matricesA>i are to be solved independently,

and therefore trivially in parallel. The information from all these parallel adjoint problems is
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collected in the reduced gradient

g =
2∑

i=1

ωif
>
p +

2∑
i=1

c>p λi

Next, the solution of optimization step

B γ1

γ>1 0


 ∆p

µk+1

 =

−g
−h


is distributed to all approximate linearized forward problems

Ai∆yi + ci,p∆p = −ci ,

which can then again be performed in parallel.

7. Numerical results. We investigate the problem discussed in Ref.[3] , i.e. the shape

optimization of a RAE2822 profile in transonic Euler flow, by the use of the CFD software

FLOWer provided by DLR within a one-shot framework. The block-structured FLOWer

code solves the three-dimensional compressible Reynolds-averaged Navier-Stokes equation

in integral form and provides different turbulence models. The equations are solved by a

finite-volume method with second order upwind or central space discretization. The discrete

equations are integrated explicitly by multistage Runge-Kutta schemes, using local time step-

ping and multigrid acceleration. In our example, the space is discretized by a 133×33 grid,

see Fig 7.1 and the profile is described by 129 grid points. For parametrization, the airfoil

is decomposed into thickness and camber distribution. Then, only the camber of the airfoil

is parametrized by 21 Hicks-Henne functions and the thickness is not changed during the

optimization process.

The geometry uncertainties are characterized by a Gaussian random field and the follow-
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FIG. 7.1. grid for the RAE2822 airfoil: the total geometrical plane (above) and zoom around the airfoil (below)

ing second order statistics

E (ψ (x, ω)) = 0 ∀x ∈ Γ (7.1)

Cov (x, y) = (0.005)2 · exp

(
−‖x− y‖

2

(0.1)2

)
∀x, y ∈ Γ. (7.2)
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One realization of the random field and the resulting perturbed geometry is shown in Figure

2.1 and Figure 2.2. Representing the random field for the numerical treatment ψ in a finite

number of independent random variables using the Karhunen-Loève-Expansion, one has to

solve the eigenvalue problem 2.6. In our two-dimensional testcase, the discretization of the

profile leads to a matrix of size (129× 129), so the eigenvalues and eigenvectors can be

computed by common methods. The generalization to a three-dimensional application would

lead to a much more complex task, hence more sophisticated solvers which can be found e.g.

in [23] are required. The distribution of the eigenvalues of the given random field 7.2-7.2 is

shown in the next figure 7.2. As stated before, the eigenvalues exponentially converge towards

FIG. 7.2. distribution of the eigenvalues of the given random field ψ

0. For the first numerical results, we have considered only the first four eigenvalues and

eigenvectors to represent the random fieldψ of perturbations. The corresponding eigenvectors

are shown in Figure 7.3 Using the truncated Karhunen-Loève representation, the mean value

of the drag is then computed by

E (f(y, p, ψ4 (x, ω))) =
∫

R

∫
R

∫
R

∫
R
(f(y, p,

4∑
i=1

√
λizi (x)Yi (ωi))dγ1 (ω1) · · · dγ1 (ω4)

(7.3)

The random variables Yi are uncorrelated and therefore independent, so one has to approxi-

mate a four-dimensional integral in the optimization problem. To further reduce the compu-

tational effort, we investigate the influence of the individual eigenvectors in order to reject
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FIG. 7.3. first four eigenvectors of the given random field ψ

those eigenvectors from the reduced basis which have no impact on the target functional. As

FIG. 7.4. drag performance of the first four eigenvectors on the target functional

Figure 7.4 shows, the third eigenvector has no impact on the objective function, hence it can

be rejected from the Karhunen-Loève basis and the dimension of the integral is reduced. This

behaviour is also reflected by the introduced indicator. Consequently, the mean value is given

by

E
(
f(y, p, ψreduced

4 (x, ω))
)

=

=
∫

R

∫
R

∫
R

(f(y, p,
4∑

i=1
i6=3

√
λizi (x)Yi (ωi))dγ1 (ω1) dγ1 (ω2) dγ1 (ω4)

(7.4)

If one approximate the expected value 7.4 using a full tensor grid interpolation 5.3, 729 grid
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points will be needed to reach the error tolerance of 10−4. The resulting full grid is shown

in Figure 7.5. The Sparse Grid method can reduce the computational effort by a factor of 10

FIG. 7.5. full Tensor grid with 729 grid points

maintaining the same approximation quality. The corresponding grid is depicted in Figure

7.6. Since we want to compare the efficiency of the different introduced methods, we have

FIG. 7.6. Sparse Grid with 69 grid points

chosen multilinear hierarchical basis function as ansatzfunctions for all grids. Last, an adap-

tive Sparse Grid was constructed in order to compute the objective function. As Figure 7.7

shows, the number of grid points can again be reduced from 69 grid points to 35 grid points,
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FIG. 7.7. adaptive Sparse Grid with 35 grid points

i.e. almost by the factor of 2. Since the optimization requires the evaluation of the mean value

in each iteration, this reduction by factor 20 compared with the full grid takes place in each

step of the optimization algorithm and hence significantly speed up the whole algorithm. The

construction of the adaptive Sparse Grid although needs some additional function evaluations

in order to compute the adaptivity indicator, but this amount of computational effort occurs

outside the optimization loop, i.e. these costs are negligible.

Now, the next two Figures 7.8, 7.9 compare the results of the robust optimization and of

the single setpoint optimization, i.e. without considering any uncertainties in the optimiza-

tion. The drag and lift performance is plotted against the 35 perturbed geometries and the

dashed line in Fig. 7.8 indicates the mean value of the drag. The line in-between the points

of the single setpoint optimization in grey and the robust optimization in black points out the

better function value of the two solutions. The robust optimization improves the mean value

of the target functional and also shows at the same time to a better lift performance over the

whole range of perturbations, whereas the single setpoint optimization is infeasible in more

than the half of the considered grid points. Summing it all up, it can be said that the robust

optimization leads to a better lift to drag ratio than the single setpoint optimization and the

resulting profile is more robust against small perturbations of the shape itself. Last, we will

compare the different resulting shape in Figure 7.10. Although we have assumed only small

perturbations of the shape itself (cf. Fig. 2.2), the robust shape differs quite strongly from the
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FIG. 7.8. drag performance of the 35 perturbed geometries

FIG. 7.9. lift performance of the 35 perturbed geometries

single setpoint optimization. So, this observation shows the importance of robust design in

the aerodynamical framework to ensure a good performance even under uncertain conditions.



23

FIG. 7.10. comparison of the optimized shapes

8. Conclusions. Robust design is an important task to make aerodynamic shape opti-

mization relevant for practical use. It is also highly challenging because the resulting opti-

mization tasks become much more complex than in the usual single set-point case. Espespi-

ally in the case of the geometric uncertainty, the approximation of the random field describing

the perturbations of the geometry leads to a very high dimensional optimization task. The di-

mension of the probability space was efficiently reduced by a goal-oriented choice of the

Karhunen-Loève basis. Furthermore, adaptive Sparse Grid techniques and one-shot methods

have been succesfully generalizied to the semi-infinite formulation of the shape optimization

problem in order to reduce the amount of computational effort in the resulting robust opti-

mization. The numerical results show that even small deviations from the planned geometry

have a significant effect on the drag and lift coefficient, so that geometry uncertainties have to

be taken into account in the aerodynamic design optimization problem to ensure a robust so-

lution. The introduced methods can significantly reduce the costs of the robust optimization,

so that robust design becomes numerically tractable in the aerodynamical framework.
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