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Abstract. Shape optimization based on the shape calculus is numerically mostly performed
by means of steepest descent methods. This paper provides a novel framework to analyze shape-
Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape
Hessian is defined yielding often sought properties like symmetry and quadratic convergence for
Newton optimization methods.

1. Introduction. Shape optimization is a vivid field of research. In particular,
the usage of shape calculus for practical applications has increased steadily [2, 3, 4,
15, 28, 29, 26, 17]. Standard references for shape optimization based on the shape
calculus are [9, 24, 31]. The shape Hessian is already used as a means to accelerate
gradient based shape optimization methods [13, 15, 17, 27]. It is also used for
characterizing the well-posedness and sufficient optimality conditions [12, 14] in
particular applications and is reformulated in the framework of differential forms
in [19]. A fairly general framework for descent methods for shape optimization is
presented in [18].

However, a general framework for the analysis of Newton-type shape optimiza-
tion algorithms is still missing. A major reason is the lack of symmetry [9, 19] of
the shape Hessian, as it is commonly defined. In this paper, an attempt is made to
cast shape optimization problems in the framework of optimization on Riemannian
manifolds. There is a fairly large amount of publications available on the issue of
optimization on Riemannian manifolds—mainly for matrix manifolds as in [1, 25].

It is proposed in this paper, to view the set of all shapes as a Riemannian
manifold and follow there the ground breaking work in [22, 21, 23, 6, 5]. The result-
ing manifold is an abstract infinite dimensional manifold, in contrast to the finite
dimensional submanifolds of Rn that arise in optimization on matrix manifolds.
Therefore, distance concepts have to be reviewed and used with somewhat more
care. The key observation of this paper is that the action of an element of the
tangent space of the manifolds of shapes can be interpreted as the shape derivative
of classical shape calculus. Once this link is established, the concept of Riemannian
shape Hessian, shape Taylor series, shape Newton convergence and sufficient shape
optimality conditions follow quite naturally.

In section 2 the notation for the manifold of shapes is introduced and for a
particular example of a Riemannian geometry, the correspondence between Rie-
mannian geometry and shape calculus is established. The key element of the co-
variant derivative is rephrased in terms of the shape calculus. The Riemannian
shape Hessian is defined and the Riemannian shape Taylor series formulated. Sec-
tion 3 presents a generalization of the Newton convergence theory, established in [7]
for linear spaces, on Riemannian manifolds. From that, convergence properties of
variants of Newton’s method on Riemanian manifolds follow immediately. Finally,
section 4 discusses numerical experiments for shape optimization algorithms with
linear and quadratic convergence properties.

2. Riemannian Shape Geometry and the Shape Calculus. The purpose
of this section is to demonstrate the possibility to define a Riemannian metric on
the manifold of all possible shapes with a relation to the shape calculus. Since this
point of view is new, we use the established framework of differential geometry for
shapes which are C∞ embeddings of the unit sphere. Of course, this framework has
to be generalized for specific applications. However, the purpose of this paper is to
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convey a new point of view rather than the impact on applications. Therefore, we
assume in the interest of simplicity of the presentation maximum smoothness and
restrict ourself to only 2D problems.

It is assumed that the reader is familiar with the basic concepts of Riemannian
geometry as they are, e.g.,: geodesics, exponential mapping, parallel transport. In
[22, 21], a geometric structure of two-dimensional C∞-shapes has been introduced
and consequently generalized to shapes in higher dimension in [23, 6, 5]. Essentially,
closed curves (and closed higher dimensional surfaces) are identified with mappings
of the unit sphere to any shape under consideration. In two dimensions, this can be
naturally motivated by the Riemannian mapping theorem. In this paper, we focus
on two-dimensional shapes as subsets of R2 for ease of discussion, but mention the
other publications above, in order to indicate that natural extensions of this paper
to higher dimensional surfaces are conceivable.

Here, we mean with ”shape” a singly connected and compact subset of Ω ⊂ R2

with Ω 6= ∅ and C∞ boundary ∂Ω. As always in shape optimization, the boundary
of the shape is all that matters. Thus, we can identify the set of all shapes with the
set of all those boundaries. In [22], this set is characterized by

Be(S1,R2) := Emb(S1,R2)/Diff(S1)

i.e., as the set of all equivalence classes of C∞ embeddings of S1 in the plane
(Emb(S1,R2)), where the equivalence relation is defined by the set of all C∞ re-
parameterizations, i.e., diffeomorphisms of S1 into itself (Diff(S1)). The set Be is
considered as a manifold in [22] and various Riemannian metrics are investigated.
A particular point on the manifold Be(S1,R2) is represented by a curve c : S1 3
θ 7→ c(θ) ∈ R2. Because of the equivalence relation (Diff(S1)), the tangent space is
isomorphic to the set of all normal C∞ vector fields along c, i.e.

TcBe ∼= {h | h = α~n, α ∈ C∞(S1,R)}

where ~n is the unit exterior normal field of the shape Ω defined by the boundary
∂Ω = c such that ~n(θ) ⊥ cθ(θ) for all θ ∈ S1. For our discussion, we pick among
the other metrics discussed in [22] the metric family for A ≥ 0

GA : TcBe × TcBe → R

(h, k) 7→
∫
S1

(1 +Aκc(θ)2) 〈h(θ), k(θ)〉 ‖cθ(θ)‖ dθ

where κc denotes the curvature of the curve c and 〈., .〉 and ‖.‖ mean the standard
Euclidian scalar product and norm in R2. This does by no means mean that this
metric is uniquely defined by the purpose of establishing a connection with the shape
calculus. There are probably many more Riemannian metrics available which can
be used in a similar way. If h = α~n and k = β~n, then this scalar product on TcBe
can be expressed more simple as

GA(h, k) =
∫
∂Ω

(1 +Aκ2
c)αβds

where ds is the length measure on ∂Ω = c. In [22] it is shown that for A > 0
the scalar product GA defines a Riemannian metric on Be and that the resulting
Riemannian manifold (Be, GA) is complete. Thus, geodesics can be used to mea-
sure distances and Cauchy sequences in terms of the geodesic distance converge.
Unfortunately, this is not the case for the most simple member G0 of the metric
family GA, where A = 0. An illustrative counter-example is given in [22]. In sec-
tion 3, we use the fact that (Be, GA) is a Riemannian manifold extensively and
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exploit the existence of the exponential map (exp) according to the usual definition
in Riemannian geometry.

Now, we want to analyze the correlation of the Riemannian geometry on Be
with shape optimization. In 2D shape optimization, one searches for the solution
of optimization problems of the form

min
Ω
f(Ω)

where f is a real valued shape differentiable objective function. Often, the problem
formulation involves explicit constraints in the form of differential equations and
additional state variables as in [2, 3, 4, 15, 28, 29, 26, 17, 13, 15, 17, 27, 9, 24, 31,
12, 14], but for the sake of ease of presentation, we can assume all those possible
additional structures are contained implicitly within the mapping f . The shape
derivative of f is a directional derivative in the direction of a vector C∞ vector
field V : R2 → R

2 which can be represented on the boundary according to the
Hadamard structure theorem [31] as

df(Ω)[V ] =
∫
∂Ω

g 〈V,~n〉 ds , g : ∂Ω→ R

If V |∂Ω = α~n, this can be written more concisely as

df(Ω)[V ] =
∫
∂Ω

g α ds

In Riemannian geometry, tangential vectors are considered as directional derivatives
of scalar valued functions. Since curves c ∈ Be can be interpreted as boundaries
of domains Ω with boundary c = ∂Ω, we can consider every scalar valued function
f : c = ∂Ω 7→ R also as mapping f : Ω 7→ R. Thus, we see that the action of a
tangent vector h ∈ TcBe on a scalar valued function f : Be → R can be interpreted
in the shape calculus, via the unique identification of the boundary c = ∂Ω with its
shape Ω, as the shape derivative of f with respect to an arbitrary C∞ extension V
of h in the whole domain Ω with V |∂Ω = h. Thus, we can write

h(f)(c) = df(Ω)[V ] =
∫
∂Ω

g α ds

if h = α~n. Also, the gradient in terms of a Riemannian representation of the shape
derivative in terms of the metric GA can be written as

gradf =
1

1 +Aκ2
c

g

The essential operation in Riemannian geometry is the covariant derivative ∇hk
which is a directional derivative of vector fields in terms of tangential vectors such
that ∇hk ∈ TcBe, if h, k ∈ TcBe. Usually, the covariant derivative is written in
terms of the Christoffel symbols. In [22] explicit expressions for the Christoffel
symbols are derived in terms of the Riemannian metric GA. However, in order to
reveal the relation with the shape calculus, we show another representation of the
covariant derivative in theorem 2.1.

Theorem 2.1. Let Ω ∈ R2 be a shape and V,W ∈ C∞(R2,R2) vector fields
with orthogonal components α := 〈V |∂Ω, ~n〉, β := 〈W |∂Ω, ~n〉 such that h := α~n,
k := β~n belong to the tangent space of Be. Then, the covariant derivative can be
expressed as

∇VW := ∇hk =
∂β

∂~n
α+

1
2

(κc +
2Aκ3

c

1 +Aκ2
c

)αβ +Aκc(αβ)ττ

= 〈DW V,~n〉+
1
2

(κc +
2Aκ3

c

1 +Aκ2
c

) 〈V,~n〉 〈W,~n〉+Aκc(〈V,~n〉 〈W,~n〉)ττ
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where expressions “(.)ττ” mean second order derivative in unit tangential direction
of the shape boundary.

Proof. The expression in theorem 2.1 is derived from the product rule for
Riemannian connections, hGA(k, `) = GA(∇hk, `) + GA(k,∇h`) for any ` ∈ TcBe.
We assume that Z ∈ C∞(R2,R2) is a vector field with ` := Z|∂Ω = γ~n. Then

h(GA(k, `)) =d
(∫

∂Ω

(1 +Aκ2
c)βγds

)
[V ] (2.1)

=
∫
∂Ω

∂[(1 +Aκ2
c)βγ]

∂~n
α+ κc(1 +Aκ2

c)αβγds (2.2)

=
∫
∂Ω

2Aκc(κ2
cα+ αττ )βγ + (1 +Aκ2

c)
∂β

∂~n
γα (2.3)

+ (1 +Aκ2
c)
∂γ

∂~n
βα+ κc(1 +Aκ2

c)αβγds

=
∫
∂Ω

2Aκ3
cα+ 2Aκcα(βγ)ττ + (1 +Aκ2

c)
∂β

∂~n
γα (2.4)

+ (1 +Aκ2
c)
∂γ

∂~n
βα+ κc(1 +Aκ2

c)αβγds

where equation (2.4) is an immediate consequence of the discussion in section 2.2
of [22]. Since the remaining properties of a Riemannian connection (C∞ linearity,
the Leibniz rule and the symmetry) are obviously satisfied, the expression above is
shown due to the uniqueness of the Riemannian connection.

The Riemannian connection now gives the means to investigate the Hessian
of an objective defined on a shape, resp. its boundary. As in [1], we define the
Riemannian Hessian of a function f at the point c ∈ Be as the linear mapping of
TcBe to itself defined by

Hessf(c)[h] := ∇hgradf

In the terminology of shape optimization and with the definition of vector fields as
in theorem 2.1 and the identification of the boundary c = ∂Ω with its shape, we
may identify this with a now so-called Riemannian shape Hessian.

Definition 2.2. For the setting of theorem 2.1, we define the Riemannian
shape Hessian as

Hessf(Ω)[V ] := ∇V gradf

The next theorem gives a correlation of the covariant shape Hessian with the stan-
dard shape Hessian which is defined by repeated shape differentiation.

Theorem 2.3. The Riemannian shape Hessian satisfies the relation

G(Hessf(Ω)[V ],W ) = d(df(Ω)[W ])[V ]− df(Ω)[∇VW ]

where V,W are defined as in theorem 2.1 and d(df(Ω)[W ])[V ] denotes the standard
shape Hessian as defined in [9].

Proof. The Riemannian product rule gives

h(G(gradf, k)) = G(∇hgradf, k) +G(gradf,∇hk)

We observe

h(G(gradf, k)) = h(k(f)) = h(df(Ω)[k]) = d(df(Ω)[k])[h] = d(df(Ω)[V ])[W ]
G(∇hgradf, k) = G(Hessf(c)[h], k) = G(Hessf(Ω)[V ],W )
G(gradf,∇hk) = ∇hk(f) = df(Ω)[∇hk] = df(Ω)[∇VW ]
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Corollary 2.4. The Riemannian shape Hessian is symmetric, i.e.

G(Hessf(Ω)[V ],W ) = G(V,Hessf(Ω)[W ])

Proof. The symmetry of the Riemannian connection ∇ gives with the vector
field definitions of theorem 2.1

G(Hessf(Ω)[V ],W ) = h(k(f))− (∇hk)(f) = k(h(f))− (∇kh)(f)
= G(V,Hessf(Ω)[W ])

Now we can use the Riemannian shape Hessian in order to formulate a Taylor
series expansion as well as optimality conditions. Since the subsequent theorem
holds in more general cases than just for Be, we formulate it in a more general
notation.

Theorem 2.5. Let (N , G) be a Riemannian manifold with metric G and norm
‖.‖ := G(., .). The set U ⊂ N be a convex subset of N . We consider all x ∈ N
and ∆x ∈ TxN with x, expx(∆x) ∈ U and denote the parallel transport along the
geodesic γ : [0, 1] → N , t 7→ γ(t) := expx(t∆x) by Pα,β : Tγ(α)N → Tγ(β)N . We
assume for the Riemannian Hessian of a function f : U → R the following Lipschitz
property at x ∈ N :

‖P1,0Hess f(expx(∆x))P0,1 −Hess f(x)‖ ≤ L‖∆x‖ , ∀ expx(∆x) ∈ U

with a constant L <∞. Then, we achieve the estimation

|f(expx(∆x))− f(x) +G(grad f(x),∆x) +
1
2
G(Hess f(x)∆x,∆x)| ≤ L

6
‖∆x‖3

Proof. Let us consider the mapping ϕ : [0, 1] 3 t 7→ f(expx(t∆x)). We note
that for all differentiable functions and in particular for ϕ yields

1∫
0

t∫
0

ϕ′′(s)− ϕ′′(0)ds dt = ϕ(1)− ϕ(0)− ϕ′(0)− 1
2
ϕ′′(0)

Since

ϕ(1) = f(expx(∆x)) , ϕ(0) = f(x) , ϕ′(0) = G(grad f(x),∆x)
ϕ′′(0) = G(Hess f(x)∆x,∆x)

we observe

|f(expx(∆x))− f(x) +G(grad f(x),∆x) +
1
2
G(Hess f(x)∆x,∆x)|

=

1∫
0

t∫
0

|ϕ′′(s)− ϕ′′(0)|ds dt

=

1∫
0

t∫
0

|((Ps,0Hess f(expx(s∆x))P0,s −Hess f(x)) ∆x,∆x)| ds dt

≤
1∫

0

t∫
0

‖Ps,0Hess f(expx(s∆x))P0,s −Hess f(x)‖ ‖∆x‖2ds dt

≤
1∫

0

t∫
0

sL‖∆x‖3ds dt =
L

6
‖∆x‖3
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Now, we can exploit the Taylor expansion of Theorem 2.5 for necessary and
sufficient optimality conditions

Theorem 2.6. Under the assumptions of Theorem 2.5 we obtain:
(a) If x̂ is an optimal solution, then Hess f(x̂) ≥ 0, i.e. (Hess f(x̂)h, h) ≥ 0,

for all h ∈ Tx̂N
(b) If x̂ satisfies grad f(x̂) = 0, and Hess f(x̂) is coercive, i.e. (Hess f(x̂)h, h) ≥

c‖h‖2, for all h ∈ Tx̂N and for some c > 0, then x̂ is a local minimum,
provided Hessf(x̂) satisfies a Lipschitz condition as in Theorem 2.5.

Proof. The proof is identical with the standard proof in linear spaces.

Example 1. Now let us study a particular example, one of the simplest but
nevertheless instructive shape optimization problems

min
Ω⊂R2

f(Ω) :=
∫

Ω

ψ(x)dx

where ψ : R2 → R is a sufficiently smooth scalar valued function. We use the
vector field definitions of theorem 2.1. The shape derivative of this objective and
the GA-gradient are

df(Ω)[V ] =
∫
∂Ω

ψ 〈V,~n〉 ds

gradf(c) =
ψ

1 +Aκ2
c

, c = ∂Ω

The shape Hessian is computed by shape differentiating the shape derivative

d(df(Ω)[W ][V ])) = d(
∫
∂Ω

ψkds)[h] =
∫
∂Ω

∂(ψk)
∂~n

h+ κcψkhds

=
∫
∂Ω

∂ψ

∂~n
kh+ ψ

∂k

∂~n
h+ κcψkhds

=
∫
∂Ω

(
∂ψ

∂~n
+ κcψ) 〈W,~n〉 〈V,~n〉+ ψ 〈DW V,~n〉 ds

We observe that the shape Hessian is not symmetric and we are tempted to use the
term “∂ψ/∂~n + κcψ” within a Newton-like optimization strategy, since we do not
trust the nonsymmetric part of the Hessian. In contrast to that, the Riemannian
shape Hessian computed by application of theorem 2.3 is given by

G(Hessf(Ω)[V ],W ) = d(df(Ω)[W ])[V ]− df(Ω)[∇VW ]

=
∫
∂Ω

(
∂ψ

∂~n
+ κcψ) 〈W,~n〉 〈V,~n〉+ ψ 〈DW V,~n〉 ds−

∫
∂Ω

ψ 〈∇VW,~n〉 ds

=
∫
∂Ω

(
∂ψ

∂~n
+ κcψ) 〈W,~n〉 〈V,~n〉+ ψ 〈DW V,~n〉 ds

−
∫
∂Ω

ψ(〈DW V,~n〉+
ψ

2
(κc +

2Aκ3
c

1 +Aκ2
c

) 〈V,~n〉 〈W,~n〉

+ ψAκc(〈V,~n〉 〈W,~n〉)ττds

=
∫
∂Ω

(
∂ψ

∂~n
+
κc
2
ψ − Aκ3

c

1 +Aκ2
c

ψ) 〈V,~n〉 〈W,~n〉 − ψAκc(〈V,~n〉 〈W,~n〉)ττds

Now, as already abstractly shown in corollary 2.4, we observe symmetry of the
Riemannian shape Hessian also in this example. For small A > 0 the term “∂ψ/∂~n+
κc

2 ψ” is decisive rather than the putative term above. We will study this example
in more specific details in section 4.
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3. Convergence of Riemannian Shape Newton Methods. Now we for-
mulate a contraction result for Newton iterations on manifolds which is in line with
linear space theorems in [7, 11]. Again, since the observations hold for more general
Riemannian manifolds than just Be, we use a more general notation. We proof con-
vergence properties for Newton-like methods on Riemannian manifolds, but have
always in mind that in this paper we want to solve a particular root finding problem
for the gradient of an objective. Thus, every time the Jacobian is mentioned, we
can think it as the Jacobian of the gradient and thus the Hessian of an objective
on a Riemannian manifold.

Theorem 3.1. We consider a complete Riemannian Manifold (N , G) with
norm ‖.‖ := G(., .) on the tangential bundle TN . The set D ⊂ N is assumed to be
singly connected and open. We are seeking a singular point of the twice differentiable
vector field F : N → TN by employing a Newton method on manifolds. The
symbol J := DF denotes the covariant derivative of F such that DF (x)v := ∇vFx.
Furthermore, we assume that for all points x, y ∈ D with y = expx(∆x),∆x :=
−M(x)F (x) and M(x) ∈ End(TxN )) and invertible and all t ∈ [0, 1], the following
Lipschitz conditions are satisfied along the geodesic γ : [0, 1] → N , t 7→ γ(t) :=
expx(−tM(x)F (x)) with parallel transport Pα,β : Tγ(α)N → Tγ(β)N .

(1) There exists ω <∞ with

‖M(y)(Pt,1J(γ(t))P0,t − P0,1J(x))∆x)‖ ≤ ωt ‖∆x‖2

(2) There is a constant upper limit κ < 1 for the function κ̃(x) in

‖M(y)P0,1(F (x) + J(x)∆x)‖ =: κ̃(x) ‖∆x‖

with κ̃(x) ≤ κ.
If x0 satisfies δ0 < 1, where δk := κ+ ω

2 ‖M(xk)F (xk)‖ , k = 0, 1, . . ., then follows
(1) The iteration xk+1 := expxk

(−M(xk)F (xk)) is well defined and stays in
D0 := {x ∈ D | d(x, x0) ≤ ‖M(x0)F (x0)‖ /(1− δ0)}.

(2) There exists x̂ ∈ D0 with lim
k→∞

xk = x̂ in the sense that lim
k→∞

dG(xk, x̂) = 0,

where dG is the geodesic distance.
(3) There holds the a-priori estimation

dGA(xk, x̂) ≤ δk
1− δk

‖∆xk‖ ≤
δk0

1− δ0
‖∆xk‖

where ∆xk := −M(xk)F (xk).
(4) There yields the contraction property

‖∆xk+1‖ ≤ δk ‖∆xk‖ = (κ+
ω

2
‖δxk‖) ‖∆xk‖

(5) If the mapping x 7→ M(x) is continuous and M(x̂) is nonsingular, then x̂
is not only a fixed point but rather a root of the equation F (x) = 0.

Proof. The proof follows the standard lines—now in manifold notation. First,
we note the manifold variant of the fundamental theorem of calculus along the
geodesic γ for any C1 vector field X (cf. [16]):

X(γ(t)) = P0,tX(γ(0)+

t∫
0

Ps,t∇γ̇(s)Xγ(s)ds = P0,tX(γ(0)+

t∫
0

Ps,tDX(γ(s))γ̇(s)ds
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and have in mind that obviously γ̇(s) = P0,s∆xk. We show the contraction property
and use the abbreviation R(xk) := F (xk)− J(xk)M(xk)F (xk)∥∥∆xk+1

∥∥ =
∥∥M(xk+1)F (xk+1)

∥∥
=
∥∥M(xk+1)P0,1R(xk) +M(xk+1)

[
F (xk+1)− P0,1R(xk)

]∥∥
≤ κ

∥∥∆xk
∥∥+

∥∥∥∥∥∥M(xk+1)

1∫
0

Pt,1DF (γ(t))P0,t∆xk − P0,1J(xk)∆xkdt

∥∥∥∥∥∥
≤ κ

∥∥∆xk
∥∥+

1∫
0

∥∥M(xk+1)(Pt,1DF (γ(t))P0,t − P0,1J(xk))∆xk
∥∥ dt

≤ κ
∥∥∆xk

∥∥+

1∫
0

tω
∥∥∆xk

∥∥2
dt = κ

∥∥∆xk
∥∥+

ω

2

∥∥∆xk
∥∥2

= δk
∥∥∆xk

∥∥
Now we conclude inductively that δk < 1 for all k and thus the series {δk}∞k=0 and
{‖∆xk‖}∞k=0 are montonically decreasing. Now, we show that the series {xk}∞k=0

stays in D0. We use the triangle inequality which holds because of the metric
properties of the Riemannian metric.

dG(xk, x0) = dG(exp(∆xk−1) ◦ . . . ◦ exp(∆x1) ◦ expx0
(∆x0), x0) (3.1)

≤
k−1∑
j=1

∥∥∆xj
∥∥ ≤ k−1∑

j=1

δj0
∥∥∆x0

∥∥ ≤ ‖∆x0‖
1− δ0

(geometric series) (3.2)

Analogously, we show the Cauchy property of the series {xk}∞k=0.

dG(xm, xn) = d(exp(∆xm−1) ◦ . . . ◦ exp(∆xn+1) ◦ expxn
(∆xn), xn) (3.3)

≤
m−1∑
k=n

∥∥∆xk
∥∥ ≤ m−1∑

k=n

δkn ‖∆xn‖ ≤
m−1∑
k=n

δk0
∥∥∆x0

∥∥ (3.4)

≤ ε for any ε > 0, if n,m→∞ (3.5)

The a priori estimation is yet another application of the triangle inequality. Now,
if M(.) is continuous and xk → x̂, we pass the defining equation

xk+1 := expxk
(−M(xk)F (xk))

to the limit, having in mind that exp is continuous and expy(z) = y implies z = 0
for any y. Thus, we observe that M(x̂)F (x̂) = 0. Finally, if M(x̂) is nonsingular,
we conclude that F (x̂) = 0

Now, we proof quadratic convergence for the exact Newton method–again com-
pletely parallel to the discussions in [7, 11].

Corollary 3.2. Together with the assumptions of theorem 3.1, we choose
M(x) = DF (x)−1, thus defining the exact Newton method on manifolds. The re-
sulting iteration converges locally quadratically, i.e., there is a k̃ ∈ N and a C <∞
such that

dG(xk+1, x̂) ≤ CdG(xk, x̂)2 , ∀k ≥ k̃

where dG denotes again the geodesic distance.
Proof. Because of the choice M(x) = DF (x)−1, we observe for κ in theorem

3.1 from

‖M(y)P0,1(F (x) + J(x)∆x)‖ =
∥∥M(y)P0,1(F (x)− J(x)J(x)−1F (x))

∥∥ = 0



9

And thus κ = 0. Since {δk}∞k=0 is monotonically decreasing to zero, there is k̃ such
that δk = ω

2

∥∥∆xk
∥∥ ≤ 1

4 for all k ≥ k̃, which implies also δk/(1 − δk) ≤ 1/3 for all
k ≥ k̃. From the fact that the exponential function is an isometry and from the a
priori estimation in theorem 3.1, we observe∥∥∆xk

∥∥ = dG(xk+1, xk) ≤ dG(xk+1, x̂) + dG(xk, x̂) ≤ δk
1− δk

∥∥∆xk
∥∥+ dG(xk, x̂)

≤ 1
3

∥∥∆xk
∥∥+ dG(xk, x̂)

and therefore
∥∥∆xk

∥∥ ≤ 3
2d(xk, x̂). Now, we use again the a priori estimation

dG(xk+1, x̂) ≤ δk+1

1− δk+1
‖∆xk+1‖ ≤

4
3
ω

2

∥∥∆xk
∥∥2 ≤ 3

2
ωdG(xk, x̂)2

In shape optimization, it is very rare that one can get hold of J(xk) (i.e., the
Hessian of an objective) away from the optimal solution. However, in many cases,
expressions can be derived, which deliver the exact Hessian, if evaluated at the
solution. That means that often the situation occurs that an approximation M−1

k

of J(xk) is available with the property M−1
k → DF (x̂), k → ∞. We show local

superlinear convergence in those cases.
Corollary 3.3. Together with the assumptions of theorem 3.1, we choose

Mk := M(xk) such that∥∥[M−1
k −DF (xk)]∆xk

∥∥
‖∆xk‖

→ 0, k →∞

If there is a constant C <∞ such that the approximation Mk is uniformly bounded,
‖Mk‖ ≤ C, ∀k, then the resulting Newton iteration converges locally superlinearly.

Proof. We observe for κk := κ(xk) in theorem 3.1

κk =

∥∥Mk+1P0,1(F (xk) + J(xk)∆xk)
∥∥

‖∆xk‖
=

∥∥Mk+1P0,1(M−1
k + J(xk))∆x)

∥∥
‖∆xk‖

≤
‖Mk+1‖

∥∥P0,1(M−1
k + J(xk))∆x)

∥∥
‖∆xk‖

→ 0

We use again the apriori estimation in an analogous fashion as in the proof of
corollary 3.2 to obtain

dG(xk+1, x̂) ≤ δk+1

1− δk+1

1− 2δk
1− δk

dG(xk+1, x̂) ≤ 1− 2δk
(1− δk)2

δkdG(xk+1, x̂)

Since 0 ≤ δ2
k, we observe that (1− 2δk)/(1− δk)2 ≤ 1 which yields

dG(xk+1, x̂) ≤ δkdG(xk, x̂) with δk → 0, k →∞

Remarks:
- If we can assume that the quality of the Hessian approximation satisfies even∥∥M−1

k + J(xk)
∥∥ ≤ C ∥∥∆xk

∥∥ then we observe also quadratic convergence as
an immediate consequence of an obvious refinement of the proof of corollary
3.3.

- Note that the condition in corollary 3.3 is similar to the Dennis-Moré con-
dition [10, 8], which is also applicable for quasi-Newton update techniques
on Riemannian manifolds [25].
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4. Numerical Experiments. Here, we study the linear and quadratic con-
vergence properties of standard optimization algorithms applied to an example for
shape optimization in R2 which is as simple as possible, but nevertheless reveals
structures reflecting the discussion of this paper. We consider the following problem:

min
Ω
f(Ω) =

∫
Ω

x2
1 + µx2

2 − 1dx , µ ≥ 1 (4.1)

The obvious solution to this optimization problem is the shape Ω̂ with boundary

∂Ω̂ = {x ∈ R2 | x2
1 + µ2x2

2 = 1}

And from the discussion above, we observe that the Riemannian shape Hessian at
this solution is a multiplication operator

Hessf(Ω̂)V = ν · V , ν(s) ∈ [
2
µ
, 2], s ∈ ∂Ω̂

Therefore, the Hessian is coercive and thus the solution is locally unique and the
Newton iteration should converge quadratically close to the solution.

The application of the exponential mapping within the Newton method is an
expensive operation. It is recommendable to replace this step by a so-called retrac-
tion mapping [1, 32, 25], i.e., a smooth mapping rx : TxBe → Be with the following
properties:

a) rx(0) = x
b) Drx(0) = idTxBe (local rigidity condition [1])

with the canonical identification T0TxBe ∼= TxBe. Properties a) and b) are also
satisfied by the exponential mapping. An example of this kind of mapping is the
following mapping that we will use in our implementation of Newton optimization
methods on Be:

rx : TxBe → Be

η 7→
(
x+ η : S1 → R2

θ 7→ x(θ) + η(θ)

)
The implementation of the retraction rx defined above is much simpler than the
implementation of the exponential map. However, one should keep in mind that
this retraction does not leave Be only for tangent vectors η which are small enough.

Now, the Newton method for optimization is generalized to

xk+1 = rxk(−MkF (xk)) (4.2)

where the special case rx = expx considered above falls also into this class of
iterations. Since any retraction is a smooth mapping and because of the local
rigidity, we observe that

dG(x, rx(η)) = dG(x, expx(η)) + cdG(x, expx(η))2

for some constant c and for small enough tangential vectors η. Plugging this into the
estimations (3.1, 3.2) and (3.3, 3.4), we conclude that locally linear, superlinear and
quadratic convergence properties are not changed by using more general retractions
rather than the special case of the exponential map.

The distance of a shape iterate Ωk to the optimal shape Ω̂ should be measured by
the length of a connecting geodesic. However, in order to reduce the numerical effort,
we exploit the fact that a connecting geodesic is also the result of an exponential
map, which on the other hand is an isometry. Thus, we use for shapes close enough
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to the optimal solution such that Ωk = Ω̂ + h with h = α~n|∂Ω̂ as second order
accurate substitute for the geodesic distance the measure

d̃(Ωk, Ω̂) =
∫
∂Ω̂

|α|ds (4.3)

i.e., just the absolute value of the area between the iterates and the optimal shape.
Because of the simplicity of the objective (4.1), the integrations for the evalu-

ations of the objective can be performed in the form of integration along the shape
boundary in polar coordinates in the following way∫

Ω

x2
1 + µ2x2

2 − 1dx =
1
µ

∫
S1

‖cµ(θ)‖3

3
− ‖cµ(θ)‖ dθ

‖cµθ (θ)‖

where cµ := ∂

[
1 0
0 µ

]
Ω is the boundary of the domain Ω scaled by µ in the

x2-direction and the last integral can be numerically evaluated by usage of the
trapezoidal rule for a piecewise linear boundary discretization. Similarly, in the line
of (4.3), first order approximations of the distance of curves to the optimal solution,
which differ only by a small amount are computed by

d̄(Ωk, Ω̂) =
∫
∂Ω̂

| ‖c(s)‖ − ‖ĉ(s)‖ | ds =
1
µ

∫
S1
| ‖cµ(s)‖ − 1| dθ

‖cµθ (θ)‖

Furthermore, the tangential (and thus the unit normal) vector field for the iterates
is computed by central differences.

The first idea for setting µ in the numerical experiments is µ = 1. However,
then Hessf(Ω̂) = 2 · idT∂Ω̂Be which means that the method of steepest descent with
exact line search can exactly mimic the behaviour of the Newton method—including
quadratic convergence. However, we want to experience the difference between
steepest descent methods and Newton’s method in this example. Therefore, we
choose µ = 2 for performing the computations. The initial shape is defined by its
boundary ∂Ω0 := c0 as

c0(s) =
1
2

(
cos(s)− 0.15|1− sin(2s)| cos(s)
sin(s)− 0.15|1− cos(2s)| cos(s)

)
, s ∈ [0, 2π]

just to be somewhat more interesting than a simple circle. We use a piecewise
linear approximation with 100 equidistant pieces in [0, 2π]. Table 4.1 shows the
performance of the shape steepest descent method versus the shape Newton method
with exact line search, where we use A = 0 in the definition of GA similarly as in
[20]. The iterations are stopped at a distance of less than 10−7 to the solution.
For the steepest descent method, we observe linear convergence with a factor of
approximately 0.3, while for the Newton method we see clear quadratic convergence.
Figure 4 shows the various shape boundaries during the respective iterations.

5. Conclusions. In this paper, a novel point of view on shape optimization
is presented—the Riemannian point of view. The Riemannian shape Hessian is in-
troduced which can serve as a much more useful notion of second shape derivative
than the classical so-called shape Hessian. With this term, classical optimization
results, known in linear spaces, can be formulated and proofed in the area of shape
optimization. Newton optimization methods for shape optimization are analyzed.
A new model problem for shape optimization is introduced which mimics the prop-
erties of a standard L2-quadratic model problem in linear spaces—in so far as the
Riemannian Hessian is just a multiplicative operator.
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Table 4.1
Performance of shape algorithms: steepest descent (indices SD) versus Newton (indices NM),

α denotes the line search parameter chosen by an exact line search applied to the objective.

It.-No. f(ΩkSD) d̄(ΩkSD, Ω̂) αSD f(ΩkNM ) d̄(ΩkNM , Ω̂) αNM

0 -1.7664 0.9222 0.51 -1.7664 0.9222 0.64
1 -2.0716 0.2142 0.31 -2.0865 0.1359 1.00
2 -2.0921 0.5882E-01 0.37 -2.0944 0.4265E-02 1.00
3 -2.0942 0.1662E-01 0.32 -2.0944 0.1037E-04 1.00
4 -2.0944 0.4459E-02 0.35 -2.0944 0.2590E-09
5 -2.0944 0.1356E-02 0.33
6 -2.0944 0.3951E-03 0.34
7 -2.0944 0.1218E-03 0.33
8 -2.0944 0.3643E-04 0.35
9 -2.0944 0.1194E-04 0.32

10 -2.0944 0.3421E-05 0.35
11 -2.0944 0.1137E-05 0.32
12 -2.0944 0.3305E-06 0.35
13 -2.0944 0.1109E-06 0.30
14 -2.0944 0.2894E-07 0.39
15 -2.0944 0.1008E-07 0.36
16 -2.0944 0.3723E-08

Fig. 4.1. Visualization of the shape iterates for the steepest descent (left) and for Newton’s
method (right) from initial (blue) to solution (red) shape.

Several aspects are now open for further research: This paper only deals with
C∞-boundaries of 2D shapes. Of course, for practical purposes, this is not enough.
The regularity has to be reduced, one has to go from dimension 2 to 3 and one
has to treat shapes which are just part of submanifolds of R3, rather than whole
embeddings of the unit sphere. Furthermore, the implications for practical shape
optimization have to be analyzed. This will all be covered in subsequent papers.

Acknowledgment. The author is very grateful for the hint of Oliver Roth
(University of Würzburg, Germany) to the publication [30], where the whole en-
deavor of this paper began.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, 2008.

[2] E. Arian. Analysis of the hessian for aeroelastic optimization. Technical Report 95-84,
Institute for Computer Applications in Science and Engineering (ICASE), 1995.

[3] E. Arian and S. Ta’asan. Analysis of the hessian for aerodynamic optimization: Inviscid flow.
Technical Report 96-28, Institute for Computer Applications in Science and Engineering
(ICASE), 1996.

[4] E. Arian and V. N. Vatsa. A preconditioning method for shape optimization governed by the



13

euler equations. Technical Report 98-14, Institute for Computer Applications in Science
and Engineering (ICASE), 1998.

[5] M. Bauer, P. Harms, and P.W. Michor. Sobolev metrics on shape space ii: Weighted sobolev
metrics and almost local metrics. arXiv:1109.0404., 2011.

[6] M. Bauer, P. Harms, and P.W. Michor. Sobolev metrics on shape space of surfaces. Journal
of Geometric Mechanics, 3(4):389–438, 2011.

[7] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen. Bonner Mathematische Schriften 183, Bonn, 1987.

[8] R.H. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods with application
to unconstrained minimization. SIAM Journal on Numerical Analysis, 26(3):727–739,
1989.

[9] M. C. Delfour and J.-P. Zolésio. Shapes and Geometries: Analysis, Differential Calculus,
and Optimization. Advances in Design and Control. SIAM Philadelphia, 2001.

[10] J.E. Dennis and J.J. Moré. A characterization of superlinear convergence and its application
to quasi-Newton methods. Math. Comp., 28:549–560, 1974.

[11] P. Deuflhard. Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive
Algorithms. Number 35 in Springer Series in Computational Mathematics. Springer
Berlin, Heidelberg, 2004.

[12] K. Eppler. Second derivatives and sufficient optimality conditions for shape functionals.
Control and Cybernetics, 29:485–512, 2000.

[13] K. Eppler and H. Harbrecht. A regularized newton method in electrical impedance tomog-
raphy using shape Hessian information. Control and Cybernetics, 34(1):203–225, 2005.

[14] K. Eppler and H. Harbrecht. Shape optimization for free boundary problems – analysis and
numerics. In G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz,
M. Ulbrich, and S. Ulbrich, editors, Constrained Optimization and Optimal Control
for Partial Differential Equations, volume 160 of International Series of Numerical
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