
Technical Reports Mathematics/Computer Science
FB IV - Department of Computer Science
University of Trier
54296 Trier

Theorietag 2017

Automaten und Formale Sprachen

(Bonn, 18. September – 22. September 2017)

Herausgeber: Henning Fernau

Technical Report No. 17-2 September 2017

Vorwort

Theorietage haben eine lange Tradition bei verschiedenen Fachgruppen der
Gesellschaft für Informatik (GI).Die Fachgruppe Automaten und Formale
Sprachen (AFS) aus dem Fachbereich Grundlagen der Informatik (GInf)
innerhalb der GI trifft sich einmal jährlich zu ihrem zweitägigen Theorietag.
In diesem Jahr feiert die Reihe ihre 27. Auflage in Bonn.

Allerdings wird das Thema Lehre nur selten thematisiert, obwohl bei-
spielsweise die Mitgestaltung bei Vorschlägen für curriculare Standards der
Informatikstudiengänge seitens der Gesellschaft für Informatik zu den Auf-
gabenbereichen der Untergliederungen der GI gehört. Nach fast zwanzig
Jahren war es daher wieder an der Zeit, sich diesem Thema in einem beson-
deren Workshop zu widmen.

Diese curriculare Diskussion sollte auch in einem internationalen Rah-
men erfolgen, weshalb die folgenden Zeilen in englischer Sprache abgefasst
sind, ebenso wie die meisten Beiträge. Deshalb ist auch dieses Vorwort nach-
folgend englischsprachig.

Formal Languages in Today’s and in Future Curricula of Com-
puter Science Programs

Formal language courses have become an integral part of Computer Science
(CS) curricula all over the world. Although many things have been changing
over time in CS, the material that is currently taught in such classes is mostly
relying on results that were established fifty years ago. Even the textbooks
usually recommended for such classes have not changed that much over the
past decades. This is quite surprising in the quickly changing world of CS.

The contributions to this report touch quite different aspects of teaching
Formal Languages.

• How does this subject fit into CS-related curricula like Software Engi-
neering?

• Could teaching Formal Languages be split and shared if quite different
groups of students attend the courses?

• Is the use of Turing machines as the core model of computability still
adequate?

• How can the teaching of Formal Languages be integrated into a cur-
riculum with less focus on theoretical foundations? Programming with
Python could be a starting point.

• How is the situation in Finland and Romania, two of the (historically
speaking) core countries of Formal Language Theory?

• What about India, a country with quite some tradition in Formal
Languages?

• How is the situation in a country like Nigeria, where only very few
experts of Formal Languages could carry the torch of this discipline
for future generations?

• What is the impact and what are the requirements of Formal Lan-
guages outside academia?

Also, the background of the audience was quite diverse. This is true both for
the geographical variation, as people from all over the world were attending
our meeting, and for the variation in types of universities or audiences for
which courses in Formal Languages had to be designed. Also, some people
from outside academia attended this workshop and contributed by sharing
their views.

We believe that this meeting was a good starting point. This type of
meeting should not see another two decades pass before repeating this type
of discussion. Rather, it would be good to repeat this experience every 3-5
years.

Henning Fernau

im Namen der gesamten FG-Leitung
on behalf of the whole Board of the Special Interest Groups Automata and
Formal Languages

Appendix

In order to give an impression of this workshop, and also since not all talks
have some reflection in the following articles, we attach the program below.
This also shows the diversity of the talks and should be compared to the
Table of Contents of the collection of abstracts that follows.

Program on Thursday

1. Session: national experiences

• Henning Fernau: Short Opening

• Jürgen Dassow: Experiences from German Universities I

• Klaus-Jörn Lange: Experiences from German Universities II

• Daniel Neider: Experiences from German Universities III

• Peter Leupold: Formal Languages and Automata on stackoverflow

2. Session: applied perspectives

• Anna Kasprzik: Formal Languages in Libraries

• Stefan Gulan: Formal Methods in Industry

• Heinz Faßbender: Situation at HS Aachen

• Heinz Schmitz: Situation at HS Trier

• Martin Müller: Theory in Practice

3. Session: an international view

• D. G. Thomas: Formal Languages in the B.Sc. and M.Sc. in India

• Rufus Oladele: Formal Languages in Nigeria

• Mikhail Volkov: Formal Languages in Russia

• Rudolf Freund: What about Austria?

4. Session: concrete suggestions

• Markus L. Schmid: Compiler Construction and Parsing

• Henning Bordihn: Formal Languages in Software Engineering

• Klaus Reinhardt: Advocating abandoning Turing

First Impressions Collected

Program on Friday

1. Session: national experiences

• Henning Fernau: Short Opening

• Joel Day / Mitja Kulczynski: Experiences from the North

• Philipp Kuinke: Formal Language Teaching at RWTH Aachen

2. Session: Needs for now / for the future

Contents

1 Formal Languages in Software Engineering 1

Henning Bordihn

2 Modes of Thought from Theoretical Computer Science in Library-

Related R&D . 4

Anna Kasprzik

3 Experiences from the North . 7

Mitja Kulczynski

4 Learning from Leibniz to Understand Thue, Chomsky, and Turing

(a Suomi-Romanian Saga) . 10

Erkki Mäkinen, Liliana Cojocaru

5 Automata and Formal Languages in Nigeria 15

R. O. Oladele

6 Ein Plädoyer gegen das Turingband 18

Klaus Reinhardt

7 Teaching Theoretical Computer Science with Python 20

Heinz Schmitz

8 Teaching of Automata and Formal Languages - Indian Scenario . . 29

D. G. Thomas

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 1–3.

Formal Languages in Software Engineering
Henning Bordihn

Institut für Informatik, Universität Potsdam
August-Bebel-Straße 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de

Abstract

This paper discusses some content of Theoretical Computer Science that is needed in
more applied courses such as Software Engineering or in practice. It aims to demonstrate
that several aspects of traditional courses about Theoretical Computer Science form the
fundament on which applied disciplines build their methods. As an example, the modern
paradigm of model driven software development is considered in more detail.

1. Introduction
The author is experienced not only in teaching Theoretical Computer Science, but mainly as
a lecturer in courses about Programming, Algorithms and Data Structures and Software En-
gineering. It turned out that knowledge and methods that are typically taught in Theoretical
Computer Science courses are needed in certain parts of other, more application oriented lec-
tures. In order to provide students with necessary prerequisites, Theoretical Computer Science
courses should impart knowledge about “ways of thinking” such as modeling, abstraction, pre-
cision, and so on. The content used to convey such qualification is, in principle, exchangeable.
But one cannot deny that there is some “core” of traditional contents of Theoretical Computer
Science that should be pinned to a fundamental course in that field, because it is immediately
needed in other courses or in practice. In Software Engineering, for instance, several formal
or semi-formal methods require adequate knowledge about theoretical foundations. For exam-
ple, model checking requires knowledge about both state machine models and (temporal) logic,
system analysis about learning (of state machine models) from positive data, etc.

This paper aims to identify some major part of such “core” with the help of the course
Compiler and Program Transformation that I regularly teach at the University of Potsdam. This
course considers many aspects of traditional compiler construction, mainly from the phases of
lexical, syntactic and semantic analysis, with the goal of applying them in a project dedicated
to the paradigm of model driven software development. Several Bachelor’s theses that I’ve
supervised in cooperation with partners from industries emphasize the practical relevance of
the topic, see, e.g., [1, 3].

This contribution refers to a course at the University of Potsdam that is based on a course co-developed by
Bernhard Steffen and Oliver Rüthing, TU Dortmund.

2 Henning Bordihn

2. Compiler and Model Driven Software Development
In model driven software development (MDSD), models of the system under development form
the development artifacts. From the models, code in some target language that is ready for
compilation is automatically generated, see, e.g., [2]. There is a lot of benefit:

1. Verification is easier at the more abstract model level, where, for instance, model checking
can be used. The automatic code generation guarantees that properties verified at the
model level are preserved.

2. Manual coding errors and repetitive implementation work can be avoided.

3. The target platform can easily be exchanged, while the models with their properties are
re-used.

The models can be viewed as code in some domain specific, modeling language. In many cases,
such domain specific languages (DSL) are specified in extended Backus Naur Form (EBNF).
This specification is frequently done by those developers that strive for applying MDSD in
projects, but when no adequate DSL is at hand. This part of the work requires all the knowledge
about language design, including

• regular expressions for the specification of tokens,

• context-free grammars and languages, in particular LL or LR grammars for the syntax
specification,

• limits of context-free models for the decision on which aspects have to be moved to the
definition of the static semantics of the DSL.

Finally, a code generator (in most cases template based) must be implemented, completing the
translator, that is, the compiler needed for code transformation into some target language.

Nowadays, there exist several tools integrating all these aspects of language infrastructure
(scanner and parser generators, platforms for defining and checking static semantic constraints,
code generators). But those tools can be used successfully only if the theoretical concepts are
well understood.

Therefore, in the course Compiler and Program Transformation, the concepts from both
compiler construction and MDSD are discussed. These items strongly depend on the corre-
sponding theoretical concepts. Then, in a project, the students develop a DSL called Mini Game
Programming Language (MGPL) that is suitable for the definition of simple Arcade games. As
test cases, specifications of the games Pong and Space Invaders in MGPL are handed to the
students. The project goal is to compile these MGPL programs into Java code. If successful,
the generated Java code is generated “at the push of a button” and can be compiled and executed
by means of the JDK for Java SE, where not a single line Java code must be written by hand.

3. Conclusion
The experience with teaching applied computer science courses at the university level led to
some insight of what knowledge should (at least) be gained from fundamental courses about

Formal Languages in Software Engineering 3

Theoretical Computer Science. This contains regular expressions and finite automata, context-
free grammars and pushdown automata, limits of regular and context-free languages (pumping
lemmata), computability and undecidability, basics of complexity theory (e.g., the classes P
and NP, reductions and completeness). The discussion of some properties of the respective
models is, to some extend, also desirable.

Next to those topics related to automata and formal languages, decent knowledge about
logic (at least propositional and first order logics) is needed1. One might wish to consider the
interrelations of subjects like formal languages on the one hand and logic on the other, in fun-
damental theory courses, but one should be aware that the basic concepts need a consideration
for themselves first. Looking at the way how the concepts are applied, for instance, in Soft-
ware Engineering, then a traditional introduction of those concepts appears to be indispensable.
Given a curriculum such as the one in Potsdam, the “core” concepts can be supplemented by
more advanced concepts, properties or connections to other terms.

References
[1] D. HERGASS, Evolution eines Metamodells einer Sprache für die Modellierung von Automotive

Software. Bachelor thesis, University of Potsdam, 2017.

[2] S. KELLYL, J. TOLVANEN, Domain-Specific Modeling: Enabling Full Code Generation. John Wiley
& Sons, 2008.

[3] F. SOREK, Migration eines Editors zur Modellierung von Automotive Software von Graphiti zu
Sirius. Bachelor thesis, University of Potsdam, 2017.

1At the University of Potsdam, there is a separate course about logic for computer scientists. Therefore, this
article focuses on automata, formal languages, computability and complexity.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 4–6.

Modes of Thought from Theoretical Computer
Science in Library-Related Development and Research

Anna Kasprzik

Technische Informationsbibliothek
Welfengarten 1B
30167 Hannover

anna.kasprzik@tib.eu

Abstract

This is a personal account of a career in the library sector after an education in formal
linguistics and theoretical computer science. The author would like to argue that without
her formal training the pursuit of a career in library-related development would not have
been possible, and strongly advises against the reduction of such topics in today’s curricula.

1. A career in library-related development and research
The author has pursued and obtained an M.A. degree in computational linguistics, theoretical
computer science, and cognitive psychology, and during her studies has focussed on formal
(tree) languages, formal semantics, and predicate logic. She went on to receive a Ph.D. degree
in theoretical computer science, doing research on "formal tree languages and their algorithmic
learnability". The key component in all those activities was the concept of "structure", and the
question how structures can be generated, recognized, transformed, and validated.

After her Ph.D. the author decided to obtain an additional qualification as a scientific subject
librarian since she expected to find interesting aspects from information science in that area and
hoped to be able to combine them with structural considerations. The corresponding two-year
course addresses candidates with a Ph.D. or a M.A. degree and consists of a one-year practi-
cal internship at a scientific library, and a one-year course of theoretical training. The author
particularly focussed on topics in the cross-section of the library as a provider of modern digi-
tal services and information technology, i.e., within the realm of knowledge engineering, such
as controlled vocabularies, semi-automated classification and indexing, text and data mining,
semantic query enrichment, modelling of library metadata for various purposes.

During her practical internship at the University Library of Konstanz the author had the
opportunity to design and implement an algorithm that translated the in-house subject classi-
fication into a tree structure with the aim to eliminate elements that did not comply with the
principles of hierarchization implicitly contained in the classification. The author feels that she
did benefit considerably from her formal training in accomplishing this task, especially for-
mal tree language theory and complexity (a transition from searching the entire tree to merely

Modes of Thought from Theoretical Computer Science in Library-Related R&D 5

searching the path to the root at one point shaved off two hours of runtime when applying the
algorithm to the entire database), and also some modeling principles from software engineering.

After having worked in an IT project with the goal to establish a cloud-based infrastructure
for library metadata and a mapping between two metadata formats for one and a half years,
the author felt that the particular environment she was working in functioned mainly based on
pragmatic considerations and did not set its priorities on conceptual thinking and formal speci-
fication. She decided to apply for a position at a library (TIB) that as a member of the Leibniz
Association deliberately affords its own department for research and development, and started
to work as an expert on domain-specific vocabularies, ontologies, and semantic technologies.
Among her tasks was the structural optimization of a thesaurus that had been compiled from
several others and consequently had to be complemented with a top-level hierarchy in order to
create a homogeneous progression from general to more specialized topics. Again, her previ-
ous engagements with formal tree structures and predicate logic provided the author with the
foundations she needed in order to work with the underlying semantic network.

In July 2017, TIB (which acts as the national library for technical subjects) has recruited a
new Head of Library with the additional requirement to assume the professorship for Digital
Libraries and Data Science at the department of Computer Science. Consequently, the library’s
department for research and development is now being extended considerably, and the author
has obtained a position as a junior research group leader. One focus of the research group will
be on topics from the industrial realm of the "Smart Factory" (semantic layers for industrial
production processes) and the other on library-related knowledge organization systems.

2. Lessons learned

Thus, the components in her curriculum from which the author has stood to benefit most were:
Formal (tree) languages including tree structures with additional relations between nodes, some
complexity theory, modeling principles from software engineering, logic and formal semantics.
Although the author had not acquired extensive programming skills during her studies (only
some basic training in C++ and Prolog in order to understand the foundations of programming),
her background in theoretical computer science has enabled her to master the main features of a
programming language reasonably quickly in order to implement the functionalities needed for
her tasks, from Ruby code to small scripts in Perl and Python, to visualizations based on JSON
and D3. Most of those tasks were aiming at the manipulation of (hierarchical) tree structures.
Additional topics in her working environment (not necessarily in her personal task portfolio,
and the following list is not exhaustive) include document classification via vectorization and
subsequent formal concept analysis based on lattice theory, the extraction of machine-readable
semantic queries from text via natural language processing methods, ontology design based on
formal logic as a foundation for non-trivial question answering systems, and a range of topics
from the area of machine learning (including deep learning with neural networks).

It is fair to say that libraries are only just beginning to see the benefits of employing com-
puter scientists with a theoretical background. As of 2017, most job offers describe activities in
the IT department (administration, hosting, support) and at the lower end of the German civil
service pay scale (not suited to attract academically trained computer scientists), rather than ac-
tivitites in research and development involving conceptualization and hiqh-quality specification

6 Anna Kasprzik

and documentation. This is a lost opportunity and is all the more unfavourable since at a closer
look librarians and theoretical computer scientists are very much alike in their semantic way of
thinking and building structures in order to organize data and to model the domains in question.
The methods needed to do so are all core topics of theoretical computer science.

What is missing is a general education among decision makers in libraries what theoretical
computer science is and what it can do for them – and who better than the "Gesellschaft für
Informatik" to raise this kind of awareness! Decision makers should be encouraged to create
more jobs in their IT and research and development departments that deal with conceptual-
ization, classification, standardization, and handling of metadata on a higher level. Computer
scienctists can function as intermediaries between library and IT, thus counteracting the pres-
sure of sacrificing formal standards and conceptions to pragmatic aspects of the modern working
environment and making a major contribution towards the development of more sustainable ser-
vices, to everybody’s benefit. An obvious precondition of such a fruitful symbiosis is of course
that in the decades to come academically trained computer scientists still exist, particularly those
with a training in classical theoretical topics such as formal language theory, computability and
complexity, logics, and various methods of modeling, and a shift in curricula towards a more
short-sighted, pragmatical approach would be detrimental to say the least.

Consequently, not only should curricula in computer science at universities contain the theo-
retical topics listed above as a (compulsory) standard, but topics such as formal language theory,
logics and some elements of formal linguistics should be taught in German secondary schools
as well as a general preparation towards a structural and scientific mode of thought.

References
[1] A. KASPRZIK, Formal tree languages and their algorithmic learnability. Dissertation, Universität

Trier, 2012. Available online at: http://ubt.opus.hbz-nrw.de/volltexte/2012/737/.

[2] A. KASPRZIK, One-shot learning and the polynomial characterizability barrier. Technical Re-
port 12-4, Universität Trier, 2012. Available online at: http://www.informatik.uni-trier.de/
~kasprzik/oneshotpol.pdf.

[3] A. KASPRZIK, Projektbericht : Implementierung eines Hierarchisierungsalgorithmus’ für die Kon-
stanzer Systematik. Technical report, Bibliothek der Universität Konstanz, 2013. Available online at:
https://kops.uni-konstanz.de/handle/123456789/24166.

[4] A. KASPRZIK, Automatisierte und semiautomatisierte Klassifizierung – eine Analyse aktueller Pro-
jekte. Perspektive Bibliothek 3 (2014) 1, 85–110.

[5] A. KASPRZIK, Vorläufer internationaler Katalogisierungsprinzipien. Perspektive Bibliothek 3 (2014)
2, 120–143.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 7–9.

Experiences from the North
Mitja Kulczynski

Kiel University, Department of Computer Science,
mku@informatik.uni-kiel.de

Abstract

Following the demand of different study programs and for pedagogical reasons we have
changed the way we teach theoretical foundations of computer science in Kiel since the
Winter term 2016. The course was split into two parts: An informal and formal round.
These parts were lectured consecutively. This report describes our experiences with this
approach.

1. Introduction

Teaching theoretical foundations of computer science is never an easy task. At the Kiel Uni-
versity this course is one of the obligatory modules for undergraduate bachelor students. The
course starts with teaching formal languages. Students are introduced to regular, context free,
context sensitive and unbounded languages. We are teaching the basic automata models and
properties of grammars for each category. Afterwards we tackle computability of languages.
We cover decidability aspects of previously seen languages and teach mechanisms of how to
prove or disprove it. The last part of this course covers basic knowledge about complexity the-
ory. We cover some of the most common time and space complexity classes. Again we teach
how to prove which complexity class the previously seen languages belong to.

The lecture is based on a variety of books [1, 2, 3, 4, 5, 6, 7, 8]. We used these books to
write our own lecture notes which are provided to every student. In each term this course is
given in two lectures and one tutorial with supporting exercises, per week. Therefore the course
consists of 26 lectures and about 13 exercise sessions.

Since 2016 we had to face an even harder task at Kiel University: Not only computer science
students, but also business informatics students had to participate in this course. The major
difficulty was not the lack of knowledge, but the circumstances: The course was designed to
achieve 8 credit points, whereas business informatics should receive only half of the points.

In this report we briefly describe how we reached this goal and what the undergraduates
thought of our decisions. The last section also covers some thoughts for the future which were
inspired by the discussions after the talk at the Theorietag 2017 in Bonn. All given information
is based on having taught the course in this form twice so far.

8 Mitja Kulczynski

2. The course
To address the constraint mentioned above we decided to divide the lecture into two parts: A
more or less “informal” part, which only covers definitions, examples, and some algorithms
from the topics introduced in Section 1 and a “formal” part where we prove the correctness
of previously given constructions and enrich the topics with enhanced background knowledge.
The associated tutorials and their exercise sheets follow the same style.

2.1. The lecture
We decided to cover the most common topics related to formal languages.

Formal languages

Computability

Complexity theory

Figure 1: Structure of the course

The task was to give a smaller lecture in half of the normally
given time without loosing relevant information. Therefore
we decided to hide technical details and correctness proofs
in the first part of the lecture. Proving the correctness of
all covered topics usually takes most of the time. This al-
lows us to cover even more language classes than before
e.g. context sensitive languages which were not covered in
the previous structure of this course. To fulfil the needs of a
business informatics graduate it is sufficient to have an intu-
ition about formal languages, computability and complexity
without the complete background knowledge. Also the undergraduates in computer science
benefited from this structure. Due to the circular procedure of the course as given in Figure 1,
they face all topics twice. Based on their previously gained knowledge they are able to focus
on the construction proofs without thinking too much about the basic definitions. A problem
which appeared in the first run of the course however, was the absence of easy topics in the
second half. So our solution was to move some algorithms from the first half into the second
half. This arbitration relaxed the difficulty. Unfortunately the formal part of the course throw
some students off track.

2.2. The tutorial
Each week the students are able to do homework while supported by an employee. The under-
graduates discuss their problems in small groups of 2 to 4 people. The main advantage of this
tutorial style is the personal assistance by a tutor based on their current knowledge level. Due to
the small group size the tutorial lacks open discussions which are often helpful to tackle general
questions. To remove this minus we will add an additional tutorial where an employee solves
exercises with a larger audience and guides open discussions to deepen the undergraduates’
knowledge.

2.3. Impressions
Our and also the students’ reaction was mostly positive. Within the informal part of the course
there was a high willingness to participate. This is not too common in theoretical courses.
During the tutorials we usually asked the students for their own opinion. The main negative

Experiences from the North 9

aspects from their point of view were the lack of difficult topics and the relevance in general.
Another negative aspect was the coarse covering of the decidability part. We saw no other way
of covering this topic without introducing proofs.

The second run offered us some great opportunities: We were able to directly adjust the
level of detail for all topics based on the students’ needs. Unfortunately some students were
still not able to follow this run.

3. An Outlook
The next run of this course will take place in summer 2018. We will keep up our tutorial style
but add an extra tutorial in the classical sense where we will solve additional exercises. To give
the students an even better understanding of our topics we consider extending the exercises with
practical ones e.g. implementing a pushdown automaton in Python.

The lecture will probably cover fewer topics in the next run. We will try to get rid of the
too coarse topics by adding even more examples. This will remove the rough feeling of the
decidability and complexity part in the first half of this course.

Some students complained about the circular structure of the lecture. Therefore a recom-
mendation at the Theorietag 2017 was to cover one topic each week, where the first lecture
covers the informal part and the second one the proofs. We will not attempt this approach since
we will lose one of the biggest benefits from our current course style: Revisiting all topics twice
and adjusting the lecture to the students’ needs.

Overall we just have to make some small adjustments. This is also based on the supporting
feedback during the Theorietag 2017.

References
[1] J. E. HOPCROFT, R. MOTWANI, J. D. ULLMAN, Automata theory, languages, and computation.

International Edition 24 (2006).

[2] D. C. KOZEN, Theory of computation. Springer Science & Business Media, 2006.

[3] D. C. KOZEN, Automata and computability. Springer Science & Business Media, 2012.

[4] A. MAHESHWARI, M. SMID, Introduction to Theory of Computation. Free Online (2012).

[5] J. C. MARTIN, Introduction to Languages and the Theory of Computation. 4, McGraw-Hill NY,
1991.

[6] U. SCHÖNING, Theoretische Informatik kurz gefasst. Wissenschaftsverlag Mannheim, 1992.

[7] M. SIPSER, Introduction to the Theory of Computation. 2, Thomson Course Technology Boston,
2006.

[8] T. A. SUDKAMP, Languages and machines: an introduction to the theory of computer science.
Addison-Wesley Longman Publishing Co., Inc., 1988.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 10–14.

Learning from Leibniz
to Understand Thue, Chomsky, and Turing

(a Suomi-Romanian Saga)
Erkki Mäkinen Liliana Cojocaru

University of Tampere, Faculty of Natural Sciences
{Erkki.Makinen, Liliana.Cojocaru}@uta.fi

1. A Little Bit of Philosophy

If you want to understand a concept then first understand its philosophy, which is deeply ancho-
red in our intuition of perceiving and judging the things that surround us. A concept or principle
has no meaning without its philosophy.

Formal Languages (and Automata) theory is a relatively new computing paradigm, belon-
ging to the 20th century, while its philosophical roots come from Leibniz’s works On the Art
of Combinations (and Discovery) dated from the 17th century. He may be considered the first
mathematician to put across the necessity of an universal language built from some primiti-
ve axioms (symbolic assignments) which, through an iterative derivative process (calculating
or deduction rules) on combinations of symbols, would lead to more complex structures, thus
allowing the encoding of human knowledge and providing logical proofs.

In his vision everything done by our mind is a computation, nothing is haphazardly, and
therefore everything should be computable. Despite the existence of non-decidable problems or
Gödel incompleteness theory (a theory of our century), we would rather say that he was per-
fectly right. The incompleteness property of a system only means that we can build a hierarchy
of incomplete computable systems. There is no evidence that this hierarchy would not collapse
inside the constructible Universe. Isn’t it, the Universe, the environment within all problems
should be solvable? Otherwise, the Universe in which we live would be an incomplete system,
which is hardly to believe that may be true. In a few words, unsolvability or incompleteness,
like time and space, are our own inventions.

Leibniz’s philosophical thoughts on an universal language and on a calculating machine
(Step Reckoner) have been materialized during the 20th century, through Thue (or Post) rewri-
ting systems, Chomsky grammar formalism, and Turing machines, giving birth to the so called
Formal Languages and Automata Theory.

“(Formal) Language is recognized now as an universal paradigm, like time, space, and lo-
gic.” (Solomon Marcus)

Learning from Leibniz to Understand Thue, Chomsky, and Turing (a Suomi-Romanian Saga)11

2. And a Bit of History

On its prehistory (1910-1920) Formal Language theory was meant to cope rather with syntacti-
cal and structural properties of algebraical structures, such as groups and semigroups, than with
linguistic structures (since during those times the algebraic and logic theories were in vogue).
The ancestors of nowadays Chomsky grammars were the so called string rewriting systems, de-
veloped in turn by Axel Thue and Emil Post in order to handle computations in (combinatorial)
group theory, number theory, and mathematical logic.

Noam Chomsky had the brilliant idea to redefine Thue’s rewriting rules in order to handle
linguistic structures, hence redirecting their applicability to natural language processing (1956).
Then there was another crucial mutation that came from Aristid Lindenmayer who refined the
semi-Thue systems such that to handle biological structures in living organisms, introducing the
so called L-systems, marking thus the beginning of the biological computing era (1968).

As all these scientific challenges would have had almost no significance without their elec-
tronic manipulation, an historical milestone was reached then when the grammar formalism,
introduced by Chomsky, turned out to be fruitful in defining the syntax of programming langua-
ges, hence in compiler constructions. Besides electronics (i.e., hardware), programing langua-
ges (i.e., software) proved to be the main tool used to implement the environment under which
we live (with all its physical, biological, linguistical, and many other natural properties).

Seen usually as twins, Automata theory and the theory of Formal Languages had officially
aroused in 1960. Their ideological roots come from 1936 when Alan Turing invented the first
universal formal model of computation - the Turing machine - and from 1946 when Thue-Post
rewriting systems were introduced.

Nowadays, Formal Languages and Automata theory stands at the crossroad between Theo-
retical Computer Science, Computational Linguistics, Computational Biology, Compilers and
Programming Languages, and over the years it had sprang its branches throughout the world.
It is difficult to estimate which country brought the strongest contribution on this theory, but
in almost all countries there were giants that did the pioneering steps and impelled further the
imagination of generations of researchers. Among them, Finland and Romania showed up with
significant results - jewels that will stand forever. This was due to legendary and Emeritus Pro-
fessors: Arto Salomaa and Solomon Marcus. Their scientific collaboration and friendship that
last several decades, and their immeasurable scientific work has been and will forever be relayed
to generations of mathematicians and computer scientists. Recently, a biography of Professor
and Academician Arto Salomaa has been written, in Finnish, by Emeritus Professor Jukka Paak-
ki, Department of Computer Science, University of Helsinki. The book Arto Salomaa: Äijän
Näköinen Matemaatikko (Arto Salomaa: A Grand-Dude Mathematician) describes the whole
academic and research life of Professor Arto Salomaa, along with his fruitful collaboration with
Professor Solomon Marcus (and others).

Today, Formal Languages and Automata theory receives priority in the Curricula of the best
Finland and Romanian Universities, from undergraduate to master’s and doctoral studies.

12 Erkki Mäkinen, Liliana Cojocaru

3. Germs in Finland

In Finland, the beginning of formal languages was marked by the inestimable work of Professor
and Academician Arto Salomaa (Turku Centre for Computer Science and Mathematics, Univer-
sity of Turku, member of the Academy of Finland and Doctor Honoris Causa of the University
of Western Ontario, Canada). His scientific work is synthesized into more than 500 articles
in scientific journals and 46 books from which we recall: Theory of Automata (1969), Formal
Languages (1973), The Mathematical Theory of L-Systems (1980), Jewels of Formal Language
Theory (1981), Public-Key Cryptography (1990), three-volumes Handbook of Formal Langua-
ges (1997), and DNA Computing (1998).

Professor and Academician Arto Salomaa was the mentor of 25 doctoral students having
more than 250 descendants by the Mathematics Genealogy Project. He was in service of science
for more than 60 years, and at his honorary age of 83, he is still an active thinker and writer. In
recognition of his scientific activity, creativity and originality, academicians and researchers all
over the world had brought their honorary homages for his 60th (Results and Trends in Theore-
tical Computer Science), 65th (Jewels are Forever), 70th (Theory is Forever), 75th (Symposium)
and 80th (Arto Salomaa’s) birthday.

Professor Arto Salomaa had sealed the research work at Turku Centre for Computer Science
and Mathematics, and anywhere in the world, for one hundred years and more. His research ac-
tivity is carried forward at Turku Centre for Computer Science by the Automata Theory Group
leaded by Professor Juhani Karhumäki (Fundamentals of Computing and Discrete Mathematics
Centre, FUNDIM). The group’s research activity is focused on discrete mathematics, combina-
torics on words, formal languages and automata, computability and complexity, cryptography
and bio-computing. The research projects, at FUNDIM Centre, bring together Emeritus Pro-
fessor Magnus Steinby, Professors Tero Harju, Kai Salomaa, Jarkko Kari, Ion Petre, Valtteri
Niemi, Mika Hirvensalo, Juha Honkala, Alexander Okhotin, and many other researchers and
PhD students.

Lectures on Formal Languages and Automata theory have been leaded, during 1970-1980,
at the University of Tampere by Emeritus Professor Reino Kurki-Suonio, and during 1980-
1990, at the University of Kuopio (now part of the University of Eastern Finland) by Professor
Martti Penttonen. During the 70’s Formal Languages were also taught at the Technical Univer-
sity of Tampere and the University of Tampere, by Professor Timo Lepistö (a former student
of Professor Arto Salomaa) and since 1990, at the Technical University of Tampere, by Profes-
sor Keijo Ruohonen. The raise of Computational Linguistics in Finland was due to Professor
Kimmo Koskenniemi, the father of Finite-State Two-Level Morphology. This is one of the most
persuasive application of finite-state transducers in morpho-phonological analysis of natural
languages. His work is now carried out, at the Department of Modern Languages, University
of Helsinki, by Professor Anssi Yli-Jyrä, who is teaching and performing research on Auto-
mata and Formal Languages theory with applications on Finite-State Models as a Fundamental
Methodology in Natural Language Processing. Currently, lectures on Formal Languages and
Automata theory, with applications in Image Processing and Celular Automata, are taught at
Turku University by Professor Jarkko Kari. Research on Bio and Natural Computing, through
Formal Languages and Automata theory, are performed at Åbo Akademi University under the
guidance of Professor Ion Petre.

Learning from Leibniz to Understand Thue, Chomsky, and Turing (a Suomi-Romanian Saga)13

4. Germs in Romania
In Romania, as also in Finland, there is a strong tradition to do Mathematics and Computer
Science, and this is mostly due to the interdisciplinary oriented work of Professor and Aca-
demician Solomon Marcus. His pioneering contributions in fields of Mathematics, Computer
Science, Computational Linguistics, and Semiotics made him the most legendary Romanian
mathematician of our times. He brought applications of Mathematics, via Formal Languages
and Algebraical Linguistics, in Computational Linguistics. Inspired from Chomsky grammars,
he introduced in 1969, the so called Marcus Contextual Grammars as a generative model of
natural languages. For a survey on Marcus contextual grammars, their generative power, and
relationships to Chomsky grammars the reader is referred to Marcus Contextual Grammars (by
Rodica Ceterghi, Formal Languages and Applications, Springer-Verlag, 2004).

Professor and Academician Solomon Marcus was also fascinated by the History and Phi-
losophy of Science, and for a more complete History of Formal Languages (than our Bit of
History) the reader is referred to his survey on Formal Languages: Foundation, Prehistory,
Sources, and Applications (Formal Languages and Applications, Springer-Verlag, 2004).

Professor and Academician Solomon Marcus was the mentor of 24 doctoral students ha-
ving more than 100 descendants by the Mathematics Genealogy Project. His scientific work
is synthesized into more than 400 articles in scientific journals, conference proceedings, and
books, and over 60 books from which we recall: Introduction Mathematique a la Linguistique
Structurale (1967), Algebraic Linguistics; Analytical Models (1967), La Semiotique Formelle
du Folklore. Approche Linguistico-Mathematique (1978), Introduccion en la Linguistica Mate-
matica (1978), Contextual Ambiguities in Natural and Artificial Languages (vol.1, 1981; vol.2,
1983), Language, Logic, Cognition and Communication; A Semiotic, Computational and His-
torical Approach (1996). A complete list of his publications can be found on his web page, at
the Simion Stoilow Institute of Mathematics of the Romanian Academy. His best articles have
been gathered into the book Words and Languages Everywhere (2007), while the book Meetings

14 Erkki Mäkinen, Liliana Cojocaru

with Solomon Marcus (2010) is an honorific volume dedicated to his 85th birthday.
One of the in memoriam article of Professor Solomon Marcus was Grigore C. Moisil: A

Life Becoming a Myth, written in honor of Professor and Academician Grigore Moisil. He is
the father of Computer Science in Romania. He did research in the fields of Mathematical Logic,
Algebraic Logic, Łukasiewicz-Moisil Algebra, Finite-State and Automata theory. He used the
Łukasiewicz-Moisil algebras in Logic and Automata theory. He created new methods to analyze
Finite State Automata, with applications in fields of Automata theory and Algebra. Professor
and Academician Grigore Moisil had a major contribution in the creation of the first Romanian
computers and in the raising of the first generations of Romanian computer scientists. In 1996,
he was awarded by exception posthumously the Computer Pioneer Award by the Institute of
Electrical and Electronics Engineers Computer Society (Wikipedia).

In Romania, as also in Finland, the Formal Languages and Automata theory is still an active
topic in the Curricula of almost all Computer Science and (Applied) Mathematics Faculties, of
the best Romanian Universities, such as University of Bucharest, Alexandru Ioan Cuza Uni-
versiy of Iaşi, West University of Timişoara, Babeş-Bolyai University of Cluj, Ovidius Univer-
sity of Constanţa. In all these Universities Formal Languages and Automata theory are taught
in connection with other adjacent fields, such as Computational Linguistics, Bio and Natural
Computing, Petri nets, Computational Complexity theory, Mathematical Logic, and Algebra,
for undergraduate, master’s, and doctoral students.

Final Notes
This report is just a little part of the Suomi-Romanian Saga on Automata and Formal Lan-

guages that has developed over the years. The story is much more complex from both sides.
The former tree in the Suomi-Romanian Saga picture is inspired from Adriana Galindo’s

paintings (on Pinterest), while the second tree is inspired from Axel Thue’s paper Die Lösung
eines Spezialfalles eines generellen logischen Problems, see also Trees and Term Rewriting in
1910: On a Paper by Axel Thue by Magnus Steinby and Wolfgang Thomas.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 15–17.

Automata and Formal Languages in Nigeria
R. O. Oladele

Department of Computer Science, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
roladele@unilorin.edu.ng

Zusammenfassung

This paper presents situational report on the teaching/learning of automata and formal
languages in nigerian universities. The report is based on personal experience, observation
and consultation with some colleagues in other universities.

1. Introduction/Status Report
Nigeria is located on the west of africa and has a population of about 192 million people.There
are about 152 universities in nigeria of which 40 are funded by the federal government, 44 are
funded by the state government and 68 are owned by private organizations and individuals.

There is a rich theory track in the undergraduate curricula of most of these universities. In
particular courses such as; Automata Theory, computability and Formal Languages, Analysis of
Algorithms, and Discrete Mathematics and other theory-related courses are in the curricula of
almost all these universities. However, it is not clear if all these courses are taught every session
by most of these universities.

Automata and Formal Language (AFL) as a course is not taught in some universites, instead
compiler construction is taught. In the universities where AFL is taught, it is regarded as a core
course which must be offered by all computer science students. Overall, AFL is being taught in
most nigerian universities.

At the graduate level (M.Sc. and PhD), less than half of the universities that have graduate
programmes teach any of these theoretical courses. In particular, Automata and Formal Langua-
ges (AFL) is being taught by a very few of these universities at the masters level.It is pertinent
to mention that whenever AFL is taught in these institutions, it is taught as an elective course
and there exists very few graduate students offering it.

To the best of my knowledge, among M.Sc. and PhD graduates that are produced in the last
17 years in all nigerian universities, those who wrote their theses/dissertations in the field of Au-
tomata and Formal Languages are strictly less than 17. The reason is not unconnected with the
fact that there are very few experts doing research in AFL/AFL-related field, specifically there
is one Professor in Ahmadu Bello University(Mathematics Department) who has been doing
research in AFL-related field since 1999 plus my humble self (a Senior Lecturer in University
of Ilorin) who just developed interest in AFL less than two years ago. Another reason is that
there are very few or no graduate student opting for research in AFL in these two universities

16 R. O. Oladele

The table below gives a summary of how AFL fares in the top 10 nigerian universities.
The table, among other things, shows if students are taught AFL at the Bachelor (B.SC.), and
Masters/Doctorate (M.Sc./PhD) levels. It also shows the number of Lecturers who do active
research in AFL, i.e. experts.

Table 1: AFL in top 10 nigerian universities
University Type B.Sc.Level M.Sc./PhD Level Expert

University of Ibadan Federal Yes Yes 0
University of Nigeria Federal Yes No 0
University of Lagos Federal Yes Yes 0

Obafemi Awolowo University Federal Yes No 0
Covenant University Private Yes No 0

Ahmadu Bello University Federal Yes Yes 1
FUT Minna Federal Yes No 0

University of Ilorin Federal Yes Yes 1
University of Benin Federal Yes No 0
University of Abuja Federal No No 0

2. Challenges of teaching AFL
The challenges of associated with the teaching/learning of AFL in nigerian universites are enu-
merated below

1. There are no lecturers to teach AFL in many universities: There are only 2 lecturers doing
research in AFL/AFL-related area in the whole of nigeria. Worse still, most lecturers are
not willing to teach AFL. Consequently, a few ones that are willing to teach are equally
employed as visiting lecturers in some other universities.

2. The so-called willing few that accept to teach AFL more often than not gloss over the
course hardly covering about 40% of the core topics: The reason for this is not far-fetched,
most of these willing few are not passionate/enthusiastic about the course. In fact most of
them lack rich understanding/knowledge of what they they teach and they are not willing
to learn.

3. Many Students are not willing to learn AFL, they hate it as a course because of it’s ab-
stract nature. Most of these students have the misbelief that AFL does not have practical
applications.

4. Sometimes majority of the students are not mathematically prepared enough to learn AFL.
As such when you teach, you have to slow down, spend a lot of time covering some basics
before actually teaching what is in the syllabus. The implication of this is that the actual
AFL course syllabus will not be fully covered.

Automata and Formal Languages in Nigeria 17

3. Final Remark
Apparently, the state of AFL in Nigeria is worrisome. It is however interesting to state that some
students have had their interests in AFL aroused in recent time and this has given birth to some
masters theses and some other ongoing projects/research. With this development, it is believed
that there is a future for AFL in Nigeria and University of Ilorin is expected to be a major player
in realizing this future.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 18–19.

Ein Plädoyer gegen das Turingband
Klaus Reinhardt(A)

(A)Institut für Informatik, Universität Halle, Von-Seckendorff-Platz 1, 06120 Halle (Saale)
klaus.reinhardt@informatik.uni-halle.de

Zusammenfassung

In diesem Beitrag wird zur Diskussion gestellt, die Turingmaschine in der Lehre voll-
ständig durch k-PDA’s (k = 2 für eine Einband-TM) zu ersetzten. Dies wird durch die
Einsparung von Zeit und Beschreibungskomplexität begründet.

1. Einleitung
In einschlägigen Lehrbüchern und Skripten wird als Automatenmodell für Typ 0 und Typ 1
Sprachen der Chomsky-Hierarchie die k-Band Turingmaschine (oft k= 1 verwendet). Bekannt-
lich [1] entspricht die Berechnungsmächtigkeit der eines k-PDA mit k ≥ 2.

Der 2-PDA kann wie der PDA als 7-Tupel (Z,Σ,Γ, δ,q0,#,E) beschrieben werden, wobei
sich nur die Übergangsfunktion ändert zu δ : Z×Γ×Γ 7→ Pe(Z×Γ∗×Γ∗) wobei Σ ·∪{#} ⊂ Γ.
Mit der Startkonfiguration (q0,x#,#) auf Eingabe x und der Konfigurationsübergangrelation
` mit (q,aα1, bα2) ` (p,β1α1,β2α2) für (p,β1,β2) ∈ δ(q,a,b) verallgemeinert eine Rechnung
direkt die Rechnung eines PDA. Dabei wird nur das Eingabeband ersetzt durch den ersten Keller
der das Eingabewort x (nur das Kelleranfangszeichen # kommt hinzu) enthält und auf den nichts
geschrieben wird.

Die Verallgemeinerung zum k-PDA ist kanonisch.
Auch Akzeptieren mit leeren Kellern anstelle von Endzuständen ist möglich.

2. Vorteile
1. Anstelle der Einführung des neuen Kozeptes “Band” wird das bereits erlernte Konzept

“Keller” vertieft.

2. Beispielautomaten haben weniger Zustände als die entsprechende Turingmaschine und
sind leicht nachzuvolziehen.

3. Der LBA ist bereits durch die Bedingung |β1β2| ≤ 2 für alle (p,β1,β2) ∈ δ(q,a,b) voll-
ständig definiert.

4. Die Simulation von Typ-0 und Typ-1 Grammatiken vereinfacht sich deutlich (kein Ver-
schieben von Halbbandinhalten mehr).

Ein Plädoyer gegen das Turingband 19

5. Die Simulation eines k-DPDA durch einen 2-DPDA ist leichter zu beschreiben als die
Simulation einer k-DTM durch eine 1-DTM, da das Aufsammeln der obersten Kellerzei-
chen in geordneter Reihenfolge erfolgt.

6. Leichte Einsparung auch bei der Gödelisierung, da die Kodierung der Bewegungsrichtun-
gen entfällt.

7. Leichte Vereinfachung der Simulation eines k-DPDA durch ein GOTO-Programm gegen-
über der einer DTM.

8. Der offline-k-PDA, der für die logarithmisch platzbeschränkte Reduktion benötigt wird,
ist ebenfalls leicht durch die Bedingungen βR1 β2 = a1a2 und |βk| ≤ 1 für alle Übergänge
(p,β1,β2, ...βk) ∈ δ(q,a1,a2, ...ak) definiert. (Damit kann für die Funktionsberechnung
nur der Platzverbrauch in Keller 3 bis k−1 betrachtet werden.)

3. Nachteil
Aufwand bei der Umstellung von Lehrmaterial.

Literatur
[1] J. E. HOPCROFT, R. MOTWANI, J. D. ULLMAN, Introduction to Automata Theory, Languages,

and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 20–28.

Teaching Theoretical Computer Science with Python
Heinz Schmitz(A)

(A)Hochschule Trier, Fachbereich Informatik, Schneidershof, D-54293 Trier, Germany
H.Schmitz@hochschule-trier.de

Abstract

We show how teaching classical content from Theoretical Computer Science (TCS) can
be combined with an introduction to the PYTHON programming language within the same
course as part of a Bachelor program in Computer Science. Our main motivation to do so is
to obtain executable versions of TCS models and to introduce PYTHON in a thorough way
for follow-up courses. Due to PYTHON’s reduced syntax and hence pseudocode-like ap-
pearance, TCS models can be represented and also executed in a concise way very close to
the formal definitions. We outline the resulting course structure and show how PYTHON can
be interlaced with a typical sequence of lectures on TCS while preserving the mathematical
nature of the course. We believe that this combination can help students to bridge the puta-
tive gap between theoretical and more practical aspects of CS, and that it provides a more
seamless integration of TCS into the overall curriculum.

1. Introduction
Introductory courses on Theoretical Computer Science are a fundamental part of most study
programs in Computer Science (CS) at German universities, and there is a broad agreement
what subjects should usually be covered [6]. These subjects can be roughly termed as automata
theory and formal languages, computability and complexity theory, and each time mathematical
models serve as abstract representations of some computation resources and processes. Students
are expected to develop the capability to design and analyse these models in order to understand
the fundamental relations that delimit and determine the field. But also more practical learn-
ing outcomes are wanted: Formalization abilities and rigorous thinking are seen as important
ingredients to high-quality work results throughout entire CS.

As has been frequently reported in the literature, students often have difficulties following
in particular the TCS courses, resulting in substantially high failure rates and unsatisfactory
learning outcomes. So various approaches have been suggested to improve this situation, among
them strengthening the historical context [1], visualizations of mathematical models [5] or a
cognitive apprenticeship approach [4]. The latter is a concept that addresses the whole process
of teaching and learning, since there does not seem to be a single and stable set of influencing
factors. We contribute to this ongoing discussion with an add-on to the content of such a course
but within the bounds of mandatory TCS subjects.

Teaching Theoretical Computer Science with Python 21

Our impression is that students see TCS models mainly as some ‘artificial’ objects with no
obvious links to practical areas of CS, although references to these other areas and to forth-
coming courses are usually given in a TCS lecture. On the other hand, (small) models of
programming languages are treated as models for computation which have a clear and strong
connection to what students experience elsewhere in CS. Based on this simple observation, we
derive the following ideas to help students bridge the putative gap between theoretical and more
practical aspects of CS:

• We use a small subset of a widespread programming language as a WHILE language
when teaching computability. This has been common practice in TCS courses before,
e.g., RIES as a PASCAL-like language in [7]. Here we choose PYTHON1 to make use
of it’s reduced syntax and hence pseudocode-like appearence. Together with an almost
math-like notation for expressions and sets this makes PYTHON a good candidate for TCS
purposes. Moreover, it can be expected that PYTHON plays it’s role elsewhere in the CS
curriculum.

• After that, we use this WHILE language (with some extensions) consequently to represent
and execute all forthcoming TCS models in the course. This also includes implementa-
tions of algorithms derived from all constructive proofs. So on one hand the (extended)
WHILE language is immediately applied to some ‘real’ computation tasks, and on the
other hand students can investigate all TCS models and proofs by executing them in a
present-day language.

• Parallel to the treatment of different TCS models, the WHILE language is stepwise ex-
tended by basic data types and their operations in order to allow more convenient pro-
gramming. Also runtime analysis, first introduced for the plain WHILE language, is car-
ried along these extentions by expanding the cost model and definitions of input lengths
accordingly. So the TCS models and algorithms in PYTHON can be immediately judged
by their efficiency by both, theoretical bounds and practical experiences. As a conse-
quence, the introductory TCS course in not only a basis for CS in general and for ad-
vanced TCS courses in particular, but it can also serve as a fundament for follow-up
courses on algorithms when based on PYTHON.

We believe that these elements result in a more seamless integration of TCS into the overall
CS curriculum, and hopefully less students look at it as something that they just have to get
along with.

The course we outline in the next section was develped over the last decade and has some
accompanying features. It is given in a series of 15 lectures each 90 minutes per week, accompa-
nied by weekly exercise sessions of the same duration with up to 30 students where homeworks
need to be presented. All lectures are recorded as screencasts and students are asked to work
through them before the weekly tutorial which is a session given by the instructor instead of the
lecture. Here questions can be asked, additional examples and live-programming are presented
and solution hints to more complicated exersices are discussed. An online quiz with about 500
true/false-questions about the lecture contents is intended to activate students. The main lecture

1www.python.org

22 Heinz Schmitz

material is a script where proofs and examples are added by handwritten tablet input during
each lecture. Students are invited to turn it into their personal workbook by adding their own
comments.

2. Course Outline

The content can be roughly sectioned into basics (lectures 1 to 3), computability (4,5), runtime
analysis (6,7), finite automata and regular languages (8 to 11), contextfree languages (12,13)
and complexity (14,15). There is no particular lecture on PYTHON since language elements are
introduced en passant when needed. The teaching order is a result of the ideas mentioned be-
fore. The early treatment of computability together with the introduction of a PYTHON subset
as a WHILE language is needed to provide a model of computation that can be immediately
applied in subsequent lectures. For the same reason runtime analysis of these WHILE programs
and their extensions are considered next, so this machinery can also be applied to the algo-
rithms presented later in the course. On the other hand, complexity classes are only introduced
towards the end of the course when various programming experiences have been made in pre-
vious exercises. Next we give some keywords for the content of each lecture and show how
PYTHON is interlaced. We also mention some exercises that can be assigned in addition to
usual TCS paperwork homeworks.

1. Introduction. Syllabus, organizational notes; formulation of theorems and basic proof
forms.

The PYTHON part here is only to install all needed software and get an IDE running (we
use PYTHON 3.x, Eclipse2 and the PyDev3 plugin).

2. Induction. Induction on IN, inductive definitions, structural induction, examples of recur-
sive functions.

Additionally, we give an informal introduction to the PYTHON shell and we declare and
execute a simple recursive function. It’s correctness proof serves as an example for the
application of the induction principle in a CS context. Moreover, the set of feasible arith-
metic expressions as used later in the WHILE language are among the examples for induc-
tive definitions, and some easy properties of these expressions (e.g. numbers of opening
and closing brackets coincide) are shown by structural induction.

3. Words and Formal Languages. Alphabets, words, formal langauges, word problem, basic
language operations.

In this lecture, we also introduce PYTHON string and set types together with basic opera-
tions for both of them. So finite sets of words can be explicitely handled, and differences
between TCS and PYTHON notations are shown, e.g.

2http://www.eclipse.org
3http://www.pydev.org

Teaching Theoretical Computer Science with Python 23

TCS notation PYTHON

words, empty word w = 01101, ε w = ’01101’, ’’
alphabets Σ1 = {0,1},Σ2 = {a,b,c} global

length, concatenation |w|, wv, w5 len(w), w + v, w*5
indexing, subwords w = a0a1a2, ai · · ·aj w[0]w[1]w[2], w[i:j]

sets, empty set A= {ε,0,00}, E = ∅ A = {’’,’0’,’00’}, E = set()
membership x ∈ A,x 6∈ A x in A, x not in A

language operations A∪B,A∩B A | B, A & B
L, L1L2, Lk, L∗, LR no such thing

Additional exercises cover implementations of language operations in PYTHON where
finiteness is preserved.

4. WHILE Programs. Models of computation, syntax and semantics of a WHILE language,
examples.

We introduce a carefully chosen subset of PYTHON as a model for computation so stu-
dents immediately have the PYTHON shell as an execution environment available. The
syntactic elements are inductively introduced together with their semantics and comprise:

Constants [−](0|(1| . . . |9)(0| . . . |9)∗)
Identifiers (a| . . . |Z)(a| . . . |Z|0| . . . |9)∗

Expressions constants, variables
(a+b), (a-b)
f(b1,...,bm)

Conditions (a==b), (a!=b), (a>b), (a<b),
(a>=b), (a<=b), (not c),
(c1 or c2), (c1 and c2)

Assignment a = b

Cond.Stmts if c: if c:
s1 s

else:
s2

Composition s1
s2

Loops while c:
s

for i in range(a1,a2):
s

Functions def f(a1,...am):
s
return a

def f(a1,...am):
return a

Programs f1
...
fm

Typical exercises ask for partial functions ϕP on ZZ computed by a given WHILE program
P , and vice versa. For the latter, students need to provide implementations that pass at
least the given test cases.

5. Computability. Class of WHILE-computable functions, equivalence to other models of
computation (w/o proof), Turing-completeness, Church-Turing-hypothesis; existence of
incomputable functions by counting (diagonalization); decidability, examples of undecid-
able sets.

Additional practical exercises for this lecture treat algorithms for characteristic functions
of some example problems, a WHILE implementation of the Ackermann function and
(pseudo-) WHILE algorithms for closure properties of recursive sets.

24 Heinz Schmitz

6. Runtime Analysis. Types of cost models, uniform model for WHILE, step function, run-
time function, input length, asymptotic classes and their properties, runtime analysis of
WHILE programs.

The main focus in the additional exercises is to analyse the runtime of given WHILE pro-
grams. However, students also gain hands-on experience in the significance of theoretical
bounds, e.g., when experimentally comparing the naïve WHILE program for multiplica-
tion by successive summation with a more clever algorithm for it.

7. Python Programs. Specification of computational problems, classical examples like KNAP-
SACK and pattern matching in strings; extension of WHILE programs by data types str,
set, list and dict, and their operations; expansion of the cost model, definition of input
length for the new data types, examples of runtime analysis.

More classical decision and optimisation problems are introduced in the exercises, e.g.,
BIN PACKING and SOS. Exhaustive search algorithms and their runtime analysis using
the new data types need to be derived.

8. Deterministic Finite Automata. Examples and definition of DFAs, extended transition
function and accepted language; decision problems for DFAs; extended example of search
automata for string matching.

Together with the formal definitions, DFAs are immediately represented in PYTHON. All
ingredients needed to do so have been introduced before. We contrast an example DFA
with its PYTHON representation.

state set Q= {q0, q1, q2}
alphabet Σ = {0,1}
accepting states F = {q2}
transition function δ as:

q a δ(q,a)
q0 0 q1
q0 1 q0
q1 0 q1
q1 1 q2
q2 0 q2
q2 1 q2

DFA A= (Q,Σ, δ,q0,F)

Q = {0, 1, 2}
Sigma = {’0’, ’1’}
F = {2}
delta = {}

delta[0,’0’] = 1
delta[0,’1’] = 0
delta[1,’0’] = 1
delta[1,’1’] = 2
delta[2,’0’] = 2
delta[2,’1’] = 2

A = [Q, Sigma , delta , 0, F]

Similarly, the inductive definition of the extended transition function has an immediate
recursive implementation in PYTHON.

Teaching Theoretical Computer Science with Python 25

ext. trans. function δ̂ : Q×Σ∗→Q as

• δ̂(q,ε) = q, and

• δ̂(q,wa) = δ(p,a) if p= δ̂(q,w)

def delta_hat(delta , q, v):
if v == ’’: return q
w, a = v[:-1], v[-1]
p = delta_hat(delta , q, w)
return delta[p, a]

Finally, the definition of the accepted language has an executable counterpart in PYTHON.

L(A) = {w ∈ Σ∗ | δ̂(q0,w) ∈ F}

def run_dfa(A, w):
[Q, Sigma , delta , q0, F] = A
return delta_hat(delta , q0, w) in F

Observe that no more code is needed to run a DFA on some input word. Students benefit
from this in the exercises when the behaviour of self-designed automata for given lan-
guages can be inspected. Moreover, algorithms for emptiness and finiteness tests for a
given DFA can be programmed in PYTHON. An example of a more advanced task is to
implement the construction of the search automata for string matching as treated in the
lecture.

9. Nondeterministic Finite Automata. Examples and definition of NFAs, extended transition
function and accepted language; equivalence of DFAs and NFAs, closure properties.

Again, NFAs are represented in PYTHON and also all other definitions are carried over.
Similarly few code is needed to obtain executable NFAs. The runtime analysis of the
respective run_nfa function reveals the price to pay for less states and easier design.
Evident exercises cover implementations for the constructive proofs given by the powerset
construction and for the closure properties.

10. Regular Expressions. Syntax and semantics of regular expressions, conversion to NFAs,
construction of a regular expression for given DFA with a Floyd/Warshall-like algorithm.

Although regular expressions are treated only as flat strings in PYTHON, they will be
parsed in later exercises. Here regular expressions are used to specify valid WHILE con-
stants and identifiers, and automata need to be obtained to recognize them by the methods
introduced in the lecture. Additionally students are asked to implement the construction
of the regular expression from a given DFA by dynamic programming. Here they gain
first-hand experience about what an exponential growth of the output size looks like.

11. Regular Languages. Proof and applications of Pumping Lemma. Summary of lectures 8
to 11.

Students have implemented and experienced up to now a collection of algorithms trans-
forming different representations of regular languages. This own experience adds to the
motivation of asking for which languages these nice things are not possible. The sum-
mary additionally emphasizes the derived runtimes of simulation and transformation al-
gorithms, and reveals trade-offs between regular language representations.

26 Heinz Schmitz

12. Contextfree Languages. Definition and examples of contextfree grammars, derivations,
from DFAs to CFGs; PYTHON data type tuple, equivalence of left-, right-derivations and
parse trees, ambiguity; ε-free grammars and their construction.

The representation of CFGs in PYTHON is again chosen close to the formal definitions,
where each production is just a tuple of the left and right side. This may also apply for
other types of grammars.

terminals Σ = {0,1}
non-terminals N = {S}
set of productions P :
S → ε
S → 0S1

CFG G= (Σ,N,P,S)

Sigma = {’0’, ’1’}
N = {’S’}

P = { (’S’, ’’),
(’S’, ’0S1’) }

G = [Sigma , N, P, ’S’]

Based on this, a leftmost derivation step for a given production is easy to implement.

if p= (A→ β)

and α= wAγ

α⇒l wβγ

def derive_left(alpha , p):
(A, beta) = p
if A in alpha:

i = alpha.index(A)
w, gamma = alpha[:i], alpha[i+1:]
return w + beta + gamma

else:
return alpha

Additional exercises cover the implementation of turning a PYTHON representation of
an arbitrary DFA into the respective CFG, or to return the set of all words that can be
produced with at most k leftmost derivation steps for a given CFG.

13. An All-round Parser. Chomsky normal form, CYK algorithm, correctness and runtime;
parsing arithmetic expressions of WHILE programs.

The lecture demonstrates the small step from the inductive definition of subproblems for
the CYK method to an executable implementation by dynamic programming. Additional
exercises ask for parsing WHILE expressions including function calls, where results from
previous exercises on valid WHILE identifiers need to be reused, and for parsing regular
expressions over a given alphabet.

14. The Classes P and NP. Definition of P, FP and EXP, closure properties of P, common
problem structure of SOS, TSP and others; definition of NP, inclusions from P and to EXP.

Here NP is defined via length-bounded certificates and poltime verification, so in ad-
ditional practical exercises students can implement these verifications for given solu-
tion candidates and convice themselves of their poltime by runtime analysis. More-
over, suitable iterators are available in PYTHON’s itertools in order to obtain canonical
exhaustive search algorithms in a straightforward way, while runtime analysis of these

Teaching Theoretical Computer Science with Python 27

PYTHON implementations shows membership in EXP. Here is the entire algorithm for
the SOS problem.

for a= (a0, . . . ,am−1),k

exists I ⊆ {0, . . . ,m−1}
with k = ∑i∈I ai ?

from itertools import product
def sos_exhaustive(a,k):

m = len(a)
for I in product ((0,1), repeat=m):

if k==sum(a[i] for i in range(m)
if I[i]):

return 1
return 0

15. NP-Completeness. Poltime-many-one-reducibility, example reductions, closure of P and
NP under ≤p

m, notion of NP-completeness, examples (w/o proof), discussion of P/NP-
question.

Typical exercises ask for reductions between similar problems extended by implementa-
tions of these reduction functions.

3. Outlook
Time is the resctrictive factor when including additional topics, and other things have to be left
out. In our case, we moved the dicussion of Turing machines and proofs of their equivalence
to other models to later courses. The same holds for a self-contained NP-completeness proof
and the other levels of the Chomsky hierarchy. We found that adding PYTHON implementations
also in these later courses is helpful there too, and not much additional effort is needed after
this introductory course, e.g., to obtain a straightforward representation and execution of Turing
machines or the implementation of their Gödelization. Another follow-up course that is now
well-prepared may deal with syntactic analysis, where discussion and representation of PDAs
can be easily motivated and combined with the development and implementation of parsing
algorithms – based on PYTHON and the introduced cost model. The same is true for a course
on basic algorithms that can follow seamlessly [3, 2]. The introductory TCS course described
here does not only allow for additional exercises, but it also yields subjects for practical but
theory-based student projects or theses that are well-prepared by this course. E.g., this could be
the development of a WHILE parser that adds to each program a counter for computation steps
according to the cost model, or a PYTHON module to visualize and interact with the transition
diagrams of the automata models, or a collection of implementations of reduction functions
that make use of some solver package for satisfiability or linear optimization in the background,
only to name a few.

Acknowledgements

This teaching concept has been jointly developed and intensely discussed with Christian Glaßer,
Universität Würzburg, Germany. We are also grateful to Christian Reitwießner for pointing out
the advantages of PYTHON to us.

28 Heinz Schmitz

References
[1] C. I. CHESÑEVAR, M. P. GONZÁLEZ, A. G. MAGUITMAN, Didactic strategies for promoting sig-

nificant learning in formal languages and automata theory. ITiCSE (2004), 7.

[2] T. HÄBERLEIN, Praktische Algorithmik mit Python. Oldenbourg Verlag, 2012.

[3] M. HETLAND, Python Algorithms. Apress, 2010.

[4] M. KNOBELSDORF, C. KREITZ, S. BÖHNE, Teaching theoretical computer science using a cogni-
tive apprenticeship approach. SIGCSE (2014), 67–72.

[5] S. H. RODGER, B. BRESSLER, T. FINLEY, S. READING, Turning automata theory into a hands-on
course. In: the 37th SIGCSE technical symposium. ACM Press, New York, New York, USA, 2006,
379.

[6] UNKNOWN AUTHOR, Empfehlungen für Bachelor- und Masterprogramme im Studienfach Informatik
an Hochschulen (Juli 2016). Gesellschaft für Informatik e.V., 2016.

[7] K. W. WAGNER, Theoretische Informatik – Eine kompakte Einführung. second edition, Springer,
2003.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 29–32.

Teaching of Automata and Formal Languages - Indian
Scenario

D. G. Thomas

Department of Mathematics, Madras Christian College, Chennai - 600059, India
dgthomasmcc@yahoo.com

The awareness of higher education in India is very high as almost every student is com-
pleting school education and pursuing higher education. Most of the students take up under
graduate courses either in science or engineering. Any under graduate program in computer
science, computer applications and mathematics can offer a course in formal languages and
automata theory (FLAT).

1. Higher Education in India
There are around 800 universities/institutions managing higher education in India. Many
of them are funded by government and others by private managements. The following
table shows the statistics of universities and institutions available in India as per the All
India Survey on Higher Education for the year 2015-2016.

No. of Universities: 799 (Private Universities: 277)

No. of Colleges: 39071

Type of University Number of Universities
Central Open University 1
Central University 43
Deemed University Government 32
Institution Under State Legislature Act 5
Institution of National Importance 75
Deemed University - Private 79
State Private University 197
State Open University 13
State Public University 329
State Private Open University 1
Deemed University - Government Aided 11
Others 13
GRAND TOTAL 799

2. Institutions of National Importance
There are around 70 technical institutions and a few institutions for science and technol-
ogy of national importance funded by Government of India. To mention a few:

30 D. G. Thomas

• Indian Institute of Technology (IIT): 16

• National Institute of Technology (NIT): 31

• Indian Institute of Information Technology Design & Manufacturing (IIITDM): 23

• Tata Institute of Fundamental Research (TIFR), Mumbai

• Indian Statistical Institute (ISI), Kolkata

• Indian Institute of Science (IISc), Bengaluru

• Institute of Mathematical Sciences (IMSc), Chennai

3. Theoretical Computer Science (TCS) & Formal Languages and Automata Theory
(FLAT) Notable Institutions:
Among the institutions of science and technology, the following are notable for offering
courses in TCS and FLAT in under graduate (B.Sc., B.C.A, B.E and B.Tech) and in post
graduate levels (M.Sc., M.C.A., M.E., M.Tech and M.Phil.), and for pursuing research
degree (Ph.D.).

• Tata Institute of Fundamental Research (TIFR), Mumbai

• Indian Statistical Institute (ISI), Kolkata

• Indian Institute of Science (IISc), Bengaluru

• Institute of Mathematical Sciences (IMSc), Chennai

• Chennai Mathematical Institute (CMI), Chennai

• Madras Christian College (MCC), Chennai

4. Madras Christian College (MCC), Chennai
The Madras Christian College which is one among the top 10 colleges in India was
founded as a school in George Town, Chennai in 1837. It has moved to the present
campus of 365 acres in Tambaram, Chennai in 1937. The year 1978 was path-breaking as
MCC became one of the earliest colleges to be granted the status of autonomy. This status
enabled the college to introduce new courses and innovative curricular enhancements. At
this juncture, FLAT was introduced as a course in B.Sc. and M.Sc. by the Department
of Mathematics, MCC. The department has grown into a high level research center in
FLAT. At present there are 32 Academic departments in MCC with 304 teaching staff
catering to the needs of 7200 students coming from semi-urban background comprising
48% women.

5. The school of Siromoney
A decade before autonomy, Dr. Rani Siromoney started working on her Ph.D. in the field
of FLAT. She has built a very strong research group in FLAT which continues to be active
till date. She has guided 4 Ph.D. students in FLAT. They are: Prof. Kamala Kirthivasan
(IIT-M), Prof. K.G. Subramanian (MCC), Prof. V. Rajkumar Dare (MCC) and Prof. K.
Rangarajan (MCC). There are many grand doctoral students of Dr. Rani Siromoney. To
mention a few: Dr. Meena Mahajan (IMSc), Dr. D.G. Thomas (MCC), Dr. P.J. Abisha
(MCC) and Dr. T. Robinson (MCC) and Dr. R. Rama (IIT-M).

Teaching of Automata and Formal Languages - Indian Scenario 31

6. Books Written/Edited

To enhance and enrich the teaching of FLAT, the books written/edited by Siromoney
school are given below:

(a) Rani Siromoney - Formal Languages and Automata, CLS, 1984

(b) Kamala Kirthivasan and R Rama, Introduction To Formal Languages, Automata
Theory and Computation, Pearson, 2011

(c) K G Subramanian and K Rangarajan - Formal Methods, Languages and Applica-
tions, World Scientific, 2006

(d) D G Thomas and P J Abisha - Cryptography, Automata and Learning Theory,
Narosa, 2011

(e) D G Thomas and T Robinson - Automata, Graphs and Logic, Narosa (in press),
2017

7. MCC - Courses Taught

• In M.Phil. Programme, a course on Theory of Computation and Graph Theory is of-
fered. The topics taught are: Turing Machines, Decidability, Reducibility and Time
Complexity. The text book prescribed is: Introduction to the Theory of Computa-
tion, 2nd Ed., authored by Michael Sipser.

• In M.Sc. Programme, a course on Formal Languages and Automata is offered. The
topics taught are: Finite Automata, Regular Grammars, Properties of Regular Lan-
guages, Context-Free Languages, Pushdown Automata, and Properties of Context-
free Languages. The text book prescribed is: An Introduction to Formal Languages
and Automata, 4th Ed., authored by Peter Linz.

• In M.Sc. Programme, another course on Theory of Computation is offered. The
topics taught are: Turing Machines, Other Models of Turing Machines, A Hierar-
chy of Formal Languages and Automata, Limits of Algorithmic Computation and
an Overview of Computational Complexity. The text book prescribed is: An Intro-
duction to Formal Languages and Automata, 4th Ed., authored by Peter Linz

• In B.Sc. Programme, a course on Formal Languages and Graph Theory is offered.
The topics taught are: Phrase - Structure Languages, Closure Properties, Normal
forms of CFG, Properties of CFLs and Finite State Automata. The text book pre-
scribed is: Formal Languages and Automata, 2nd Ed., authored by Rani Siromoney.

8. IIITDM - Course Taught

With the objectives of training students to design various phases of compiler such as Lex-
ical Analyzer, Syntax Analyzer, Semantic Analyzer, Intermediate Code Generator, Code
Optimizer and Code Generator and understanding the applications of FSA & PDA in
Compiler Design, the course on Automata & Compiler Design is offered in B.E.(Computer
Engineering) programme. The text book prescribed is: Principles, Techniques and Tools,
authored by Alfred Aho, Ravi Sethi and Jeffrey Ullman.

32 D. G. Thomas

9. IIT Madras - Course Taught
With the objective of providing a formal connection between algorithmic problem solv-
ing and theory of languages and automata and developing FLAT into a mathematical view
towards algorithmic design and in general, computation itself, the course Languages, Ma-
chines and Computation is offered in B.E. (Computer Science Engineering) Programme.
The topics taught are: Finite Automata & Regular Languages, Non-determinism & Reg-
ular Expressions, Grammars & Context-free Languages (CFLs) and Turing Machines &
Computability. The text books prescribed are: Automata and Computability, authored by
Dexter C. Kozen, 2007 and Introduction to Automata Theory, Languages and Computa-
tion, authored by Hopcroft, Motwani and Ullman, 3rd Ed., 2006

10. FLAT - Challenges & Needs
Challenges:

• Students to inculcate Mathematical thinking skills

• Students to develop intuitive ideas for problem solving

• Students to take up projects

Needs:

• Objectives to be prescribed

• More applications to be shown

• Software/Teacher’s resources to be prepared

• Lab activities/projects to be developed

• Student-friendly textbooks to be prescribed

• Workshops for course teachers of neighbouring institutions to be organized

	Formal Languages in Software Engineering
	Modes of Thought from Theoretical Computer Science in Library-Related R&D
	Experiences from the North
	Learning from Leibniz to Understand Thue, Chomsky, and Turing (a Suomi-Romanian Saga)
	Automata and Formal Languages in Nigeria
	Ein Plädoyer gegen das Turingband
	Teaching Theoretical Computer Science with Python
	Teaching of Automata and Formal Languages - Indian Scenario

